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Abstract

A total-colored graph G is rainbow total-connected if any two vertices
of G are connected by a path whose edges and internal vertices have dis-
tinct colors. The rainbow total-connection number, denoted by rtc(G), of a
graph G is the minimum number of colors needed to make G rainbow total-
connected. In this paper, we prove that rtc(G) can be bounded by a constant
7 if the following three cases are excluded: diam(G) = 2, diam(G) = 3,
G contains exactly two connected components and one of them is a trivial
graph. An example is given to show that this bound is best possible. We also
study Erdős-Gallai type problem for the rainbow total-connection number,
and compute the lower bounds and precise values for the function f(n, k),
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where f(n, k) is the minimum value satisfying the following property: if
|E(G)| ≥ f(n, k), then rtc(G) ≤ k.

Keywords: Rainbow total-coloring, rainbow total-connection number, com-
plementary graph, Erdős-Gallai type problem.
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1. Introduction

We follow the notations of Bondy and Murty [1], unless otherwise stated. For a
graph G, let V (G), E(G), n(G), m(G) and G, respectively, be the set of vertices,
the set of edges, the order, the size and the complement of G. For a set S, we
use |S| to denote the number of elements in S.

Let G be a nontrivial connected graph on which an edge-coloring c : E(G) →
{1, 2, . . . , r}, r ∈ N, is defined, where adjacent edges may be colored the same.
A path is rainbow if no two edges of it are colored the same. An edge-colored
graph G is rainbow-connected if any two vertices are connected by a rainbow
path. Chartrand et al. [3] defined the rainbow connection number of a connected
graph G, denoted by rc(G), as the smallest number of colors that are needed in
order to make G rainbow-connected.

The rainbow connection number is not only a natural combinatorial measure,
but also has possible applications in the secure transfer of classified information
between agencies [4]. In addition, the rainbow connection number can also be
motivated by its interesting interpretation in the area of networking (see [2]).
Suppose that G represents a network, we wish to route messages between any two
vertices in a pipeline, and require that each link on the route between the vertices
(namely, each edge on the path) is assigned a distinct channel. Moreover, we want
to minimize the number of distinct channels that we use in our network. This
number is precisely rc(G). There are more and more researchers investigating
this topic, such as [2–4, 7, 8, 11, 13, 15]. The readers can see [12] for a survey
and [16] for a monograph on it.

The concept of rainbow connection number has several interesting variants,
including the strong rainbow connection number [3, 17], the rainbow vertex-
connection number [6,8,10] and the rainbow total-connection number [18–24]. Let
c be an edge-coloring of a connected graph G. For any two vertices u and v of G, a
rainbow u−v geodesic in G is a rainbow u−v path of length d(u, v), where d(u, v)
is the distance between u and v. The graph G is strongly rainbow-connected if
there exists a rainbow u−v geodesic for any two vertices u and v inG. In this case,
the coloring c is called a strong rainbow coloring of G. Similarly, we define the
strong rainbow connection number of a connected graph G, denoted by src(G),
as the smallest number of colors that are needed in order to make G strongly
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rainbow-connected. Clearly, we have diam(G) ≤ rc(G) ≤ src(G) ≤ m(G) where
diam(G) denotes the diameter of G. A vertex-colored graph G is rainbow vertex-
connected if any two vertices are connected by a path whose internal vertices have
distinct colors. The rainbow vertex-connection number of a connected graph G,
denoted by rvc(G), is the smallest number of colors that are needed in order to
make G rainbow vertex-connected [10].

A total-coloring of a graph G is a coloring c : V (G)∪E(G) → S, where S is a
set of colors. In a total-colored graph G(V,E), a path P connecting two vertices
u and v of G is called a rainbow total-path between u and v if all elements in
V (P ) ∪E(P ), except for u and v, are assigned distinct colors. The total-colored
graph G is rainbow total-connected if G has a rainbow total-path between every
two vertices in V . Now we define the rainbow total-connection number, denoted
by rtc(G), as the minimum number of colors needed to make the graph G rainbow
total-connected. Note that in the literature, the rainbow total-connection number
has also been referred to as the total rainbow connection number (see e.g., [18]).
However, in this paper, we will use the term rainbow total-connection number,
following the usage of [21].

