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An eternal m-secure set of a graph G = (V,E) is a set S0 ⊆ V that can
defend against any sequence of single-vertex attacks by means of multiple
guard shifts along the edges of G. The eternal m-security number σm(G) is
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of a set of edges of G whose removal from G increases the eternal m-security
number of G. In this paper, we study properties of the eternal m-security
bondage number. In particular, we present some upper bounds on the eter-
nal m-security bondage number in terms of eternal m-security number and
edge connectivity number, and we show that the eternal m-security bondage
number of trees is at most 2 and we classify all trees attaining this bound.
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1. Introduction

Throughout this paper, G is a simple connected graph with vertex set V = V (G)
and edge set E = E(G) and of order n and size m. For every vertex v ∈ V ,
the open neighborhood of v is the set N(v) = {u ∈ V (G) : uv ∈ E(G)} and
the closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree deg(v)
of v is the number of edges incident with v or, equivalently, deg(v) = |N(v)|.
The degree sequence of G is (deg(v1), deg(v2), . . . , deg(vn)), typically written in
nondecreasing order. The minimum and maximum degree of vertices in V (G) are
denoted by δ(G) and ∆(G), respectively. Let E(A,B) denote the set of all edges
with one endpoint in A and the other endpoint in B, e(A,B) be the cardinality
of E(A,B), and Eu denote the set of edges incident to u. A leaf of a graph G
is a vertex of degree 1 and a support vertex of G is a vertex adjacent to a leaf.
A support vertex is called strong support vertex if it is adjacent to at least two
leaves. The distance between two vertices x and y is denoted by d(x, y) and the
diameter of G is denoted by diam(G).

A set S of vertices in a graph G is called a dominating set if every vertex in V
is either an element of S or is adjacent to an element of S. The domination number

of G, denoted by γ(G), is the minimum cardinality of a dominating set of G. A
γ(G)-set is a dominating set of G of size γ(G). For a more thorough treatment
of domination parameters and for terminology not presented here see [5,11]. The
bondage number b(G) of a graph G is the minimum cardinality of a set of edges
of G whose removal from G increases the domination number of G. The bondage
number was introduced by Fink et al. [2] and was studied by several authors, for
example [4,6,8–10]. For more information on this topic we refer the reader to the
survey article by Xu [12].

An eternal 1-secure set of a graph G is a set S0 ⊆ V that can defend against
any sequence of single-vertex attacks by means of single-guard shifts along the
edges of G. That is, for any k and any sequence v1, v2, . . . , vk of vertices, there
exists a sequence of guards u1, u2, . . . , uk with ui ∈ Si−1 and either ui = vi or
uivi ∈ E, such that each set Si = (Si−1−{ui})∪{vi} is a dominating set. It follows
that each Si can be chosen to be an eternal 1-secure set. The eternal 1-security
number of G, denoted by σ1(G), is the minimum cardinality of an eternal 1-secure
set. The eternal 1-security number was introduced by Burger et al. [1] using the
notation γ∞. In order to reduce the number of guards needed in an eternal secure
set, Goddard et al. [3] considered allowing more guards to move. Suppose that
in responding to each attack, every guard may shift along an incident edge. The
eternal m-security number σm(G) is the minimum number of guards to handle
an arbitrary sequence of single attacks using multiple guard shifts. A suitable
placement of the guards is called an eternal m-secure set (EmSS). An EmSS of
size σm(G) is called a σm(G)-set.
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The eternal m-security bondage number bσm
(G) of a graph G is the minimum

cardinality of a set of edges of G whose removal from G increases the eternal m-
security number of G. Since in the study of eternal m-security bondage number
the assumption σm(G) < n is necessary, we always assume that when we discuss
bσm

(G), all graphs involved satisfy σm(G) < n, i.e., all graphs are nonempty. An
edge set B with σm(G−B) > σm(G) is called the eternal m-secure bondage set.

A bσm
(G)-set is an eternal m-secure bondage set of G of size bσm

(G).
In this paper, we initiate the study of the eternal m-security bondage number

in graphs and we establish some bounds on the eternal m-security bondage num-
ber in terms of vertex degree, eternal m-security number and edge connectivity
number. We also show that the eternal m-security bondage number of trees is at
most 2 and we characterize all trees attaining this bound.

