Discussiones Mathematicae Graph Theory 39 (2019) 23-29 doi:10.7151/dmgt.2057

THE BIPARTITE-SPLITTANCE OF A BIPARTITE **GRAPH**¹

JIAN-HUA YIN AND JING-XIN GUAN

Department of Mathematics College of Information Science and Technology Hainan University, Haikou 570228, P.R. China

e-mail: yinjh@hainu.edu.cn

Abstract

A *bipartite-split graph* is a bipartite graph whose vertex set can be partitioned into a complete bipartite set and an independent set. The bipartitesplittance of an arbitrary bipartite graph is the minimum number of edges to be added or removed in order to produce a bipartite-split graph. In this paper, we show that the bipartite-splittance of a bipartite graph depends only on the degree sequence pair of the bipartite graph, and an easily computable formula for it is derived. As a corollary, a simple characterization of the degree sequence pair of bipartite-split graphs is also given.

Keywords: degree sequence pair, bipartite-split graph, bipartite-splittance. 2010 Mathematics Subject Classification: 05C07.

1. INTRODUCTION

Let G be a simple graph with vertex set V(G) and edge set E(G). A subset S of V(G) is complete if the subgraph G[S] induced by S is complete, and it is independent if G[S] is a null graph (i.e., a graph without edges). A split graph is a graph whose set of vertices can be partitioned into a complete set and an independent set. Split graphs were introduced by Földes and Hammer [1], who proved that a graph is split if and only if it does not have an induced subgraph isomorphic to C_4 , C_5 or $2K_2$, where C_k is a cycle on k vertices and $2K_2$ is the disjoint union of two complete graphs K_2 . The splittance $\sigma(G)$ of an arbitrary graph G is the minimum number of edges to be added to, or removed from G

¹Supported by National Natural Science Foundation of China (No. 11561017) and Natural Science Foundation of Hainan Province (No. 2016CXTD004).

in order to obtain a split graph. An explicit, easily computable formula for the splittance $\sigma(G)$ in terms of the degree sequence of G and a simple characterization of the degree sequence of split graphs were presented by Hammer and Simeone [3].

Analogous problem is also studied for bipartite graphs in this paper. The style of this paper closely follows that of [3]. Let G be a simple bipartite graph with two particle sets X and Y, where |X| = m and |Y| = n. If $A = (a_1, \ldots, a_m)$ (respectively, $B = (b_1, \ldots, b_n)$) is the non-increasing sequence of vertex degrees for X (respectively, Y), then the pair (A; B) is the degree sequence pair of G. We say that $(S_1; S_2)$ is a subset pair of (X; Y) if $S_1 \subseteq X$ and $S_2 \subseteq Y$. A subset pair $(S_1; S_2)$ of (X; Y) is complete bipartite if either $S_1 = S_2 = \emptyset$, or $S_1 \neq \emptyset, S_2 \neq \emptyset$ and $G[S_1 \cup S_2]$ is a complete bipartite graph with two partite sets S_1 and S_2 . A subset pair $(S_1; S_2)$ of (X; Y) is independent if $G[S_1 \cup S_2]$ is a null graph. A *bipartite-split graph* is a bipartite graph whose two partite sets can be partitioned into a complete bipartite subset pair and an independent subset pair. The bipartite-splittance $\tau(G)$ of an arbitrary bipartite graph G is the minimum number of edges to be added to, or removed from G in order to obtain a bipartite-split graph. Clearly, G is bipartite-split if and only if $\tau(G) = 0$. The main result of this paper is to give an easily computable formula for the bipartitesplittance $\tau(G)$ of a bipartite graph G in terms of the degree sequence pair of G (Theorem 5). As a corollary, a simple characterization of the degree sequence pair of bipartite-split graphs is also given (Corollary 6).

2. Main Result and Its Proof

Let $(S_1; S_2)$ be a subset pair of (X; Y), and let

$$s_{(S_1;S_2)} = |S_1||S_2| - |E(G[S_1 \cup S_2])| + |E(G[V(G) \setminus (S_1 \cup S_2)])|.$$

It is easy to see that $|S_1||S_2| - |E(G[S_1 \cup S_2])|$ is the number of edges to be added to $G[S_1 \cup S_2]$ in order to make $G[S_1 \cup S_2]$ into a complete bipartite graph, and $|E(G[V(G) \setminus (S_1 \cup S_2)])|$ is the number of edges to be removed from $G[V(G) \setminus (S_1 \cup S_2)]$ in order to make $G[V(G) \setminus (S_1 \cup S_2)]$ into a null graph.