Uchizawa et al. [24] introduced the concept of total rainbow-connectedness,
and obtained some hardness results and algorithmic results for related problems.
Recently, Chen et al. [5] also studied the hardness problems for the rainbow total-
coloring. In [18,20], some basic properties of the rainbow total-connection number
along with precise values of the parameter for some special graph classes, includ-
ing complete graphs, complete bipartite graphs, complete multipartite graphs,
trees, cycles and wheels were determined. In particular, it was shown in [18, 20]
that rtc(G) ≤ m(G) + n′(G), and the equality holds if and only if G is a tree,
where n′(G) is the number of internal vertices (that is, vertices of degree at least
two) of G. In [21], Sun showed that rtc(G) 6= m(G)+n′(G)−1,m(G)+n′(G)−2
and characterized the graphs with rtc(G) = m(G) + n′(G) − 3. With this re-
sult, the following sharp upper bound holds: for a connected graph G, if G is
not a tree, then rtc(G) ≤ m(G) + n′(G) − 3; moreover, the equality holds if
and only if G belongs to five specific graph classes [21]. In the same paper, Sun
also investigated Nordhaus-Gaddum-type lower bounds for the rainbow total-
connection number of a graph and derived that if G is a connected graph of order
n ≥ 8, then rtc(G) + rtc(G) ≥ 6 and rtc(G)rtc(G) ≥ 9. An example is given to
show that both of these bounds are sharp. Note that Ma [19] proved the same
lower bound for rtc(G) + rtc(G). In addition, he obtained an upper bound for
rtc(G)+rtc(G). In [22], Sun compared rtc(G) with two other parameters of rain-
bow coloring, rc(G) and rvc(G). For an integer k ≥ 3, he determined sufficient
conditions that guarantee rtc(G) ≤ k in terms of the minimum degree. Among
the results, Sun also proved the sharp threshold function for a random graph to
have rtc(G) ≤ 3.
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In this paper, we continue the research on this topic and investigate the
rainbow total-connection number of a graph G under some constraints on its
complement G. Three examples will be given to show that rtc(G) can be arbi-
trarily large if one of the three situations happens: diam(G) = 2, diam(G) = 3,
G contains exactly two connected components and one of them is K1 (see Exam-
ples 1–3). However, the parameter rtc(G) can be bounded by a small constant
if these three cases are excluded (Theorem 9). Our argument is similar to that
of [14], where the rainbow connection number was discussed. Note that for the
case that diam(G) = 3, Ma [19] recently showed that for a triangle-free graph G

with diam(G) = 3, if G is connected, then rtc(G) ≤ 5, and this bound is tight.

Recall that in [22], Sun determined some sufficient conditions that guarantee
rtc(G) ≤ k, and all of these conditions are related to the minimum degree. In
this paper, we will find some sufficient conditions that guarantee rtc(G) ≤ k in
terms of the size of G. Hence, we study the following Erdős-Gallai type problem.

Problem 1.1 For every k with k ≥ 1, compute the minimum value for f(n, k)
with the following property: if |E(G)| ≥ f(n, k), then rtc(G) ≤ k.

By definition, we clearly have f(n, k) ≥ n−1. In this paper, we will compute
the lower bounds and precise values for the function f(n, k) (Theorem 20).

The rest of this paper is organized as follows. In Section 2 we will give the
proof of Theorem 9 which consists of Lemmas 7 and 8. In order to prove these
lemmas we need a few preliminary results and terminology that will be given in
the section. In Section 3, we will prove that rtc(G) ≤ 2n − 3 and characterize
those graphs G with rtc(G) = 2n− 3, 2n− 4, respectively (Theorem 13). Based
on Theorem 13 and other results, we will obtain Theorem 20 in Section 3.

2. Complementary Graphs

Let c be a total-coloring of G. We use c(e) to denote the color of an edge e and
c(v) to denote the color of a vertex v. For a subset X of V (G), the subgraph of
G induced by X is denoted by G[X]. For two disjoint sets X and Y of V (G), we
use E[X,Y ] to denote the set of edges with one end in X and another end in Y .
The eccentricity of a vertex x in G is defined as eccG(x) = maxv∈V (G) d(v, x). In
a connected graph G, let N i

G(x) = {v | d(x, v) = i}, where x ∈ V (G).

