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Abstract

We only consider finite tournaments. The dual of a tournament is ob-
tained by reversing all the arcs. A tournament is selfdual if it is isomorphic
to its dual. Given a tournament T, a subset X of V(T) is a module of T
if each vertex outside X dominates all the elements of X or is dominated
by all the elements of X. A tournament T is decomposable if it admits a
module X such that 1 < |X| < [V/(T)].

We characterize the decomposable tournaments whose subtournaments
obtained by removing one or two vertices are selfdual. We deduce the fol-
lowing result. Let T" be a non decomposable tournament. If the subtourna-
ments of T" obtained by removing two or three vertices are selfdual, then the
subtournaments of 7' obtained by removing a single vertex are not decom-
posable. Lastly, we provide two applications to tournaments reconstruction.
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1. INTRODUCTION

We only consider finite structures. We are interested in the notions of selfduality
and decomposability for tournaments. The dual of a tournament is obtained by
reversing all the arcs. A tournament is selfdual if it is isomorphic to its dual.
The decomposabilty is introduced as follows. A module is a vertex subset whose
elements cannot be distinguished by a vertex outside. The notion of module is
a generalization of the usual notion of interval for linear orders. A tournament
is decomposable if it admits a proper module with at least two elements. A
tournament, with at least three vertices, is prime if it is not decomposable.

Our main result consists in characterizing the decomposable tournaments
(with at least 7 vertices) whose subtournaments obtained by deleting one or two
vertices are selfdual (see Theorem 7). Except two degenerate classes, these tour-
naments are very regular, and are decomposed into lexicographic products. We
use two new tools. The first one is a study of strongly connected subtourna-
ments of a prime tournament (see Section 3). In the second one, we examine the
selfduality of a tournament by using the orbits of its automorphism group (see
Proposition 40). The proof of Theorem 7 is detailed. It is deduced from six facts.

A first consequence of our main result follows (see Theorem 8). Let T be
a prime tournament (with at least 8 vertices). If the subtournaments of 7' ob-
tained by removing two or three vertices are selfdual, then the subtournaments
of T obtained by removing a single vertex are prime. The following result is an
immediate consequence of Theorem 8 (see Corollary 10). It is a nice result in
Pouzet’s reconstruction of prime tournaments. Let T be a prime tournament
(with at least 8 vertices). If 7" admits a vertex whose deletion yields a decom-
posable subtournament, then 7" satisfies the following assertion (we say that T is
{—3, —2}-reconstructible). Consider a tournament U with the same vertex set as
T. Suppose that for any vertices u, v and w of T such that |[{u,v,w}| =2 or 3,
the subtournaments of 7' and U obtained by removing u, v and w are isomorphic.
Then, T' and U are isomorphic.

Lastly, we obtain the following result in Pouzet’s reconstruction of decom-
posable tournaments (see Theorem 11). Its proof uses our main result. Let T" be
a decomposable tournament (with at least 7 vertices). Consider a tournament U
with the same vertex set as 1. Suppose that for vertices u and v of T', the sub-
tournaments of T" and U obtained by removing u and v are isomorphic. Suppose
also that for distinct vertices u, v and w of T', the subtournaments of T' and U
induced by {u,v,w} are isomorphic. Then, T and U are isomorphic.

At present, we formalize our presentation. For a tournament 7', let V(T') and
A(T) denote the vertex set and arc set (each arc is an ordered pair of distinct
vertices). The cardinality of V(T") is denoted by v(T"). Given distinct vertices v
and w of T, v — w means vw € A(T). Given X C V(T), T[X] denotes the
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subtournament of 7" induced by X. For convenience, T'[V(T) \ X] is also denoted
by T'— X and by T'— = when X = {z}.

For instance, the 3-cycle is the tournament Cs = ({0, 1,2}, {01,12,20}). A
tournament is a linear order if it does not contain C3 as a subtournament. Given
n > 2, the usual linear order on {0,...,n — 1} is the tournament L,, = ({0, ...,
n—1}{m(m+1):0<m <n-—1}). Given a tournament 7" such that v(7") > 3,
T is a circle if it is obtained from a linear order by reversing the arc between its
smallest vertex and its largest one.

1.1. Decomposability

Let T be a tournament. A subset X of V(T') is a module [32] of T if for any
z,y € X and v € V(T), we have

xv € A(T)
and = veX.
vy € A(T)

For linear orders, the notions of a module and of an interval coincide. They also
share the same properties.

Proposition 1. Given a tournament T, we have

0, V(T) and {x}, where x € V(T'), are modules of T}

given W C V(T), if X is a module of T', then X N W is a module of T|W];

if X andY are modules of T, then X NY is a module of T,

if X andY are modules of T such that X NY # 0, then X UY is a module

of T;

5. if X and'Y are modules of T such that X \'Y # (), then Y \ X is a module
of T;

6. if X andY are modules of T such that X NY =0, then xy € A(T) for any
xe€X andy €Y oryx € A(T) foranyz € X andy €Y.

- o=

Following the first assertion of Proposition 1, ), V(T') and {x}, where = €
V(T), are modules of a tournament 7', called trivial. A tournament is indecom-
posable if all its modules are trivial, otherwise it is decomposable. Since every
tournament with at most 2 vertices is indecomposable, we say that a tournament
T is prime if T is indecomposable and v(T") > 3.

We define the quotient of a tournament by considering a partition of its
vertex set in modules. Precisely, let T' be a tournament. A partition P of V(T)
is a modular partition of T if all the elements of P are modules of 7. The last
assertion of Proposition 1 justifies the following definition of the quotient. With
each modular partition P of T, associate the quotient T'//P of T by P defined on
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V(T/P) = P as follows. Given X,Y € P such that X # Y, XY € A(T/P) if
xy € A(T), where x € X and y € Y. The opposite operation of the quotient
is the lexicographic sum defined as follows. Given a tournament 7', with each
vertex v € V(T') associate a tournament 7). Suppose that the vertex sets V(T5)
are nonempty and pairwise disjoint. Consider the function

P Upevin V(L) — V(T)
x — p(z), where z € V(Tp)-

The lezicographic sum Y T, of the tournaments T, over the tournament T is

defined on
1 (ZR) - U vm)
T )

veV(T

as follows. Given z,y € Uyey () V(T0),

p(x) = p(y) and xy € A(T))
xy € A (Z Tv> if <or
T

p(x) # p(y) and p(z)p(y) € A(T).

When all the tournaments T, are isomorphic to a same tournament U, we obtain
the lexicographic product of U by T'. Precisely, the lexzicographic product T oU of
U by T is defined on V(T' o U) = V(T') x V(U) as follows. Given (z,v), (u,v) €
V(T o U) such that (z,y) # (u,v),

x=wuand yv € A(U)
(2, 9)(u,v) € AT 0 U if { or
x #u and zu € A(T).

1.2. Selfduality

With each tournament 7', associate its dual T* defined by V(T™) = V(T') and
A(T*) = {uv : vu € A(T)}. A tournament is selfdual if it is isomorphic to its
dual. A tournament 7 such that v(7T) < 3 is clearly selfdual. This is false when
v(T') = 4. Consider the tournaments 6~ = ({0, 1,2, 3}, {01, 12,20} U {30, 31, 32})
and 01 = ({0,1,2,3},{01,12,20} U{03,13,23}). The dual of §~ is isomorphic to
d%. Hence 6~ and §1 are not selfdual. It is easy to verify that a tournament T'
such that v(T") = 4 is selfdual if and only if 7" is isomorphic neither to §~ nor to
d". The tournaments 6~ and §* are called diamonds.

A tournament T is strongly selfdual if for each X C V(T'), T[X] is selfdual.
The characterization of strongly selfdual tournaments follows.
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Theorem 2 [29]. Given a tournament T such that v(T) > 8, T is strongly
selfdual if and only if T is a linear order or a circle.

Following Theorem 2, Boudabbous, Dammak and Ille [7] characterized the
prime tournaments, all of whose prime and proper subtournaments are selfdual.
We consider the following weakening of strong selfduality. Given a tournament
T and F C Z, T is F-selfdual if we have

1. for every X C V(T), if |X| € F \ {0}, then T[X] is selfdual;

2. for every X C V(T), if —|X| € F\ {0}, then T'— X is selfdual;

3. if 0 € F, then T is selfdual.
As previously noted, 6~ and 6T are the only non-selfdual tournaments on 4
vertices. Thus, a tournament 7" is {4}-selfdual if and only if 7" does contain neither
d~ nor 6T as subtournaments. The characterization of {4}-selfdual tournaments

uses the following tournament. Given n > 1, 15,41 is the tournament obtained
from Lo, by reversing all the arcs between even and odd vertices (see Figure 1).

1 2i+1 2n—1

0 21 21+ 2 2n

Figure 1. The tournament T5,,1.

The characterization of {4}-selfdual tournaments follows.

Theorem 3 [27]. Given a tournament T, T is {4}-selfdual if and only if T is
a linear order or T is decomposed into a lexicographic sum of linear orders over
Tont1, where n > 1.

Let T be an {n}-selfdual tournament, where 0 < n < v(T'). As stated below
(see Lemma 9), T is {m}-selfdual for every m > 0 such that m < min(n,v(T") —
n). Therefore, given F C Z, we can use Theorem 3 to characterize the F-
selfdual tournaments if there exists n € F such that |n| > 4. For instance,
Bouchaala and Boudabbous [6] obtained the following characterization of {—n}-
selfdual tournaments, when n > 4 (compare with Theorem 2).

Theorem 4. Let n > 4. Given a tournament T such that v(T) > n+ 6, T is
{—n}-selfdual if and only if T is strongly selfdual.
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Since every tournament is {1, 2, 3}-selfdual, it remains to study the F-selfdual
tournaments, when F C {—3,—2, —1,0}. Boussairi [11] conjectured the following.

Conjecture 5. The {—3}-selfduality and the strong selfduality are equivalent for
tournaments with enough vertices.

Achour, Boudabbous and Boussairi [1] answered the conjecture positively in
the decomposable case.

Theorem 6. Given a tournament T' such that v(T) > 9, T is decomposable and
{—3}-selfdual if and only if T is strongly selfdual.

1.3. Main results

Conjecture 5 admits a negative answer if we replace the {—3}-selfduality by the
{—2, —1}-selfduality. Indeed, for n > 1, the tournament 75,41 (see Figure 1) is
prime and {—2, —1}-selfdual. Following Theorem 6, our main theorem provides
a characterization of decomposable and {—2, —1}-selfdual tournaments. We need
the following notation and definitions. Given a tournament 7', Aut(7") denotes
the automorphism group of 7. A tournament T is vertez-transitive if Aut(T")
acts transitively on V(T'). More weakly, a tournament 7" is monomorphic [16] if
for any u,v € V(T'), T —u and T — v are isomorphic. We introduce the following
strengthening of vertex-transitivity. A tournament 7T is vertez-selfdual if for any
u,v € V(T), there exists an isomorphism from 7" onto T™* that exchanges u and
v. For instance, for n > 1, the tournament 75,41 is vertex-selfdual (see Remark
52). The main result follows.

Theorem 7. Given a tournament T such that v(T) > 7, T is decomposable
and {—2,—1}-selfdual if and only if T is a linear order or T is a circle or T is
decomposed into a lexicographic product Q o U, where Q is a prime and vertex-
selfdual tournament, and U is a monomorphic and {—2,0}-selfdual tournament,
with v(U) > 2.

The second result follows from Theorem 7. It provides an important prop-
erty of {—3, —2}-selfdual and prime tournaments. Note that such tournaments
might not exist if Conjecture 5 admits a positive answer. We need the following
definition. Given a prime tournament 7', a vertex v of T is critical (in terms of
primality) if 7' — v is decomposable. The second result follows.

Theorem 8. Given a prime tournament T such that v(T) > 8, if T is {—3, —2}-
selfdual, then T does not have any critical verter.

Lastly, we obtain two consequences of Theorem 7 in tournaments reconstruc-
tion. We begin by defining hypomorphic tournaments. Let F C Z \ {0}. Given
tournaments 7" and U such that V(T) = V(U), T and U are F-hypomorphic if
for every X C V(T'), we have
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1. if | X| € F, then T[X] and U[X] are isomorphic;
2. if —|X| € F, then T'— X and U — X are isomorphic.

Given F C Z \ {0}, a tournament T is F-reconstructible provided that for every
tournament U such that V(U) = V(T'), we have: if T and U are F-hypomorphic,
then T and U are isomorphic. We say that the tournaments are F-reconstructible
if there exists n > 1 such that every tournament 7" is F-reconstructible whenever
v(T) > n. If the tournaments are F-reconstructible, then the smallest of such
integers n is called the F-threshold and is denoted by ¢ r.

