AN EFFICIENT POLYNOMIAL TIME APPROXIMATION SCHEME FOR THE VERTEX COVER P_{3} PROBLEM ON PLANAR GRAPHS

Jianhua Tu
School of Science
Beijing University of Chemical Technology
Beijing 100029, China
e-mail: tujh81@163.com
AND
Yongtang Shi ${ }^{1}$
Center for Combinatorics and LPMC
Nankai University
Tianjin 300071, China
e-mail: shi@nankai.edu.cn

Abstract

Given a graph $G=(V, E)$, the task in the vertex cover $P_{3}\left(V C P_{3}\right)$ problem is to find a minimum subset of vertices $F \subseteq V$ such that every path of order 3 in G contains at least one vertex from F. The $V C P_{3}$ problem remains NP-hard even in planar graphs and has many applications in real world. In this paper, we give a dynamic-programming algorithm to solve the $V C P_{3}$ problem on graphs of bounded branchwidth. Using the dynamic programming algorithm and the Baker's EPTAS framework for NP-hard problems, we present an efficient polynomial time approximation scheme (EPTAS) for the $V C P_{3}$ problem on planar graphs.

Keywords: combinatorial optimization, vertex cover P_{3} problem, branchwidth, planar graphs, EPTAS.
2010 Mathematics Subject Classification: 05C85.

[^0]
1. Introduction

For a graph G, we denote its vertex set and edge set by $V(G)$ and $E(G)$, respectively. Unless stated otherwise, let $n:=|V(G)|$ and $m:=|E(G)|$. Given a graph G and an integer $t \geq 2$, a vertex subset F is called a vertex cover $P_{t}\left(V C P_{t}\right)$ set if every path of order t in G contains at least one vertex in F. The task in the $V C P_{t}$ problem is to find a minimum $V C P_{t}$ set in G. Clearly, the $V C P_{2}$ problem corresponds to the well-studied vertex cover problem. Thus, the $V C P_{t}$ problem can be seen as a natural generalization of the vertex cover problem. The study of the $V C P_{t}$ problem is also motivated by two real-world problems. The first motivation comes from the area of controlling traffic at street crossing [22]. The second motivation is related to the design of secure protocols for communication in wireless sensor networks $[6,18]$.

In this paper, we restrict our attention to the $V C P_{3}$ problem. The $V C P_{3}$ problem remains NP-hard even in planar graphs with vertex degree at most 3 [21]. For the $V C P_{3}$ problem, Kardoš et al. [14] presented an exact algorithm with runtime $1.5171^{n} \cdot n^{O(1)}$ and a randomized approximation algorithm whose expected approximation ratio is $23 / 11$. Chang et al. [7] gave an improved exact algorithm with runtime $1.4658^{n} \cdot n^{O(1)}$. Xiao et al. [25] gave the best exact algorithms for the $V C P_{3}$ problem which are the $O\left(1.4656^{n}\right)$-time polynomial space algorithm and the $O\left(1.3659^{n}\right)$-time exponential-space algorithm. Tu et al. $[22,23]$ presented two 2-approximation algorithms for weighted version of the $V C P_{3}$ problem using the primal-dual method and the local-ratio method. The dual problem of the $V C P_{3}$ problem is known as the maximum dissociation set problem. A vertex subset S is called a dissociation set if it induces a subgraph with vertex degree at most 1 and the maximum dissociation set problem is to find a dissociation set of maximum size. The maximum dissociation set problem has many applications in real world and has been studied extensively [4, 14, 25-27].

Parameterized complexity of the $V C P_{3}$ problem has also been studied. With the size k of the solution as the parameter, an parameterized algorithm running in time $2^{k} \cdot n^{O(1)}$ was given independently by Fellows et al. [10], Moser et al. [17] and Tu [20]. Using the measure \& conquer approach, Wu [24] presented an improved algorithm with runtime $1.882^{k} \cdot n^{O(1)}$. Katrenič [15] gave further improvement so that running time reaches $1.8172^{k} \cdot n^{O(1)}$. The fastest parameterized algorithm is due to Chang et al. [8] running in $1.7964^{k} \cdot n^{O(1)}$ time. The connected vertex cover $P_{3}\left(C V C P_{3}\right)$ problem is a variation of the $V C P_{3}$ problem, which aims at finding a $V C P_{3}$ set F with minimum cardinality such that $G[F]$ is connected. Bodlaender et al. [3] presented two approaches for giving deterministic algorithms for connectivity problems that are single exponential in the treewidth.