Lemma 1. Let G be a bipartite graph with two partite sets X and Y. Then

$$\tau(G) = \min_{S_1 \subseteq X, S_2 \subseteq Y} s_{(S_1; S_2)}.$$

Proof. Clearly $\tau(G) \leq s_{(S_1;S_2)}$ for all $S_1 \subseteq X$ and $S_2 \subseteq Y$. On the other hand, let G' be a bipartite-split graph, with the complete bipartite subset pair $(S'_1; S'_2)$ and the independent subset pair $(X \setminus S'_1; Y \setminus S'_2)$, obtained from G by the addition or the removal of a minimum number of edges. Because of the minimality assumption, no removed edge could have had an end-vertex in $S'_1 \cup S'_2$ and no added edge could have had an end-vertex in $(X \setminus S'_1) \cup (Y \setminus S'_2)$, implying that $\tau(G) = s_{(S'_1;S'_2)}$. Therefore, $\tau(G) = \min_{S_1 \subseteq X, S_2 \subseteq Y} s_{(S_1;S_2)}$.

Let $A = (a_1, \ldots, a_m)$ and $B = (b_1, \ldots, b_n)$ be two integer sequences with $\sum_{i=1}^m a_i = \sum_{i=1}^n b_i, n \ge a_1 \ge \cdots \ge a_m \ge 0$ and $m \ge b_1 \ge \cdots \ge b_n \ge 0$. If there is a simple bipartite graph G such that (A; B) is the degree sequence pair of G, then the pair (A; B) is bigraphic. The following well-known result is the Gale-Ryser characterization of bigraphic pairs.

Theorem 2 [2, 4]. The pair (A; B) is bigraphic if and only if $\sum_{i=1}^{k} a_i \leq k\ell + \sum_{i=\ell+1}^{n} b_i$ for each $k = 1, \ldots, m$ and $\ell = 1, \ldots, n$.

By the symmetry, Theorem 2 can be stated that the pair (A; B) is bigraphic if and only if $\sum_{i=1}^{\ell} b_i \leq \ell k + \sum_{i=k+1}^{m} a_i$ for each $\ell = 1, \ldots, n$ and $k = 1, \ldots, m$. Therefore, we have the following.

Corollary 3. If the pair (A; B) is bigraphic, then $\sum_{i=1}^{k} a_i + \sum_{i=1}^{\ell} b_i \leq 2k\ell + \sum_{i=k+1}^{m} a_i + \sum_{i=\ell+1}^{n} b_i$ for each $k = 1, \ldots, m$ and $\ell = 1, \ldots, n$.

Definition. Let (A; B) be a bigraphic pair. Define

$$\tau_{k,\ell}^{(A;B)} = \frac{1}{2} \left(2k\ell - \sum_{i=1}^{k} a_i - \sum_{i=1}^{\ell} b_i + \sum_{i=k+1}^{m} a_i + \sum_{i=\ell+1}^{n} b_i \right)$$

for $1 \leq k \leq m$ and $1 \leq \ell \leq n$, $m_{\ell} = \max\{i | a_i \geq \ell\}$ for $1 \leq \ell \leq a_1$ and $n_1 = \max\{i | b_i \ge 1\}$. If

$$\min\left\{\tau_{m_{\ell},\ell}^{(A;B)}|\ell=1,\ldots,a_1\right\} \le \tau_{1,n_1}^{(A;B)},$$

then we define $L \in \{1, ..., a_1\}$ so that $\tau_{m_L, L}^{(A;B)} = \min\{\tau_{m_\ell, \ell}^{(A;B)} | \ell = 1, ..., a_1\}$. If

$$\min\left\{\tau_{m_{\ell},\ell}^{(A;B)}|\ell=1,\ldots,a_1\right\} > \tau_{1,n_1}^{(A;B)},$$

then we define $L = n_1$ and $m_L = 1$.