The following observation is clear.

Observation 1. For a connected graph G, if H is a connected spanning subgraph
of G, then rtc(G) ≤ rtc(H).

Proposition 2 [18, 20]. For a connected graph G, we have
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(i) rtc(G) = 1 if and only if G is a complete graph;

(ii) rtc(G) 6= 2 for any graph G;

(iii) rtc(G) = m+n′ if and only if G is a tree, where n′ is the number of internal
vertices of G.

We now give three examples which show that rtc(G) can be arbitrarily large
if one of the three situations happens: diam(G) = 2, diam(G) = 3, G contains
exactly two connected components and one of them is K1.

A

B

G

x

G

A

B

x

Figure 1. The graph of Example 1.

Example 1. As shown in Figure 1, in the graph G, let A = N1
G
(x) = {ui |

1 ≤ i ≤ k}, B = N2
G
(x) = {vj | 1 ≤ j ≤ k} where k ≥ 3. Furthermore, let

E(G) = {xui | 1 ≤ i ≤ k} ∪ {ui1ui2 | 1 ≤ i1, i2 ≤ k} ∪ {vj1vj2 | 1 ≤ j1, j2 ≤
k} ∪ ({uivj | 1 ≤ i, j ≤ k} \ {uivi | 1 ≤ i ≤ k}). Clearly, diam(G) = 2 and G is a
tree. By Proposition 2, rtc(G) = m+ n′ = 2k + (k + 1) = 3k + 1. Thus, in this
case, rtc(G) can be made arbitrarily large by increasing k.

A

B

C

G

x

G

C

B

A

x

Figure 2. The graph of Example 2.

Example 2. As shown in Figure 2, in the graph G, let A = N1
G
(x), B = N2

G
(x),

C = N3
G
(x). Furthermore, let B be a clique of G, each vertex in A be adjacent
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to all vertices of B and each vertex in B be adjacent to all vertices of C. Thus,
diam(G) = 3 and G is connected. Clearly, B is a stable set and each edge between
x and B is a pendant edge in G, and rtc(G) ≥ |B|+1. Thus, in this case, rtc(G)
can be made arbitrarily large by increasing |B|.

Example 3. Let G be a graph with two components G1, G2 where G1 is trivial
and G2 is a clique of order k. Clearly, G is a star of order k+1. By Proposition 2,
rtc(G) = k + 1. Thus, in this case, rtc(G) can be made arbitrarily large by
increasing k.

In [3], the authors determined the precise values of rainbow connection num-
bers of complete bipartite graphs and complete multipartite graphs.

Theorem 3 [3]. For integers s and t with 2 ≤ s ≤ t, rc(Ks,t) = min
{

⌈ s
√
t⌉, 4

}

.

Theorem 4 [3]. Let G = Kn1,n2,...,nk
be a complete k-partite graph, where k ≥ 3

and n1 ≤ n2 ≤ · · · ≤ nk such that s =
∑k−1

i=1 ni and t = nk. Then

rc(G) =







1 if nk = 1,
2 if nk ≥ 2 and s > t,

min
{

⌈ s
√
t⌉, 3

}

if s ≤ t.

Motivated by these two results, the authors of [18] determined the precise
values of the rainbow total-connection numbers for these two graph classes.

Theorem 5 [18]. For integers s and t with 2 ≤ s ≤ t, we have

rtc(Ks,t) = min{⌈ s
√
t⌉+ 1, 7}.

Theorem 6 [18]. Let G = Kn1,n2,...,nk
be a complete k-partite graph, where k ≥ 3

and n1 ≤ n2 ≤ · · · ≤ nk such that s =
∑k−1

i=1 ni and t = nk. Then

rtc(G) =







1 if nk = 1,
3 if nk ≥ 2 and s > t,

min
{

⌈ s
√
t⌉+ 1, 5

}

if s ≤ t.

We remark in Theorem 6 that if the graph G is not complete, then there is
a rainbow total-connected coloring of G using rtc(G) colors such that the sets of
colors for the vertex set V (G) and the edge set E(G) are disjoint.