2. Preliminaries and Exact Values

The proof of the following four results can be found in [3].

Proposition A. For any graph G, γ(G) ≤ σm(G).

A set P ⊆ V (G) is called a k-packing if d(u, v) > k for each pair of vertices
u, v ∈ P , u 6= v. The k-packing number αk(G) is the cardinality of a maximum
k-packing in G. Note that α1(G) = α(G) is the independence number of G.

Proposition B. For any graph G, σm(G) ≤ α(G).

Proposition C. 1. σm(Kn) = 1.

2. σm(Kr,s) = 2 for r, s ≥ 1, r + s ≥ 3.

3. σm(Pn) =
⌈

n
2

⌉

.

4. σm(Cn) =
⌈

n
3

⌉

.

Proposition D. For any graph G, σm(G) ≥ (diam(G) + 1)/2.

Next results are immediate consequences of Propositions C and D.

Corollary 1. For any graph G, σm(G) = 1 if and only if G ≃ Kn.

Corollary 2. For n ≥ 2, we have bσm
(Kn) = 1.

Corollary 3. For n ≥ 5, bσm
(Cn) = 1.

Corollary 4. For n ≥ 3, bσm
(Pn) =

{

1 if n is even,
2 if n is odd.

Proposition E [7]. For any graph G, α2(G) ≤ γ(G).
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Corollary 5. For any graph G, α2(G) ≤ σm(G).

Observation 6. Let G be a graph and H be a spanning subgraph of G such that

σm(H) = σm(G). If K = E(G) \E(H), then bσm
(H) ≤ bσm

(G) ≤ bσm
(H) + |K|.

Proof. Let F be a bσm
(H)-set. Then σm(G) = σm(H) < σm(H − F ) = σm(G−

(K ∪ F )), which implies that

bσm
(G) ≤ |K ∪ F | = |K|+ |F | = bσm

(H) + |K|.

Let now T be a bσm
(G)-set. Then we have σm(H) = σm(G) < σm(G − T ) ≤

σm(H − T ). Thus bσm
(H) ≤ |T | = bσm

(G) and the proof is complete.

Proposition 7. If G contains a vertex adjacent to at least three leaves, then

bσm
(G) = 1.

Proof. Let u be adjacent to the leaves u1, u2, u3. Consider the graph G′ obtained
from G by deleting the edge uu1. Let S be a σm(G′)-set which contains u (we
may assume that S is a response to an attack on u). Obviously u1 ∈ S and
S \ {u1} is an EmSS of G and so σm(G) ≤ σm(G′)− 1. Hence, bσm

(G) = 1.

Next we determine the eternal m-security bondage number of complete bi-
partite graphs.

Proposition 8. For m ≥ n ≥ 2, bσm
(Km,n) = 2.

Proof. By Proposition C, σm(Km,n) = 2. If m = n = 2, then clearly bσm
(K2,2)

= 2. Assume that m ≥ 3. It is not hard to see that for any edge e = uv ∈ E(G),
the set S = {u, v} is an EmSS of Km,n − e and so bσm

(Km,n) ≥ 2.
Now we show that bσm

(Km,n) ≤ 2. Suppose that X = {u1, . . . , um} and
Y = {v1, . . . , vn} be the partite sets of Km,n and let F = {v1u1, v1u2}. Let S
be a σm(Km,n − F )-set which contains u1. To dominate v1, we have v1 ∈ S or
ui ∈ S for some i ≥ 3. If v1 ∈ S, then u2 is not dominated by {u1, v1} and so
|S| ≥ 3. Let v1 /∈ S. Assume without loss of generality that u3 ∈ S. Then u2 is
not dominated by {u1, u3} and this implies that |S| ≥ 3. Hence, bσm

(Km,n) ≤ 2
and the proof is complete.

3. Bounds on the Eternal m-Security Bondage Number

In this section, we present various bounds on the eternal m-security bondage
number. We start with an observation.