Lemma 4. If the pair (A; B) is bigraphic, then

- (a) $\tau_{k,\ell}^{(A;B)} \ge 0$ for each k = 1, ..., m and $\ell = 1, ..., n$;
- (b) for a given $\ell \in \{1, \ldots, a_1\}$, $\tau_{k,\ell}^{(A;B)}$ attains its minimum value when $k = m_{\ell}$; (c) for a given $\ell \in \{a_1 + 1, \ldots, n\}$, $\tau_{k,\ell}^{(A;B)}$ attains its minimum value when k = 1;
- (d) $\min \left\{ \tau_{k,\ell}^{(A;B)} | k = 1, \dots, m \text{ and } \ell = 1, \dots, n \right\} = \min \left\{ \min \left\{ \tau_{m_{\ell},\ell}^{(A;B)} | \ell = 1, \dots, n \right\} \right\}$ $a_1 \Big\}, \tau_{1,n_1}^{(A;B)} \Big\} = \tau_{m_L,L}^{(A;B)}.$

Proof. (a) is a consequence of Corollary 3. As for (b), a direct computation shows that, for $1 \leq k \leq m$, we have that $\tau_{k,\ell}^{(A;B)} - \tau_{k-1,\ell}^{(A;B)} = \ell - a_k$. It is easy to see that $\tau_{1,\ell}^{(A;B)} \geq \tau_{2,\ell}^{(A;B)} \geq \cdots \geq \tau_{m_{\ell},\ell}^{(A;B)}$ and $\tau_{m_{\ell},\ell}^{(A;B)} \leq \tau_{m_{\ell}+1,\ell}^{(A;B)} \leq \cdots \leq \tau_{m,\ell}^{(A;B)}$. Hence $\tau_{k,\ell}^{(A;B)}$ attains its minimum value when $k = m_{\ell}$. As for (c), we have that $\tau_{k,\ell}^{(A;B)} - \tau_{k-1,\ell}^{(A;B)} = \ell - a_k$ for $1 \leq k \leq m$, implying that $\tau_{1,\ell}^{(A;B)} \leq \tau_{2,\ell}^{(A;B)} \leq \cdots \leq \tau_{m,\ell}^{(A;B)}$. Hence $\tau_{k,\ell}^{(A;B)}$ attains its minimum value when $k = m_{\ell}$. As for (c), we have that $\tau_{k,\ell}^{(A;B)} - \tau_{k-1,\ell}^{(A;B)} = \ell - a_k$ for $1 \leq k \leq m$, implying that $\tau_{1,\ell}^{(A;B)} \leq \tau_{2,\ell}^{(A;B)} \leq \cdots \leq \tau_{m,\ell}^{(A;B)}$. Hence $\tau_{k,\ell}^{(A;B)}$ attains its minimum value when k = 1. As for (d), we have that $\tau_{1,\ell}^{(A;B)} - \tau_{1,\ell-1}^{(A;B)} = 1 - b_{\ell}$ for $a_1 + 1 \leq \ell \leq n$, implying that $\tau_{1,a_1+1}^{(A;B)} \geq \cdots \geq \tau_{1,n_1}^{(A;B)}$ and $\tau_{1,n_1}^{(A;B)} \leq \cdots \leq \tau_{1,n}^{(A;B)}$. Hence $\tau_{1,n_1}^{(A;B)} = \min\left\{\tau_{1,\ell}^{(A;B)} | \ell = a_1 + 1, \dots, n\right\}$. Thus by (b) and (c), $\min\left\{\tau_{k,\ell}^{(A;B)} | \ell = a_1 + 1, \dots, m\right\}$ and $\ell = 1, \dots, n\right\} = \min\left\{\min\left\{\tau_{m_{\ell},\ell}^{(A;B)} | \ell = 1, \dots, a_1\right\}, \min\left\{\tau_{1,\ell}^{(A;B)} | \ell = a_1 + 1, \dots, m\right\}$.

We now give the main result of this paper as follows.

Theorem 5. If G is a bipartite graph with two partite sets X and Y and (A; B) is the degree sequence pair of G, then $\tau(G) = \min\left\{\min\left\{\tau_{m_{\ell},\ell}^{(A;B)}|\ell=1,\ldots,a_1\right\}, \tau_{1,n_1}^{(A;B)}\right\} = \tau_{m_L,L}^{(A;B)}$.