We now investigate the rainbow total-connection number for the complement
of a graph with diameter at least 4.

Lemma 7. If G is a connected graph with diam(G) ≥ 4, then rtc(G) ≤ 7.
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Figure 3. The graph for the example with d = 4.

Proof. Observe that G must be connected, since otherwise diam(G) ≤ 2, contra-
dicting the condition. Choose a vertex x with eccG(x) = diam(G) = d ≥ 4. Let
N i

G(x) = {v | d(x, v) = i} be the i-distance neighborhood of x, where 0 ≤ i ≤ d.
Then N0

G(x) = {x}, N1
G(x) = NG(x) as usual and

⋃

0≤i≤dN
i
G(x) is a vertex parti-

tion of V (G) with |N i
G(x)| = ni. Let A =

⋃

i is evenN
i
G(x), B =

⋃

i is oddN
i
G(x).

By the definition of complementary graphs, we know that G[A] (G[B]) con-
tains a spanning complete k1-partite subgraph (complete k2-partite subgraph)
where k1 =

⌈

d+1
2

⌉ (

k2 =
⌈

d
2

⌉)

. For example, see Figure 3 for a graph G with diam-
eter four. The subgraph G[A] contains a spanning complete tripartite subgraph
Kn0,n2,n4

and G[B] contains a spanning complete bipartite subgraph Kn1,n3
.

Case 1. d ≥ 5. Then k1, k2 ≥ 3 and we have rtc(G[A]), rtc(G[B]) ≤ 5 by
Theorem 6. Now we provide a total-coloring of G as follows.

By Theorem 6, we first provide the subgraph G[A] with a rainbow total-
coloring by using five colors and then provide the subgraph G[B] with a rainbow
total-coloring by using the same set of colors as that of G[A]; finally we assign
a fresh color to all elements of E[A,B]. By the remark after Theorem 6, we can
color V (G)∪E(G) with six colors such that the sets of colors for A and E(G[A])
are disjoint, and similarly for B and E(G[B]).

For u, v ∈ G[A] or u, v ∈ G[B], there exists a rainbow total-path connecting
u and v. Now, let u ∈ G[A] and v ∈ G[B], with u ∈ N i

G(x) and v ∈ N
j
G(x).

We use |i − j| to denote the range of i and j in the i, j-distance neighborhoods.
If |i − j| ≥ 2, then u and v are adjacent in G. Otherwise, |i − j| = 1. Choose
u1 ∈ N ℓ

G(x) ⊂ A such that ℓ 6= i and |j − ℓ| ≥ 2. Then uu1v is a rainbow
total-path connecting u and v in G. Thus, rtc(G) ≤ 6 in this case.

Case 2. d = 4, that is, A = N0
G(x)∪N2

G(x)∪N4
G(x) and B = N1

G(x)∪N3
G(x).

Then G[A] (G[B]) contains a spanning complete tripartite subgraph Kn0,n2,n4

(complete bipartite subgraph Kn1,n3
).
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Now we provide a total-coloring c of G as follows. Let c(x) = 1, c(v) = 2 for
v ∈ N4

G(x), c(v) = 3 for v ∈ V \ (N4
G(x) ∪ {x}) and

c(e) =



















4 if e ∈ E
[

N0
G(x), N

4
G(x)

]

,

5 if e ∈ E
[

N0
G(x), N

2
G(x)

]

∪ E
[

N0
G(x), N

3
G(x)

]

,

6 if e ∈ E
[

N2
G(x), N

4
G(x)

]

∪ E
[

N1
G(x), N

3
G(x)

]

,

7 if e ∈ E
[

N1
G(x), N

4
G(x)

]

.

We only show that there is a rainbow total-path connecting two vertices u

and v where u ∈ N2
G(x), v ∈ N3

G(x), since the arguments for the remaining cases
are similar. Let P := u, x, x1, x2, v where x1 ∈ N4

G(x) and x2 ∈ N1
G(x). Clearly,

we have that P is a rainbow u− v path. Thus, rtc(G) ≤ 7 in this case.

