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Abstract

A bipartite-split graph is a bipartite graph whose vertex set can be parti-
tioned into a complete bipartite set and an independent set. The bipartite-

splittance of an arbitrary bipartite graph is the minimum number of edges
to be added or removed in order to produce a bipartite-split graph. In this
paper, we show that the bipartite-splittance of a bipartite graph depends
only on the degree sequence pair of the bipartite graph, and an easily com-
putable formula for it is derived. As a corollary, a simple characterization
of the degree sequence pair of bipartite-split graphs is also given.
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1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). A subset
S of V (G) is complete if the subgraph G[S] induced by S is complete, and it is
independent if G[S] is a null graph (i.e., a graph without edges). A split graph

is a graph whose set of vertices can be partitioned into a complete set and an
independent set. Split graphs were introduced by Földes and Hammer [1], who
proved that a graph is split if and only if it does not have an induced subgraph
isomorphic to C4, C5 or 2K2, where Ck is a cycle on k vertices and 2K2 is the
disjoint union of two complete graphs K2. The splittance σ(G) of an arbitrary
graph G is the minimum number of edges to be added to, or removed from G
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in order to obtain a split graph. An explicit, easily computable formula for the
splittance σ(G) in terms of the degree sequence of G and a simple characterization
of the degree sequence of split graphs were presented by Hammer and Simeone [3].

Analogous problem is also studied for bipartite graphs in this paper. The
style of this paper closely follows that of [3]. Let G be a simple bipartite graph
with two partite sets X and Y , where |X| = m and |Y | = n. If A = (a1, . . . , am)
(respectively, B = (b1, . . . , bn)) is the non-increasing sequence of vertex degrees
for X (respectively, Y ), then the pair (A;B) is the degree sequence pair of G.
We say that (S1;S2) is a subset pair of (X;Y ) if S1 ⊆ X and S2 ⊆ Y . A
subset pair (S1;S2) of (X;Y ) is complete bipartite if either S1 = S2 = ∅, or
S1 6= ∅, S2 6= ∅ and G[S1 ∪ S2] is a complete bipartite graph with two partite
sets S1 and S2. A subset pair (S1;S2) of (X;Y ) is independent if G[S1 ∪ S2]
is a null graph. A bipartite-split graph is a bipartite graph whose two partite
sets can be partitioned into a complete bipartite subset pair and an independent
subset pair. The bipartite-splittance τ(G) of an arbitrary bipartite graph G is the
minimum number of edges to be added to, or removed from G in order to obtain
a bipartite-split graph. Clearly, G is bipartite-split if and only if τ(G) = 0. The
main result of this paper is to give an easily computable formula for the bipartite-
splittance τ(G) of a bipartite graph G in terms of the degree sequence pair of
G (Theorem 5). As a corollary, a simple characterization of the degree sequence
pair of bipartite-split graphs is also given (Corollary 6).

2. Main Result and Its Proof

Let (S1;S2) be a subset pair of (X;Y ), and let

s(S1;S2) = |S1||S2| − |E(G[S1 ∪ S2])|+ |E(G[V (G) \ (S1 ∪ S2)])|.

It is easy to see that |S1||S2|− |E(G[S1∪S2])| is the number of edges to be added
to G[S1 ∪ S2] in order to make G[S1 ∪ S2] into a complete bipartite graph, and
|E(G[V (G) \ (S1 ∪ S2)])| is the number of edges to be removed from G[V (G) \
(S1 ∪ S2)] in order to make G[V (G) \ (S1 ∪ S2)] into a null graph.

Lemma 1. Let G be a bipartite graph with two partite sets X and Y . Then

τ(G) = min
S1⊆X,S2⊆Y

s(S1;S2).

Proof. Clearly τ(G) ≤ s(S1;S2) for all S1 ⊆ X and S2 ⊆ Y . On the other
hand, let G′ be a bipartite-split graph, with the complete bipartite subset pair
(S′

1;S
′
2) and the independent subset pair (X \ S′

1;Y \ S′
2), obtained from G by

the addition or the removal of a minimum number of edges. Because of the
minimality assumption, no removed edge could have had an end-vertex in S′

1∪S′
2
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and no added edge could have had an end-vertex in (X \S′
1)∪ (Y \S′

2), implying
that τ(G) = s(S′

1
;S′

2
). Therefore, τ(G) = minS1⊆X,S2⊆Y s(S1;S2).