Ulam [34] introduced the problem of {—1}-reconstruction. Stockmeyer [33]
showed that the tournaments are not {—1}-reconstructible. Precisely, for n > 3,
he built a tournament 7, with v(7) = 2" + 2, such that 7 is {—1}-selfdual and
prime, but 7 is not selfdual. Afterwards, Fraissé proposed the problem of the
{1,..., k}-reconstructibility of tournaments (and more generally of relations).
Lopez [23, 24] proved that the tournaments are {2,...,6}-reconstructible, and
tia,.6) = 7. Reid and Thomassen [29] obtained independently the {2,...,6}-
reconstructibility of tournaments. Lastly, Pouzet proposed the problem of the
{—k}-reconstructibility of tournaments (and more generally of relations) for k£ > 2
(see [4, Problem 24]). The following lemma is useful to translate results on
Fraissé’s reconstruction in terms of Pouzet’s reconstruction.

Lemma 9 [28]. Consider tournaments T and U such that V(T) =V (U). Given
0<p<oT), if T and U are {p}-hypomorphic, then T and U are {q}-hypo-
morphic for each ¢ > 1 such that ¢ < p and ¢ < v(T) — p.

For instance, given k > 6, since the tournaments are {2, . .., 6 }-reconstructible
and typ ) = 7 (see Lopez [24]), it follows from Lemma 9 that for every k£ > 6,
the tournaments are {—k}-reconstructible and t{_;, < k+6. Afterwards, Ille [19]
proved that the tournaments are {—5}-reconstructible and t;_5; < 11. Lastly,
Lopez and Rauzy [25] showed that the tournaments are {—4}-reconstructible
and ty_4) < 10. Following these results, we are interested in the study of the
F-reconstruction of tournaments when F C {—3, -2, —1}. Achour, Boudabbous
and Boussairi [1] proved that a decomposable tournament 7' (with at least 9
vertices) is {—3}-reconstructible when it does not admit a module M such that
[V(T)\ M| = 1 or 2, and T[M] is prime. The third result follows. It is an
immediate consequence of Theorem 8 and [12, Corollary 1].

Corollary 10. Given a prime tournament T such that v(T) > 8, if T possesses
a critical vertez, then T is {—3, —2}-reconstructible.

Corollary 10 is the first positive result on F-reconstruction of prime tourna-
ments when F C {—3,—2,—1}. If Conjecture 5 admits a positive answer, then it
follows directly from Theorem 20 that a prime tournament (with enough vertices)
is {—3}-reconstructible. Finally, we obtain the following result.
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Theorem 11. Given a decomposable tournament T, if v(T) > 7, then T is
{—2, —1, 3}-reconstructible.

We do not know if the decomposable tournaments are {—2, 3}-reconstructible
or {—1, 3}-reconstructible.

2. PRELIMINARIES

2.1. Gallai’s decomposition of tournaments

We need the following strengthening of the notion of module to obtain an uniform
decomposition theorem. Given a tournament T, a subset X of V(T is a strong
module [13] of T provided that X is a module of T, and for every module Y of
T, we have: if X NY # @, then X CY or Y C X. With each tournament T,
with v(T") > 2, associate the set II(7") of the maximal strong modules of 7" under
inclusion amongst all the proper and strong modules of T'. Gallai’s decomposition
follows.

Theorem 12 [17, 26]. Given a tournament T such that v(T) > 2, II(T) is a
modular partition of T, and T /II(T) is a linear order or a prime tournament.

The next remark provides observations on Theorem 12 that are very useful
in the sequel.

Remark 13. Given a tournament 7" such that v(7") > 2, the following assertions
hold

1. T is strongly connected if and only if T'/II(T') is prime;

2. if T' is not strongly connected, then T/TI(T') is a linear order, and II(T) is
the set of the vertex sets of the strongly connected components of T

3. if P is a modular partition of 7" such that T'/P is prime, then P = II(T);

4. if T is strongly connected, then II(7T') is the set of the maximal proper modules
of T;

5. if T is vertex-transitive, then 7'/II(T") is prime, and 7" is isomorphic to the
lexicographic product (T/II(T")) o T[X], where X € II(T).

The next two remarks follow from Remark 13.

Remark 14. Let T be a strongly connected tournament such that v(7T") > 3.
Consider W C V(T') such that for every X € II(T), X \ W # 0. Set

I(T) - W ={X\W:X eII(T)}.
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By Proposition 1, II(T') — W is a modular partition of 7' — W. Furthermore, the
bijection
mw: I(T) — I(T) - W
X — X\W

is an isomorphism from T'/II(T") onto (T'— W)/(II(T') — W). Since T is strongly
connected, it follows from the first assertion of Remark 13 that 7'/TI(T") is prime.
Thus (T — W)/(II(T) — W) is prime. By the third assertion of Remark 13, we
obtain

(T — W) = I(T) — W.

Moreover, by the first assertion of Remark 13, T'— W is strongly connected.

Remark 15. Let T be a tournament such that v(7") > 2. Consider P C II(T)
such that |P| > 3 and (T/II(T))[P] is strongly connected. For convenience, set

T =T/I(T).
Moreover, for each @ C II(T), set

(1) uE=J x.
XeQ
Note that if Q@ = {X}, where X € II(T), then UQ = X. We verify that
T[UP] is strongly connected and II(T[UP]) = {U¢: £ € II(7[P])}.

Indeed, for each £ € II(7[P]), U is a module of T[UP]. It follows that

{ug: ¢ e (7[P])}
is a modular partition of T[UP]. Furthermore, the bijection

(7 [P]) — {U¢: € eIl(7[P])}
§ — UE,

is an isomorphism from 7[P]/II(7[P]) onto (T[UP])/{U¢ : & € II(T[P])}. By the
first assertion of Remark 13, 7[P]/II(7[P]) is prime. Thus (T[UP])/{U¢ : £ €
II(7[P])} is prime. By the third assertion of Remark 13,

(2) I(TUP]) ={ug: ¢ e T(7[P])}-

By the first assertion of Remark 13, T[UP] is strongly connected.
Lastly, suppose that (T'/II(T))[P], that is, 7[P] is prime. We clearly obtain
that II(7[P]) = {{X} : X € P}. Therefore

(by (2)) (TuP]) ={u ¢ e I(7[P])}
={U{X}: XeP}={X:XeP}=P.
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2.2. Prime tournaments

We begin with an obvious remark. Let T be a strongly connected tournament
(with v(T") > 3). For every v € V(T'), there exists X C V(T) such that v € X
and T'[X] is isomorphic to C3. Since C3 is prime, we obtain

v€E X,

| X|=3

an

T[X] is prime.

(3) for every v € V(T), there exists X C V(T') such that

Of course, (3) holds for prime tournaments. To construct prime subtournaments
of a larger size in a prime tournament, we use the partition p(r x defined below.
Let T be a tournament. Given X C V(T') such that 7[X] is prime, consider the
following subsets of V(T') \ X

e Extr(X) denotes the set of v € V(T') \ X such that T[X U {v}] is prime;

e (X)7 denotes the set of v € V(T')\ X such that X is a module of T[X U{v}];

e for each a € X, Xp(a) denotes the set of v € V(T') \ X such that {a,v} is a
module of T'[X U {v}].

The set {Extr(X), (X)r}U{Xr(a):a € X} is denoted by p(r x). The next
lemma is basic and its proof is easy.

Lemma 16. Given a tournament T, consider X C V(T') such that T'[X] is prime.
The set pr,xy is a partition of V(T) \ X. Moreover, the following assertions hold.

1. Forz e (X)r andy € V(T)\ (X U (X)), if T[X U{x,y}] is decomposable,
then X U{y} is a module of T[X U {z,y}].

2. Given a € X, forx € Xr(a) andy € V(T)\ (X U Xr(a)), if T[X U {z,y}]
is decomposable, then {a,x} is a module of T[X U {x,y}].

3. For z,y € Extp(X) such that © # y, if T|X U{x,y}] is decomposable, then
{z,y} is a module of T[X U{x,y}].

The next result follows from Lemma 16.

Proposition 17. Given a prime tournament T, consider X C V(T') such that
T[X] is prime. The following assertions hold.

1. If (X)p # 0, then there exist x € (X)r andy € V(T)\ (X U(X)r) such that
T[X U{z,y}] is prime.

2. Given a € X, if Xr(a) # 0, then there exist x € Xp(a) andy € V(T) \ (X U
Xr(a)) such that T[X U{x,y}] is prime.
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3. If V(TH)\ X| > 2 and V(T)\ X = Extp(X), then there ezist x,y € Extp(X)
such that x #y and T[X U{z,y}] is prime.

The next result is a simple consequence of Proposition 17.

Corollary 18 [14]. Given a prime tournament T', consider X C V(T') such that
T[X] is prime. If |V(T)\ X| > 2, then there exist v,w € V(T)\ X such that
v#w and T[X U{v,w}| is prime.

The next result follows from (3) by applying several times Corollary 18.

Corollary 19. Given a prime tournament T such that v(T) > 5, the following
assertions hold.

1. If u(T) is odd, then for each x € V(T), there exist v,w € V(T)\ {z} such
that v # w and T — {v,w} is prime.

2. If v(T) is even, then for each x € V(T'), there exists v € V(T') \ {z} such
that T — v is prime.

2.3. Primality and {3}-hypomorphy

The following theorem is fundamental in the study of prime and {3}-hypomorphic
tournaments. It is a major tool in duality and reconstruction problems.

Theorem 20 [12]. For a prime tournament T', T and T* are the only tourna-
ments that are {3}-hypomorphic to T.

The next result follows from Remark 13 and Theorem 20.
Corollary 21 [12]. Let T and U be {3}-hypomorphic tournaments with v(T) > 3.
1. T is strongly connected if and only if U is strongly connected.
2. I(T) =11(V).
3. If T is strongly connected, then U/IL(U) = T/II(T) or (T/II(T))*.

2.4. Criticality

We use the following notation.

Notation 22. Given a prime tournament 7', recall that a vertex v of T' is critical
if T'— v is decomposable. The set of critical vertices of T is denoted by €' (7).

A prime tournament 7" is critical if €(T) = V(T'). Schmerl and Trotter [31]
characterized the critical tournaments. They obtained the tournament Tb,1 (see
Figure 1), and the tournaments U, 11 and Wa, 1 defined on {0,...,2n}, where
n > 1, as follows. The tournament Us, 1 is obtained from Lo, 1 by reversing all
the arcs between even vertices (see Figure 2).

The tournament Ws, .1 is obtained from Lo,;1 by reversing all the arcs
between 2n and the even elements of {0,...,2n — 1} (see Figure 3).
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1 2i+1 2n—1

0 21 2142 2n
Figure 2. The tournament Us,, 1.

2n

0 1 2n — 2 2n—1

Figure 3. The tournament Wa,,11.

Theorem 23 [31]. Given a tournament T, with v(t) > 5, T is critical if and only
if v(7) is odd, and T is isomorphic to Ty, Uyry or Wiy(r).

The following result is obtained from the characterization of critical tourna-
ments.

Theorem 24 [31]. Given a prime tournament T, if v(T) > 7, then there exist
v,w € V(T) such that v # w and T — {v,w} is prime.

Theorem 24 is improved as follows.

Theorem 25 [30]. Given a prime tournament T', consider X C V(T') such that
T[X] is prime. If | V(T)\ X |> 4, then there exist v,w € V(T)\ X such that
v#w and T — {v,w} is prime.

Theorem 24 leads Ille [20] to associate a graph with a prime tournament.

Definition 26. Let T be a prime tournament. The primality graph & (T) of T
is defined on V(T') as follows. Given distinct v, w € V(T),

vw e E(P(T)) if T — {v,w} is prime.

The basic properties of the primality graph follow. The next lemma is stated
in [20] without a proof. For a proof, see [9, Lemma 10].
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Lemma 27 (Ille [20]). Let T' be a prime tournament with v(T) > 5. For every
v € C(T), dpry(v) < 2. Moreover, the next two assertions hold.

L. Givenv € €(T), if dp(r)(v) =1, then V(T)\ ({v} U Ngp(r)(v)) is a module
of T —wv.
2. Givenv € €(T), if dp(ry(v) = 2, then Ny ) (v) is a module of T — v.

Given a critical tournament 7T, it follows from Lemma 27 that the connected
components of & (T) are paths or cycles. The next result is important in the
study of non-critical and prime tournaments.

Theorem 28 [9]. Let T be a non-critical and prime tournament with v(T) > 7.
For every connected component C' of P(T), with v(C) > 2, we have V(C) \
E(T)#0.

Belkhechine et al. [3] characterized the prime tournaments admitting a single
non-critical vertex. The next result follows from their characterization (see [3,
Remark 2)).

Proposition 29. Let T be a prime tournament. If T possesses a unique non-
critical vertex u, then v(T) > 7 and P(T) admits a connected component C
satisfying the following two assertions

1. v(T) —v(C) < 2, and each element of V(T)\ V(C) is an isolated vertex of
2(T);
2. we V(C), C is a path and dp)(u) = 2.

The next result is an easy consequence of Lemma 27 and Proposition 29.

Corollary 30. Let T be a prime tournament. If T possesses a unique non-critical
vertex u, then there exist v,w € V(T')\ {u} such that v # w, vw € E(Z(T)) and
V(T)\ {v,w} is a module of T — v.

