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Abstract

An eternal m-secure set of a graph G = (V, E) is a set Sp C V that can
defend against any sequence of single-vertex attacks by means of multiple
guard shifts along the edges of G. The eternal m-security number o,,(G) is
the minimum cardinality of an eternal m-secure set in G. The eternal m-
security bondage number b,, (G) of a graph G is the minimum cardinality
of a set of edges of G whose removal from G increases the eternal m-security
number of G. In this paper, we study properties of the eternal m-security
bondage number. In particular, we present some upper bounds on the eter-
nal m-security bondage number in terms of eternal m-security number and
edge connectivity number, and we show that the eternal m-security bondage

number of trees is at most 2 and we classify all trees attaining this bound.
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1. INTRODUCTION

Throughout this paper, G is a simple connected graph with vertex set V = V(GQG)
and edge set £ = E(G) and of order n and size m. For every vertex v € V,
the open neighborhood of v is the set N(v) = {u € V(G) : wv € E(G)} and
the closed neighborhood of v is the set N[v] = N(v) U {v}. The degree deg(v)
of v is the number of edges incident with v or, equivalently, deg(v) = |N(v)].
The degree sequence of G is (deg(vy),deg(va),...,deg(vy,)), typically written in
nondecreasing order. The minimum and maximum degree of vertices in V(G) are
denoted by §(G) and A(G), respectively. Let E(A, B) denote the set of all edges
with one endpoint in A and the other endpoint in B, e(A, B) be the cardinality
of E(A,B), and E, denote the set of edges incident to u. A leaf of a graph G
is a vertex of degree 1 and a support vertex of G is a vertex adjacent to a leaf.
A support vertex is called strong support vertex if it is adjacent to at least two
leaves. The distance between two vertices x and y is denoted by d(z,y) and the
diameter of G is denoted by diam(G).

A set S of vertices in a graph G is called a dominating set if every vertex in V'
is either an element of S or is adjacent to an element of S. The domination number
of G, denoted by 7(G), is the minimum cardinality of a dominating set of G. A
v(G)-set is a dominating set of G of size v(G). For a more thorough treatment
of domination parameters and for terminology not presented here see [5,11]. The
bondage number b(G) of a graph G is the minimum cardinality of a set of edges
of G whose removal from G increases the domination number of G. The bondage
number was introduced by Fink et al. [2] and was studied by several authors, for
example [4,6,8-10]. For more information on this topic we refer the reader to the
survey article by Xu [12].

An eternal 1-secure set of a graph G is a set Sy C V that can defend against
any sequence of single-vertex attacks by means of single-guard shifts along the
edges of G. That is, for any k and any sequence vy, vo, ..., v, of vertices, there
exists a sequence of guards uj,use,...,u; with u; € S;—1 and either u; = v; or
u;v; € E, such that each set S; = (S;—1—{u;})U{v;} is a dominating set. It follows
that each S; can be chosen to be an eternal 1-secure set. The eternal 1-security
number of G, denoted by o1(G), is the minimum cardinality of an eternal 1-secure
set. The eternal 1-security number was introduced by Burger et al. [1] using the
notation v.,. In order to reduce the number of guards needed in an eternal secure
set, Goddard et al. [3] considered allowing more guards to move. Suppose that
in responding to each attack, every guard may shift along an incident edge. The
eternal m-security number c,,(G) is the minimum number of guards to handle
an arbitrary sequence of single attacks using multiple guard shifts. A suitable
placement of the guards is called an eternal m-secure set (EmSS). An EmSS of
size 0,,(G) is called a o, (G)-set.
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The eternal m-security bondage number b,, (G) of a graph G is the minimum
cardinality of a set of edges of G whose removal from G increases the eternal m-
security number of G. Since in the study of eternal m-security bondage number
the assumption 0,,(G) < n is necessary, we always assume that when we discuss
bs,, (G), all graphs involved satisfy o,,,(G) < n, i.e., all graphs are nonempty. An
edge set B with 0,,,(G — B) > 0,,(G) is called the eternal m-secure bondage set.
A b, (G)-set is an eternal m-secure bondage set of G of size by, (G).

In this paper, we initiate the study of the eternal m-security bondage number
in graphs and we establish some bounds on the eternal m-security bondage num-
ber in terms of vertex degree, eternal m-security number and edge connectivity
number. We also show that the eternal m-security bondage number of trees is at
most 2 and we characterize all trees attaining this bound.

2. PRELIMINARIES AND EXACT VALUES

The proof of the following four results can be found in [3].
Proposition A. For any graph G, v(G) < o (G).

A set P C V(Q) is called a k-packing if d(u,v) > k for each pair of vertices
u,v € P, u # v. The k-packing number ax(G) is the cardinality of a maximum
k-packing in G. Note that a1 (G) = a(G) is the independence number of G.