If G is a graph with h ≥ 2 connected components, then G contains a complete
h-partite spanning subgraph. Then, by Observation 1, the following statement
holds.

Lemma 8. If G is a graph with h ≥ 2 connected components Gi and n′
i =

n(Gi) (1 ≤ i ≤ h), then rtc(G) ≤ rtc
(

Kn′

1
,...,n′

h

)

.

Now we can prove our first main result.

Theorem 9. For a connected graph G, if G does not belong to the following two
cases:

(i) diam(G) ∈ {2, 3},
(ii) G contains exactly two connected components and one of them is K1, then

rtc(G) ≤ 7. Moreover, the bound is best possible.

Proof. If G is connected, since diam(G) 6∈ {2, 3} and clearly diam(G) 6= 1, we
have rtc(G) ≤ 7 by Lemma 7. If G is disconnected, by the assumption, it has
either at least three connected components or exactly two nontrivial components,
then rtc(G) ≤ 7 by Theorems 5, 6 and Lemma 8.

For the sharpness of the bound, we consider the following graph G. Let G

contain two connected components, one of which is a clique with s ≥ 2 vertices
and the other is a clique with t ≥ 6s + 1 vertices. We have G = Ks,t, and
rtc(G) = 7 by Theorem 5. Thus the upper bound is best possible.

3. Lower Bounds and Precise Values for f(n, k)

Liu et al. [18, 20] determined the precise values for rtc(Cn).



Rainbow Total-Coloring of Complementary Graphs and ... 1031

Theorem 10 [18, 20].

rtc(Cn) =







n− 2, if n ∈ {3, 5},
n− 1, if n ∈ {4, 6, 7, 8, 9, 10, 12},
n, if n = 11 or n ≥ 13.

Let G be a connected unicyclic graph with girth ℓ and C be the cycle of
G such that V (C) = {ui | 1 ≤ i ≤ ℓ} and E(C) = {uiui+1 | 1 ≤ i ≤ ℓ}
where uℓ+1 = u1. Let TG = {Ti | 1 ≤ i ≤ ℓ}, where Ti denotes the component
containing ui in the subgraph G \ E(C). Clearly, each Ti is a tree rooted at ui
for 1 ≤ i ≤ ℓ. We say that Ti and Tj are adjacent (nonadjacent) if ui and uj are
adjacent (nonadjacent) in the cycle C.

We now consider the rainbow total-connection number for unicyclic graphs
which are not cycles. Recall that n′(G) denotes the number of internal vertices,
that is, vertices of degree at least two of G. We need the following result from [21].

Theorem 11 [21]. Let G be a connected unicyclic graph which is not a cycle.
Let ℓ ≥ 3 be the length of the unique cycle in G.

(i) For the case ℓ ≥ 5, we have rtc(G) ≤ m(G) + n′(G)− 4.

(ii) For the case ℓ ∈ {3, 4}, we have rtc(G) ≤ m(G) + n′(G)− 3.

Based on Theorem 11, we can deduce the following result.

Lemma 12. Let G be a connected unicyclic graph with order n which is not
a cycle and let C be the unique cycle in G with length ℓ ≥ 3. Then we have
rtc(G) ≤ 2n− 5. Moreover, rtc(G) = 2n− 5 if and only if G satisfies one of the
following.

(i) ℓ ∈ {3, 4}, and G is a graph with a non-trivial pendant path attached to C.

(ii) ℓ = 3, and G is a graph with two non-trivial pendant paths attached to two
distinct vertices of C.

(iii) ℓ = 4, and G is a graph with two non-trivial pendant paths attached to two
opposite vertices of C.

Proof. For the case ℓ ≥ 5, since n′(G) ≤ n − 1, the bound rtc(G) ≤ 2n − 5
clearly holds by Theorem 11. Moreover, we would require n′(G) = n − 1 to
possibly achieve rtc(G) = 2n − 5. In this case, G must be the cycle C with
a non-trivial pendant path P attached to a vertex of C, say u1. We provide
a total-coloring of G as follows. First, give C a rainbow total-coloring with
rtc(Cℓ) colors. Then, recolor u1 with a new color, and give the edges and internal
vertices of P further new colors. Clearly, this is a rainbow total-coloring for G

with rtc(Cℓ) + 2m(P ) = rtc(Cℓ) + 2(n − ℓ) colors. It is easy to check, using
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Theorem 10, that rtc(G) ≤ rtc(Cℓ) + 2(n − ℓ) ≤ 2n − 7 for ℓ ≥ 5. Thus,
rtc(G) = 2n− 5 does not hold.