3. THE STRONGLY CONNECTED SUBTOURNAMENTS OF A PRIME
TOURNAMENT

Let T be a tournament. Consider X C V(7T') such that T[X] is strongly connected
and |X| > 3. As in Subsection 2.2 when T'[X] is prime, we consider the following
subsets of V(T') \ X

e Extr(X)istheset of v € V(T)\ X such that T[X U{v}] is strongly connected
and {v} € II(T[X U {v}]);
e (X)p is the set of v € V(T) \ X such that X is a module of T[X U {v}];
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e foreach M € II(T'[X]), Xp(M) is the set of v € V(T')\ X such that T[X U{v}]
is strongly connected and M U {v} € II(T[X U {v}]).

The next remark develops the last item above.

Remark 31. Given a tournament 7', consider X C V(T') such that T[X] is
strongly connected and |X| > 3. Let M € II(T[X]). For each v € Xp(M), we
have TH(T'[X U {v}]) = (I(T[X]) \ {M}) U{M U {v}}.

Given a tournament T', consider X C V(T') such that T[X] is strongly con-
nected and |X| > 3. The set {Extr(X),(X)r} U {Xr(M) : M € I(T[X])} is
denoted by q(7 x)-

Proposition 32 [10]. Given a tournament T, consider X C V(T') such that T[X]
is strongly connected and |X| > 3. The set q(p,x) is a partition of V(T)\ X.

An analogue of Proposition 17 and Corollary 18 follows.

Theorem 33 [10]. Given a prime tournament T', consider X C V(T') such that
T[X] is strongly connected and | X| > 3. Then, there exist v,w € V(T)\ X such
that T[X U {v,w}] is strongly connected and {v},{w} € II(T[X U{v,w}]). More
precisely, the following two assertions hold.

1. If (X)p # 0, then there exist v € (X)r and w € V(T)\ (X U(X)7) such that
T[X U{v,w}] is strongly connected and {v},{w} € I(T[X U {v,w}]).

2. Suppose that Extp(X) = 0. For each M € I(T[X]), if |M U Xp(M)| > 2,
then there exist v € Xp(M) and w € V(T) \ (X U X7p(M)) such that T[X U
{v,w}] is strongly connected and {v},{w} € II(T[X U {v,w}]).

The next remark enlarges on Theorem 33.

Remark 34. Given a prime tournament 7, consider X C V(7T') such that T[X]
is strongly connected and |X| > 3. Let Y be a nonempty subset of V(T')\ X such
that T[X U Y] is strongly connected, and for each y € Y, {y} € II(T[X UY]).
For each x € X,

if {a} € II(T[X]), then {z} € I(T[X UY]).

Indeed, let # € X such that {z} € II(T[X]). There exists M € II(T[X UY]) such
that 2 € M. Since {y} € II(T[X UY]) for each y € Y, we obtain that M NY = 0.
By the second assertion of Proposition 1, M is a module of T'[X]. Since T[X] is
strongly connected, it follows from the fourth assertion of Remark 13 that there
exists N € II(T[X]) such that M C N. Since {z} € II(T[X]), we have {z} = N,
and hence {z} = M. Therefore {z} € I(T[X UY]).
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4. SELFDUAL TOURNAMENTS

Let T be a tournament. As T and T™ share the same modules, they also share
the same strong modules. It follows that II(T") = II(T™*). We obtain

T*/IN(T*) = T*/IN(T) = (T/IL(T))"

Given a selfdual tournament T, consider an isomorphism f from 7 onto T*. For
every X € II(T), f(X) € II(T*) and hence f(X) € II(T). Furthermore, the
permutation f/II(T") of II(T") defined by

I(T) — IKT)

@) X — FX),

is an isomorphism from 7'/II(T) onto (T/II(T))*. Thus, T/II(T") is selfdual.

We use the following notation. Given a permutation group I' of a set S, the
set of the orbits of I' is denoted by S/T". When I is generated by a permutation
f, S/T is also denoted by S/f.

The next lemma follows from simple observations made in [15, Section 1].

Lemma 35. Given a selfdual tournament T, every isomorphism f from T onto
T* satisfies the following three assertions.
1. For each O € V(T)/f such that |O|> 2, |O] is even and |O| /2 is odd.

2. There exists a vertex x of T such that f(x) = x if and only if v(T) is odd.
(Such a vertex is unique.)

3. There exists an odd integer k > 1 such that f* is an involutive isomorphism
from T onto T™.

In the following remark, we consider the case of selfdual and non strongly
connected tournaments.

Remark 36. Let T be a selfdual and non strongly connected tournament (with
v(T') > 2). By the second assertion of Remark 13, T'/II(7T’) is a linear order, and
II(T) is the family of the vertex sets of the strongly connected components of 7.
The strongly connected components of T can be indexed as Cy,...,C, so that
for any 4,5 € {0,...,n}, we have V(C;)V(C;) € A(T/II(T)) if and only if i < j.
For every isomorphism f from 7" onto T™*, we obtain that

(f/T(T))(V(Ci)) = V(Cn—i)
for each i € {0,...,n}.

We use the following notation.
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Notation 37. Let T' be a tournament such that v(7) > 2. Given ¢ > 0, we
consider 11,(T) = {X € I(T) : |X| = i}, and v;(T) = [IL(T)|. Set Y(T) =
{i > 0:v(T) # 0} and p(T) = max(Y(T)). Furthermore, suppose that 7' is
strongly connected. Given i > 0, we consider II; .(T') = IL;(T) N € (T/IL(T)) (see
Notation 22), II; —(T) = IL;(T) \ €(T/IK(T)), v;(T) =|11;¢(T) | and v; -(T) =
[T ~e(T) |-

In the next remark, we examine the selfduality in terms of Gallai’s decom-
position.

Remark 38. Let T" be a selfdual tournament such that v(7) > 3. Given an
isomorphism f from 7" onto T, consider the isomorphism f/II(T") from T'/II(T")
onto (T/II(T'))* induced by f. The following assertions hold.

1. For each ¢ > 0, we have (f/II(T))(IL;(T)) = I1;(T). By Lemma 35, if v;(T)
is odd, then there is X € II;(T') such that (f/II(T))(X) = X. Consequently

{i € Y(T) : v5(T) is odd}| < 1.
2. Suppose that T is strongly connected. For each ¢ > 0,
(f/I(T)) (W o(T) = 1Li.o(T) and (f /IU(T))(P~c(T)) = i ~(T').

By Lemma 35, if v;.(T") (respectively, v; -<(T") ) is odd, then there exists
X € ILio(T) (respectively, X € II; -(T)) such that (f/II(T))(X) = X.
Consequently

[{i € T(T) : vio(T) is odd} U {i € T(T) : vi—o(T) is odd}| < 1.

The arguments presented in Remark 38 are well known in the study of selfdual
and decomposable tournaments. Unfortunately, they lead to long and technical
proofs. In the following proposition, we provide a new tool that allows us to
synthesize our approach. We use the following notation.

Notation 39. Let T be a tournament. Recall that Aut(7") denotes the auto-
morphism group of T'. For each v € V(T'), Or(v) denotes the orbit of v under
Aut(T). Furthermore, suppose that T is selfdual. We denote by Fix(T) the set
of vertices v of T" for which there exists an isomorphism f from 71" onto 7™ such
that f(v) = v.

Proposition 40. Let T be a selfdual tournament.

1. Let f be an isomorphism from T onto T*. For every v € V(T), we have
f(Or(v)) = Or(f(v)). Thus f induces a permutation faury of V(T)/Aut(T)
defined by fau(r)(O) = f(O) for every O € V(T)/Aut(T).
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2. The following three assertions are equivalent

e u(T) is odd;

o Fix(T) # 0;

o Fix(T) € V(T)/Aut(T).

Furthermore, for each isomorphism f from T onto T*, we have

o if (1) is odd, then faur)(Fix(T)) = Fix(T');

o for every O € V(T')/Aut(T), if fau(r)(O) = O, then O = Fix(T).
3. For every isomorphism f from T onto T, fauy(t) is involutive.

4. For any isomorphisms f and g from T onto T*, we have

TAw(T) = 9Auw(T)-

Proof. For the first assertion, consider an isomorphism f from T onto T*. Let
v € V(T). For every w € Op(v), there exists ¢ € Aut(T) such that ¢(v) = w. We
have (fopo f7)(f(v)) = f(w). Since fopo f~1 € Aut(T), f(w) € Or(f(v)).
It follows that f(Or(v)) € Or(f(v)). Similarly, since f~! is an isomorphism
from T onto T*, we obtain f~1(Or(f(v))) € Or(v). Thus Or(f(v)) C f(Or(v)).
Therefore, for every v € V(T'), f(Or(v)) = Or(f(v)). Consequently, the function

F/AUt(T) : V(T)/Auwt(T) — V(T)/Aut(T)
O — f(O)

is a permutation of V/Aut(T).

For the first part of the second assertion, it follows from the second assertion
of Lemma 35 that v(T') is odd if and only if Fix(T") # 0. Moreover, if Fix(T') €
V(T)/Aut(T), then Fix(T) # (. It remains to prove that if Fix(7T) # 0, then
Fix(T) € V(T)/Aut(T). Suppose that Fix(T) # 0, and consider v € Fix(T).
Thus, there exists an isomorphism f from T onto 7T* such that f(v) = v. For
each w € Or(v), there exists ¢ € Aut(T) such that p(v) = w. Since po fop™!is
an isomorphism from T" onto T* and (p o f o o~ !)(w) = w, we have w € Fix(T).
It follows that O (v) C Fix(T'). Now, we show that Fix(T) C Or(v). Consider
w € Fix(T'). There exists an isomorphism ¢ from 7" onto 7™ such that g(w) = w.
By the first assertion above, g(Or(v)) is the orbit of g(v) under Aut(7T). Since
fog™t € Aut(T) and g(Or(v)) € V(T)/Aut(T), we obtain (fog=1)(g(Or(v))) =
g(Or(v)). Clearly (fog 1) (9(Or(v))) = f(Or(v)). By the first assertion above,
f(Or(v)) = Or(v) because f(v) = v. Therefore

9(Or(v)) = Or(v).

Since T[Or(v)] is vertex-transitive, T[Or(v)] is regular, and hence |Or(v)] is odd.
By the second assertion of Lemma 35 applied to g;0,.(v), there exists u € Or(v)
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such that g(u) = w. Since g(w) = w, we get w = u, so w € Or(v). Thus
Fix(T) C Or(v). Consequently, Fix(T') = Or(v).

To complete the proof of the second assertion, consider an isomorphism f
from T onto T*. First, suppose that v(T) is odd. By the second assertion of
Lemma 35, there exists v € V(T') such that f(v) = v. Hence v € Fix(T'). By what
precedes, Fix(T') € V(T')/Aut(T) because v(T) is odd. Thus Fix(T) = Or(v).
By the first assertion above, we have faur)(Or(v)) = Or(f(v)). Since f(v) = v,
we obtain fau1)(Or(v)) = Or(v), that is, fauer)(Fix(T)) = Fix(T). Second,
consider O € V(T')/Aut(T) such that faur)(O) = O. We get f(O) = O. As
previously observed, |O| is odd because T[O] is vertex-transitive. By the second
assertion of Lemma 35 applied to f;o, there exists v € O such that f(v) = v. By
the second assertion of Lemma 35 applied to f, v(T) is odd. By what precedes,
Fix(T) € V(T')/Aut(T). Therefore O = Fix(T') because v € O N Fix(T).

For the third assertion, consider an isomorphism f from T onto T*. Let
O € V(T)/Aut(T). Since f o f € Aut(T), we obtain (f o f)(O) = O. It follows
that (faw(r) © faue(r))(O) = O for each O € V(T)/Aut(T). Hence fauy(r) is
involutive.

For the fourth assertion, consider isomorphisms f and g from T onto T™.
Since f~log € Aut(T), we obtain that for every O € V(T')/Aut(T), (f~'og)(0O) =
O, that is, f(O) = g(O). It follows that faue(r) = gaw(7)- |

Notation 41. Following the last assertion of Proposition 40, we associate with
each selfdual tournament T' the permutation 1) of V/(T')/Aut(T) satisfying

(5) P aut(r) = faut(r) for every isomorphism f from 7" onto 7.

This permutation plays a crucial role in the proof of Theorem 7.

5. PROOF OF THEOREM 7

We use the following result to prove Theorem 7 in the non strongly connected
case.

Lemma 42 [8]. Let T be a non strongly connected tournament T such that v(T)
> 5. If T is {—1}-selfdual, then T is a linear order.

To prove Theorem 7 for tournaments 7' such that T'/TI(T) is a 3-cycle or a
critical tournament, we use the next result. It is an easy consequence of the char-
acterization of the critical tournaments (see Theorem 23), and of [6, Theorem 1],
[6, Theorem 2] and [6, Proposition 7].