In this paper, we consider the $V C P_{3}$ problem on planar graphs. Because of the NP-completeness of the $V C P_{3}$ problem on planar graphs [27], we design good
approximation algorithms. A polynomial-time approximation scheme (PTAS) of an NP optimization problem Q is an algorithm A_{Q} that takes a pair (x, ε) as input, where x is an instance of Q and $\varepsilon>0$ is a real number, and returns a feasible solution y for x such that the approximation ratio of the solution y is bounded by $1+\varepsilon$. And, for any fixed $\varepsilon>0$, the runtime of the algorithm A_{Q} is bounded by a polynomial of $|x|$. Furthermore, a PTAS is called an efficient polynomial time approximation scheme (EPTAS) if its runtime is bounded by $O\left(f(\varepsilon)|x|^{c}\right)$, where f is a function and c is a constant.

Baker [1] introduced a framework to obtain EPTAS for NP-complete problems on planar graphs. For an NP-complete problem, the framework is based on decomposing a planar graph into p-outerplanar subgraphs, and combing an exact algorithm for solving the problem on p-outerplanar subgraphs. Our algorithm is performed in two steps. Firstly, we present a dynamic programming algorithm for the $V C P_{3}$ problem on graphs of bounded branchwidth. Since that for p-outerplanar graphs, the branchwidth is at most $2 p+1$ and a branch decomposition of width at most $2 p+1$ can be obtained in $O(p n)$ time, an exact algorithm for solving the $V C P_{3}$ problem on p-outerplanar graphs can be obtained. Secondly, using Baker's approach, we give an EPTAS for the $V C P_{3}$ problem on planar graphs.

The remaining part of this paper is organized as follows. In Section 2, we give some notation and introduce the concepts of branch decomposition and branchwidth. In Section 3, we present a dynamic programming algorithm for the $V C P_{3}$ problem on graphs of bounded branchwidth. In Section 4, an EPTAS for the $V C P_{3}$ problem on planar graphs is given.

2. Preliminaries

In this paper we consider only simple, finite and undirected graphs. Given a graph $G=(V, E)$ and a vertex $v \in V$, denote by $N_{G}(v)$ the set of neighbors of v in G. Let $d_{G}(v):=\left|N_{G}(v)\right|$. For a subset $V^{\prime} \subseteq V$, denote by $G\left[V^{\prime}\right]$ the subgraph induced by V^{\prime}. We use $G-V^{\prime}$ as an abbreviation for the induced subgraph $G\left[V \backslash V^{\prime}\right]$. For all terminology and notation not defined here, we refer the reader to [5].

Robertson and Seymour [19] introduced the concept of branchwidth which plays an important role in their fundamental work on graph minors. Given a graph $G=(V, E)$, a branch decomposition is a pair (T, τ), where T is a tree in which each non-leaf node has exactly three neighbors, and τ is a bijection from $E(G)$ to the set of leaves of T. The order function $\omega: E(T) \rightarrow 2^{V(G)}$ of a branch decomposition maps every edge e of T to a vertex subset $\omega(e) \subseteq V(G)$ as follows. The set $\omega(e)$ consists of all vertices of $V(G)$ such that, for every vertex $v \in \omega(e)$,
there exist edges $f_{1}, f_{2} \in E(G)$ such that both f_{1} and f_{2} are incident with the vertex v, and the leaves $\tau\left(f_{1}\right), \tau\left(f_{2}\right)$ are in different subtrees of $T-\{e\}$. The width of (T, τ) is equal to $\max _{e \in E(T)}|\omega(e)|$ and the branchwidth of $G, b w(G)$, is the minimum width over all branch decomposition of G.

For a planar graph G, a branch-decomposition of minimum width $b w(G)$ can be computed in $O\left(n^{3}\right)$ time [12] and $b w(G) \leq \sqrt{4.5 n}[11]$.

3. The $V C P_{3}$ Problem on Graphs of Bounded Branchwidth

In this section, we present a dynamic programming algorithm to solve the $V C P_{3}$ problem on graphs G of bounded branchwidth. It is worth mentioning that our algorithm is inspired by Demaine et al.'s algorithm for (k, r)-centers on graphs of bounded branchwidth [9]. However, we use a different approach to define subproblems. Let G be a graph and (T, τ) be a branch decomposition of it with width at most l. Let $\omega: E(T) \rightarrow 2^{V(G)}$ be the order function of (T, τ). We choose an arbitrary edge (x, y) in T and subdivide the edge (x, y), that is to delete (x, y), add a new vertex z, and join z to x and y. Make z adjacent to a new vertex r. By choosing r as a root in the new tree $T^{\prime}=T \cup\{z, r\}$, we obtain a rooted tree T^{\prime} with the root r. For every edge of $e \in E(T) \cap E\left(T^{\prime}\right)$, we put $\omega^{\prime}(e)=\omega(e)$. Also we put $\omega^{\prime}((x, z))=\omega^{\prime}((z, y))=\omega((x, y))$ and $\omega^{\prime}((z, r))=\emptyset$.