Proposition B. For any graph G, 0,(G) < a(G).

Proposition C. 1. o, (K,) =1.
2. op(Krs) =2 forr,s >1,r+s>3.
3. om(Py) = [%].
4. om(Cr) = [%].

Proposition D. For any graph G, 0,(G) > (diam(G) + 1)/2.

Next results are immediate consequences of Propositions C and D.
Corollary 1. For any graph G, 0, (G) = 1 if and only if G ~ K,,.
Corollary 2. For n > 2, we have b,,, (K,) = 1.

Corollary 3. For n > 5, b, (Cy,) = 1.

1 ifn iseven,

Corollary 4. For n >3, b,, (P,) = { 9 if n is odd

Proposition E [7]. For any graph G, as(G) < ~(G).
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Corollary 5. For any graph G, az(G) < op(G).

Observation 6. Let G be a graph and H be a spanning subgraph of G such that
om(H) =0n(G). If K = E(G)\ E(H), then by, (H) < by, (G) < b,,, (H) + |K].

Proof. Let F be a b,,,(H)-set. Then 0,,,(G) = o (H) < opp(H — F) = 0 (G —
(K UF)), which implies that

bo, (G) < [KUF| = K|+ |F| = b, (H) + K.

Let now T be a b,,, (G)-set. Then we have o, (H) = 0n(G) < opn(G—T) <
om(H —T). Thus b,,,(H) < |T| = bs,,(G) and the proof is complete. |

Proposition 7. If G contains a vertex adjacent to at least three leaves, then

b, (G) = 1.

Proof. Let u be adjacent to the leaves uy, usz, u3. Consider the graph G’ obtained
from G by deleting the edge uu;. Let S be a 0y, (G’)-set which contains u (we
may assume that S is a response to an attack on w). Obviously u; € S and
S\ {u1} is an EmSS of G and so 0,,(G) < 01, (G') — 1. Hence, by, (G)=1. =

Next we determine the eternal m-security bondage number of complete bi-
partite graphs.

Proposition 8. Form >n > 2, by, (Kpnn) = 2.

Proof. By Proposition C, o, (K ) = 2. If m = n = 2, then clearly b,,, (K22)
= 2. Assume that m > 3. It is not hard to see that for any edge e = uwv € E(G),
the set S = {u,v} is an EmSS of Ky, ,, — e and s0 by, (Kynn) > 2.

Now we show that by, (K, ) < 2. Suppose that X = {ui,...,un} and
Y = {vi,...,v,} be the partite sets of K,,, and let F' = {viu1,vius}. Let S
be a o (Km,n — F)-set which contains u;. To dominate v, we have vy € S or
u; € S for some ¢ > 3. If v; € S, then wug is not dominated by {u1,v1} and so
|S| > 3. Let vy ¢ S. Assume without loss of generality that uz € S. Then uy is
not dominated by {u1,u3} and this implies that |S| > 3. Hence, by, (K pn) < 2
and the proof is complete. [

3. BOUNDS ON THE ETERNAL m-SECURITY BONDAGE NUMBER

In this section, we present various bounds on the eternal m-security bondage
number. We start with an observation.

Observation 9. Let G be a connected graph. If oy (G —v) > 0 (G) for some
vertex v € V(G), then b,,, (G) < deg(v).
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Proof. First, note that 0,,(G — Ey) > 0 (G). If 0,,(G — Ey) > 0, (G), then we
are done. Suppose 0,,,(G — E,) = 0, (G) and let S be a 0,,,(G — E,)-set. Clearly,
ve Sand S\ {v}is an EmSS of G — v. It follows that

om(G — Ey) — 1> 0p(G —v) > on(G),
and the proof is complete. [

Theorem 10. Let G be a connected graph and uwv € E(G). Then
bo,, (G) < deg(u) + deg(v) — 1 — |N(u) N N(v)].

Proof. Let X be the set consisting of all edges incident with v and v with
exception of the edges E(v, N(u)). Then |X| = deg(u) 4+ deg(v) — 1 — [N(u) N
N(v)|, u is an isolated vertex in G — X and v is only adjacent to the vertices of
Ng(u) N Ng(v). Let S be a 0, (G — X )-set which contains v (we may assume a
response to an attack on v). It is easy to verify that S\ {u} is an EmSS of G
and hence 0, (G) < 0,,(G — X ) — 1. This completes the proof. |

Corollary 11. For any nonempty graph G, b, (G) < §(G) + A(G) — 1.

Theorem 12. Let G be a connected graph with degree sequence (dy,dsa, ..., dy,).
Then
bam (G) < da + da+1 - 17

where « is the independence number of G.