Let A = (a1, . . . , am) and B = (b1, . . . , bn) be two integer sequences with
∑m

i=1 ai =
∑n

i=1 bi, n ≥ a1 ≥ · · · ≥ am ≥ 0 and m ≥ b1 ≥ · · · ≥ bn ≥ 0. If
there is a simple bipartite graph G such that (A;B) is the degree sequence pair
of G, then the pair (A;B) is bigraphic. The following well-known result is the
Gale-Ryser characterization of bigraphic pairs.

Theorem 2 [2, 4]. The pair (A;B) is bigraphic if and only if
∑k

i=1 ai ≤ kℓ +
∑n

i=ℓ+1 bi for each k = 1, . . . ,m and ℓ = 1, . . . , n.

By the symmetry, Theorem 2 can be stated that the pair (A;B) is bigraphic
if and only if

∑ℓ
i=1 bi ≤ ℓk +

∑m
i=k+1 ai for each ℓ = 1, . . . , n and k = 1, . . . ,m.

Therefore, we have the following.

Corollary 3. If the pair (A;B) is bigraphic, then
∑k

i=1 ai +
∑ℓ

i=1 bi ≤ 2kℓ +
∑m

i=k+1 ai +
∑n

i=ℓ+1 bi for each k = 1, . . . ,m and ℓ = 1, . . . , n.

Definition. Let (A;B) be a bigraphic pair. Define

τ
(A;B)
k,ℓ =

1

2

(

2kℓ−
k
∑

i=1

ai −
ℓ
∑

i=1

bi +
m
∑

i=k+1

ai +
n
∑

i=ℓ+1

bi

)

for 1 ≤ k ≤ m and 1 ≤ ℓ ≤ n, mℓ = max{i|ai ≥ ℓ} for 1 ≤ ℓ ≤ a1 and
n1 = max{i|bi ≥ 1}. If

min
{

τ
(A;B)
mℓ,ℓ

|ℓ = 1, . . . , a1

}

≤ τ
(A;B)
1,n1

,

then we define L ∈ {1, . . . , a1} so that τ
(A;B)
mL,L

= min{τ
(A;B)
mℓ,ℓ

|ℓ = 1, . . . , a1}. If

min
{

τ
(A;B)
mℓ,ℓ

|ℓ = 1, . . . , a1

}

> τ
(A;B)
1,n1

,

then we define L = n1 and mL = 1.

Lemma 4. If the pair (A;B) is bigraphic, then

(a) τ
(A;B)
k,ℓ ≥ 0 for each k = 1, . . . ,m and ℓ = 1, . . . , n;

(b) for a given ℓ ∈ {1, . . . , a1}, τ
(A;B)
k,ℓ attains its minimum value when k = mℓ;

(c) for a given ℓ ∈ {a1+1, . . . , n}, τ
(A;B)
k,ℓ attains its minimum value when k = 1;

(d) min
{

τ
(A;B)
k,ℓ |k = 1, . . . ,m and ℓ = 1, . . . , n

}

= min
{

min
{

τ
(A;B)
mℓ,ℓ

|ℓ = 1, . . . ,

a1

}

, τ
(A;B)
1,n1

}

= τ
(A;B)
mL,L

.