For an edge e of T^{\prime} we define $E_{e}\left(V_{e}\right)$ as the set of all edges (vertices) h such that every path containing h and (z, r) in T^{\prime} contains e. With such a notation, $E_{(z, r)}=E\left(T^{\prime}\right)$ and $V_{(z, r)}=V\left(T^{\prime}\right)$. We denote by $G_{e}=\left(V\left(G_{e}\right), E\left(G_{e}\right)\right)$ the subgraph of G such that
(1) $E\left(G_{e}\right)=\left\{\tau^{-1}(x) \mid x \in V_{e}\right.$ and x is a leaf of $\left.T^{\prime}\right\}$, and
(2) $V\left(G_{e}\right)$ consists of all ends of edges of $E\left(G_{e}\right)$ in G.

Thus, G_{e} is an induced subgraph by the edge set $E\left(G_{e}\right)$. Note that if $e \in T^{\prime}$ is a nonleaf edge and e_{1}, e_{2} are two children of e, then $E\left(G_{e_{1}}\right) \cap E\left(G_{e_{2}}\right)=\emptyset$.

We define the subproblems. For every edge e of T^{\prime}, we compute partial solutions according to how a minimum $V C P_{3}$ set intersects the vertex subset $\omega^{\prime}(e)$. A coloring of $\omega^{\prime}(e)$ is a mapping $c: \omega^{\prime}(e) \rightarrow\left\{1,0_{0}, 0_{1}\right\}$ assigning three different colors to vertices of $\omega^{\prime}(e)$. Clearly, there exist $3^{\left|\omega^{\prime}(e)\right|}$ colorings of $\omega^{\prime}(e)$. For a coloring c of $\omega^{\prime}(e)$, denote by $A_{e}(c)$ the minimum size of a $V C P_{3}$ set $F \subseteq V\left(G_{e}\right)$ in G_{e} such that

- $c(v)=1$ means that the vertex v is contained in F,
- $c(v)=0_{0}$ means that the vertex v is not contained in F and is an isolated vertex in $G_{e}-F$,
- $c(v)=0_{1}$ means that the vertex v is not contained in F and has degree at most 1 in $G_{e}-F$.

We put $A_{e}(c)=+\infty$ if no such $V C P_{3}$ set F for e and c exists. Because $\omega^{\prime}((z, r))=$ \emptyset and $G_{(z, r)}=G, A_{(z, r)}(\emptyset)$ is the smallest size of a $V C P_{3}$ set in G.

Compute the value of $A_{e}(c)$ in a bottom-up fashion. Consider, first, the values of $A_{e}(c)$ from leaves of T^{\prime}. Let x be a leaf of T^{\prime} such that $\tau^{-1}(x)=(u, v)$ and let e be the edge of T^{\prime} incident with x. Then, $G_{e}=\{\{u, v\},\{(u, v)\}\}$. If u or v, say u, is a leaf vertex in G, then $\omega^{\prime}(e)=\{v\}$ and there is always a minimum $V C P_{3}$ set in G that does not contain u. Thus,

$$
A_{e}(c)= \begin{cases}1, & \text { if } c(v)=1 \\ 0, & \text { if } c(v)=0_{1} \\ +\infty, & \text { if } c(v)=0_{0}\end{cases}
$$

If neither u nor v is a leaf vertex in G, then $\omega^{\prime}(e)=\{u, v\}$ and

$$
A_{e}(c)= \begin{cases}2, & \text { if } c(u)=c(v)=1 \\ 1, & \text { if } c(u)=1 \text { or } c(v)=1, \text { and } c(u) \neq c(v) \\ 0, & \text { if }(c(u), c(v))=\left(0_{1}, 0_{1}\right) \\ +\infty, & \text { otherwise }\end{cases}
$$

Let e be a nonleaf edge of T^{\prime} and let e_{1}, e_{2} be the children of e. Define $X_{1}=\omega^{\prime}(e)-\omega^{\prime}\left(e_{2}\right), X_{2}=\omega^{\prime}(e)-\omega^{\prime}\left(e_{1}\right), X_{3}=\omega^{\prime}(e) \cap \omega^{\prime}\left(e_{1}\right) \cap \omega^{\prime}\left(e_{2}\right)$, and $X_{4}=\left(\omega^{\prime}\left(e_{1}\right) \cup \omega^{\prime}\left(e_{2}\right)\right)-\omega^{\prime}(e)$.