Proof. Let V(G) = {v1,va,...,v,} and let deg(v;) = d; for each 4. Since the set
{v1,...,va41} is not independent, there is an edge v;v; for some 1 < i < j < a+1.
It follows from Theorem 10 that

o (G) < deg(vy) + deg(v) — 1 < deg(va) + deg(vast) — 1,
and the proof is complete. [

Theorem 13. Let G be a connected graph and w,v be two vertices of G with
d(u,v) =2. Then
bo,, (G) < deg(u) + deg(v).

Proof. Let w be a common neighbor of v and v and let X be the set consisting
of all edges incident with u and v. Then |X| = deg(u) + deg(v) and wu,v are
isolated vertices in G — X. Let S be a 0,,(G — X)-set which contains w (we
may assume a response to an attack on w). Obviously u,v € S and we can
easily check that S\ {u} is an EmSS of G and so 0,,(G) < 0, (G — | X]). Thus
bo,, (G) < | X| = deg(u) + deg(v) as desired. |
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Corollary 14. Let G be a connected graph of order m with degree sequence
(deg(v1), deg(va), . . deg(vn)). Then by, (G) < deg(vay) + deg(tags1).

Proof. Clearly, the set {v1,...,Vap+1} is not a 2-packing. Hence, d(v;,v;) < 2
for some 1 <14 # j < ag + 1 and the result follows by Theorems 10 and 13. [

Next result is an immediate consequence of Corollaries 5 and 14.

Corollary 15. If G is a connected graph with degree sequence (deg(vy), deg(ve),
..., deg(vy)), then by, (G) < deg(vs,,) + d(Voy,+1)-

Theorem 16. For any connected graph G, bs,, (G) < (0m(G) —a2(G) +1)A(G).

Proof. By Corollary 5, as(G) < op(G). Let s = 0,(G) — a2(G) + 1 and
U ={ui,...,ua,} be a maximum 2-packing in G. Clearly, U # V(G). Let T be
a subset of V(G)—U of size s and let G’ be the graph obtained from G by removing
all edges incident to the vertices in T'. Obviously, |E(G)| — |E(G")| < As. Now
we have

om(G') > az(G") > as(G)+5 = az(G)+ 0 (G) —as(G)+1 = 0 (G)+1 > 0, (G)
and the proof is complete. [

The next result is an immediate consequence of Theorem 16.
Corollary 17. If 0,,(G) = a2(G), then b, (G) < A(G).

The edge connectivity number «/(G) of a connected graph G is the minimum
number of edges that have to be removed out of G to decompose G in two compo-
nents. The inequality #'(G) < §(G) is immediate. Next result is an improvement
of Corollary 11.

Theorem 18. If G is a nontrivial connected graph, then
bs,, (G) < A(G) + K (G) — 1.

Proof. Let K be a set of edges such that x'(G) = |K| and G — K is disconnected.
Assume that G; and Go are the components of G — K. It is easy to see that
om(G) < on(G1) + om(Ga) = 0m(G — K). If 0,(G) < on(G1) + om(Ga),
then b,,, (G) < £'(G) and we are done. Let 0,,(G) = on(G1) + om(G2). We
claim that there is a vertex v € V(G;) such that v is incident to an edge of K and
0m(Gi— Ey) > 0,(G;) for some i. In this case we have 0,,,(G— K — E,) > o, (G),
which implies that

bo,, (G) < deg(v) + K'(G) — 1 < A(G) + K (G) — 1.
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Assume, to the contrary, that o,,,(G1 — Ey) = 0, (G1) for each vertex v € V(Gq)
incident to an edge of K and 0,,(G2 — Ey) = 0., (G2) for every vertex v € V(Ga)
incident to an edge of K. Let ujus € K where u; € V(G;) for i = 1,2. Let S; be
a om(G; — By, )-set for i = 1,2. Clearly, u; € S1 and ug € Sa. It is easy to verify
that S = 51 US2 \ {u1} is an eternal m-secure set of G which implies that

om(G) <o (G1 — Ey) + 0 (G2 — Ey) — 1 = 05 (G1) + 0 (G2) — 1 = 0, (G) — 1,
a contradiction. This completes the proof. [
Proposition 19. If 0,,(G) = 2, then b,, (G) < 6(G) + 1.

Proof. Let u € V(G) be a vertex of minimum degree. If 0,,(G — u) > 0, (G),
then the result follows by Observation 9. Let 0, (G — u) < 0y (G) — 1. Then
obviously 0,,(G —u) = 1 and so G — u is a complete graph. By Corollary 2, we
have b, (G) < b,,, (G —u) + 0(G) = §(G) + 1. u

4. COMPLETE MULTIPARTITE GRAPHS

In this section we determine the eternal m-security bondage number of complete
multipartite graphs yielding that the eternal m-security bondage number can be
arbitrary large.