Observation 9. Let G be a connected graph. If σm(G − v) ≥ σm(G) for some

vertex v ∈ V (G), then bσm
(G) ≤ deg(v).
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Proof. First, note that σm(G−Ev) ≥ σm(G). If σm(G−Ev) > σm(G), then we
are done. Suppose σm(G−Ev) = σm(G) and let S be a σm(G−Ev)-set. Clearly,
v ∈ S and S \ {v} is an EmSS of G− v. It follows that

σm(G− Ev)− 1 ≥ σm(G− v) ≥ σm(G),

and the proof is complete.

Theorem 10. Let G be a connected graph and uv ∈ E(G). Then

bσm
(G) ≤ deg(u) + deg(v)− 1− |N(u) ∩N(v)|.

Proof. Let X be the set consisting of all edges incident with u and v with
exception of the edges E(v,N(u)). Then |X| = deg(u) + deg(v) − 1 − |N(u) ∩
N(v)|, u is an isolated vertex in G−X and v is only adjacent to the vertices of
NG(u) ∩NG(v). Let S be a σm(G−X)-set which contains v (we may assume a
response to an attack on v). It is easy to verify that S \ {u} is an EmSS of G
and hence σm(G) ≤ σm(G−X)− 1. This completes the proof.

Corollary 11. For any nonempty graph G, bσm
(G) ≤ δ(G) + ∆(G)− 1.

Theorem 12. Let G be a connected graph with degree sequence (d1, d2, . . . , dn).
Then

bσm
(G) ≤ dα + dα+1 − 1,

where α is the independence number of G.

Proof. Let V (G) = {v1, v2, . . . , vn} and let deg(vi) = di for each i. Since the set
{v1, . . . , vα+1} is not independent, there is an edge vivj for some 1 ≤ i < j ≤ α+1.
It follows from Theorem 10 that

bσm
(G) ≤ deg(vi) + deg(vj)− 1 ≤ deg(vα) + deg(vα+1)− 1,

and the proof is complete.

Theorem 13. Let G be a connected graph and u, v be two vertices of G with

d(u, v) = 2. Then

bσm
(G) ≤ deg(u) + deg(v).

Proof. Let w be a common neighbor of u and v and let X be the set consisting
of all edges incident with u and v. Then |X| = deg(u) + deg(v) and u, v are
isolated vertices in G − X. Let S be a σm(G − X)-set which contains w (we
may assume a response to an attack on w). Obviously u, v ∈ S and we can
easily check that S \ {u} is an EmSS of G and so σm(G) < σm(G − |X|). Thus
bσm

(G) ≤ |X| = deg(u) + deg(v) as desired.
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Corollary 14. Let G be a connected graph of order n with degree sequence

(deg(v1), deg(v2), . . . , deg(vn)). Then bσm
(G) ≤ deg(vα2

) + deg(vα2+1).

Proof. Clearly, the set {v1, . . . , vα2+1} is not a 2-packing. Hence, d(vi, vj) ≤ 2
for some 1 ≤ i 6= j ≤ α2 + 1 and the result follows by Theorems 10 and 13.

Next result is an immediate consequence of Corollaries 5 and 14.

Corollary 15. If G is a connected graph with degree sequence (deg(v1), deg(v2),
. . . , deg(vn)), then bσm

(G) ≤ deg(vσm
) + d(vσm+1).

Theorem 16. For any connected graph G, bσm
(G) ≤ (σm(G)−α2(G)+1)∆(G).

Proof. By Corollary 5, α2(G) ≤ σm(G). Let s = σm(G) − α2(G) + 1 and
U = {u1, . . . , uα2

} be a maximum 2-packing in G. Clearly, U 6= V (G). Let T be
a subset of V (G)−U of size s and letG′ be the graph obtained fromG by removing
all edges incident to the vertices in T . Obviously, |E(G)| − |E(G′)| ≤ ∆s. Now
we have

σm(G′) ≥ α2(G
′) ≥ α2(G)+s = α2(G)+σm(G)−α2(G)+1 = σm(G)+1 > σm(G)

and the proof is complete.

The next result is an immediate consequence of Theorem 16.

Corollary 17. If σm(G) = α2(G), then bσm
(G) ≤ ∆(G).

The edge connectivity number κ′(G) of a connected graph G is the minimum
number of edges that have to be removed out of G to decompose G in two compo-
nents. The inequality κ′(G) ≤ δ(G) is immediate. Next result is an improvement
of Corollary 11.