By definition of order function ω^{\prime}, it can never happen that a vertex belongs to exactly one of $\omega^{\prime}(e), \omega^{\prime}\left(e_{1}\right), \omega^{\prime}\left(e_{2}\right)$. Therefore, condition $u \in X_{4}$ implies that $u \notin \omega^{\prime}(e)$ and $u \in \omega^{\prime}\left(e_{1}\right) \cap \omega^{\prime}\left(e_{2}\right)$. We conclude that (see Figure 1)

$$
\begin{aligned}
\omega^{\prime}(e) & =X_{1} \cup X_{2} \cup X_{3}, \\
\omega^{\prime}\left(e_{1}\right) & =X_{1} \cup X_{3} \cup X_{4}, \\
\omega^{\prime}\left(e_{2}\right) & =X_{2} \cup X_{3} \cup X_{4} .
\end{aligned}
$$

Figure 1. X_{1}, X_{2}, X_{3} and X_{4} are shown.
We say that colorings c_{1} of $\omega^{\prime}\left(e_{1}\right)$ and c_{2} of $\omega^{\prime}\left(e_{2}\right)$ are consistent with a coloring c of $\omega^{\prime}(e)$ if
(1) for every vertex $v \in X_{1}, c_{1}(v)=c(v)$,
(2) for every vertex $v \in X_{2}, c_{2}(v)=c(v)$,
(3) for every vertex $v \in X_{3}$,
(a) if $c(v)=1$, then $c_{1}(v)=c_{2}(v)=1$,
(b) if $c(v)=0_{0}$, then $c_{1}(v)=c_{2}(v)=0_{0}$,
(c) if $c(v)=0_{1}$, then $\left(c_{1}(v), c_{2}(v)\right) \in\left\{\left(0_{0}, 0_{1}\right),\left(0_{1}, 0_{0}\right)\right\}$. By definitions of $G_{e_{1}}$ and $G_{e_{2}}$, we have that $E\left(G_{e_{1}}\right) \cap E\left(G_{e_{2}}\right)=\emptyset$. Thus, if $c(v)=0_{1}$, we can require that $c_{1}(v), c_{2}(v) \in\left\{0_{0}, 0_{1}\right\}$ and $c_{1}(v) \neq c_{2}(v)$.
(4) for every vertex $v \in X_{4}$,
(a) either $c_{1}(v)=c_{2}(v)=1$,
(b) or $\left(c_{1}(v), c_{2}(v)\right) \in\left\{\left(0_{0}, 0_{1}\right),\left(0_{1}, 0_{0}\right)\right\}$.

Let $\#_{1}\left(X_{3}, c\right)$ be the number of vertices in X_{3} colored by color 1 in coloring c and let $\#_{1}\left(X_{4}, c_{1}\right)$ be the number of vertices in X_{4} colored by color 1 in coloring c_{1}. Since every vertex in X_{3} and X_{4} colored by color 1 is counted twice in $A_{e_{1}}\left(c_{1}\right)+A_{e_{2}}\left(c_{2}\right)$, the value $A_{e}(c)$ can be obtained from the following formula

$$
\begin{equation*}
A_{e}(c)=\min _{c_{1}, c_{2}}\left\{A_{e_{1}}\left(c_{1}\right)+A_{e_{2}}\left(c_{2}\right)-\#_{1}\left(X_{3}, c\right)-2 \#_{1}\left(X_{4}, c_{1}\right)\right\} \tag{1}
\end{equation*}
$$

where the minimum is taken over all coloring c_{1}, c_{2} consistent with c.
The description of the computations of the values $A_{e}(c)$ is complete. Let us analyze the running time of the algorithm. Clearly, the time needed to process each leaf edge of T^{\prime} is constant. We consider the runtime of computing the values $A_{e}(c)$ of the nonleaf edge e. Note that for a coloring c of $\omega^{\prime}(e)$, if a pair c_{1}, c_{2} is consistent with c, then
(1) for every $v \in X_{1} \cup X_{2}$,

$$
\left(c(v), c_{1}(v), c_{2}(v)\right) \in\left\{(1,1,1),\left(0_{0}, 0_{0}, 0_{0}\right),\left(0_{1}, 0_{1}, 0_{1}\right)\right\}
$$