Theorem 20. Lett > 3 and G = Ky, n,....n, be the complete t-partite graph with

Ny, N2, ..., 1N > 2. Then bgm(G) - {w—‘ '

Proof. Let X1, Xo,...,X; be the partite sets of G and let X; = {IL‘Zl, e ,x}zz}
for 1 <1i <t. Clearly 0,,(G) = 2. Assume

: t—1
X = {x%x{,x%x?“ 12<j<t 1<s< 2}

if ¢ is odd and

j t—2
X = {x%x{,x%sxfﬁl,x%xé 12<j<t 1<s< 2}
when ¢ is even. Obviously, | X| = [@1 It is easy to see that for any eternal
m-secure set S of G— X containing x1, we have |S| > 3 and so b,,, (G) < [@1 .
Now we show that b, (G) > {@—‘ . Let F be a set of edges of size at most
20|~ 1 and let Gy = G~ F.
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Claim. For each x € V(Gs), there exists a vertex x’ such that Ng,[x]UNg,[2'] =
V(Ga).

Proof. Assume, to the contrary, that there exists a vertex = € V(G2) such that
Ng,[x] U Ng,[v] # V(G2) for each v € V(G2). Without loss of generality we may
assume that x = m% For 2 <i<t, let F; = FnN {x%x; 1 <5< nl} Let first
F; = () for each 2 < i < t. Since Ng,[r1] U Ng,[v] # V(G2) for each v € V(Gy),
we have :1:}1) € F for every v € V(G2) \ X1 and for some 2 < j < ny. This implies
that |F| > |V(G2) \ X1| > 2t — 2, a contradiction. Assume that F; # ) for some
2 < ¢ <t. We consider two cases.

Case 1. |F;| < 1 for each 2 < i < ¢. Let I C {2,...,t} be the set of all
elements such that |F;| = 1 for each ¢ € I and let J ={2,...,t}\ I. Without loss
of generality, assume that {x%xﬁ el } C F. We estimate the number of edges
in F as follows. Since Ng, [#1] UNg, [2}] # V(Ga) for i € I, there exists a vertex
2 such that z'z%, 2ol ¢ FE(Gy). Obviously, 2 ¢ X; U (UjeJXj)' If 2 € X,
then E; = {z}af,2i2'} C F, and if 2 € X, for some ¢ € I — {i}, then 2* = {
and E; = {ziz}, zizf, z}z{} C F. Since N, (1] U NG2 [3:3] #V(Gy) for j € J
and 1 < s < nj, there exists a vertex 2! such that 2l Zsl’l ¢ FE(G2). We note
that

(1) Je X u (Uiel XZ->

forjeJand1<s<nJ Ifzs €X1,thenxszs EF\(UZGI ) andlfzseX
for some i € I, then zJ = xl and x3z) € F'\ (Uzel E) again. Since n; > 2, we
conclude that ‘Fﬂ {zsxs 1 <s< nj}‘ > 2 for each j € J. By (1) we have
{zﬁxi 1 <s< nj} N {zglxgl c1<s< nj/} = () for j # j'. Hence, we have

|F|

Y

Uier Bl + Ujes (F {eal s 1< 5 <.}

W217] > [0+ 1)) = [252],

v

which is a contradiction.

Case 2. |F;| > 2 for some 2 < i < t. Let I C {2,...,t} be the set of all
elements 7 such that |F;| > 2, J C {2,...,t} be the set of all elements j such that
|Fj| =1and R = {2,...,t} \ (L UJ). Without loss of generality, assume that
{m%:ﬂ’l,m%ajé,x%w{ :i€1,jeJ} CF. We estimate the number of edges in F as
follows. Obviously, | U,c; Fi| > 2|I|. Since Ng, [1] U Ng, [:U]l] # V(G2) for each
j € J, there exists a vertex 2/ such that 2/, z/z! ¢ E(G2). Obviously, 2 ¢
X; U (UTGRX ) If 27 € X;, for some i € I, then E; = {xlxl,xlzﬁ} C F, and if
2 € X, for some £ € J — {j}, then 2/ = 2% and E; = {xlxl,ajle,xlxl} C F.
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As in Case 1, we can see that ‘F N {zgxg 11 <s< nr}‘ > 2 for each r € R, and
{z;“xgzlgsgnr}ﬂ{z;’/x;, :1<s<ny}=0forr#r.
Hence, we have

Bl 2 Uier il + Uses Bi| + |Ujes (F {125 <))
3|J 3(t—1
> 21+ B+ 20R| > [3(1] + 1] + |R))] = [252],
which is a contradiction. (|