26 J.-H. Yin and J.-X. Guan

Proof. (a) is a consequence of Corollary 3. As for (b), a direct computa-

tion shows that, for 1 ≤ k ≤ m, we have that τ
(A;B)
k,ℓ − τ

(A;B)
k−1,ℓ = ℓ − ak. It

is easy to see that τ
(A;B)
1,ℓ ≥ τ

(A;B)
2,ℓ ≥ · · · ≥ τ

(A;B)
mℓ,ℓ

and τ
(A;B)
mℓ,ℓ

≤ τ
(A;B)
mℓ+1,ℓ ≤

· · · ≤ τ
(A;B)
m,ℓ . Hence τ

(A;B)
k,ℓ attains its minimum value when k = mℓ. As for

(c), we have that τ
(A;B)
k,ℓ − τ

(A;B)
k−1,ℓ = ℓ − ak for 1 ≤ k ≤ m, implying that

τ
(A;B)
1,ℓ ≤ τ

(A;B)
2,ℓ ≤ · · · ≤ τ

(A;B)
m,ℓ . Hence τ

(A;B)
k,ℓ attains its minimum value when

k = 1. As for (d), we have that τ
(A;B)
1,ℓ − τ

(A;B)
1,ℓ−1 = 1 − bℓ for a1 + 1 ≤ ℓ ≤ n,

implying that τ
(A;B)
1,a1+1 ≥ · · · ≥ τ

(A;B)
1,n1

and τ
(A;B)
1,n1

≤ · · · ≤ τ
(A;B)
1,n . Hence τ

(A;B)
1,n1

=

min
{

τ
(A;B)
1,ℓ |ℓ = a1 + 1, . . . , n

}

. Thus by (b) and (c), min
{

τ
(A;B)
k,ℓ |k = 1, . . . ,m

and ℓ = 1, . . . , n
}

= min
{

min
{

τ
(A;B)
mℓ,ℓ

|ℓ = 1, . . . , a1

}

, min
{

τ
(A;B)
1,ℓ |ℓ = a1 + 1,

. . . , n
}}

= min
{

min
{

τ
(A;B)
mℓ,ℓ

|ℓ = 1, . . . , a1

}

, τ
(A;B)
1,n1

}

= τ
(A;B)
mL,L

.

We now give the main result of this paper as follows.

Theorem 5. If G is a bipartite graph with two partite sets X and Y and (A;B)

is the degree sequence pair of G, then τ(G) = min
{

min
{

τ
(A;B)
mℓ,ℓ

|ℓ = 1, . . . , a1

}

,

τ
(A;B)
1,n1

}

= τ
(A;B)
mL,L

.

Proof. Let (S1;S2) be any subset pair of (X;Y ), where |X| = m and |Y | = n.
Then
∑

x∈S1

dG(x) +
∑

y∈S2

dG(y) = 2|E(G[S1 ∪ S2])|+ eG(S1 ∪ S2, V (G) \ (S1 ∪ S2)),

where eG(S1∪S2, V (G) \ (S1∪S2)) denotes the number of edges in G having one
end-vertex in S1 ∪ S2 and the other end-vertex in V (G) \ (S1 ∪ S2). Thus,

s(S1;S2) = |S1||S2| − |E(G[S1 ∪ S2])|+ |E(G[V (G) \ (S1 ∪ S2)])|

= 1
2 (2|S1||S2| − 2|E(G[S1 ∪ S2])|+ 2|E(G[V (G) \ (S1 ∪ S2)])|)

= 1
2

(

2|S1||S2| −
∑

x∈S1

dG(x)−
∑

y∈S2

dG(y) +
∑

x∈X\S1

dG(x) +
∑

y∈Y \S2

dG(y)

)

.

By putting k = |S1| and ℓ = |S2|, we have that
∑

x∈S1
dG(x) ≤

∑k
i=1 ai,

∑

y∈S2
dG(y) ≤

∑ℓ
i=1 bi,

∑

x∈X\S1
dG(x) ≥

∑m
i=k+1 ai and

∑

y∈Y \S2
dG(y) ≥

∑n
i=ℓ+1 bi. It follows that

s(S1;S2) ≥
1

2

(

2kℓ−
k
∑

i=1

ai −
ℓ
∑

i=1

bi +
m
∑

i=k+1

ai +
n
∑

i=ℓ+1

bi

)

= τ
(A;B)
k,ℓ .
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We notice that if we take S1 to be the set of vertices with degree a1, . . . , ak

and S2 to be the set of vertices with degree b1, . . . , bℓ, then s(S1;S2) = τ
(A;B)
k,ℓ .

Therefore, by Lemmas 1 and 4, we have that τ(G) = minS1⊆X,S2⊆Y s(S1;S2) =

min1≤k≤m,1≤ℓ≤n τ
(A;B)
k,ℓ = min

{

min
{

τ
(A;B)
mℓ,ℓ

|ℓ = 1, . . . , a1

}

, τ
(A;B)
1,n1

}

= τ
(A;B)
mL,L

.

The proof of Theorem 5 is completed.