(2) for every $v \in X_{3}$,

$$
\left(c(v), c_{1}(v), c_{2}(v)\right) \in\left\{(1,1,1),\left(0_{0}, 0_{0}, 0_{0}\right),\left(0_{1}, 0_{0}, 0_{1}\right),\left(0_{1}, 0_{1}, 0_{0}\right)\right\}
$$

(3) for every $v \in X_{4}$,

$$
\left(c_{1}(v), c_{2}(v)\right) \in\left\{(1,1),\left(0_{1}, 0_{0}\right),\left(0_{0}, 0_{1}\right)\right\}
$$

Let $x_{i}=\left|X_{i}\right|, 1 \leq i \leq 4$. There are exactly $3^{x_{1}+x_{2}+x_{4}} 4^{x_{3}}$ triples of colorings $\left(c, c_{1}, c_{2}\right)$ such that c_{1} and c_{2} are consistent with c. Thus, in order to estimate (1), the number of operations for all possible colorings of $\omega^{\prime}(e)$ is $3^{x_{1}+x_{2}+x_{4}} 4^{x_{3}}$. Recall that the branchwidth of G is l. The sets $X_{i}, 1 \leq i \leq 4$, are pairwise disjoint and

$$
\begin{aligned}
\left|\omega^{\prime}(e)\right| & =x_{1}+x_{2}+x_{3} \leq l, \\
\left|\omega^{\prime}\left(e_{1}\right)\right| & =x_{1}+x_{3}+x_{4} \leq l, \\
\left|\omega^{\prime}\left(e_{2}\right)\right| & =x_{2}+x_{3}+x_{4} \leq l .
\end{aligned}
$$

Consider the linear function $\log _{3}\left(3^{x_{1}+x_{2}+x_{4}} 4^{x_{3}}\right)=x_{1}+x_{2}+x_{4}+x_{3} \cdot \log _{3} 4$. The maximum value of the linear function subject to the above constraints is $3 l / 2$ (the value achieves maximum when $x_{1}=x_{2}=x_{4}=\frac{1}{2} l, x_{3}=0$). Thus, the algorithm spends $3^{3 l / 2}$ time for every nonleaf edge. Since that the number of edges in T^{\prime} is $O(m)$, the runtime of the dynamic programming algorithm is $O\left(3^{3 l / 2} m\right)$. Moreover, by bookkeeping the colorings assigned to each set $\omega^{\prime}(e)$, we can construct an optimal $V C P_{3}$ set in G with the same running time. Hence, we obtain the following theorem.

Theorem 1. For a graph G with m edges and a given branch decomposition of width at most l, there exists a dynamic programming algorithm for solving the $V C P_{3}$ problem in G with runtime $O\left(3^{3 l / 2} m\right)$.

4. An EPtaS for the $V C P_{3}$ Problem on Planar Graphs

In this section, we use Baker's EPTAS framework [1] for NP-hard problems to obtain an EPTAS for the $V C P_{3}$ problem on planar graphs.

A planar graph G is called outerplanar or 1-outerplanar graph if it has a planar embedding such that all vertices of G belong to the exterior face of the embedding. For $p>1$, a planar graph G is a p-outerplanar graph, if it has a planar embedding such that removing the vertices of G which belong to the exterior face will result in a $(p-1)$-outerplanar graph. Since a branch decomposition of a p outerplanar graph of width at most $2 p+1$ can be obtained in $O(p n)$ time [13] and for a planar graph with at least three vertices, $m \leq 3 n-6$, by Theorem 1 we have

Theorem 2. Let p be a fixed positive integer. The $V C P_{3}$ problem on p-outerplanar graphs can be solved in time $O\left(27^{p} n\right)$.

For every planar graph G, there exist some p such that G is p-outerplanar. Given a planar graph G, a p-outerplanar embedding of G for which p is minimal can be found in polynomial time [2]. We define levels of vertices in a planar embedding of a planar graph G. A vertex is at level 1 if it belong to the exterior face. For $i \geq 1$, let G_{i} be the plane graph obtained from removing vertices at levels $1,2, \ldots, i$ from G. Then the vertices belonging to the exterior face of G_{i} are at level $i+1$. A planar embedding is r-level if it has some vertices at level r and has no vertices at level $>r$. Moreover, levels of vertices can be computed in linear time [16].

Given a planar graph G with an r-level planar embedding of it, let V_{1}, V_{2}, \ldots, V_{r} be the set of vertices at levels $1,2, \ldots, r$, respectively.