Corollary 43 [6]. Let T be a tournament, with v(T) > 7, such that T/II(T)
is a 3-cycle or a critical tournament. The tournament T is decomposable and
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{—2, —1}-selfdual if and only if T is a circle or T is decomposed into a lezico-
graphic product Top 1 o U, where h > 1, and U is a monomorphic and {—2,0}-
selfdual tournament, with v(U) > 2.

By Lemma 42 and Corollary 43, it remains to prove Theorem 7 for the
tournaments 1" satisfying

T/II(T) is prime
(6) and
there exists X, € II(T") such that (T'/II(T")) — X is prime.

In the next facts, T' denotes a tournament, with v(7") > 7, such that T satis-
fies (6), and T is decomposable and {—2, —1}-selfdual. Since T" is decomposable,
w(T) > 2 (see Notation 37). Furthermore, since all the tournaments of cardinal-
ity 4 are decomposable, all the prime tournaments of cardinality 5 are critical.
Hence

(7) [I(T)| = 6.
For convenience, set
T=T/IKT).

We use the following notation. Let W C V(T') such that |W| =1 or 2. Since T
is {—2, —1}-selfdual, T'— W is selfdual. Thus there exists an isomorphism from
T — W onto T* — W that is denoted by fi.

The following lemma is only used at the end of the proof of the next fact,
when v(T') = 7 and |[II(T')| = 6.

Lemma 44 [5]. Let t be a tournament. If t contains a diamond as a subtourna-
ment, then for each v € V(t), there exists D C V (t) such that v € D and t[D] is
a diamond.

Fact 45. We have

(8) Z vi(T) > 2 (see Notation 37).
€Y (T)\{1}

Proof. Suppose, to the contrary, that

> v =1

€N (T)\{1}
Denote by X the unique element of II(7") such that |X| > 2. We have

IL(T) ={{w}:weV(T)\ X}.
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Since T satisfies (6), we have II(T") \ € (T /II(T)) # (0 (see Notation 22).
To begin, suppose that

I(T) \ &(T/T(T)) = {X}.

By Corollary 30 applied to T/TI(T"), there exist Y,Z € II(T) \ {X} such that
Y#Z,YZ e E(Z(T/II(T))) (see Definition 26) and II(T") \ {Y, Z} is a module
of (T/IT)) =Y. Since I1i(T) = {{w} : w € V(T) \ X}, there exist y,z €
V(T) \ X such that Y = {y} and Z = {z}. Since YZ € E(Z(T/I(T))),
(T/IL(T))[IK(T) \ {Y, Z}] is prime. By Remark 15, T[U(II(T") \ {Y, Z})], that is,
T — {y, z} is strongly connected. Moreover, V(T') \ {y, 2z} is a module of T' — y
because II(T') \ {Y, Z} is a module of (T/II(T)) — Y. It follows that T' — {y, z}
and T[{z}] are the only strongly connected components of T'—y. By Remark 36,
T — y is not selfdual, which contradicts the {—1}-selfduality of T

Now, suppose that II(T) \ €(T/I(T)) # {X}. Since II(T) \ € (T/I(T)) #
and IT1 (T) = {{w} : w € V(T) \ X}, there exists v € V(T) \ X such that

{v} € I(T)\ € (T/I(T)).

We have (T/IL(T))[IL(T) \ {{v}}] is prime. By Remark 15, T[U(II(T) \ {{v}})],
that is, T'— v is strongly connected, and II(T —v) = II(T') \ {{v}}. Thus II,(T —
v) ={{w}:weV(T)\ (X U{v})} and I(T —v) \II1 (T —v) = {X}. It follows
that (f{,y/II(T—v))(X) = X. By the second assertion of Lemma 35, [II(T'—v)| is
odd, so |TII(T")| is even. We verify that | X| = 2. Otherwise, suppose that |X| > 3
and consider z € X. By Remark 14, I(T — z) = (II(T) \ {X}) U {X \ {z}}.
Thus II1 (T — ) = II;(T) and II(T — ) \ IL(T — =) = {X \ {z}}. Therefore
(f{2}/T(T — 2))(X \ {z}) = X \ {2}, which contradicts the second assertion of
Lemma 35 because |II(T" — z)| is even. We verify that |II(T")| = 6. Otherwise,
suppose that [II(T)| > 7. By (3), there exists P C II(7T') such that X € P, |P| =3
and (T'/II(T"))[P] is prime. By Theorem 25, there exist Y, Z € II(T") \ P such that
Y # Z and (T/II(T)) — {Y, Z} is prime. Since IIi(T) = {{w} :w € V(T)\ X},
there exist y,z € V(T) \ X such that Y = {y} and Z = {z}. It follows from
Remark 15 that II(T' — {y,z}) = II(T) \ {{y},{z}}. Hence |II(T — {y,2})| is
even. Moreover, we obtain (fy, .1 /II(T —{y, 2}))(X) = X, which contradicts the
second assertion of Lemma 35 because |II(T — {y, z})| is even. Lastly, suppose
that [II(7)| = 6 and |X| = 2. Since T/II(T) is prime and [II(T")| is even, it
follows from Theorem 3 that T'/II(T) contains a diamond as a subtournament.
By Lemma 44, there exists D C II(7T') such that X € D and (T/II(T))[D] is a
diamond. We obtain that T[UD] has only two strongly connected components
that are of sizes 1 and 4 or of sizes 2 and 3. By Remark 36, T'[UD] is not selfdual,
which contradicts the {—2}-selfduality of 7" because |V (T') \ (UD)| = 2.

It follows that (8) holds. |



THE {—2, —1}-SELFDUAL AND DECOMPOSABLE TOURNAMENTS 763

Fact 46. We have

(9) < U H,(T)) C Fix(7) (see Notation 39).
i€T(D)\{1}

Proof. Suppose, to the contrary, that there exists X € II;(T) \ Fix(7), where
ieX(T)\{1}.

Consider any Y € II(T) such that |Y| > 2. Let y € Y. We obtain that
f{y}/H(T —y) is an isomorphism from (7' —vy)/I(T —y) onto ((T'—y)/I(T —y))*
(see (4)). Set

IT) —{y} ={Z\{y}: Z e I(])},
and consider the bijection
Ty IW(T) — I(T) — {y}
Z — Z\{y} (see Remark 14).
By Remark 14, II(T' — y) = II(T') — {y}, and m(,) is an isomorphism from 7 onto
(T —y)/I(T — y). Therefore, (mf,3) " o (fy /(T —y)) 0 7y is an isomorphism
from 7 onto 7*. Set

9ty = (my) o (Fryy /TUT —y)) 0 gy

The next assertions follow from Proposition 40.

® g1,y induces a permutation (gg,y)Aut(r) of I(T')/Aut(7). Precisely, for every
Z € I(T),

(911) Aut(r) (O2(Z)) = 91,3 (0:(Z))) = O+ (g3 (2))-

¢ (g{y})Aut(T) = PAut(r) (See Notation 41)
e Since X ¢ Fix(7), we have O, (X) # Fix(7). Thus

PAut(r) (OT (X)) 7é O- (X)
Therefore O-(X) N @au(r)(O7(X)) = 0, and
P Aut(r) exchanges O (X) and o) (Or(X)).

We have

(f13/TU(T = y)) (73 (O+(X))) = ((fyy/TUT = y)) 0 7(,1) (O (X))
Ty} © 9iy}) (Or (X))
=T{yy © (PAut(T))(OT (X))

Ty} (@Aut(T) (OT (X)))

=
= (
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Moreover, consider j > 0. Since f{,) is an isomorphism from 7' —y onto (17" —y)*,
we obtain

(froy/TUT — y)) (IH(T — y)) = I;(T — y).
It follows that
(fryy/TUT = y)) (743 (O7(X)) NTLH(T — y))
= T3 (Paut(r) (O (X)) NIH(T —y).

Since fg,y/I(T — y) is an isomorphism from (T — y)/II(T" — y) onto ((T —y)/
I(T — y))*, we obtain

(10) |7y (O0-(X)) NTLHT = y)| = |7y (PauE) (O-(X)) NTH(T —y)| .
Choose X for Y, and ¢ for j. Hence y € X. We get

Ty} (O7(X)) NIL(T — y) = (O-(X) NIL(T)) \ {X}
and
T3 (Paut(r) (O (X)) NIL(T = y) = @aw(r) (O (X)) NIL(T).

It follows from (10) that
(11) 0-(X) NIL(T)] = 1 = |paut(r) (O (X)) NIL(T)].

By using (10) with suitable choices for Y and j, we obtain Y(T") \ {1} = {i}
and v;(T) = 1, which contradicts Fact 45.

To begin, suppose that ¢ sy () (O~ (X)) NI (T) # (. Choose for Y an element
of YAut(r) (O+(X)) NIL(T). Furthermore, choose i for j. We get

Ty (O7(X)) NIL(T — ) = O-(X) N1L(T)
and
Ty (Paut(r) (O (X)) NIL(T = y) = (Paw() (O (X)) NTL(T)) \ {Y}.

It follows from (10) that
|0-(X) NIL{(T)| = |[@au() (O-(X)) NTL(T)| - 1,

which contradicts (11). Therefore

|¢Aut(T)(OT(X)) N Hl(T)‘ =0
(12) and
0-(X) NIL(T)| = 1.
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Now, suppose that there exists
Y e I(T) \ (O7(X) Upauy(r) (0-(X))),
where j € Y(T) \ {1}. We get

Tr{y}(OT(X)) N Hi(T - y) = O’T(X) N Hi(T)
and
Ty} (P aut(r) (O (X)) NIL(T = y) = aut(r) (O7(X)) NIL(T).

It follows from (10) applied with j = ¢ that

(13) 0-(X) NIL(T)| = [paut(r) (O(X)) NIL(T)],

which contradicts (12). Therefore

(14) ( U Hj (T)> c (OT(X) U @Aut(T)(OT(X)))'
FET(T\{1}

In the same manner, we obtain (13) from (10) if there exists Y € II;(T"), where
JjeYX(T)\ {1}, and

j>i+2
or
2<j<i—1 (wheni?>3).

Thus Y(T') \ {1} C {4,i+ 1}, and it follows from (14) that
(15) I1;(T) Ui (T) € (Or(X) U pau(r) (O-(X))).
To continue, suppose that there exists Y € II;11(7) N O-(X). We get

T (O7(X)) NIL(T — y) = O-(X) NIL(T)) U{Y \ {y}}
and
Ty (Paut(r) (O (X)) NIL(T = y) = @aw(r) (O (X)) NIL(T).

It follows from (10) applied with j =i that
0-(X) NIL(T)[ + 1 = [eau(r) (O- (X)) NIL(T)],
which contradicts (12). Hence

(16) II;11(T) N O-(X) = 0.
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Lastly, suppose that I1;11(T) N @aut(r) (O (X)) # 0. Choose X for Y, and
i1+ 1 for j. We get

Ty (O7(X) N1 (T — y) = O (X) N1Li41(T))
and
Ty} (Pau(r) (O (X)) N1 1 (T — y) = Pau(r) (O (X)) N1 (T).

Since Tl;41(T) N @aut(r) (O (X)) # 0, it follows from (10) that
;1 (T)NOA(X) # 0,

which contradicts (16). Thus IT;11(T) N aye(r) (O (X)) = 0. Tt follows from (15)
and (16) that v;41(7") = 0. Since Y(T') \ {1} C {i,i+ 1}, we obtain Y(T')\ {1} =
{i}. Furthermore, it follows from (14) and (12) that II;(7) = {X}. Therefore,
Y(T)\ {1} = {i} and v;(T") = 1, which contradicts Fact 45. In consequence, (9)
holds. ]

Fact 47. We have

(UieT(T)\{l} Hi(T)) = Fix(7)
(17) and
Fix(r) =II(T) \ €(1) (see Notation 22).

Proof. By Fact 46, Fix(7) # 0. By the second assertion of Proposition 40, [TI(7")]
is odd. We show that

(18) IL(T) C€(r).

Suppose, to the contrary, that there exists v € V(T') such that {v} € II(T)\ € (7).
By Remark 15, II(T' — v) = II(T) \ {{v}}. Since |II(T — v)| is even, it follows
from the second assertion of Lemma 35 that fr,,/II(T —v) does not admit a fixed
point. By Remark 38, v;(T" — v) is even for each i € Y(T' — v) (see Notation 37).
Since II(T' — v) = II(T) \ {{v}}, we obtain that v1(7T) is odd, and v;(T) is even
for every i € T(T) \ {1}.

Now, suppose that there exists i € Y(T) such that ¢ > 3. Let X € IL;(T)
and v € X. By Remark 14, II(T' —v) = (II(T) \ {X}) U{X \ {v}}. Since v;_1(T)
and v;(T') are even, we obtain that v;_1(T — v) and v;(T — v) are odd, which
contradicts Remark 38. Consequently, (7)) = 2. Consider again v € V(T') such
that {v} € II(T) \ € (7). Let X € II5(T) and w € X. By Remark 15, II(T —v) =
IT) \ {{v}}. Furthermore, by Remark 14 applied to 7" — v, II(T — {v,w}) =
(I(T)\{{v}, X})U{X \{v}}. Hence vo(T—{v,w}) = va(T)—1, so vo(T—{v,w})
is odd. Since X \ {w} € IILi(T — {v,w}), we have v1(T — {v,w}) = v1(T), so



THE {—2, —1}-SELFDUAL AND DECOMPOSABLE TOURNAMENTS 767

v1(T —{v,w}) is odd. Therefore vo(T —{v,w}) and v, (T — {v, w}) are odd, which
contradicts Remark 38. It follows that (18) holds.

