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Abstract

Two vertices of the k-dimensional hypercube @ are antipodal if they
differ in every coordinate. Edges uv and zy are antipodal if u is antipodal
to z and v is antipodal to y. An antipodal edge-coloring of Qj is a 2-
edge-coloring such that antipodal edges always have different colors. Norine
conjectured that for k > 2, in every antipodal edge-coloring of @), some two
antipodal vertices are connected by a monochromatic path. Feder and Subi
proved this for £ < 5. We prove it for k£ < 6.
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1. INTRODUCTION

The k-dimensional hypercube @ is the graph with vertex set {0,1}* in which
vertices are adjacent if they differ in exactly one coordinate. Vertices in Q)
are antipodal if they differ in every coordinate. Edges uv and xy are antipodal
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if u is antipodal to x and v is antipodal to y. An antipodal edge-coloring of
Q@ is a 2-edge-coloring in which antipodal edges have different colors. In an
antipodal edge-coloring, the graphs formed by the two colors are isomorphic.
Norine (see [1]) posed a conjecture about antipodal edge-colorings.

Conjecture 1.1 [1]. For k > 2, in every antipodal edge-coloring of Qy there is
a pair of antipodal vertices connected by a monochromatic path.

A path whose endpoints are antipodal is an antipodal path; we seek a mono-
chromatic antipodal path. Feder and Subi [2] proved a stronger version of Con-
jecture 1.1 for kK < 5. A geodesic is a path P that is shortest among all paths
having the same endpoints as P. A k-geodesic is a geodesic of length k. In Qy,
a geodesic changes each coordinate of the vertices at most once, so any geodesic
antipodal path in @i is a k-geodesic. Feder and Subi showed for k£ < 5 that every
antipodal edge-coloring of Q) has a monochromatic antipodal geodesic.

Feder and Subi [2] also proved the conclusion for any 2-edge-coloring (not
necessarily antipodal) in which the colors do not alternate along any 4-cycle.
However, weakening the hypothesis to require only giving each color exactly half
the edges in each dimension permits a counterexample. We show this in Figure 1
for @4, where each monochromatic subgraph consists of the same two isomorphic
components. (In @3, having half the edges in each coordinate always yields
monochromatic antipodal paths.)

Figure 1. 2-edge coloring of Q)4 with eight edges in every dimension red.

A useful lemma from [2] (also proved in [3] and [4]) helps to simplify our
arguments.
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Lemma 1.2 [2]. If some antipodal geodesic in an antipodally edge-colored k-
cube is the union of two monochromatic paths, then there is a monochromatic
geodesic from the common vertex of these paths to its antipode. In particular, a
monochromatic (k — 1)-geodesic guarantees a monochromatic antipodal geodesic.

Proof. If an antipodal geodesic P consists of two monochromatic paths with
common vertex u, then the union of P and the geodesic P using its antipodal
edges consists of two monochromatic geodesics from u to . [

Feder and Subi [2] used Lemma 1.2 to obtain a counterexample for Q1
from any counterexample for Q. Given an antipodal edge-coloring f of Q) with
no monochromatic antipodal geodesic, use f on disjoint copies @ and Q' of Q) in
Qr+1. Complete an antipodal edge-coloring g of Q11 by adding any antipodal
coloring of the edges joining @ to @'. For v € V(Q), let v/ be its neighbor
in O/, and let T be the vertex antipodal to v within Q. Suppose that g has a
monochromatic antipodal geodesic P, which we may assume is red. Since P must
cross the last direction once, it uses vv’ for exactly one vertex v in (). Let x and
7' be the endpoints of P in Q and Q’. The edges in Q antipodal in Q41 to the
part of P in @’ form a blue geodesic from ¥ to z. Its union with the part of P in Q
forms a geodesic from T to v in Qi that changes color only once. By Lemma 1.2,
f on Q) contains a monochromatic antipodal geodesic, a contradiction.

We first reprove the strong version of Conjecture 1.1 for k € {4,5} using a
simpler approach than [2]. We then extend the method to prove it for k = 6.