Let k be a fixed integer. For each $i, 1 \leq i \leq k$, let $t_{i}=\lceil(r-2 i) / 2 k\rceil$. Define $U_{0}^{i}=\bigcup_{s=1}^{2 i} V_{s}, U_{j}^{i}=\bigcup_{s=0}^{2 k+1} V_{(j-1) \times 2 k+2 i-1+s}$ for $1 \leq j<t_{i}$ and $U_{t_{i}}^{i}=$ $\bigcup_{s=\left(t_{i}-1\right) \times 2 k+2 i-1}^{r} V_{s}$. For example, suppose that $r=21$ and $k=4$, then $1 \leq i \leq 4$ and when $i=2, t_{i}=\lceil(r-2 i) / 2 k\rceil=\lceil(21-4) / 8\rceil=3$,

$$
\begin{aligned}
& U_{0}^{2}=V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \\
& U_{1}^{2}=V_{3} \cup V_{4} \cup V_{5} \cup \cdots \cup V_{11} \cup V_{12}, \\
& U_{2}^{2}=V_{11} \cup V_{12} \cup V_{13} \cup \cdots \cup V_{19} \cup V_{20}, \\
& U_{3}^{2}=V_{19} \cup V_{20} \cup V_{21}
\end{aligned}
$$

For each $i, 1 \leq i \leq k, G\left[U_{0}^{i}\right]$ is the subgraph induced by the vertices at levels 1 to $2 i$ and is a $2 i$-outerplanar subgraph, each $G\left[U_{j}^{i}\right]$ is the subgraph induced by the vertices at levels $(j-1) \times 2 k+2 i-1$ to $j \times 2 k+2 i$ and is a $(2 k+2)$ outerplanar subgraph for $1 \leq j<t_{i}$, and $G\left[U_{t_{i}}^{i}\right]$ is the subgraph induced by the vertices at levels $\left(t_{i}-1\right) \times 2 k+2 i-1$ to r and is a q-outerplanar subgraph, where $q=r-\left(\left(t_{i}-1\right) \times 2 k+2 i\right)+2 \leq 2 k+2$.

Note that $U_{j}^{i} \cap U_{j+1}^{i}=V_{j \times 2 k+2 i-1} \cup V_{j \times 2 k+2 i}$ for each $1 \leq i \leq k, 0 \leq j<t_{i}$. For each $i, 1 \leq i \leq k$, let $W^{i}:=\bigcup_{j=0}^{t_{i}-1}\left(U_{j}^{i} \cap U_{j+1}^{i}\right)$. It is easy to see that for two different $i_{1}, i_{2}, 1 \leq i_{1}, i_{2} \leq k$, we have $W^{i_{1}} \cap W^{i_{2}}=\emptyset$.

For fixed $\varepsilon>0$, we design an approximation algorithm that achieves solutions at most $(1+\varepsilon)$ optimal for the $V C P_{3}$ problem on planar graphs.

```
Algorithm 1
Input: A planar graph \(G\) and a positive number \(\varepsilon\).
Output: A \(V C P_{3}\) set \(F\) in \(G\) of size at most \((1+\varepsilon)\) optimal.
1. Find a plane embedding of \(G\).
2. Compute the level of every vertex and the level \(r\) of the embedding.
3. Let \(V_{1}, V_{2}, \ldots, V_{r}\) be the set of vertices at levels \(1,2, \ldots, r\), respectively.
4. Let \(k:=\lceil 1 / \varepsilon\rceil\).
5. for \(i=1, \ldots, k\)
    5.1. \(t_{i}=\left\lceil\frac{r-2 i}{2 k}\right\rceil\).
    5.2. Compute subgraphs \(G\left[U_{i}^{i}\right]\) for \(j=0,1, \ldots, t_{i}\).
    5.3. For every subgraph \(G\left[U_{j}^{i}\right]\), find an optimal \(V C P_{3}\) set \(F_{j}^{i}\) by Theorem 2.
    5.4. Let \(F^{i}=\bigcup_{j=0}^{t_{i}} F_{j}^{i}\).
6. Let \(F\) be a set of \(F^{1}, F^{2}, \ldots, F^{k}\) with the minimum cardinality.
7. Output \(F\).
```

Theorem 3. Given a fixed positive number ε, Algorithm 1 gives an $O\left(27^{2\lceil 1 / \varepsilon\rceil}\right.$. $1 / \varepsilon \cdot n)$ time $(1+\varepsilon)$-approximation algorithm for the $V C P_{3}$ problem on planar graphs.