Since T satisfies (6), there exists X € II(T") \ € (7). Since II1(T) C ¥€(1),
X € IIi(T), where i € Y(T)\ {1}. By Fact 46, X € Fix(7). Since Fix(7) €
II(T)/Aut(r) by the second assertion of Proposition 40, we obtain Fix(7) C
I(T) \ €(7). It follows from Fact 46 that

( U Hi(T)> C Fix(r) C I(T) \ €(7).
€T (T)\{1}

Consequently, (17) holds. [
Fact 48. We have Fix(7) = II,,y(T) (see Notation 37).

Proof. Set
a=min(T(T) \ {1}).

Let i € Y(T)\ {1}, X € II(T), and = € X. We obtain that f,3/II(T — x) is an
isomorphism from (7" — z)/II(T — z) onto ((T' — z)/II(T — z))*. Set

I(T) —{a} = {Y \{«}: Y e I(T)},
and consider the bijection

Ty o W(T) — I(T) — {=x}
Y +— Y\ {z} (see Remark 14).

By Remark 14, II(T — x) = II(T') — {z} and 7(,) is an isomorphism from T'/TI(T)
onto (T'— z)/I(T — x). By Fact 47, II(T) \ Iy (T) = II(T') \ €(7). Since 7,y is
an isomorphism from 7 onto (T' — z) /II(T — ), we have
(T = 2) \C((T — 2)/T(T — x)) = mie(I(T) \ I (T)).
Since oy (IH(T) \ TIi(T)) = (I(T) \ (Iy(T) U {X})) U{X \ {z}}, we obtain
I(T =)\ C((T — 2)/I(T — x)) = (I(T) \ (IL(T) U {X})) U{X\ {z}}.
Since fiy /(T —x) is an isomorphism from (7'—x) /(T —z) onto ((T'—x) /TI(T —

a:})l)* and (fiz)/TH(T—x))(Y) = fa3(Y) for every Y € (T'—x) /TI(T —x), we obtain
that

(19) froy(Y) € (I(T) \ (I (T) U{X})) U{X \ {z}}
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for every Y € (II(T") \ (II;(T) U{X})) U{X \ {z}}. Consider i = a, X € I1,(T)
and x € X. We obtain
[Y € (I(T) \ (I (T) U {X}) U{X \ {2}} £ [Y] = a — 1} = {X\ {a}},
{¥ € (I(T)\ (IL(T) U{X}) U{X\ {a}} : Y] = a} = I (T)\ {X},
and
for j > o, {Y € (I(T) \ (IL(T) U{X})) U{X \{a}} : [Y]=j} =I;(T).
Hence
Va—l,—\c(T - $) =1,
Va—c(T —x) =vo(T) — 1,
and
for j > o, vj (T — z) = vj(T).
It follows from Remark 38 that

{ vo(T) is odd

(20) and

for j > o, vj(T) is even.

Now, suppose that there exists i € T(7T') such that i > a+1. Consider X € I1;(7T)
and z € X. We obtain

{{YG (I(T)\ (M (T) U {X ) U{X N\ {z}} : Y] = o} = T (T),

and
{Ye (I(T) \ (I (T) U{X})) U{X\{a}} : V] =i—1} =1L (T) U{X\{z}}.

It follows from (20) that vo —.(T'—z) and v;_1 —.(T'—x) are odd, which contradicts
Remark 38. It follows that p(7') < o+ 1. Lastly, suppose that p(T) = a + 1.
Consider X € IT(T), Y € l144+1(T), z € X and y € Y. We have

I(T = {2,y )\ C((T — {2, y}) /(T = {z,y}))
= (I(T) \ (I (T) U{X, Y}) U{X A\ {z}, Y\ {y}}.
Therefore, (19) becomes
frayy(2) € I(T)\ (I (T) U{X, Y }) U{X A\ {2}, Y \ {y}}
for every Z € (I(T) \ (II(T) U{X,Y})) U{X \ {z},Y \ {y}}. We obtain

{Z e T\ (M(T) U{X,Y})) ULX\ {2}, Y \{y}}: [Z] = a}
= (Ma(M\{XHU{Y \ {y}}
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and
{Z e I(T)\ A (T) U{X,Y})) U{X\{z}, Y \{y}} : [Z] =a + 1}
= Mo (T) \ {Y}.

It follows from (20) that vq (T — {z,y}) and vaq1,-<(T — {z,y}) are odd,
which contradicts Remark 38. Consequently (7)) = «. By Fact 47, Fix(7) =

1) (T). n
Fact 49. We have Fix(1) =II(T) (see Notation 39).

Proof. Suppose, to the contrary, that
(21) Fix(r) € II(T).

Since Fix(7) # 0, it follows from the second assertion of Proposition 40 that
III(T")| is odd and Fix(7) € II(T")/Aut(r). Since Fix(7) € II(T)/Aut(7), 7[Fix(7)]
is vertex-transitive. Thus |Fix(7)| is odd and 7[Fix(7)] is strongly connected.
Furthermore, it follows from Fact 45 that |Fix(7)| > 3.

We show that for each v € V(T),

(22) if {v} € Iy (T), then dgp({v}) =0 (see Definition 26).

Suppose, to the contrary, that there exist v € V(T), with {v} € II;(T), and
X € II(T) such that X € Ng(;)({v}). Denote by I' the connected component of
P (1) such that {v}, X € V(I'). By Fact 47, {v} € V(I') N €(7) (see Notation
22). Moreover, [II(T)] > 6 by (7). Recall that all the tournaments of cardinality
4 are decomposable. Hence, since (1) admits an edge, we have |[II(T)| >
7. By Theorem 28, V(I') N (IL(T") \ € (7)) # 0. Thus, V(I') N € () # 0 and
V() N (IT) \ €(7)) # 0. Consequently, there exist Y € V(I') N €(r) and
Z e V()N (II(T) \ €(r)) such that YZ € E(Z(7)). It follows from Facts 47
and 48 that Z € I, (T) (see Notation 37) and there exists w € V(T') such that
Y = {w}. Since {w} € €(7) and Z € Ny ({w}), it follows from Lemma 27
that dg (- ({w}) = 1 or 2. We distinguish the following two cases, obtaining a
contradiction in each case.

e Suppose that Ny ({w}) = {Z}. Set P = II(T) \ {{w}, Z}. Since {w}Z €
E(Z(7)), we have 7[P] is prime. By Remark 15, T[UP] is strongly connected
and II(T[UP]) = P. By the first assertion of Lemma 27, P is a module of 7—{w}.
Thus, Z and UP are modules of T'—w and hence T'—w is not strongly connected.
Since T[UP] is strongly connected, it is a strongly connected component of T'— w.
Moreover, since |Fix(7)| > 3, that is, v,(7)(T") > 3, we have | U P| > 2u(T), so
|UP| > |Z|. Therefore, T[UP] is not isomorphic to any of the strongly connected
components of T[Z]. It follows from Remark 36 that 7' — w is not selfdual,
contradicting the {—1}-selfduality of T.
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e Suppose that there exists Z' € II(T) \ {{w}, Z} such that Ng({w}) =
{Z,Z'}. By the second assertion of Lemma 27, {Z, Z'} is a module of 7 — {w}.
Since {w}Z € E(Z(7)), we have 7 —{{w}, Z} is prime. Thus {{Z, Z'}}U{{Z"} :
Z" € I(T) \ {{w},Z,Z'}} is a modular partition of 7 — {w}. Moreover, the
function

I(T)\ {w}, 2} — {{Z, Z'}}V
{z"y 2" e (D) \ {w}, 2, 2'}}
Z'— {Z,7'}
Z" e (T)\ {{w}, Z, 2"} —s {2},

is an isomorphism from 7 — {{w}, Z} onto (7 — {w})/({{Z,Z'}} U {{Z"}: Z" €
(1) \ {{w}, 2, Z'}}). Hence, (1 — {w})/({{Z, Z'}} U {{2"} : 2" € I(T) \
{{w}, Z,Z'}}) is prime. It follows from the third assertion of Remark 13 that
I(r —{w}) = {2, 2}y U{{Z"} : Z" € II(T) \ {{w},Z,Z'}}. By the first
assertion of Remark 13, 7 — {w} is strongly connected. By Remark 15, T' — w is
strongly connected and

(T —w)={ZuZ}uI(T)\ {{w}, Z,Z'}).

Thus vy7)42/(T — w) = 1. Recall that [TI(T)| and v, (T) are odd. It follows
that v1(T) is even. Suppose that Z’ € I, (T). We obtain v, (T — w) =
V) (T) = 2, so vy (T — w) is odd. Since vy, (7)(T — w) = 1, it follows from
Remark 38 that 7" — w is not selfdual, contradicting the {—1}-selfduality of T
Suppose that Z" € TI1(T'). Consider x € X, where X € II,,(7(T)\{Z}. We obtain
that II(T — {z,w}) = {X \ {z},ZU Z'} U (II(T) \ {{w}, X, Z,Z'}). Therefore,
V)41 (T —{z,w}) = 1 and v,y (T —{z,w}) = v,y (T) — 2. Hence v,y (T —
{z,w}) and v, (T — {z,w}) are odd, contradicting the {—2}-selfduality of 7.

It follows that (22) holds. By Fact 47, II;(T) = %(7). Consequently, it
follows from (22) that

(23) for any v,w € V(T') such that {v}, {w} € II;(T),
7 —{{v}, {w}} is decomposable.

Let P be a subset of II(T") such that Fix(r) C P C II(T). Suppose that 7[P] is

prime. Using Corollary 18 several times from 7[P], we obtain @ C II(7") such

that 7[Q] is prime and |[II(T) \ @] = 1 or 2, which contradicts (23) because

INT)\Q CINT)\ P CII(T) \ Fix(7), and II(T") \ Fix(7) = II1(T") by Fact 47.
It follows that for every subset P of II(T),

(24) if Fix(7) € P C II(T), then 7[P] is decomposable.
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Consider the set P of P C II(T) satisfying

Fix(r) C P C II(T)

7[P] is strongly connected,

and

for every v € V(T') such that {v} € P\ Fix(7), {{v}} € II1(7[P)).

Since Fix(7) € II(T) by (21), we have Fix(r) € P. Hence P # (), and P
admits a maximal element () under inclusion. Suppose that |[II(T") \ Q| > 3. By
Theorem 33 applied to 7 and 7[Q), there exist {v},{w} € II(T) \ @ such that
T[QU{{v}, {w}}] is strongly connected and {{v}}, {{w}} € II; (7[QU{{v}, {w}}]).
Since @ € P, we have {{{u}} : {u} € Q \ Fix(7)} C II;(7[Q]). By Remark 34,
{{{u}} : {u} € @\ Fix(m)} € IL(7[Q U {{v},{w}}]). Since {{v}}, {{w}} €
II; (7[Q U {{v}, {w}}]), we obtain

{{{ut} = {u} € (QU{{v}, {w}}) \ Fix()} C IL(7[Q U {{v}, {w}}]).

Therefore QU {{v}, {w}} € P, which contradicts the maximality of Q. It follows
that [II(T") \ Q| = 1 or 2. For convenience, set

I>2(r[Q]) = |J W(+[Q))-

i>2
Since {{{v}}: {v} € Q \ Fix(7)} C II;(7[Q]), we have
(25) for every M € II>o(7[Q]), M C Fix(7).

By (24), 7[Q] is decomposable. Thus II>o(7[Q]) # 0. Finally, we distinguish the
following two cases.

1. Suppose that [II(T) \ Q| = 2. We verify that Ext;(Q) = 0. Otherwise,
there exists x € V(T) such that {x} € Ext.(Q). By definition of Ext,(Q),
7[Q U {{x}}] is strongly connected and {{z}} € II;(7[Q U {{z}}]). Since Q € P,
we have {{{u}} : {u} € Q \ Fix(7)} C II;(7]Q]). It follows from Remark 34 that
QU {{z}} € P, which contradicts the maximality of ). Consequently

(26) Ext,(Q) = 0.
Since Ext,(Q) = 0, it follows from Theorem 33 that
(27) for every M € Tiaa(r[Q)), Q-(M) £0.