Now, for each v € V(G2), let x, € V(G2) be a vertex such that Ng,[v] U
Ng,[xy] = V(G2). We show that the set S, = {v,x,} is an EmSS of Ga. Obvi-
ously, S, is a dominating set of G3. Consider an attack on a vertex u of V(Ga2).
Then one of v or x, is adjacent to u. Let uv € E(G2). If z,, is adjacent to x,, then
we can shift guards from v and z, to u and z,, respectively. Let z,z, ¢ E(G2).
Then z,v,uzx, € F(G2) and we can shift guards from v and z, to z, and u,
respectively. Therefore, 0,,,(G2) = 2 and this implies that b,,,(G) > [@W

Thus b, (G) = {@—‘ and the proof is complete. |

5. TREES

In this section, we first prove that for any nontrivial tree 7', b,,, (T') < 2 and then
we characterize all trees attaining this bound.

Theorem 21. For any tree T of order n > 2, b, (T) < 2.

Proof. 1f diam(7T) < 2, then T is a star and the result is immediate. Let
diam(7) > 3. Suppose P := vjvy---vi is a diametral path in 7" and root T
at vi. Obviously, k > 4. If deg(v2) = 2, then b,,,(T) < 2 by Theorem 10. Let
deg(v2) > 3. Then vy is adjacent to a leaf v other than v;. Since d(vy,v') = 2,
Theorem 13 implies that b, (T) < 2. This completes the proof. |

Next, we provide a constructive characterization of all trees attaining the
bound of Theorem 21. For this purpose, we describe a procedure to build a
family ¥ of trees as follows. Let T be the family of trees such that a path P;
is a tree in T and if T is a tree in ¥, then the tree T obtained from T by the
following four operations which extend the tree 1" by attaching a tree to a vertex
v € V(T), called an attacher, is also a tree in T (see Figure 1).

Operation T;. If v € V(T), then T; adds a path vzy to T

Operation T,. If v € V(T'), then Ty adds a star K; 3 with central vertex y and
leaves x,w, z and joins x to v.
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w ’ xl

Figure 1. The four operations.

Z2

Operation T3. If v € V(7)) is a leaf, then T3 adds a pendant edge vw and a
star K12 with central vertex x and leaves y, z and joins x to v.

Operation T4. If v € V(T) is a leaf, then T4 adds two new stars K o centered
at 1 and x9, and joins v to x; and x».

We start with some lemmas.

Lemma 22. Let G be a graph and v € V(G). If G’ is the graph obtained
from G by attaching a path vxy, then 0,,(G') = 0,(G) + 1. In particular,
bo'm (G/) S ba"m (G)

Proof. Clearly, adding x to any o,,(G)-set yields an EmSS of G’ and so 0,,,(G’) <
om(G)+1. Let now S’ be a 0,,,(G’)-set containing y (we may assume a response to
an attack on y). If z € S’, then the set (S"\ {z,y})U{w}, where w € Ng[v]\ 5, is
an EmSS of G. If x ¢ S’, then S\ {y} is an EmSS of G. Thus 0,,,(G) < 0, (G")—1
and so 0, (G') = 0, (G) + 1. m

Lemma 23. Let G be a graph and v € V(G). If G’ is the graph obtained from
G by adding a star K 3 with central vertex y and leaves z, w, z and joining z to
v, then 0,,(G") = 0/ (G) + 2. In particular, b,,, (G') < b,,, (G).

Proof. Clearly, adding = and y to any o,,(G)-set yields an EmSS of G’ and so
om(G') < 0(G) + 2. Suppose now S’ is a 0, (G’)-set containing z (we may
assume a response to an attack on z). Since S’ is a dominating set, we must have
|S'N{y,w}| > 1. If x € S’ then the set (S"\{z,y, z,w})U{u}, where u € Ng[v]\S’
is an EmSS of G, and if x ¢ S’ then the set S"\ {z,y, z,w} is an EmSS of G.
Hence 0,,(G) < 01, (G’) — 2 and this implies that 0,,,(G’") = o, (G) + 2. |

Lemma 24. Let G be a graph and let v € V(G). If G’ is the graph obtained
from G by adding a pendant edge vw and a star Kp2 with central vertex x
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and leaves y, z and joining x to v, then 0,,(G’) = 0,,(G) + 2. In particular,
bUm (G/) S ba'm (G)

Proof. Clearly, adding z,y to any o,,(G)-set containing v yields an EmSS of G’
and so 0, (G") < 0 (G) + 2. Assume now that S’ is a 0,,(G’)-set. As in the
proof of Lemma 23, we may assume that y € S" and |S" N {x, z}| > 1. Since S’ is
a dominating set, we must have |S" N {v,w}| > 1. If |S’ N {x,y, 2, w}| > 3, then
let S” = (S"\{z,y, z,w})U{u} where u € Ng[v]\S’, and if |S"N{z,y, z,w}| = 2,
then let S” = 5"\ {z,y, z,w}. Clearly, S” is an EmSS of G and hence o,,,(G) <
om(G') — 2. Thus 0,,(G') = o (G) + 2. u

Lemma 25. Let G be a graph and let v € V(G). If G’ is the graph obtained
from G by adding two new stars Ko centered at z1,x2 and joining v to 1, x2,
then 0,,(G") = 0,,(G) 4 3. In particular, b,, (G') < b,, (G).