Proof. Let $(S_1; S_2)$ be any subset pair of (X; Y), where |X| = m and |Y| = n. Then

$$\sum_{x \in S_1} d_G(x) + \sum_{y \in S_2} d_G(y) = 2|E(G[S_1 \cup S_2])| + e_G(S_1 \cup S_2, V(G) \setminus (S_1 \cup S_2)),$$

where $e_G(S_1 \cup S_2, V(G) \setminus (S_1 \cup S_2))$ denotes the number of edges in G having one end-vertex in $S_1 \cup S_2$ and the other end-vertex in $V(G) \setminus (S_1 \cup S_2)$. Thus,

$$\begin{split} s_{(S_1;S_2)} &= |S_1||S_2| - |E(G[S_1 \cup S_2])| + |E(G[V(G) \setminus (S_1 \cup S_2)])| \\ &= \frac{1}{2} \left(2|S_1||S_2| - 2|E(G[S_1 \cup S_2])| + 2|E(G[V(G) \setminus (S_1 \cup S_2)])| \right) \\ &= \frac{1}{2} \left(2|S_1||S_2| - \sum_{x \in S_1} d_G(x) - \sum_{y \in S_2} d_G(y) + \sum_{x \in X \setminus S_1} d_G(x) + \sum_{y \in Y \setminus S_2} d_G(y) \right). \end{split}$$

By putting $k = |S_1|$ and $\ell = |S_2|$, we have that $\sum_{x \in S_1} d_G(x) \leq \sum_{i=1}^k a_i$, $\sum_{y \in S_2} d_G(y) \leq \sum_{i=1}^\ell b_i$, $\sum_{x \in X \setminus S_1} d_G(x) \geq \sum_{i=k+1}^m a_i$ and $\sum_{y \in Y \setminus S_2} d_G(y) \geq \sum_{i=\ell+1}^n b_i$. It follows that

$$s_{(S_1;S_2)} \ge \frac{1}{2} \left(2k\ell - \sum_{i=1}^k a_i - \sum_{i=1}^\ell b_i + \sum_{i=k+1}^m a_i + \sum_{i=\ell+1}^n b_i \right) = \tau_{k,\ell}^{(A;B)}.$$

We notice that if we take S_1 to be the set of vertices with degree a_1, \ldots, a_k and S_2 to be the set of vertices with degree b_1, \ldots, b_ℓ , then $s_{(S_1;S_2)} = \tau_{k,\ell}^{(A;B)}$. Therefore, by Lemmas 1 and 4, we have that $\tau(G) = \min_{S_1 \subseteq X, S_2 \subseteq Y} s_{(S_1;S_2)} = \min_{1 \le k \le m, 1 \le \ell \le n} \tau_{k,\ell}^{(A;B)} = \min \left\{ \min \left\{ \tau_{m_\ell,\ell}^{(A;B)} | \ell = 1, \ldots, a_1 \right\}, \tau_{1,n_1}^{(A;B)} \right\} = \tau_{m_L,L}^{(A;B)}$. The proof of Theorem 5 is completed.

Theorem 5 yields an easily computable formula for the bipartite-splittance of a bipartite graph. For example, for $1 \leq r \leq m$, let G be an r-regular bipartite graph on 2m vertices with two partite sets X and Y, and let (A; B) be the degree sequence pair of G. Then |X| = |Y| = m, $a_1 = \cdots = a_m = r$ and $b_1 = \cdots = b_m = r$. It is easy to compute that $m_\ell = m$ for $1 \leq \ell \leq r$ and $n_1 = m$, and so $\tau_{m_\ell,\ell}^{(A;B)} = \frac{1}{2}(2m\ell - mr - \ell r + (m - \ell)r) = (m - r)\ell$ for $1 \leq \ell \leq r$ and $\tau_{1,n_1}^{(A;B)} = \frac{1}{2}(2m - r - mr + (m - 1)r) = m - r$. Thus, $\tau(G) = \min\left\{\min\left\{\tau_{m_\ell,\ell}^{(A;B)}|\ell = 1, \ldots, r\right\}, \tau_{1,n_1}^{(A;B)}\right\} = m - r$.

Let G be a bipartite graph with two partite sets X and Y, where |X| = mand |Y| = n. The proof of Theorem 5 yields a simple procedure (see Algorithm 1 on next page) for obtaining a bipartite-split graph from G with a minimum number of additions or removals of edges. Moreover, we can easily analyze the complexity of Algorithm 1 is $O(\max\{m \log m, n \log n, mn\})$.