Since q(-,q) is a partition of II(T") \ Q by Proposition 32, it follows from (27) that
>o(7[Q])| < |I(T) \ Q|. Since [II>2(7[Q])] # 0 and [II(T") \ Q| = 2, we obtain

(28) I>o(7[@Q])] =1 or 2.
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Now, consider M € II>o(7[Q]) # 0. By (27), there exists v € V(T') such that
{v} € Q-(M). Since [II(T)\ Q| = 2, set II(T)\Q = {{v},{w}}. If {w} € Q- (M),
then M U Q,(M) is a module of 7, which contradicts the fact that 7 is prime.
By (26), Ext,(Q) = (. Since q(, ) is a partition of II(T") \ @ by Proposition 32,
we get {w} € (@), or there exists N € II(7[Q]) \ {M} such that {w} € Q,(N).
Furthermore, suppose that [I1>2(7[Q])| = 2. Since q(, ) is a partition of II(T")\ Q
by Proposition 32, it follows from (27) that {w} € Q,(N), where N is the unique
element of II>2(7[Q]) \ {M}. Hence,

(29) if [TTso(7[Q])] = 2, then {w} € Q,(N), where sy (7[Q]) = {M, N}.

We distinguish the following two subcases. In each of them, we obtain a contra-
diction.

(a) Suppose that {w} € Q-(N), where N € II(7[Q]) \ {M}. We can have

N € II>9(7[Q]) (and hence N C Fix(7) by (25))
(30) or N € II1(7]Q]) and N C Fix(7)
or N € II; (7[Q]) and N C @ \ Fix(7).

By Remark 31, II(7[Q U {{w}}]) = (II(7[Q]) \ {N}) U{N U {{w}}}. It follows
from (28) and (29) that

I(7[Q U {{w}}]) = AL (r[QD) \ {N}) U{N U {{w}}, M}.
Since {{{u}} : {u} € Q\ Fix(r)} C II1(r[Q)]), it follows from (30) that
I (7[QU {{w}}) = {{{u}} : {u} € (R \ Fix(7)) \ N}
U {{X}: X € Fix(r) \ (M UN)}.
Therefore
I(7[Q U {{w}}]) = {{{u}} : {u} € (Q\ Fix(7)) \ N}
(31) U {{X}: X € Fix(r) \ (M UN)}U{NU{{w}}, M}.

Since {w} € Q,(N), T[QU{{w}}] is strongly connected. By Remark 15, T[U(QU
{{w}})], that is, T'— v is strongly connected, and II(T — v) = {U{ : £ € TI(7[Q U
{{w}}])}. It follows from (31) that

I(T —v) = ((Q \ Fix(7)) \ {UN})
(32) U (I (T)\ (M UN))U{(UN) U{w}, UM}.
Therefore

(33) T(T —v) € {1, u(T), | UM], [(UN) U{w}}.
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Recall that Fix(r) = II,7)(T) by Fact 48, and M C Fix(7) by (25). Hence
| UM| = pu(T)|M|. Furthermore, it follows from (30) that

u(T)IN|+ 1if N € II>o(7[Q)),
(34) (UN)U{w}| = { u(T)+1if N e II1(7[Q]) and N C Fix(r),
2if N € I (7[Q]) and N C Q \ Fix(7).

Therefore

(35) U M| # [(UN) U {w}].
It follows from (33) that

(36) Viom|(T —v) = 1.

We conclude as follows.

e Suppose that [(UN) U {w}| # u(T). It follows from (33), (34) and (35) that
V(un)u{w} (T —v) = 1. By (36), vjup (T — v) = 1. It follows from Remark 38
that T'— v is not selfdual, contradicting the {—1}-selfduality of T.

e Suppose that |(UN) U {w}| = u(T). It follows from (34) that N € II;(7[Q])
and N C @ \ Fix(r). Hence pu(7T) = 2. Moreover, it follows from (32) that
IL (T —v) = (Q\ Fix(7)) \ {UN}. Recall that [II(7")| and |Fix(7)| are odd. Since
III(T) \ Q| =2, |Q| is odd. Hence |@ \ Fix(7)| is even, so |II;(T" — v)| is odd. By
(36), vjup|(T — v) = 1. By Remark 38, T'— v is not selfdual, contradicting the
{—1}-selfduality of T

(b) Suppose that {w} € (@),. Since @ € P, 7[Q] is strongly connected. By
Remark 15, T[UQ], that is, T'— {v,w} is strongly connected. Furthermore, @
is a module of 7 — {v} because {w} € (Q),. It follows that UQ is a module of
T —wv. Therefore, T'—wv is not strongly connected, and its only strongly connected
components are T[{w}] and T — {v,w}. By Remark 36, T — v is not selfdual,
contradicting the {—1}-selfduality of T

2. Suppose that [II(T)\Q| = 1. Set II(T)\@ = {{v}}. As previously seen, T'[UQ],
that is, T'—v is strongly connected. Since {{{u}} : {u} € Q\Fix(7)} C II;(7][Q]),
we have

I(7[Q]) = {{{u}} : {u} € @\ Fix(7)}
(37) U {{X} X eFix(r)\ M} U Mo (7[Q)).
7[Q))

MGHZQ(

By Remark 15, II(T — v) = {U¢ : € € TI(7[Q)]) }. It follows from (37) that

(38) T(T —v) S{1, u(T)} U {ip(T) i € T([Q]) \ {1}}
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and

v (T —v) =[Q \ Fix(7)],
V() (T =) = [Fix(T) \ Unrer, (- M1
and

Vip(r)(T —v) = v(7[Q]) for every i € T(7[Q]) \ {1}.

Recall that [II(T')| and |Fix(7)| are odd. Thus [II(T) \ Fix(7)| is even. Since
III(T) \ Q| = 1, we obtain that |@Q \ Fix(7)| is odd. By (39), v1(T" — v) is odd.
Lastly, consider M € II>(7[Q]). We have UM € II(T —v). Let Y € M and
y € Y. By Remark 14, II(T — {y,v}) = (II(T —v) \ {UM}) U {(UM) \ {y}}.
Therefore, v1 (T —{y,v}) = v1(T —v) and hence v1 (T — {y, v}) is odd. Moreover,
it follows from (38) and (39) that v, a—1(T — {y,v}) = 1. By Remark 38,
T — {y, v} is not selfdual, contradicting the {—2}-selfduality of T'. |

(39)

Fact 50. We have Y(T') = {u(T)} (see Notation 37).

Proof. By Fact 48, Fix(7) = IL,7)(T). Furthermore, Fix(7) = II(T') by Fact 49.
Therefore Y(T) = {u(T)}. |

Using the facts above, we prove Theorem 7 as follows.

Proof of Theorem 7. Let T be a tournament such that v(T) > 7. If T is a
linear order or a circle, then T is clearly decomposable and {—2, —1}-selfdual.
Now, suppose that T is decomposed into a lexicographic product Qo U, where Q
is a prime and vertex-selfdual tournament, and U is a monomorphic and {—2,0}-
selfdual tournament, with v(U) > 2. For every ¢ € V(Q), {¢} x V(U) is a
module of 7. Thus 7" is decomposable. We verify that 7" is {—2, —1}-selfdual.
Let ¢, € V(Q) and u,u’ € V(U). Since Q is vertex-selfdual, there exists an
isomorphism f from Q onto Q* such that f exchanges ¢ and ¢. Since U is
selfdual, there exists an isomorphism g from U onto U*. Furthermore, there
exists an isomorphism h, from U —u onto U — g(u’) because U is monomorphic.
Similarly, there exists an isomorphism h,s from U — «’ onto U — g(u). If ¢ # ¢/,
then the function

(V(@Q) x V(O)\ {(g,w), (¢'su)} — (V(Qx V(U))\ {(g,u), (¢ u)}
for r & {q,q'}, (r,v) — (f(r),9(v))
for v # u, (¢,v) — (¢, ((hw) ™" 0 g)(v))
for v # ', (¢',v), = (¢, ()" 0 9)(v)),

is an isomorphism from (QoU)—{(g, w), (¢, ")} onto ((QoU)—{(g, u). (¢, w') })*.
Suppose that ¢ = ¢/. Since U is monomorphic and selfdual, U is {—1}-selfdual.
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Hence U is {—2, —1}-selfdual. Thus, there exists an isomorphism h from U —
{u,u'} onto (U — {u,u'})*. The function

(V(Q) x V(U) \{(g;u), (g, v)} — (V(@Qx V(U))\{(g,w), (¢,u')}
for r # q, (r,v) — (f(r),g9(v))
for v & {u,u'}, (¢,v) — (g, h(v)),

is an isomorphism from (QoU) —{(q,u), (¢,u')} onto ((QoU) —{(g,u), (g, u')})*.

Conversely, suppose that 7' is decomposable and {—2, —1}-selfdual. If T is
not strongly connected, then T is a linear order by Lemma 42.

Now, suppose that T is strongly connected. By the first assertion of Re-
mark 13, T/II(T) is prime. If T/II(T) is a 3-cycle or a critical tournament,
then it follows from Corollary 43 that T is a circle or T is decomposed into a
lexicographic product 7541 o U, where h > 1, and U is a monomorphic and
{—2,0}-selfdual tournament, with v(U) > 2. As noted before the statement of
Theorem 7, Toy, 11 is vertex-selfdual. Furthermore, 15,11 is prime by Theorem 23.

Lastly, suppose that T'/TI(T) is prime and non-critical, with [II(T")| > 4. We
obtain that T satisfies (6). By (7), |II(T)| > 6. By Fact 49, Fix(7) = II(T)
(see Notation 39). Thus |II(T")| is odd by the second assertion of Proposition
40. Furthermore, it follows from Fact 50 that for any X,Y € II(T), we have
|X| = |Y|. We show that

(40) that for any X, Y € II(T), T[X] and T'[Y] are isomorphic.

Suppose, to the contrary, that (40) does not hold. For each X € II(T"), consider
the set IIx (7)) of Y € II(T") such that T[Y] is isomorphic to T[X]. Since (40) does
not hold, we have |IIx(7T")| < [II(T)| for every X € II(T'). Since |II(T)] is odd,
there exists X € II(T) such that [IIx(7")| is odd. Consider Y € II(T) \ IIx(T)
and y € Y. By Remark 14, II(T —y) = (II(T)\{Y}) U{Y \ {y}}. Since |Z| = |Y]
for every Z € II(T'), we have IIjy|_1(T —y) = {Y \ {y}} (see Notation 37) and
hence fi,3 (Y \ {y}) =Y \ {y}. Moreover, we have

{Z e I(T —y) : T[Z] is isomorphic to T[X]} = Hx(T).

Thus fi,;(ILx (7)) = Hx(T). Since |IIx(7T)| is odd, it follows from the second
assertion of Lemma 35 that there exists X' € Ly (T) such that fp,3(X') = X,
which is impossible because f{,, (Y \ {y}) = Y \ {y}. Consequently, (40) holds.
It follows that

T is isomorphic to (T'/TI(T)) o T[X],

where X € II(T"). We verify that T'/II(T) is vertex-selfdual. Let Y, Z € II(T).
Consider y € Y and z € Z. If Y = Z, then we require that y = z. By Remark 14,
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T — {y,2}) = (I(T)\ {Y. Z}) U{Y \ {y}, Z\ {=}}. Therefore,

fu (Y \{y}) =Y\ {y} when Y = Z,
(41) and

fiy,2) exchanges Y \ {y} and Z \ {2z} when Y # Z.
Recall that the permutation f, ., /TI(T — {y,2}) of I(T — {y, z}) defined by

I(T —A{y,z}) — (T —{y,z})
X' — f{y,z}(X/)7

is an isomorphism from (7" — {y,z})/I(T — {y,2}) onto ((T" — {y, z})/I(T —
{y, z}))*. Moreover, it follows from Remark 14 that

Tiyzy 2 I(T) — (T —{y, 2})
X' — X'\ {y,z}

is an isomorphism from 7'/II(T") onto (T'— {y, z})/II(T —{y, z}). We obtain that

9{y,z} = (ﬂ'{y,z})il ° (f{y,z}/H(T - {y, Z})) O T{y,z}

is an isomorphism from T'/II(T") onto (T'/II(T"))*. Furthermore, it follows from
(41) that gg, ., (Y) =Y when Y = Z, and gy, .} exchanges Y and Z when Y # Z.
Thus, T'/II(T) is vertex-selfdual. We complete the proof as follows.

e We verify that T[X] is monomorphic. Consider again Y,Z € II(T), with
Y #Z. Let y,' € Y and z € Z. As previously seen, f{, .} exchanges Y \ {y}
and Z\{z}. Hence T[Y \{y}] is isomorphic to (T[Z\{z}])*. Similarly, T[Y \{y'}]
is isomorphic to (T'[Z \ {z}])*. Thus T[Y \ {y}] and T[Y \ {¢/}] are isomorphic.
It follows that T[Y] and hence T[X] are monomorphic.

e We verify that T[X] is selfdual. Let Y, Z € II(T), with Y # Z. Consider y € Y
and z € Z. By Remark 14, IT — {y, z}) = (I(T)\ {Y, Z}) U{Y \ {y}, Z\ {z}}.
It follows from (41) that fy, ., exchanges Y \ {y} and Z \ {z}. Recall that the
permutation fy, ., /I(T — {y, 2}) of I(T — {y, 2}) defined by

I(T —{y,z}) — I(T —{y,2})
X' — f{y,z}(X/)a

is an isomorphism from (7' — {y,z})/I(T — {y,z}) onto ((T — {y, z})/I(T —
[y, 2})* Since T(T — {y, 2}) = ((T)\ {Y, Z}) U (Y \ {y}, 2\ {z}}, and |(T)|
is odd, we get |II(T—{y, z})| is odd. By Lemma 35, there exists X' € II(T'—{y, z})
such that (fg, .3/T(T — {y, 2}))(X’) = X'. Hence ff,.}(X') = X'. Thus X' €
I(T) \ {Y, Z} because f{, ., exchanges Y \ {y} and Z \ {z}. Since fy, ., is an
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isomorphism from T' — {y, 2z} onto (T' — {y, 2})*, (f{y,-});x’ is an isomorphism
from T[X'] onto T[X']*. Therefore T[X’] and hence T[X] are selfdual.

e Suppose that |X| > 2. We verify that T[X] is {—2}-seldual. Given Y €
II(T), consider y,z € Y, with y # 2. By Remark 14, II(T — {y, z}) = (IK(T") \
Y, Z}) u{Y \ {y,z}}. Therefore fr, (Y \{y,2}) =Y \ {y,2}. Since fy, ., is
an isomorphism from T — {y, z} onto (T'— {y, z})*, T[Y \ {y, z}] is isomorphic to
(TY \ {y, z}])*. Consequently, T'Y] and hence T'[X]| are {—2}-selfdual. |

The threshold 7 of Theorem 7 is sharp. Indeed, T7 — 0 is decomposable and
{—2, —1}-seldual. We have II(T7 — 0) = {{1},{2},{3,4},{5},{6}} and (77 — 0)/
II(T7 — 0) is isomorphic to T5. Thus 77 — 0 does not satisfy the conclusion of
Theorem 7. The next result is obtained by using Theorem 7 iteratively.