Proof. Let y;, z; be the leaves adjacent to x; for ¢ = 1, 2. Clearly, adding =1, z2, y1
to any o,,(G)-set containing v yields an EmSS of G" and so 6,,(G’) < 0, (G) + 3.
Let now S’ be a 0,,(G’)-set. As above we may assume that y; € S’, [S' N
{z1,21}] > 1 and |S"N{x2, y2, 22} > 1. It is easy to see that | S’ N{xa, y2, 22, v}| >
2. If |S" N {x2,y2, 22}| = 2, then let " = (5" — {z1,y1, 21, T2, Y2, 22}) U{u} where
u € Ng[v]\S’, and if |S'N{z2, y2, 22}| = 1, then let S” = S"\{x1, 91, 21, T2, Y2, 22}
Clearly, S” is an EmSS of G and hence 0,,(G) < 0,,(G") — 3. Thus 0, (G') =
om(G) + 3. |

Lemma 26. Let T € T and u € V(T). If T is a tree obtained from T by adding
a pendant edge uu/, then o, (T") = 0 (T).

Proof. Let T’ be a tree obtained from T by adding the pendant edge wu’. If
S is a oy, (T")-set, then let S" = S if v/ ¢ S and S’ = (S — {v'}) U {w}, where
w € Np[u]\S, when v’ € S. Clearly, S is an EmSS for G and so o, (T') < o (T7).

Now we show that 0,,(T") < 0,,(T). Let P3 = vivous and let T be ob-
tained from P3 by successive operations T',...,T™, respectively, where T' €
{%1,%9,%3, %4} for 1 <i < m,if m >1, and T = Ps if m = 0. The proof is by
induction on m. If m = 0, then clearly the statement is true. Assume m > 1 and
that the statement holds for all trees which are obtained from P3 by applying at
most m — 1 operations. Suppose T),—1 is a tree obtained by applying the first
m — 1 operations ¥',...,T™ ! and let T be obtained from T},_; by adding a
new part to the attacher v. Assume that 7 _; is obtained from T, by adding
a pendant edge uu’ when u € V(T,,—1). We consider four cases.

Case 1. ™ = %1. Then T is obtained from T, 1 by attaching a path vzy
tov € V(Tin—1). lf u € V(T),—1), then by the inductive hypothesis, ,,(T,—1) =
om(T),_1) and by Lemma 22 we have 0,,,(T") = 0, (T). Suppose u € {z,y}. Let
T = T' — {y,u'}. Then, obviously, T* is obtained from T,,_; by adding the
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pendant edge zv. By the inductive hypothesis, 0., (T*) = 0y, (Tin—1). Let S be a
om(T*)-set containing z. Then S U {y} is an EmSS of 7" and by Lemma 22 we
have

om(T") < op(T*) +1 = 0 (Trn—1) + 1 = o (T).

Case 2. €™ = %5. Then T is obtained from T),_1 by adding a star K3
with central vertex y and leaves x,w,z and joining = to v. If u € V(T,,-1),
then the result follows from the induction hypothesis and Lemma 23. Assume
that v € {z,y,z,w}. Let T* =T — {y, z,w}. By the induction hypothesis, we
have 0,,(T*) = o (Tin—1). Let S be a 0y, (T%)-set containing x. Then the set
SU{y,z} if u # w and the set S U {y,w} if u = w, is an EmSS of 7" and so
om(T") < o (T*) + 2. By Lemma 23, we obtain

om(T") < o (T*) +2 = 0 (Trn-1) + 2 = o (T).

Case 3. ¥ = 3. Then T is obtained from T),_1 by attaching a pendant
edge vw at v and adding a star Kj 2 with central vertex x and leaves y, z and
joining x to v. If u € V(T},—1), then we deduce from the induction hypothesis
and Lemma 24 that 0,,(T") = 0, (T). If uw = x or u = y (the case u = z is
similar), then let T* = T" — {u/, x,y, 2}. Obviously, T* is obtained from T,
by adding the pendant edge vw at v. By the induction hypothesis, we have
Om(T*) = 0 (Ti—1). Clearly, adding =,y to any o, (T7)-set yields an EmSS of
T’ and so

om(T") < o (T*) +2 = 00 (Trn—1) + 2 = o (T).