Theorem 1.3. For 2 < k < 6, every antipodal edge-coloring of Qr has a
momnochromatic antipodal geodesic.

We hope that our approach leads to results for larger k. Meanwhile, there
are some related results. Leader and Long [4] showed that every subgraph of Q
having average degree d contains a geodesic of length at least d, which is sharp
by the subgraph (4. Since both maximal monochromatic spanning subgraphs
in an antipodal coloring of @ have average degree k/2, this result implies a
monochromatic geodesic of length at least k/2. Also, Gandhi [3] established
an upper bound on the number of monochromatic geodesics of length d in an
antipodal coloring of ()} and studied the maximum number of antipodal geodesics
in a subgraph of Q)i containing a fixed proportion of the edges.

2. SMALLER CUBES

The vertex antipodal to a vertex v will be denoted v. Figures show red edges as
bold and blue edges as dashed. Gray or thin edges have unspecified color. Some
edges are omitted for clarity. An alternating 4-cycle is a 4-cycle [a, b, ¢, d] whose
edges alternate in color.
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Lemma 2.1. FEvery antipodal edge-coloring of Q4 having an alternating 4-cycle
contains a monochromatic antipodal geodesic.

Proof. The edges antipodal to an alternating 4-cycle C' also form an alternating
4-cycle, C'. They are connected by a path P of length 2 crossing the other two
directions. If P is monochromatic, then adding the incident edges of its color
in C' and C' yields a monochromatic antipodal geodesic. Hence we may assume
that P (with central vertex v) is not monochromatic (see Figure 2).

Each edge of P forms a 3-geodesic with the incident edge of C' or C’ sharing
its color and one of the two remaining edges incident to v. This third edge is
the same for both edges of P, indicated by e in Figure 2. Hence either color
on e completes a monochromatic 3-geodesic. By Lemma 1.2, the coloring then
contains a monochromatic antipodal geodesic. [
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Figure 2. Finding a monochromatic 3-geodesic in Q4.

Theorem 2.2. Fvery antipodal edge-coloring of Q4 has a monochromatic antipo-
dal geodesic.

Proof. By Lemma 2.1, we may forbid alternating 4-cycles. If some 4-cycle C
has two edges of each color, then let v be a vertex where the color changes. Let
e be an edge incident to v not on C. Given either color, e forms a monochro-
matic 3-geodesic with two edges from C. By Lemma 1.2, the coloring contains a
monochromatic antipodal geodesic.

Thus we may assume that every 4-cycle has three edges of the same color.
Let C be a 4-cycle with three red edges. All eight edges incident to C' must be
blue to avoid a red 3-geodesic. Similarly, all eight edges incident to the 4-cycle
C' antipodal to C must be red. Now 4-cycles using no edges of C' or C’ have two
edges of each color, a contradiction. [

Lemma 2.3. For k > 5, every 2-edge-coloring of Q. contains a monochromatic
3-geodesic.

Proof. For k > 3, in a 2-edge-coloring every vertex is the center of some mono-
chromatic 2-geodesic. We may let (u, v, w) be a red 2-geodesic, as in Figure 3.
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To avoid red 3-geodesics, edges at u or w in other directions must be blue.
These edges form 2-geodesics, extending to blue 3-geodesics unless the edges at
their endpoints in other directions are red. Those red edges (extending from two
blue 2-geodesics) include geodesics in the original two directions, and they extend
by a third edge to form a red 3-geodesic, such as in the lower left of Figure 3. =
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Figure 3. Finding a monochromatic 3-geodesic in Q.

Theorem 2.4. FEvery antipodal edge-coloring of Qs has a monochromatic antipo-
dal geodesic.

Proof. View Q5 as four copies of (J3 in a 4-cycle. By Lemma 2.3, there is a
monochromatic 3-geodesic P, shown in red in the upper left ()3 in each part of
Figure 4. The antipodal 3-geodesic P’ in blue is in the lower right. By Lemma 1.2,
a monochromatic 4-geodesic suffices. Consider a 4-cycle C' through endpoints of
P and P’ and vertices s and ¢ not in P or P’. To avoid a monochromatic 4-
geodesic, edges of C must be colored oppositely from their incident edges on P
and P’, as in Figure 4. Consider the edges at s and ¢ in their copies of Q3.