Proof. We first show the approximation ratio of Algorithm 1. Let $k:=\lceil 1 / \varepsilon\rceil$. For each $i, 1 \leq i \leq k$, an optimal $V C P_{3}$ set F_{j}^{i} in each subgraph $G\left[U_{j}^{i}\right]$ can be obtained by Theorem 2. Recall that $U_{j}^{i} \cap U_{j+1}^{i}=V_{j \times 2 k+2 i-1} \cup V_{j \times 2 k+2 i}$ for each $0 \leq j<t_{i}$, in other words, two consecutive U_{j}^{i} overlap by two levels. Thus it is easy to see that $F^{i}=\bigcup_{j=0}^{t_{i}} F_{j}^{i}$ is a $V C P_{3}$ set of G. Because F is a set of $F^{1}, F^{2}, \ldots, F^{k}$ with the minimum cardinality, the output F of Algorithm 1 is a $V C P_{3}$ set of G.

For each $i, 1 \leq i \leq k$, let $W^{i}:=\bigcup_{j=0}^{t_{i}-1}\left(U_{j}^{i} \cap U_{j+1}^{i}\right)$. Recall that for two different $i_{1}, i_{2}, 1 \leq i_{1}, i_{2} \leq k$, we have $W^{i_{1}} \cap W^{i_{2}}=\emptyset$.

Let \widetilde{F} be a minimum $V C P_{3}$ set of G. There exist some $h, 1 \leq h \leq k$, such that $\left|\widetilde{F} \cap W^{h}\right| \leq|\widetilde{F}| / k$. Let $\widetilde{F}_{j}^{h}:=\widetilde{F} \cap U_{j}^{h}$ for each $0 \leq j \leq t_{h}$. Thus, \widetilde{F}_{j}^{h} is a $V C P_{3}$ set of $G\left[U_{j}^{h}\right]$ and $\left|F_{j}^{h}\right| \leq\left|\widetilde{F}_{j}^{h}\right|$ for each $0 \leq j \leq t_{h}$. Hence,

$$
\sum_{j=0}^{t_{h}}\left|\widetilde{F}_{j}^{h}\right|=\sum_{j=0}^{t_{h}}\left|\widetilde{F} \cap U_{j}^{h}\right|=|\widetilde{F}|+\left|\widetilde{F} \cap W^{h}\right| \leq(1+1 / k)|\widetilde{F}|
$$

and

$$
|F| \leq\left|F^{h}\right| \leq \sum_{j=0}^{t_{h}}\left|F_{j}^{h}\right| \leq \sum_{j=0}^{t_{h}}\left|\widetilde{F}_{j}^{h}\right| \leq(1+1 / k)|\widetilde{F}| \leq(1+\varepsilon)|\widetilde{F}| .
$$

Thus, the solution produced by Algorithm 1 has the approximation ratio $(1+\varepsilon)$ for the $V C P_{3}$ problem on planar graphs.

Now, we analyze the running time of Algorithm 1. Given a planar graph G, a planar embedding of G and the levels of vertices can be computed in linear time [16]. Thus, Step 1, Step 2 and Step 3 can be computed in linear time. By Theorem 2, Step 5 can be computed in $O\left(27^{2 k} k n\right)$ time. Thus, the running time of Algorithm 1 is $O\left(27^{2[1 / \varepsilon\rceil} \cdot 1 / \varepsilon \cdot n\right)$.

The proof is completed.

Acknowledgment

We thank the referees for their helpful comments and suggestions.
J. Tu was supported by the National Natural Science Foundation of China (No.11201021), BUCT Fund for Disciplines Construction and Development (Project No. 1524). Y. Shi was partially supported by the Natural Science Foundation of Tianjin (No. 17JCQNJC00300) and the National Natural Science Foundation of China.