If w = w, then let T* =T — {u/,z,y,z}. Obviously, T* is obtained from T,
by adding the pendant edge vw at v. By the inductive hypothesis, o, (T*) =
Om(Tm—1). Let S be a oy, (T7)-set containing w. Then S U {v,z} if v ¢ S and
Su{z,y}ifve S, is an EmSS of T" and so

om(T") < o (T*) + 2 = 0 (Trn-1) + 2 = o (T).

Case 4. ¥ = T4. Then T is obtained from 7;,_1 by adding two stars Ko
with central vertices z1 and x2 and joining 1,22 to v € V(T ,,—1). Let y;, 2; be
the leaves adjacent to z; for i = 1,2. If u € V(T},—1), then the result follows from
the induction hypothesis and Lemma 25. If u = x; (the case u = x3 is similar),
then adding 1, y1, 22 to any o, (Ty,—1)-set containing v yields an EmSS of 7"
and we deduce from Lemma 25 that

om(T") < om(Tim—1) + 3 = on(T).

Assume that u = y; (the cases u = z1,u = y2,u = 29 are similar). Let T =
T — {x1,11, 21,4, y2, 22}. Obviously, T* is obtained from T,,_; by adding pen-
dant edge vxa at v. By the inductive hypothesis, we have o, (T*) = o (Tn—1)-
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Clearly, adding x1, y1, y2 to any o, (T*)-set containing x5, yields an EmSS of T’
and this implies that

om(T) < o (T*) + 3 = 030 (Tn—1) + 3 = o (T).
Hence 0, (T") < 04, (T). Thus 6,,(T") = 0, (T') and the proof is complete. |
Theorem 27. If T € ¥, then b,,, (T) = 2.

Proof. Let T € ¥, e € E(T) and T" = T — e. Clearly 0,,,(T") > 0., (T). Now
we show that 0,,(T") < 0, (T). Let P3 := vjvovsg and let T be obtained from
P3 by successive operations T!,... T™, respectively, where T° € {T1, T2, T3, %4}
forl <t <mifm>1and T = P3 if m = 0. The proof is by induction
on m. If m = 0, then the statement is true by Corollary 4. Assume m > 1
and that the statement holds for all trees obtained from P3 by applying at most
m — 1 operations. Suppose T,,_1 is a tree obtained by applying the first m — 1
operations ', ..., T L. We consider four cases.

Case 1. €™ = %;. Then T is obtained from T,,_; by attaching a path vzy
at v € V(Ty—1). If e € E(T),—1), then we deduce from the induction hypothesis
and Lemma 22 that

om(T") = o (Trn—1 — €) + 1 = 0 (Trn—1) + 1 = o (T).

If e = vz, then clearly 6,,(T") = o (Tin—1) + 1 = 0 (T). Assume that e = zy.
Let T* = T" — {y}. Then T* is obtained from T},_1 by adding a pendant path
vz at v. Clearly 0,,,(T") = 0, (T*) + 1. Tt follows from Lemmas 26 and 22 that

on(T) = o (T*) + 1 = 00 (Tn—1) + 1 = o (T).

Case 2. " = To. Then T is obtained from T),,_; by adding a star K 3 with
central vertex y and leaves x,w, z and joining = to v. If e € E(T,,—1), then by
the inductive hypothesis and Lemma 23 we have

om(T") = o (Trn—1 — €) + 2 = o (Trn-1) + 2 = o (T).
If e = vz, then clearly 0, (T") = om(Tim-1) + 2 = on(T). If e = zy, then
let T* =T — {y,z,w}. By Lemma 26, we have 0,,,(T*) = 0,,(T}5,—1). Clearly
om(T") = o (T*) + 2 and by Lemma 23 we have
om(T)) = o (T*) + 2 = 0 (Trn—1) + 2 = o (T).

Assume that e = yz. Let T* = T" — {z,w}. Then T* is obtained from T,,_1 by
Operation T} and so T € T and 0,,(T*) = 0 (T1n—1)+1. By Lemma 26, we have
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Om(T* + yw) = o, (T*). Now it is easy to check that 0, (T") < o (T* + yw) + 1
and by Lemma 23 we have

om(T) < om(T*) +1 = 0m(Tin-1) + 2 = omn(T).

Case 3. ™ = T3. Then T is obtained from T,,_1 by adding a pendant edge
vw at aleaf v € V(T),—1) and adding a star K o with central vertex x and leaves
Y,z and joining x to v. If e € E(T},—1), then we conclude from the induction
hypothesis and Lemma 24 that

om(T") = o (Trn—1 — €) +2 = o (Trn—1) + 2 = o (T).