Theorem 18. If G is a nontrivial connected graph, then

bσm
(G) ≤ ∆(G) + κ′(G)− 1.

Proof. Let K be a set of edges such that κ′(G) = |K| and G−K is disconnected.
Assume that G1 and G2 are the components of G − K. It is easy to see that
σm(G) ≤ σm(G1) + σm(G2) = σm(G − K). If σm(G) < σm(G1) + σm(G2),
then bσm

(G) ≤ κ′(G) and we are done. Let σm(G) = σm(G1) + σm(G2). We
claim that there is a vertex v ∈ V (Gi) such that v is incident to an edge of K and
σm(Gi−Ev) > σm(Gi) for some i. In this case we have σm(G−K−Ev) > σm(G),
which implies that

bσm
(G) ≤ deg(v) + κ′(G)− 1 ≤ ∆(G) + κ′(G)− 1.
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Assume, to the contrary, that σm(G1 −Ev) = σm(G1) for each vertex v ∈ V (G1)
incident to an edge of K and σm(G2 −Ev) = σm(G2) for every vertex v ∈ V (G2)
incident to an edge of K. Let u1u2 ∈ K where ui ∈ V (Gi) for i = 1, 2. Let Si be
a σm(Gi −Eui

)-set for i = 1, 2. Clearly, u1 ∈ S1 and u2 ∈ S2. It is easy to verify
that S = S1 ∪ S2 \ {u1} is an eternal m-secure set of G which implies that

σm(G) ≤ σm(G1 −Eu) + σm(G2 −Ev)− 1 = σm(G1) + σm(G2)− 1 = σm(G)− 1,

a contradiction. This completes the proof.

Proposition 19. If σm(G) = 2, then bσm
(G) ≤ δ(G) + 1.

Proof. Let u ∈ V (G) be a vertex of minimum degree. If σm(G − u) ≥ σm(G),
then the result follows by Observation 9. Let σm(G − u) ≤ σm(G) − 1. Then
obviously σm(G− u) = 1 and so G− u is a complete graph. By Corollary 2, we
have bσm

(G) ≤ bσm
(G− u) + δ(G) = δ(G) + 1.

4. Complete Multipartite Graphs

In this section we determine the eternal m-security bondage number of complete
multipartite graphs yielding that the eternal m-security bondage number can be
arbitrary large.

Theorem 20. Let t ≥ 3 and G = Kn1,n2,...,nt
be the complete t-partite graph with

n1, n2, . . . , nt ≥ 2. Then bσm
(G) =

⌈

3(t−1)
2

⌉

.

Proof. Let X1, X2, . . . , Xt be the partite sets of G and let Xi =
{

xi1, . . . , x
i
ni

}

for 1 ≤ i ≤ t. Clearly σm(G) = 2. Assume

X =

{

x11x
j
1, x

2s
1 x2s+1

1 : 2 ≤ j ≤ t, 1 ≤ s ≤
t− 1

2

}

if t is odd and

X =

{

x11x
j
1, x

2s
1 x2s+1

1 , x11x
t
2 : 2 ≤ j ≤ t, 1 ≤ s ≤

t− 2

2

}

when t is even. Obviously, |X| =
⌈

3(t−1)
2

⌉

. It is easy to see that for any eternal

m-secure set S of G−X containing x11, we have |S| ≥ 3 and so bσm
(G) ≤

⌈

3(t−1)
2

⌉

.

Now we show that bσm
(G) ≥

⌈

3(t−1)
2

⌉

. Let F be a set of edges of size at most
⌈

3(t−1)
2

⌉

− 1 and let G2 = G− F .
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Claim. For each x ∈ V (G2), there exists a vertex x′ such that NG2
[x]∪NG2

[x′] =
V (G2).

Proof. Assume, to the contrary, that there exists a vertex x ∈ V (G2) such that
NG2

[x]∪NG2
[v] 6= V (G2) for each v ∈ V (G2). Without loss of generality we may

assume that x = x11. For 2 ≤ i ≤ t, let Fi = F ∩
{

x11x
i
j : 1 ≤ j ≤ ni

}

. Let first

Fi = ∅ for each 2 ≤ i ≤ t. Since NG2
[x11] ∪NG2

[v] 6= V (G2) for each v ∈ V (G2),
we have x1jv ∈ F for every v ∈ V (G2)\X1 and for some 2 ≤ j ≤ n1. This implies
that |F | ≥ |V (G2) \X1| ≥ 2t− 2, a contradiction. Assume that Fi 6= ∅ for some
2 ≤ i ≤ t. We consider two cases.