References

[1] B.S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. ACM 41 (1994) 153-180.
doi:10.1145/174644.174650
[2] F. Bienstock and C.L. Monma, On the complexity of embedding planar graphs to minimize centain distance measure, Algorithmica 5 (1990) 93-109. doi:10.1007/BF01840379
[3] H.L. Bodlaender, M. Cygan, S. Kratsch and J. Nederlof, Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth, Inform. and Comput. 243 (2015) 86-111. doi:10.1016/j.ic.2014.12.008
[4] R. Boliac, K. Cameron and V.V. Lozin, On computing the dissociation number and the induced matching number of bipartite graphs, Ars Combin. 72 (2004) 241-253.
[5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan/Elsevier, London/New York, 1976).
[6] B. Brešar, F. Kardoš, J. Katrenič and G. Semanišin, Minimum k-path vertex cover, Discrete Appl. Math. 159 (2011) 1189-1195. doi:10.1016/j.dam.2011.04.008
[7] M.S. Chang, L.H. Chen, L.J. Hung, Y.Z. Liu, P. Rossmanith and S. Sikdar, An $O^{*}\left(1.4658^{n}\right)$-time exact algorithm for the maximum bounded-degree-1 set problem, in: Proceedings of the 31st Workshop on Combinatorial Mathematics and Computation Theory (2014) 9-18.
[8] M.S. Chang, L.H. Chen, L.J. Hung, P. Rossmanith and P.C. Su, Fixed-parameter algorithms for vertex cover P_{3}, Discrete Optim. 19 (2016) 12-22.
doi:10.1016/j.disopt.2015.11.003
[9] E.D. Demaine, F.V. Fomin, M. Hajiaghayi and D.M. Thilikos, Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs, ACM Trans. Algorithms 1 (2005) 33-47.
[10] M.R. Fellows, J. Guo, H. Moser and R. Niedermeier, A complexity dichotomy for finding disjoint solutions of vertex deletion problems, ACM Trans. Comput. Theory 2 (2011) \#5.
[11] F.V. Fomin and D.M. Thilikos, New upper bounds on the decomposability of planar graphs, J. Graph Theory 51 (2006) 53-81. doi:10.1002/jgt. 20121
[12] Q. Gu and H. Tamaki, Optimal branch-decomposition of planar graphs in $O\left(n^{3}\right)$ time, ACM Trans. Algorithms 4 (2008) \#30.
[13] O. Hjortas, Branch decompositions of k-outerplanar graphs (Master's Thesis, University of Bergen, Department of Informatics, 2005).
[14] F. Kardoš, J. Katrenič and I. Schiermeyer, On computing the minimum 3-path vertex cover and dissociation number of graphs, Theoret. Comput. Sci. 412 (2011) 70097017.
doi:10.1016/j.tcs.2011.09.009
[15] J. Katrenič, A faster FPT algorithm for 3-path vertex cover, Inform. Process. Lett. 116 (2016) 273-278. doi:10.1016/j.ipl.2015.12.002
[16] R.J. Lipton and R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979) 177-189. doi:10.1137/0136016
[17] H. Moser, R. Niedermeier and M. Sorge, Exact combinatorial algorithms and experiments for finding maximum k-plexes, J. Comb. Optim. 24 (2012) 347-373. doi:10.1007/s10878-011-9391-5
[18] M. Novotný, Design and analysis of a generalized canvas protocol, in: Proceedings of WISTP 2010, Lecture Notes in Comput. Sci. 6033 (2010) 106-121. doi:10.1007/978-3-642-12368-9_8
[19] N. Robertson and P.D. Seymour, Graph minors, X. obstructions to tree-decomposition, J. Combin. Theory Ser. B 52 (1991) 153-190. doi:10.1016/0095-8956(91)90061-N
[20] J.H. Tu, A fixed-parameter algorithm for the vertex cover P_{3} problem, Inform. Process. Lett. 115 (2015) 96-99. doi:10.1016/j.ipl.2014.06.018
[21] J.H. Tu and F.M. Yang, The vertex cover P_{3} problem in cubic graphs, Inform. Process. Lett. 113 (2013) 481-485. doi:10.1016/j.ipl.2013.04.002
[22] J.H. Tu and W.L. Zhou, A primal-dual approximation algorithm for the vertex cover P_{3} problem, Theoret. Comput. Sci. 412 (2011) 7044-7048. doi:10.1016/j.tcs.2011.09.013
[23] J.H. Tu and W.L. Zhou, A factor 2 approximation algorithm for the vertex cover P_{3} problem, Inform. Process. Lett. 111 (2011) 683-686. doi:10.1016/j.ipl.2011.04.009
[24] B.Y. Wu, A measure and conquer approach for the parameterized bounded degreeone vertex deletion, COCOON (2015) 469-480. doi:10.1007/978-3-319-21398-9_37
[25] M.Y. Xiao and S.W. Kou, Exact algorithms for the maximum dissociation set and minimum 3-path vertex cover problems, Theoret. Comput. Sci. 657 (2017) 86-97. doi:10.1016/j.tcs.2016.04.043
[26] M.Y. Xiao and H. Nagamochi, Complexity and kernels for bipartition into degreebounded induced graphs, Theoret. Comput. Sci. 659 (2017) 72-82. doi:10.1016/j.tcs.2016.11.011
[27] M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM J. Comput. 10 (1981) 310-327.
doi:10.1137/0210022

[^0]: ${ }^{1}$ Corresponding author.