If e = vw, then let T* = T — {y,z,w}. Then we have 0,,(T*) = o (Tm-1)
by Lemma 26. On the other hand, adding y,w to any o,,(T%)-set containing x,
yields an EmSS of T" and we deduce from Lemma 24 that

om(T) < o (T*) + 2 = 030 (Tin—1) + 2 = o (T).

If e € {zv,xy,x2}, then let T* =T — {x,y,z}. Then T* is obtained from T, 1
by attaching a pendant edge vw. By Lemma 26, we have 0,,(T™) = o (Trn—1)-
On the other hand, adding z,y to any o,,(T%)-set yields an EmSS of 7" and it
follows from Lemma 24 that

om(T") < o (T*) +2 = 00 (Trn—1) + 2 = o (T).

Case 4. "™ = %4. Then T is obtained from T,,—; by adding two stars
K12 with central vertices x; and z2 and joining 1,22 to a leaf v. Let y;, 2; be
the leaves adjacent to x; for i = 1,2. If e € E(T},—1), then by the inductive
hypothesis and Lemma 25 we have

om(T") = o (Tin—1 —€) + 3 = om(Trn-1) + 3 = o (T).

If e = zyv or e = x1y1, then let T* = T' — {x1,y1,21,y2,22}. Then T* is
obtained from T,,_1 by attaching a pendant edge vxy at v. By Lemma 26, we
have 0,,,(T*) = 0y (Tin—1). On the other hand, adding x1, y1,y2 to any oy, (T™)-
set containing xo yields an EmSS of 7" and it follows from Lemma 25 that

om(T) < om(T*) + 3 = 0 (Tin—1) + 3 = om(T).

In the other cases, we can see that o, (T") < 0,,(T) as above. Hence o,,,(T") <
om(T). Thus 6., (T") = 0, (T') and this implies that b,,, (T') > 2. Now the result
follows from Theorem 21. ]

Now we are ready to prove the main theorem of this section.
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Theorem 28. Let T be a tree of order n > 3. Then b,,, (T') = 2 if and only if
Tec%.

Proof. According to Theorem 27, we only need to prove the necessity. We
proceed by the induction on n. If n = 3, then the result is trivial. Assume that
n > 4 and the statement holds for all trees T of order less than n. Let T be a
tree of order n with b,,, (T') = 2. Since by,, (K1,—1) = 1, we have diam(T") > 3.
Suppose P := vy ---vg is a diametral path in 7" such that deg(vy) is as small
as possible and root T at v. If deg(ve) = 2, then let T/ = T — {v1,v2}. By
Lemma 22, we have 0,,(T) = 01, (T") + 1 and b,,,(T") = 2. It follows from the
induction hypothesis that 77 € €. Now T can be obtained from 7" by Operation
%1 and hence T' € T. Let deg(ve) > 3. We conclude from Proposition 7 that
deg(ve) = 3. Let w # v; be a leaf adjacent to ve. If deg(vs) = 2, then let
T' = T — {v1,v2,v3,w}. By Lemma 23, we have 0,,(T) = 0, (T") + 2 and
bs,, (T') = 2. By the induction hypothesis, we obtain 77 € ¥. Now T can be
obtained from 7" by Operation T9 and so T' € T. Let deg(vs) > 3. We consider
the following cases.

Case 1. There exists a path vszy in T such that x & {ve,v4}. By the choice
of diametral path and Proposition 7, we have deg(x) = 3. If v3 is a support
vertex and w is a leaf adjacent to vs, then it is not hard to see that deleting the
edge vsu increases the eternal m-security number which leads to a contradiction.
Suppose v3 is not a support vertex. If vs is adjacent to a support vertex w other
than x,v9,v4, then as above we may assume that deg(w) = 3. It is easy to see
that deleting the edge vsw increases the eternal m-security number which leads
to a contradiction. Hence, deg(vs) = 3. Let T" =T — {v1, v2, w, z,y, 2} where y
and z are the leaves adjacent to z. Then 0,,(T) = 0., (T") 4+ 3 and b, (T') = 2
by Lemma 25. We deduce from the induction hypothesis that 7/ € T and so T’
can be obtained from T” by Operation ;. Hence T € T.

Case 2. Any neighbor of v3, except vs, 14, is a leaf. Let u be a leaf adjacent to
v3. If deg(vs) > 4, then it is easy to see that deleting the edge vsu increases the
eternal m-security number and so b,,, (I") = 1, a contradiction. Thus deg(vz) = 3.
Let 7" = T — {v1,v2,u,w}. By Lemma 24 we have 0,,(T) = 0,(T') + 2 and
bs,, (T") = 2. Tt follows from the inductive hypothesis that 7" € €. By Operation
T3, T can be obtained from 7" and so T' € T. This completes the proof. |
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