Case 1. |Fi| ≤ 1 for each 2 ≤ i ≤ t. Let I ⊆ {2, . . . , t} be the set of all
elements such that |Fi| = 1 for each i ∈ I and let J = {2, . . . , t}\ I. Without loss
of generality, assume that

{

x11x
i
1 : i ∈ I

}

⊆ F . We estimate the number of edges
in F as follows. Since NG2

[

x11
]

∪NG2

[

xi1
]

6= V (G2) for i ∈ I, there exists a vertex
zi such that zixi1, z

ix11 /∈ E(G2). Obviously, zi /∈ Xi ∪
(
⋃

j∈J Xj

)

. If zi ∈ X1,

then Ei =
{

x11x
i
1, x

i
1z

i
}

⊆ F , and if zi ∈ Xℓ for some ℓ ∈ I − {i}, then zi = xℓ1
and Ei =

{

x11x
i
1, x

i
1x

ℓ
1, x

1
1x

ℓ
1

}

⊆ F . Since NG2

[

x11
]

∪NG2

[

xjs
]

6= V (G2) for j ∈ J

and 1 ≤ s ≤ nj , there exists a vertex zjs such that zjsx
j
s, z

j
sx11 /∈ E(G2). We note

that

(1) zjs ∈ X1 ∪
(

⋃

i∈I
Xi

)

for j ∈ J and 1 ≤ s ≤ nj . If zjs ∈ X1, then xjsz
j
s ∈ F \

(
⋃

i∈I Ei

)

, and if zjs ∈ Xi

for some i ∈ I, then zjs = xi1 and xjsz
j
s ∈ F \

(
⋃

i∈I Ei

)

again. Since nj ≥ 2, we

conclude that
∣

∣F ∩
{

zjsx
j
s : 1 ≤ s ≤ nj

}
∣

∣ ≥ 2 for each j ∈ J . By (1) we have
{

zjsx
j
s : 1 ≤ s ≤ nj

}

∩
{

zj
′

s x
j′

s : 1 ≤ s ≤ nj′
}

= ∅ for j 6= j′. Hence, we have

|F | ≥
∣

∣

⋃

i∈I Ei

∣

∣+
∣

∣

∣

⋃

j∈J

(

F ∩
{

zjsx
j
s : 1 ≤ s ≤ nj

})
∣

∣

∣

≥ 3|I|
2 + 2|J | ≥

⌈

3
2(|I|+ |J |)

⌉

=
⌈

3(t−1)
2

⌉

,

which is a contradiction.

Case 2. |Fi| ≥ 2 for some 2 ≤ i ≤ t. Let I ⊆ {2, . . . , t} be the set of all
elements i such that |Fi| ≥ 2, J ⊆ {2, . . . , t} be the set of all elements j such that
|Fj | = 1 and R = {2, . . . , t} \ (I ∪ J). Without loss of generality, assume that
{

x11x
i
1, x

1
1x

i
2, x

1
1x

j
1 : i ∈ I, j ∈ J

}

⊆ F . We estimate the number of edges in F as

follows. Obviously,
∣

∣

⋃

i∈I Fi

∣

∣ ≥ 2|I|. Since NG2

[

x11
]

∪NG2

[

xj1
]

6= V (G2) for each

j ∈ J , there exists a vertex zj such that zjxj1, z
jx11 /∈ E(G2). Obviously, zj /∈

Xj ∪
(
⋃

r∈R Xr

)

. If zj ∈ Xi, for some i ∈ I, then Ej =
{

x11x
j
1, x

j
1z

j
}

⊆ F , and if

zj ∈ Xℓ for some ℓ ∈ J − {j}, then zj = xℓ1 and Ej =
{

x11x
j
1, x

j
1x

ℓ
1, x

1
1x

ℓ
1

}

⊆ F .
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As in Case 1, we can see that
∣