Now let ℓ ∈ {3, 4}. If n′(G) ≤ n−3, then rtc(G) ≤ m(G)+n′(G)−3 ≤ 2n−6
by Theorem 11. In particular, this holds if TG has at least three non-trivial
elements. Thus, assume that n′(G) ∈ {n− 2, n− 1}.

Suppose that TG has exactly two non-trivial elements and n′(G) = n − 2.
Then similarly, we have rtc(G) ≤ 2n− 5. Note that in this case, G must be the
cycle C with two non-trivial pendant paths attached to two distinct vertices of
C. If G is a graph in the form of (ii) or (iii), then diam(G) = n − 2, so that
rtc(G) ≥ 2(n − 2) − 1 = 2n − 5, and we have rtc(G) = 2n − 5. Otherwise,
we must have ℓ = 4, and G is the cycle C with two non-trivial pendant paths
attached to adjacent vertices of C, say u1, u2. We provide a total-coloring c of G
by letting c(u1) = c(u3) = 1, c(u1u2) = c(u3u4) = 2, c(u2) = c(u4) = 3, c(u2u3) =
c(u1u4) = 4, and all other edges and internal vertices of G are given further
distinct colors. Then c is a rainbow total-coloring for G with 2n− 6 colors, and
thus rtc(G) ≤ 2n− 6.

Finally, suppose that TG has exactly one non-trivial element, say T1 is at-
tached to C at u1. We provide a total-coloring c of G as follows. If ℓ = 4,
then we use the same coloring as before. If ℓ = 3, then we let c(u2) = c(u3) =
c(u1u2) = c(u2u3) = c(u1u3) = 1, and all other edges and internal vertices of G
are given further distinct colors. Then in each case, c is a rainbow total-coloring
with m(G) + n′(G) − 4 colors. If n′(G) = n − 2, then we have rtc(G) ≤ 2n − 6.
If n′(G) = n − 1, then G is a graph in the form of (i), and rtc(G) ≤ 2n − 5. In
this case, we also have diam(G) = n− 2, so that rtc(G) ≥ 2n− 5 as before, and
therefore, rtc(G) = 2n− 5.

This concludes the proof of the lemma.

Next, we have the following result.

Theorem 13. For a connected graph G with order n, we have rtc(G) ≤ 2n− 3.
Moreover, rtc(G) = 2n− 3 if and only if G is a path; rtc(G) = 2n− 4 if and only
if G is a subdivided K1,3.

Proof. For the upper bound, we choose a spanning tree T ofG. By Observation 1
and Proposition 2, we have rtc(G) ≤ rtc(T ) = n′(T )+m(T ) = 2n−(p+1) ≤ 2n−3
since p ≥ 2, where p is the number of vertices in T with degree one.

If G is not a tree, then G contains at least one cycle. Let G′ be a connected
unicyclic spanning subgraph of G. Then rtc(G) ≤ rtc(G′) ≤ 2n− 5 by Observa-
tion 1, Theorem 10 and Lemma 12. Recall that for a tree T , rtc(T ) = 2n−(p+1),
where p is the number of vertices with degree one. Thus, rtc(G) = 2n− 3 if and
only if G is a path; rtc(G) = 2n − 4 if and only if G is a tree with exactly
three vertices of degree one, and it is easy to see that such a tree is precisely a
subdivided K1,3.
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Kemnitz and Schiermeyer [9] obtained the following sufficient condition which
guarantees that rc(G) = 2.

Theorem 14 [9]. Let G be a connected graph of order n and size m. If
(

n−1
2

)

+1 ≤
m ≤

(

n
2

)

− 1, then rc(G) = 2.

Proposition 15 [22]. For a connected graph G, if rc(G) = 2, then rtc(G) = 3.