Case 1. Two edges incident to t in its 3-cube have different colors. In the
3-cube containing s, either color on the edge e in the other direction completes a
monochromatic 4-geodesic.

Case 2. The three edges incident to t in its copy of Q3 have the same color.
By symmetry, we may assume that these edges are blue. By the same reasoning,
the three edges incident to s in its copy of (3 have the same color. If blue, then
we have a blue 4-geodesic. Hence they are red, as in Figure 5.

The edges at s antipodal to these are blue and lie in the copy of Q)3 containing
t. Any additional blue edge in this copy of Q3 would complete a blue antipodal
geodesic, so the remaining edges form a red 6-cycle, as shown. Finally, consider
the two edges a and b of Figure 5. If either is red, then we have a red 4-geodesic.
If they are both blue, then we have a blue 4-geodesic through &. [
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Figure 4. Case 1 and Case 2 for antipodal edge-colorings of Qs.
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Figure 5. Case 2 for antipodal edge-colorings of @5, continued.

3. THE 6-DIMENSIONAL CUBE

For clarity in discussing (Jg, we write the vertex names by collapsing six bits
to two octal digits, with each digit representing the binary triple given by its
binary expansion. Hence we view (Jg as consisting of eight copies of ()3 whose
vertex sets are constant in the last three coordinates (see Figure 6). We write
the edge joining ab and cd as ab:cd, extended to paths as ab:cd:ef:gh. Note that
ij = (7 —14)(7 — j), which facilitates locating antipodal edges.

Lemma 3.1. Every antipodal edge-coloring of Qg has a monochromatic 4-geodesic.

Proof. By Lemma 2.3, every such coloring ¢ has a monochromatic 3-geodesic P.
By symmetry, we may assume that P is red with endpoints 06 and 76 (crossing
the first three directions). If ¢ has no monochromatic 4-geodesic, then the edges
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incident to 06 and 76 in the last three directions are blue. In particular, 06:02
and 06:07 are blue, as in Figure 6.
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Figure 6. A partial antipodal edge-coloring of Q.

Since c is antipodal, P from 71 to 01 is blue, and the edges from its endpoints
in the last three directions are red. Thus 01:05 and 01:00 are red. By symmetry,
we may assume 02:00 is blue. Now 07:06:02:00 is a blue 3-geodesic. Thus the
edges from 00 in the first three directions are red. Now 20:00:01:05 is red, so
05:07 and 05:45 are blue, and 45:05:07:06:02 is a blue 4-geodesic. [

By Lemma 1.2, we only need to get from a monochromatic 4-geodesic to a
monochromatic 5-geodesic in order to find a monochromatic antipodal geodesic in
an antipodal edge-coloring of (Qg. We capture part of the argument in a technical
lemma in the hope that this will be useful for further work.

Lemma 3.2. If P is a monochromatic 4-geodesic in an antipodal edge-coloring c
of Qe having no monochromatic 5-geodesic, with endpoint v, then each neighbor
of v in a direction not crossed by P has five incident edges of the same color, red
at one and blue at the other.

Proof. Suppose otherwise. By symmetry, we may assume that P is red and
crosses the first four directions, with endpoints 02 and 76. We call edges in the
first four directions short edges; the others are long. Thus P has four short edges.
Since ¢ has no monochromatic 5-geodesic, the long edges incident to 76 and 02
are blue. Since c is antipodal, P from 01 to 75 is blue, and the long edges incident
to 01 and 75 are red, as in Figure 7. At this point the two colors are symmetric,
as are vertices 77, 74, 03 and 00. Letting v be 76, our focus is on the neighbors
77 and 74. Each has a long incident edge of each color.
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Figure 7. 4-geodesics not extending to 5-geodesics.

Claim 1. No three short edges of the same color in different directions are
incident to 77 and T4 (unless all three are at the same vertex).