∣F ∩
{

zrsx
r
s : 1 ≤ s ≤ nr

}∣

∣ ≥ 2 for each r ∈ R, and
{

zrsx
r
s : 1 ≤ s ≤ nr

}

∩
{

zr
′

s x
r′

s : 1 ≤ s ≤ nr′
}

= ∅ for r 6= r′.
Hence, we have

|F | ≥
∣

∣

⋃

i∈I Fi

∣

∣+
∣

∣

∣

⋃

j∈J Ej

∣

∣

∣
+
∣

∣

∣

⋃

j∈J

(

F ∩
{

zjsx
j
s : 1 ≤ s ≤ nj

})∣

∣

∣

≥ 2|I|+ 3|J |
2 + 2|R| ≥

⌈

3
2(|I|+ |J |+ |R|)

⌉

=
⌈

3(t−1)
2

⌉

,

which is a contradiction. �

Now, for each v ∈ V (G2), let xv ∈ V (G2) be a vertex such that NG2
[v] ∪

NG2
[xv] = V (G2). We show that the set Sv = {v, xv} is an EmSS of G2. Obvi-

ously, Sv is a dominating set of G2. Consider an attack on a vertex u of V (G2).
Then one of v or xv is adjacent to u. Let uv ∈ E(G2). If xu is adjacent to xv, then
we can shift guards from v and xv to u and xu, respectively. Let xuxv /∈ E(G2).
Then xuv, uxv ∈ E(G2) and we can shift guards from v and xv to xu and u,

respectively. Therefore, σm(G2) = 2 and this implies that bσm
(G) ≥

⌈

3(t−1)
2

⌉

.

Thus bσm
(G) =

⌈

3(t−1)
2

⌉

and the proof is complete.

5. Trees

In this section, we first prove that for any nontrivial tree T , bσm
(T ) ≤ 2 and then

we characterize all trees attaining this bound.

Theorem 21. For any tree T of order n ≥ 2, bσm
(T ) ≤ 2.

Proof. If diam(T ) ≤ 2, then T is a star and the result is immediate. Let
diam(T ) ≥ 3. Suppose P := v1v2 · · · vk is a diametral path in T and root T
at vk. Obviously, k ≥ 4. If deg(v2) = 2, then bσm

(T ) ≤ 2 by Theorem 10. Let
deg(v2) ≥ 3. Then v2 is adjacent to a leaf v′ other than v1. Since d(v1, v

′) = 2,
Theorem 13 implies that bσm

(T ) ≤ 2. This completes the proof.

Next, we provide a constructive characterization of all trees attaining the
bound of Theorem 21. For this purpose, we describe a procedure to build a
family T of trees as follows. Let T be the family of trees such that a path P3

is a tree in T and if T is a tree in T, then the tree T ′ obtained from T by the
following four operations which extend the tree T by attaching a tree to a vertex
v ∈ V (T ), called an attacher, is also a tree in T (see Figure 1).

Operation T1. If v ∈ V (T ), then T1 adds a path vxy to T .

Operation T2. If v ∈ V (T ), then T2 adds a star K1,3 with central vertex y and
leaves x,w, z and joins x to v.
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T4 :

Figure 1. The four operations.

Operation T3. If v ∈ V (T ) is a leaf, then T3 adds a pendant edge vw and a
star K1,2 with central vertex x and leaves y, z and joins x to v.

Operation T4. If v ∈ V (T ) is a leaf, then T4 adds two new stars K1,2 centered
at x1 and x2, and joins v to x1 and x2.

We start with some lemmas.

Lemma 22. Let G be a graph and v ∈ V (G). If G′ is the graph obtained
from G by attaching a path vxy, then σm(G′) = σm(G) + 1. In particular,
bσm

(G′) ≤ bσm
(G).

Proof. Clearly, adding x to any σm(G)-set yields an EmSS ofG′ and so σm(G′) ≤
σm(G)+1. Let now S′ be a σm(G′)-set containing y (we may assume a response to
an attack on y). If x ∈ S′, then the set (S′\{x, y})∪{w}, where w ∈ NG[v]\S

′, is
an EmSS of G. If x 6∈ S′, then S′\{y} is an EmSS of G. Thus σm(G) ≤ σm(G′)−1
and so σm(G′) = σm(G) + 1.