By Theorem 14 and Proposition 15, the following result clearly holds.

Proposition 16. Let G be a connected graph of order n and size m. If
(

n−1
2

)

+1 ≤
m ≤

(

n
2

)

− 1, then rtc(G) = 3.

Recall that we define the function f(n, k) as the minimum value satisfying
the following property: if |E(G)| ≥ f(n, k), then rtc(G) ≤ k. Then we clearly
have the following result which concerns the monotonicity of f(n, k).

Observation 17. For any two positive integers k, ℓ with k ≤ ℓ, we have f(n, k) ≥
f(n, ℓ).

The following result is about a lower bound of the function f(n, k) for the
case that 1 ≤ k ≤ 2n− 4.

Lemma 18. Let 1 ≤ k ≤ 2n− 4. If k is even, then

f(n, k) ≥
(

n+ 1− k
2

2

)

+
k − 2

2
.

If k is odd, then

f(n, k) ≥
(

n+ 1−k
2

2

)

+
k − 1

2
.

Proof. For the case that k is even, we consider the following graph G whose con-
struction is due to Kemnitz and Schiermeyer [9]. Let V (G) =

{

u1, . . . , un+1− k

2

,

v2, . . . , v k

2

}

such that G
[{

u2, v2, . . . , v k

2

}]

is a path of order k
2 and G

[{

u1, . . . ,

u
n+1− k

2

}] ∼= K
n+1− k

2

\ e with u1u2 6∈ E(G). Clearly, |E(G)| =
(n+1− k

2

2

)

+ (k2 − 2)

and furthermore, we have rtc(G) ≥ 2 diam(G) − 1 = k + 1. Thus, f(n, k) ≥
|E(G)|+ 1 =

(n+1− k

2

2

)

+ k−2
2 .

For the case that k is odd, by Observation 17, we have f(n, k) ≥ f(n, k+1) ≥
(n+ 1−k

2

2

)

+ k−1
2 since k + 1 is even.

In the following result, we will give precise values of f(n, k) for some spe-
cial cases, and this result means that the bound in Lemma 18 is sharp for
k ∈ {1, 2, 3, 2n− 5, 2n− 4}.
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Proposition 19. The following assertions hold.

(i) f(n, 1) = f(n, 2) =
(

n
2

)

.

(ii) f(n, 3) =
(

n−1
2

)

+ 1.

(iii) f(n, 2n− 5) = f(n, 2n− 4) = n.

(iv) f(n, k) = n− 1 for k ≥ 2n− 3.

Proof. By Proposition 2, we clearly have f(n, 2) = f(n, 1) =
(

n
2

)

. By Proposi-

tion 16, we have that f(n, 3) ≤
(

n−1
2

)

+ 1. Furthermore, by Lemma 18, we have

f(n, 3) ≥
(

n−1
2

)

+ 1, and so f(n, 3) =
(

n−1
2

)

+ 1. The assertion (iv) holds from
Observation 1, Theorem 13 and the fact that f(n, k) ≥ n− 1.

We now prove (iii). By Observation 17 and Lemma 18, we have f(n, 2n−5) ≥
f(n, 2n − 4) ≥ n. By Theorem 13, we know that rtc(G) ≤ 2n − 5 if and only if
G is neither a path nor a subdivided K1,3. This means that rtc(G) ≤ 2n − 5 if
m(G) ≥ n, so f(n, 2n−5) ≤ n. Therefore, we have f(n, 2n−5) = f(n, 2n−4) = n.

By combining Lemma 18 and Proposition 19, we have the following result.

Theorem 20. The following assertions hold.

(i) f(n, 1) = f(n, 2) =
(

n
2

)

.

(ii) f(n, 3) =
(

n−1
2

)

+ 1.

(iii) Let 4 ≤ k ≤ 2n− 6. If k is even, then

f(n, k) ≥
(

n+ 1− k
2

2

)

+
k − 2

2
.

If k is odd, then

f(n, k) ≥
(

n+ 1−k
2

2

)

+
k − 1

2
.

(iv) f(n, 2n− 5) = f(n, 2n− 4) = n.

(v) f(n, k) = n− 1 for k ≥ 2n− 3.
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