Suppose otherwise. By symmetry, we may assume blue edges at 74 in direc-
tions 1 and 2 and a blue edge in direction 3 at 77; that is, 74:34, 74:54, and 77:67
are blue. They complete blue 4-geodesics 67:77:76:74:34 and 67:77:76:74:54. To
avoid blue 5-geodesics, the other short edges at 67 are red (to 27,47,63), as are
14:54:50 and 14:34:30. Hence the edges 30:10:50 antipodal to 47:67:27 are blue
(see Figure 8). We now consider cases based on the coloring of 34:24 and 54:44.

Figure 8. Setup for Claim 1 in Lemma 3.2.
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Case A. 34:24 or 54:44 is blue. These edges are in direction 3. No choice
has yet distinguished the first two directions (74:34 and 74:54 are in directions
1 and 2), so we may assume 34:24 is blue. Since 24:34:74:76:77 is blue, 04:24:20
and 57:77:73 are red, and their antipodal geodesics 73:53:57 and 20:00:04 are blue
(see Figure 9). Using arguments like those earlier, we list successive implications
leading to monochromatic 5-geodesics (and hence contradictions) in subcases.

VP
'
"
Figure 9. Case A in Lemma 3.2.
Subcase. 56:54 is red. Implications start from Figure 9.
‘ geodesic ‘ forces ‘
56:54:14:34:30 red 46:56:57 blue
46:56:57:53:73 blue 46:44 and 73:33 red, antipodally 04:44 blue
03:02:00:04:44 blue 44:54 red
46:44:54:14:34:30 red
Subcase. 56:54 is blue. Implications start from Figure 9.
geodesic forces
56:54:74:34:24 blue 20:24:25 and 52:56:57 red, antipodally 25:21:20 blue
25:21:20:30:10:50 not blue | 20:30 red
20:30:34:14:54 red 22:20 and 54:55 blue
25:24:04:14:54:50 not red | 04:14 blue
14:04:00:20:22 blue 14:15 red
15:14:34:30:20 red 20:60 and 17:15:55 blue
17:15:55:54:74 blue 74:70 red
S5T:77:75:74:70 red 70:60 blue
70:60:20:00:02:03 blue
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Case B. 34:24 and 54:44 are both red. Starting from Figure 8, we again list
implications leading to a monochromatic 5-geodesic (see Figure 10).

geodesic forces

24:34:14:54:50 red 52:50:51 blue

44:54:14:34:30 red 32:30:31 blue

32:30:10:50:51 blue 22:32:36 and 41:51:55 red, antipodally 36:26:22 blue
24:34:14:54 red 53:43:63:23 blue, antipodally

53:43:63:23:22:26 not blue | 22:23 red

54:74:34 blue 23:03:43 red, antipodally

36:32:22:23:03:43 red

.-"-:6\-

Figure 10. Case B in Lemma 3.2.

Claim 2. 74 and 77 do not have incident short edges with the same color in
different directions.

Suppose otherwise. We start again from Figure 7. By symmetry in color and
in the first four directions, we may assume that 74:54 in direction 2 and 77:67 in
direction 3 are blue. By Claim 1, 74:34 and 77:37 in direction 1 and 74:70 and
77:73 in direction 4 are red, which in turn requires 74:64 in direction 3 and 77:57
in direction 2 to be blue. Antipodally, 00:10, 00:20, 03:13, and 03:23 are all red
(see Figure 11).

Now 64:74:76:77:57 in blue forces 24:64:60 and 53:57:17 red (and 24:20:60
blue, antipodally). Symmetrically, 34:74:75:77:73 in red forces 14:34:24 and
63:73:53 blue (and 14:04:24 red, antipodally). We now have 4-geodesics from 14 to
60 in both colors using only short edges: 14:04:24:64:60 in red and 14:34:24:20:60
in blue. Hence either color on a long edge at 60 or 14 completes a monochromatic
5-geodesic, a contradiction.
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Figure 11. Claim 2 for Lemma 3.2.