By the fact that G is bipartite-split if and only if $\tau(G) = 0$, a simple characterization of the degree sequence pair of bipartite-split graphs is an immediate consequence of Theorem 5.

Corollary 6. Let (A; B) be a bigraphic pair, and let L and m_L be defined as in Definition. Then (A; B) is the degree sequence pair of a bipartite-split graph G if and only if $\tau_{m_L,L}^{(A;B)} = 0$, that is, $\sum_{i=1}^{m_L} a_i + \sum_{i=1}^{L} b_i = 2m_L L + \sum_{i=m_L+1}^{m} a_i + \sum_{i=L+1}^{n} b_i$.

The following Corollary 7 is an immediate consequence of Corollary 6.

Corollary 7. If a bipartite graph G is bipartite-split, then every bipartite graph with the same degree sequence pair as G is also bipartite-split.

Remark 8. The problem in this paper can directly be considered in general graphs and is clearly hard in general graphs (for instance using a reduction from minimum edge removing to make the graph bipartite). Tighter hardness results in super classes of bipartite graphs would provide a nice motivation of the explicit formula in the bipartite case.

Algorithm 1:

Input: Bipartite graph *G*;

Output: Bipartite-split graph from *G*;

- 1 Let two particle sets of G be X and Y; m = number of vertices in X; n = number of vertices in Y;
- 2 Determine the degree sequence pair (A; B) of G so that $A = (a_1, \ldots, a_m)$ (respectively, $B = (b_1, \ldots, b_n)$) is the non-increasing sequence of vertex degrees for X (respectively, Y);
- **3** Index the vertices of G so that $X = \{x_1, \ldots, x_m\}$ with $d_G(x_i) = a_i$, for $1 \le i \le m$ and $Y = \{y_1, \ldots, y_n\}$ with $d_G(y_j) = b_j$, for $1 \le j \le n$;
- 4 $m_{\ell} = \max\{i|a_i \ge \ell\}$, for $1 \le \ell \le a_1$; $n_1 = \max\{i|b_i \ge 1\}$;

5
$$au_{m_{\ell},\ell}^{(A;B)} = \frac{1}{2} \left(2m_{\ell}\ell - \sum_{i=1}^{m_{\ell}} a_i - \sum_{i=1}^{\ell} b_i + \sum_{i=m_{\ell}+1}^{m} a_i + \sum_{i=\ell+1}^{n} b_i \right), \text{ for } 1 \le \ell \le a_1; \ au_{1,n_1}^{(A;B)} = \frac{1}{2} \left(2n_1 - a_1 - \sum_{i=1}^{n_1} b_i + \sum_{i=2}^{m} a_i + \sum_{i=n_1+1}^{n} b_i \right);$$

6 $au_{m_r,r}^{(A;B)} = \min \left\{ au_{m_1,1}^{(A;B)}, \dots, au_{m_{a_1},a_1}^{(A;B)} \right\};$

- 7 if $\tau_{m_r,r}^{(A;B)} \leq \tau_{1,n_1}^{(A;B)}$ then
- $\mathbf{8} \mid L = r, \ m_L = m_r;$
- 9 else

$$L = n_1, m_L = 1;$$

- 11 for $i = 1, ..., m_L$ and j = 1, ..., L do
- **12** Add edges to E(G) so that x_i and y_j are adjacent;
- **13** for $i = m_L + 1, ..., m$ and j = L + 1, ..., n do
- 14 Remove edges from E(G) so that x_i and y_j are not adjacent.

Acknowledgement

The authors would like to thank the referees for their helpful suggestions and comments.

References

- S. Földes and P.L. Hammer, *Split graphs*, in: Proc. 8th Sout-Eastern Conf. on Combinatorics, Graph Theory and Computing, F. Hoffman *et al.* (Ed(s)), (Baton Rouge, Lousiana State University, 1977) 311–315.
- [2] D. Gale, A theorem on flows in networks, Pac. J. Math. 7 (1957) 1073–1082. doi:10.2140/pjm.1957.7.1073

- P.L. Hammer and B. Simeone, The splittance of a graph, Combinatorica 1 (1981) 275-284. doi:10.1007/BF02579333
- [4] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957) 371–377. doi:10.4153/CJM-1957-044-3

Received 12 May 2016 Revised 18 April 2017 Accepted 18 April 2017