Corollary 51. Given a tournament such that v(T) > 7, the following two asser-
tions are equivalent

1. T is decomposable and {—2,—1}-selfdual, and T is neither a linear order nor
a circle;

2. T is decomposed into

Qoo---0QkoR,
where Qo,...,Qr are prime and vertex-selfdual tournaments, and R is a
linear order, with v(R) > 2, or a prime, monomorphic, and {—2,0}-selfdual

tournament.

Proof. To begin, suppose that T" is decomposed as in the second assertion. Since
v(R) > 2, T is decomposable. Furthermore, it is easy to verify that a lexi-
cographic product of two vertex-selfdual tournaments is vertex-selfdual. Thus
Qg o---0Qy is vertex-selfdual. As in the proof of Theorem 7, we verify that T is
{—2, —1}-selfdual by using the fact that Qg o - - o Qy is vertex-selfdual, and R is
monomorphic and {—2, 0}-selfdual.

Conversely, suppose that the first assertion holds. By Theorem 7, T is de-
composed onto Qg o Uy, where Qg is a prime and vertex-selfdual tournament,
and Uj is a monomorphic and {—2,0}-selfdual tournament, with v(Up) > 2. If
v(Up) > 4, then Up is not a circle, because a circle on at least 4 vertices is not
monomorphic. Furthermore, if Uy is a circle, with v(Up) = 3, then Up is iso-
morphic to the 3-cycle, and hence Uy is prime. Therefore, if Uy is a circle, then
Up is prime or Up is a linear order. Moreover, if Uj is a linear order or a prime
tournament, then we obtain that T" = Qy o R, where R = Uy, and we can stop
here. Hence suppose that Uy is decomposable, and Uy is neither a linear order nor
a circle. Since Up is monomorphic and {—2,0}-selfdual, it is {—2, —1}-selfdual.
Suppose that v(Up) < 6. It is easy to verify that Uy = 75 o R, where v(R) = 2.
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Thus T' = Qp 0 Q; o R, where Q; = T3. Lastly, suppose that v(Uy) > 7. By
Theorem 7 applied to Uy, we obtain Uy = Qq0U7, where Qq is a prime and vertex-
selfdual tournament, and U; is a monomorphic and {—2, 0}-selfdual tournament,
with v(Uy) > 2. Consequently T = Qg o Q o U;. To complete the proof, we
continue the decomposition process above from Uj. [

We end the section with remarks on vertex-selfdual tournaments.

Remark 52. As previously noted, the tournament 75,41 (where n > 1, see
Figure 1) is vertex-selfdual. Furthermore, 75,1 is the Cayley tournament defined
on (ZQn+1, -l-) by

N:,‘anH(O) ={2p:pe{l,...,n}}

It is easy to verify that a Cayley tournament defined from an odd and abelian
group is vertex-selfdual. In particular, every Paley tournament is vertex-selfdual.

Clearly, a vertex-selfdual tournament is {—2, —1}-selfdual. Furthermore, a
vertex-selfdual tournament is vertex-transitive. Therefore, given a tournament
T with v(T) > 3, T is decomposable and vertex-selfdual if and only if 7' is
decomposed into

Qoo ---0Qy,

where £ > 1, Qq,...,Q are prime and vertex-selfdual tournaments (see Corol-
lary 51).

Now, consider a prime and vertex-selfdual tournament 7' with v(7") > 5.
Since T is vertex-transitive, T is critical or € (T) = 0 (see Notation 22). If
T is critical, then T is isomorphic to 75,11 because T5,41 is the single critical
tournament which is vertex-transitive (see Theorem 23).

Lastly, consider a Paley tournament 7. By [22, Proposition 3.1, T is arc-
transitive. It follows that 7" is prime. Furthermore, as previously mentioned, T’
is vertex-selfdual. Since T5,11 is not arc-transitive, we obtain € (T) = 0. We
do not know if there exist prime and vertex-selfdual tournaments that are not
Cayley tournaments.

6. PROOF OF THEOREM 8

To prove Theorem 8, we use the following consequence of Theorem 7.

Corollary 53. Let T be a prime tournament, with v(T) > 8, such that € (T) # ()
(see Notation 22). If T is {—3,—2}-selfdual, then there exists x € € (T) such
that T — x is decomposed into a lexicographic product Qo U, where Q is a prime
and vertez-selfdual tournament, and U is a monomorphic and {—2,0}-selfdual
tournament, with v(U) > 2.



THE {—2, —1}-SELFDUAL AND DECOMPOSABLE TOURNAMENTS 779

Proof. To begin, suppose that there exists x € € (T") such that T'— z is a linear
order. Since T is prime, we obtain that v(7) is odd and T is isomorphic to
Wty (see Figure 3). It is easy to verify that W,y — {0, 2} is not seldual, which
contradicts the {—2}-selfduality of T'. Therefore,

(42) for every x € €(T), T — x is not a linear order.
Now, we prove that there exists € €' (T') such that
(43) T — x is neither a linear order nor a circle.

Let x € €(T). By (42), T — z is not a linear order. Suppose that T'— x is a circle.
We show that there exists y € €(T") such that T'—y is not a circle. Since T'—z is a
circle, there exist distinct u,v € V(T')\{x} such that II(T'—x) = {{u}, {v}, V(T)\
{z,u,v}}, (T — 2)/T(T — z) is a 3-cycle, and T — {z,u,v} is a linear order.
Hence we can denote the elements of V(T') \ {z,u,v} by wo, ..., wyr)—4 in such
a way that w; — w; for any i,j € {0,...,v(T) — 4} with ¢ < j. For each
i € {0,...,v(T) — 5}, {w;,wit1} is a module of 7' — z. Since T' is prime, we
obtain w; — © — wjy1 or w;4+; — * — w;. Therefore, for ¢ = 0 or 1,
T[{x,w;,wit1}] is a 3-cycle. Furthermore, {w2, w4} is a module of T'—ws. Hence
ws € €(T). Moreover, T[{x,w;,w;+1}] and T[{u,v,wy}] are 3-cycles of T'— w3
such that [{z,w;, wiy1} N {u,v,we}| < 1. It follows that T"— ws is not a circle.
By (42), T — w3 is not a linear order. Consequently, (43) holds.

By (43), there exists © € € (T') such that T'— z is neither a linear order nor a
circle. Since x € €(T), T — x is decomposable. Furthermore 7' — x is {—2, —1}-
selfdual because T is {—3, —2}-selfdual. To conclude, it suffices to apply Theorem
TtoT —x. [ ]

We prove Theorem 8 after showing the next result.

Lemma 54. Let T be a prime tournament with v(T) > 8. If T is {—3,—2}-
selfdual, then |€(T)| <1 (see Notation 22).

Proof. Suppose, to the contrary, that |4 (T")| > 2. It follows from Corollary 53
that there exists z € %(T) such that (T — z)/II(T — z) is prime, and there
exists k > 2 such that |X| = k for each X € II(T" — z). By the first assertion
of Remark 13, T' — z is strongly connected. Since |€(T)| > 2, there exists
y € €(T) \ {z}. Denote by X, the element of II(T" — z) containing y. By
Remark 14,

(44) (T —{z,y}) = (I(T — 2) \ {Xy}) U{Xy \ {y}}.

Since IIT — z) \ {Xy} C Oy(T — z) (see Notation 37), there exist W, W’ C
V(T)\ {z,y} satisfying
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for every X' € I(T — {z,y}), [ X' nW|=|X'nW'=1
and

for every X' € INT — {z,y}) \{X, \ {y}}, X' nW £ X' nW'.

Clearly, T[W] and T[W’] are prime, and [W N W'| < 1. Thus T — y is neither
a linear order nor a circle. As seen at the end of the proof of Corollary 53, it
follows from Theorem 7 applied to T'— y that (T — y)/II(T — y) is prime, and
there exists [ > 2 such that |X| = [ for each X € II(T — y). By denoting by Y,
the element of II(T" — y) containing x, we have again

(45) (T —A{z,y}) = (AT = y) \ {Ya}) U{Ya \ {z}}.

Since |IT — {z,y})| = II(T — z)| and |II(T — x)| > 3, there exists Z € II(T —
{z,y}) \ {Xy \ {y}, Yz \ {z}}. It follows from (44) and (45) that

Zell(T —x)NIKT —y).

Hence Z is a module of T"— z and T'— y. Thus Z is a module of T, which
contradicts the primality of T'. Consequently, |¢'(T)| < 1. |

Proof of Theorem 8. Consider a {—3,—2}-selfdual and prime tournament T
with v(T) > 8. Suppose, to the contrary, that €(T) # () (see Notation 22).
By Lemma 54, |¢'(T")| = 1. Furthermore, it follows from Corollary 53 that there
exists © € € (T) such that (T'—x)/II(T —z) is prime and vertex-seldual, and there
exists k > 2 such that |X| = k for each X € II(T" — z). Since (T'— z)/II(T — z)
is vertex-seldual, (7' — x) /II(T — x) is vertex-transitive and hence regular. Thus

III(T — x)| is odd.
Let X € II(T'— ). Since T is prime and | X| > 2, X is not a module of 7. Hence
Nj(z)NX # 0 and N; (z) N X # 0. Suppose that N (z) N X is a singleton,
and denote by u" its unique element. We obtain that Nz (z) N X is a module of
T —u'. Since |€(T)| =1 and z € €(T), vt & €(T), that is, T — u™ is prime.
It follows that N, (x) N X is a singleton as well. In particular, we get k = 2.
Similarly, if [N (z) N X| = 1, then | N} (z) N X| = 1. Consequently,

k=2

either ¢ and

for every X € II(T — z), [Nf (z) N X| = [Nj (z) N X| =1

k>4

(46) or < and

for every X € II(T — ), |[Nj: (z) N X| > 2 and [N, (z) N X| > 2.
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This leads us to distinguish the following two cases. In each of them, we obtain
a contradiction.

1. Suppose that k& = 2. Since v(T — x) > 7 and |II(T — )| is odd, we have
|II(T —z)| > 5. By the first assertion of Corollary 19, there exist X, Y € II(T —x)
such that X #Y and (T — z)/II(T — z)) — {X, Y} is prime. Consider u~,v~ €
V(T) such that Ny (z) N X = {u"} and Ny (z) NY = {v™}. Set
t=T—{u",v }.
Since T' is {—2}-seldual, there exists an isomorphism fy,- ,-y from ¢ onto t*. We
show that
f{u*,v*}(x) =Z.
We have [N, ()] = T[N (z)]. Since [N (z)NZ| =1 for each Z € II(T —z), we
obtain that T[N ()] is isomorphic to (T —z)/I(T — ). It follows that ¢[N," (z)]
is prime. We have t[N, ()] = T[N, (z)] — {u~,v~}. Since [Ny (z)NZ| =1
for each Z € II(T' — x), we obtain that T[N, (x)] — {u~,v™} is isomorphic to
(T'—2)/IT — z) — {X,Y}. It follows that ¢[N; (z)] is prime. Now, we prove
that
(47) for each w € (V(T) \ {z,u",v™}) N N (x), t{N;" (w)] is not prime.
We distinguish the following two subcases.

e Suppose that [II(T — z)| = 5. Hence (T — z)/II(T — z) is critical. By
Theorem 23, (T' — z)/II(T — x) is isomorphic to T5, Us or Ws. Since (T' — z)/
II(T — z) is vertex-selfdual, (T'— x)/II(T — x) is isomorphic to T5. It follows that
T[N/ ,(w)] is a linear order on at least 4 vertices. Hence ¢[N,"(w)] is a linear
order on at least 2 vertices, so t[N; (w)] is not prime.

e Suppose that |II(T" — x)| > 7. Denote by Z the element of II(T" — x) con-

taining w. Since (T' — z)/II(T — x) is regular, we have d?_fo)/H(Tfm)(Z) =
(JT(T — z)| — 1)/2, and hence dafx)/H(fo)(Z) > 3. Thus, there exists Z* €

N&_z)/H(T_m)(Z) \ {X,Y}. We obtain

7+ C N (w)\ (X UY) € N7 (w).
Since Z* is a module of T — x and # € N, (w), Z* is a module of t[N," (w)].
Therefore, t[N," (w)] is not prime.