Theorem 5 yields an easily computable formula for the bipartite-splittance
of a bipartite graph. For example, for 1 ≤ r ≤ m, let G be an r-regular bipartite
graph on 2m vertices with two partite sets X and Y , and let (A;B) be the
degree sequence pair of G. Then |X| = |Y | = m, a1 = · · · = am = r and
b1 = · · · = bm = r. It is easy to compute that mℓ = m for 1 ≤ ℓ ≤ r and n1 = m,

and so τ
(A;B)
mℓ,ℓ

= 1
2(2mℓ − mr − ℓr + (m − ℓ)r) = (m − r)ℓ for 1 ≤ ℓ ≤ r and

τ
(A;B)
1,n1

= 1
2(2m−r−mr+(m−1)r) = m−r. Thus, τ(G) = min

{

min
{

τ
(A;B)
mℓ,ℓ

|ℓ =

1, . . . , r
}

, τ
(A;B)
1,n1

}

= m− r.

Let G be a bipartite graph with two partite sets X and Y , where |X| = m

and |Y | = n. The proof of Theorem 5 yields a simple procedure (see Algorithm
1 on next page) for obtaining a bipartite-split graph from G with a minimum
number of additions or removals of edges. Moreover, we can easily analyze the
complexity of Algorithm 1 is O (max{m logm,n log n,mn}).

By the fact that G is bipartite-split if and only if τ(G) = 0, a simple char-
acterization of the degree sequence pair of bipartite-split graphs is an immediate
consequence of Theorem 5.

Corollary 6. Let (A;B) be a bigraphic pair, and let L and mL be defined as in

Definition. Then (A;B) is the degree sequence pair of a bipartite-split graph G

if and only if τ
(A;B)
mL,L

= 0, that is,
∑mL

i=1 ai +
∑L

i=1 bi = 2mLL +
∑m

i=mL+1 ai +
∑n

i=L+1 bi.

The following Corollary 7 is an immediate consequence of Corollary 6.

Corollary 7. If a bipartite graph G is bipartite-split, then every bipartite graph

with the same degree sequence pair as G is also bipartite-split.

Remark 8. The problem in this paper can directly be considered in general
graphs and is clearly hard in general graphs (for instance using a reduction from
minimum edge removing to make the graph bipartite). Tighter hardness results
in super classes of bipartite graphs would provide a nice motivation of the explicit
formula in the bipartite case.
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Algorithm 1:

Input: Bipartite graph G;

Output: Bipartite-split graph from G;

1 Let two partite sets of G be X and Y ; m = number of vertices in X; n =
number of vertices in Y ;

2 Determine the degree sequence pair (A;B) of G so that A = (a1, . . . , am)
(respectively, B = (b1, . . . , bn)) is the non-increasing sequence of vertex
degrees for X (respectively, Y );

3 Index the vertices of G so that X = {x1, . . . , xm} with dG(xi) = ai, for
1 ≤ i ≤ m and Y = {y1, . . . , yn} with dG(yj) = bj , for 1 ≤ j ≤ n;

4 mℓ = max{i|ai ≥ ℓ}, for 1 ≤ ℓ ≤ a1; n1 = max{i|bi ≥ 1};

5 τ
(A;B)
mℓ,ℓ

= 1
2

(

2mℓℓ−
∑mℓ

i=1 ai −
∑ℓ

i=1 bi +
∑m

i=mℓ+1 ai +
∑n

i=ℓ+1 bi

)

, for

1 ≤ ℓ ≤ a1; τ
(A;B)
1,n1

= 1
2

(

2n1 − a1 −
∑n1

i=1 bi +
∑m

i=2 ai +
∑n

i=n1+1 bi
)

;

6 τ
(A;B)
mr ,r = min

{

τ
(A;B)
m1,1

, . . . , τ
(A;B)
ma1

,a1

}

;

7 if τ
(A;B)
mr,r ≤ τ

(A;B)
1,n1

then

8 L = r, mL = mr;

9 else

10 L = n1, mL = 1;

11 for i = 1, . . . ,mL and j = 1, . . . , L do

12 Add edges to E(G) so that xi and yj are adjacent;

13 for i = mL + 1, . . . ,m and j = L+ 1, . . . , n do

14 Remove edges from E(G) so that xi and yj are not adjacent.
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