Completion. Since there are four short edges incident to 77, some two of them
have the same color, which by symmetry we may assume is blue. By Claim 2, all
short edges at 74 are now red, and then also all short edges at 77 are blue. We
have now proved the statement of the lemma: the two neighbors of v via long
directions are 74 and 77; one has five incident edges in red, and the other has five
incident edge in blue. [

Theorem 3.3. Every antipodal edge-coloring of Q¢ has a monochromatic antipo-
dal geodesic.

Proof. By Lemma 1.2, it suffices to find a monochromatic 5-geodesic in such a
coloring ¢. Lemma 3.1 provides a monochromatic 4-geodesic P, which by sym-
metry we may assume is red with endpoints 02 and 76, crossing the first four
(“short”) directions.

Suppose that ¢ has no monochromatic 5-geodesic. By Lemma 3.2 (and sym-
metry) we may assume that the short edges at 74 are all red and those at 77 are
all blue. Antipodally, the short edges at 00 all red, and those at 03 are all blue.
Let T be the set of short edges at 74 and 00; they form two red stars. At present
there is no distinction among short directions. We consider two cases.

Case A. Some short edge incident to a leaf in T is red. By symmetry, we
may assume 04:14 is red. Antipodally, 73:63 is blue. The geodesic 74:76:77:73:63
is blue, so 43:63:23 must be red, and antipodally 34:14:54 is blue (see Figure 12).

Say that a vertex is red if it has five incident red edges; blue if it has five
incident blue edges. By Lemma 3.2, any neighbor of an endpoint of a monochro-
matic 4-geodesic R along the two directions not crossed by R is red or blue. Such
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Figure 12. Case A for Theorem 3.3.

vertices include 23 and 43 (neighboring 63 at the end of 74:76:77:73:63) and an-
tipodally 54 and 34 (neighboring 14 at the end of 03:01:00:04:14). Each of the
two pairs {23,43} and {54, 34} has one red vertex and one blue vertex.

Since the edge 04:14 we assumed red is in direction 3, still directions 1 and
2 remain symmetric. One of {43,23} has its solo color in direction 1, the other
in direction 2. Hence by symmetry we may say that 43 is blue and 23 is red.
Antipodally, 34 is red and 54 is blue.

Subcase. 51:53 is red. From 43 and 54 being blue and 23 and 34 being red,
we use that 34:24 is red and all of 03:43:47, 56:54:50, 44:54:56 are blue.

geodesic forces

00:02:03:43:47 blue 67:47:57 red

77:75:74:34:24 red 20:24:04 blue, antipodally 57:53 red
67:47:57:53:51 red 50:51:11 blue

56:54:50:51:11 blue 31:11:01 red

31:11:01:00:04 red 04:44 blue

20:24:04:44:54:56 blue

Subcase. 51:53 is blue. Consider the blue 3-geodesic 51:53:43:03 (using that
43 is blue). It extends to blue 4-geodesics in three ways, by adding 03:07, 03:23,
or 03:02. Avoiding blue 5-geodesics makes 02:22:23:27:07 red, putting two red
edges at both 22 and 27. Now applying Lemma 3.2 to 51:53:43:02:23 makes one
of {22,27} red and the other blue, a contradiction.
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Case B. All short edges incident to leaves of T are blue. In this case all edges
of the copy of Q4 whose vertex names end 0 or 4 that are not incident to 74
or 00 are blue, as in Figure 13, where for clarity the six blue edges in direction
4 (vertical) are not drawn in the figure. To avoid a blue 5-geodesic, all edges
leaving this Q4 must be red except the one blue edge shown at each of 74 and 00.

Figure 13. Case B for Theorem 3.3.

Similarly, all edges of the copy of Q4 whose vertex names end 3 or 7 that are
not incident to 03 or 77 are red (again six vertical red edges are not drawn), and
all edges leaving it are blue except the red edge shown at each of 03 and 77.

We list the remaining implications to produce a monochromatic 5-geodesic
in Case B.

‘ geodesic ‘ forces ‘
55:54:74:64:66 red 62:66:26 blue
71:70:74:34:36 red 26:36:16 blue

62:66:26:36:16:17 blue
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