It follows that (47) holds. Similarly, we obtain that for each w € (V(T) \
{z,u™,v™}) N Ny (z), {N; (w)] is not prime. It follows that fr,- ,—1(z) = z,
which is impossible because

djf (z) = [I(T — )]
and
dy () = (T — z)| = 2.
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2. Suppose that £ > 4. Let X and Y be distinct elements of II(7" — z). Consider
u” € Np(2)NX,u" € Ni(z)NnX and v~ € N7 (z) NY. Set

t=T—{u ,u", v }.

Since T is {—3}-selfdual, there exists an isomorphism f{,- ,+ ,-} from ¢ onto t*.
We prove that

(48) Frum wt oy (2) = 2.

To determine II(¢[N, (x)]) and ¢[N, (z)]/IL(t[N; (z)]), we use Remark 14 as fol-
lows. Set W = N (z) U{u",v"}. For each Z € II(T — ), we have Z \ W =
(Np ()N Z)\ {u~,v™}. Since [Ny (z) N Z| > 2 by (46), we obtain Z \ W # 0.
Set
Q, ={(Ny () N X)\{u"}, (Np (z) NY) \{v" }}
U{N;(z)NZ:ZeI(T —xz)\{X,Y}}.

By (46),
(49) Q.| = [I(T - z)|.

Moreover, it follows from Remark 14 that

Qy = T[Ny (2)])
(50) and

t[N, (x)]/Q7 is prime.
Analagously, by denoting { (N (2)NX)\{uT}U{N} (2)NZ : Z € I(T—x)\{X}}
by QF, we obtain that QF = II(¢[N,"(x)]) and ¢[N;" (z)]/Q; is prime. Now, sup-
pose that (48) does not hold. For instance, suppose that x € Ny (fu— utv-}(7))-

We look for a modular partition of t[Nt'F(f{uf,uﬂvf} (x))]. Denote by Z the unique
element of II(T" — ) containing fy,~ ,+ ,-1(z). Consider

T =17 R A +
fruut oy (@) {Z \{’LL U } Z € N(T—a:)/H(T—x)(Z)}

if N;[Z}(f{uf,u"ﬂﬂ*}(x)) - {uﬂuﬂv’}, and
+ — / — 4 =Y. +
Qi w= {Z \{u=,ut o) Z GN(T_x)/H(T_x)(Z)}

O{ N Pt oy @)\ ™t 07 )



THE {—2, —1}-SELFDUAL AND DECOMPOSABLE TOURNAMENTS 783

if N

7121 fum ut w3 (2)) \ {u™, ut, v} # 0. Tt follows from (46) that

+ _ +
Qe it oy @ | = Ur—aymr—)(£) O di_gy rir— 0y (£) +1.

Since (T' — z) /II(T — z) is regular, we obtain

(7T — -1 1T — -1
_INT-ni-1, ME--1

Jr
‘Qf{u,ﬁ,v}(x)
Since II(T — x) is a modular partition of T'— x and x ¢ N:,Jf(f{m’uﬂvf}(x)),

Q}_{uauﬁf}(r) is a modular partition of t[Nt+(f{u77u+7U7}(x))]. Thus,

—1
(f{u_,u+,v_}) (Q}r{u,qu,v}(x))

is a modular partition of t[N, (z)]. Since t[N; (z)]/Q is prime by (50), t[N; (z)]
is strongly connected by the first assertion of Remark 13. It follows from the
fourth assertion of Remark 13 that

! -1 +
fOI‘ eaCh X € (f{u_7u+7v_}) < f{u,uJF,v}(x)) ’

there exists Y’ € @ such that Y' D X'

Therefore

71 _
s (@) 210

which is impossible because

-1
(f{u_,u‘i',v_}) <Q?{u,u+,u}(l’)> ' =
and, by (49),

Qx| = [T(T" — )|.

It follows that (48) holds. Thus fg,~ ,+ v} (T)[v()\{z} 13 an isomorphism from
t—x onto (¢t —z)*. Therefore (f{,— u+ o1 (Z) v )\ {«})/H(t —2) is an isomorphism
from (t — z)/II(t — =) onto ((t — z)/II(t — z))*. Lastly, by Remark 14 applied to
T—z,I(t—z)=(I(T—2)\{X,Y}HU{X\ {u",u"}, Y\ {v}}. Consequently,
M ot —2) = {X \{u",u"}} and IIy_1(t — ) = {Y \ {v™}}, which contradicts
the selfduality of (¢t — x)/II(t — z) by Remark 38.

Consequently, € (T") = 0. ]

+ (T —a)|-1
Qe by @ =2t

The threshold 8 of Theorem 8 is sharp because 77 is a {—3, —2}-selfdual and
prime tournament that is critical (by Theorem 23).
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7. APPLICATIONS TO POUZET’S RECONSTRUCTION

In this section, we prove Corollary 10 and Theorem 11. Corollary 10 is an easy
consequence of Lemma 9, Theorem 20 and Theorem 8.

Proof of Corollary 10. Let T be a prime tournament such that v(7) > 8
and €(T) # 0 (see Notation 22). To show that T is {—3, —2}-reconstructible,
consider a tournament U that is {—3, —2}-hypomorphic to 7. By Lemma 9,
T and U are {3}-hypomorphic. It follows from Theorem 20 that U = T or
T*. If U = T*, then T is a {—3, —2}-selfdual and prime tournament such that
€ (T) # (), which contradicts Theorem 8. It follows that U = T'. Therefore T is
{—3, —2}-reconstructible. |

It is easily verified that Corollary 10 is also satisfied by prime tournaments
T such that €(T) # 0, when v(T) < 7. We use the next two results to prove
Theorem 11.

Proposition 55 [18]. Let T be a tournament such that v(T) > 5. If T is not
strongly connected, then T is {—1}-reconstructible.

Lemma 56 [2]. Let T and U be strongly connected tournaments such that II(T') =
II(U). Suppose that IL(T)\II1(T)| > 2. If T and U are {—1}-hypomorphic, then
for each X € II(T'), T|X] and U[X] are isomorphic.

Proof of Theorem 11. Consider a decomposable tournament 7" such that v(T")
> 7. By Proposition 55, if T" is not strongly connected, then

T is {—1}-reconstructible,

so T'is {—2, —1, 3}-reconstructible. Thus suppose that T is strongly connected.
By the first assertion of Remark 13,

(51) T/II(T) is prime.

Consider a tournament U such that T and U are {—2, —1, 3}-hypomorphic. We
have to prove that T" and U are isomorphic. Since T" and U are {3}-hypomorphic,
it follows from Corollary 21 that U is strongly connected,

(52) IN(T) =1I(U),
and
(53) T/I(T) = U/IU) or (U/II(U))*.

We prove that for each X € II(T),

(54) there exists an isomorphism ¢x from T[X] onto U[X].
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By Lemma 56, (54) holds when |II(T") \ II;(T")| > 2 (see Notation 37). Hence
suppose that II(T") admits a unique element X such that | X| > 2. If [II(T)| = 3,
then T[X]| and U[X] are isomorphic because T" and U are {—2}-hypomorphic,
and |V(T) \ X| = 2. Thus suppose that |II(T)| > 5. It follows from Corollary 19
that there exist Y, Z € II(T) \ {X} such that (T/II(T)) — {Y, Z} is prime. Since
I(T)\II;1(T") = { X}, there exist u,v € V(T')\ X such that Y = {u} and Z = {v}.
By Remark 15, II(T — {u,v}) = II(T) \ {{u}, {v}}. It follows from (52) and (53)
that I(U — {u,v}) = II(T" — {u,v}). Therefore

(55) (T = {u, v) \ T (T = {u, v}) = MU — {u, v}) \ I (U = {u,v}) = {X}.

Since T" and U are {—2, —1}-hypomorphic, there exists an isomorphism gy,
from T'—{u, v} onto U —{u, v}. It follows from (55) that gy, .} (X) = X, so T'[X]
and U[X] are isomorphic. Consequently, (54) holds.

If T/I(T) = U/IL(U) (see (53)), then the common extension of the px’s

V(T) — V(U)
v — px(v), where X € II(T') and v € X,

is an isomorphism from 7" onto U. Now, by (53), we can suppose that
T/I(T) = (U/TI(U))".

We show that

(56) there exists ¢ € T(T') such that i > 2 and i — 1 ¢ Y(T).

Seeking a contradiction, suppose that (56) does not hold. We obtain

T(T) = {1,...., u(T)}.
We distinguish the following two cases. In both cases, we obtain a contradiction.

1. Suppose that pu(7) < 3. We have u(T) = 2 or 3 because T is decomposable.
Since T" and U are {3}-hypomorphic, we obtain that T*[W] and U[W] are isomor-
phic for each W C V(T). It follows that T and T* are {—2, —1}-hypomorphic,
that is, T' is {—2, —1}-selfdual, which contradicts Theorem 7 because T is nei-
ther a linear order nor a circle nor a lexicographic product. Indeed, T is not
a linear order because T is strongly connected. Furthermore, T is not a circle
because Y(T') = {1,...,u(T)} and v(T") > 7. Lastly, since 1,2 € Y(T'), T is not
a lexicographic product.

2. Suppose that p(T) > 4. To begin, suppose that v5(T) is even and v3(T) is
odd. Consider X € II5(T") and v € X. Since T and U are {—1}-hypomorphic,
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there exists an isomorphism gy, from T'— v onto U —v. By (52), II(T") = II(U).
It follows from Remark 14 that

(57) I(T —v) = (U —v) = (I(T) \ {X}) U{X \ {v}}.
Since g(,) is an isomorphism from 7' — v onto U —v, gy, induces an isomorphism

g{v}/H(T—’U) : H(T—U) — H(U—’U)
X' — g{v}(X,)7

from (T — v)/I(T — v) onto (U — v)/II(U — v), that is, (T — v)/I(T — v))*,
which is impossible because of Lemma 35. Indeed, it follows from (57) that
(T — v) = a(T) \ {X}. Since v»(T) is even, we obtain that |IIo(T — v)| is
odd. Moreover, g,y (Il2(T — v)) = Ia(T — v) by definition of g,y /TH(T — v).
By the second assertion of Lemma 35, there exists Y € Ilo(T — v) such that
(9gy/T(T —v))(Y) = Y. Similarly, it follows from (57) that II3(7"—v) = TI3(7).
Since v3(7T) is odd, |II3(T —v)| is odd. Thus, there also exists Z € II3(T —v) such
that (g, /II(T —v))(Z) = Z, which contradicts the fact that g,y /II(T'—v) is an
isomorphism from (7'—v) /II(T—v) onto ((T'—v)/II(T'—v))*. We get an analogous
contradiction when v5(T') and v3(T) are even, by considering X € II3(7) and
v € X. Lastly, suppose that v5(7T) is odd. The contradiction is obtained in the
following manner. If v3(T) is even or v4(T') is even, then it suffices to consider
X € II4(T) and v € X. If v3(T) and v4(T) are odd, then it suffices to consider
X €IIx(T') and v € X.

It follows that (56) holds. Hence, there exists ¢ € Y(7') such that i > 2
and i — 1 ¢ Y(T'). Consider X € II;(T) and v € X. Since T" and U are {—1}-

hypomorphic, there exists an isomorphism g,y from T'— v onto U — v. By
Remark 14,

(58)

I(T = v) = (U —v) = (I(T) \ {X}) U{X \ {v}}.
As previously (see (58)), gy} induces an isomorphism
Ipoy/ (T —v) : I(T —v) — (U —v)
X' = gy (X,
from (T'—v)/II(T —v) onto ((T'—v)/I(T —wv))*. Since II;_1(T —v) = {X \ {v}},

we obtain (g /II(T —v))(X \ {v}) = X \ {v}, that is, gr (X \ {v}) = X\ {v}.
It follows that

(59)

V(T) — V(U)
9{v} (x)ifzeV(T)\ X
T — or

ox(x)if x € X (see (54)),

is an isomorphism from 7" onto U. [
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