Lemma 23. Let G be a graph and v ∈ V (G). If G′ is the graph obtained from
G by adding a star K1,3 with central vertex y and leaves x,w, z and joining x to
v, then σm(G′) = σm(G) + 2. In particular, bσm

(G′) ≤ bσm
(G).

Proof. Clearly, adding x and y to any σm(G)-set yields an EmSS of G′ and so
σm(G′) ≤ σm(G) + 2. Suppose now S′ is a σm(G′)-set containing z (we may
assume a response to an attack on z). Since S′ is a dominating set, we must have
|S′∩{y, w}| ≥ 1. If x ∈ S′ then the set (S′\{x, y, z, w})∪{u}, where u ∈ NG[v]\S

′

is an EmSS of G, and if x 6∈ S′ then the set S′ \ {x, y, z, w} is an EmSS of G.
Hence σm(G) ≤ σm(G′)− 2 and this implies that σm(G′) = σm(G) + 2.

Lemma 24. Let G be a graph and let v ∈ V (G). If G′ is the graph obtained
from G by adding a pendant edge vw and a star K1,2 with central vertex x
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and leaves y, z and joining x to v, then σm(G′) = σm(G) + 2. In particular,
bσm

(G′) ≤ bσm
(G).

Proof. Clearly, adding x, y to any σm(G)-set containing v yields an EmSS of G′

and so σm(G′) ≤ σm(G) + 2. Assume now that S′ is a σm(G′)-set. As in the
proof of Lemma 23, we may assume that y ∈ S′ and |S′ ∩ {x, z}| ≥ 1. Since S′ is
a dominating set, we must have |S′ ∩ {v, w}| ≥ 1. If |S′ ∩ {x, y, z, w}| ≥ 3, then
let S′′ = (S′ \{x, y, z, w})∪{u} where u ∈ NG[v]\S

′, and if |S′∩{x, y, z, w}| = 2,
then let S′′ = S′ \ {x, y, z, w}. Clearly, S′′ is an EmSS of G and hence σm(G) ≤
σm(G′)− 2. Thus σm(G′) = σm(G) + 2.

Lemma 25. Let G be a graph and let v ∈ V (G). If G′ is the graph obtained
from G by adding two new stars K1,2 centered at x1, x2 and joining v to x1, x2,
then σm(G′) = σm(G) + 3. In particular, bσm

(G′) ≤ bσm
(G).

Proof. Let yi, zi be the leaves adjacent to xi for i = 1, 2. Clearly, adding x1, x2, y1
to any σm(G)-set containing v yields an EmSS of G′ and so σm(G′) ≤ σm(G)+3.
Let now S′ be a σm(G′)-set. As above we may assume that y1 ∈ S′, |S′ ∩
{x1, z1}| ≥ 1 and |S′∩{x2, y2, z2}| ≥ 1. It is easy to see that |S′∩{x2, y2, z2, v}| ≥
2. If |S′ ∩{x2, y2, z2}| = 2, then let S′′ = (S′−{x1, y1, z1, x2, y2, z2})∪{u} where
u ∈ NG[v]\S

′, and if |S′∩{x2, y2, z2}| = 1, then let S′′ = S′\{x1, y1, z1, x2, y2, z2}.
Clearly, S′′ is an EmSS of G and hence σm(G) ≤ σm(G′) − 3. Thus σm(G′) =
σm(G) + 3.

Lemma 26. Let T ∈ T and u ∈ V (T ). If T ′ is a tree obtained from T by adding
a pendant edge uu′, then σm(T ′) = σm(T ).

Proof. Let T ′ be a tree obtained from T by adding the pendant edge uu′. If
S is a σm(T ′)-set, then let S′ = S if u′ 6∈ S and S′ = (S − {u′}) ∪ {w}, where
w ∈ NT [u]\S, when u′ ∈ S. Clearly, S′ is an EmSS for G and so σm(T ) ≤ σm(T ′).

Now we show that σm(T ′) ≤ σm(T ). Let P3 = v1v2v3 and let T be ob-
tained from P3 by successive operations T1, . . . ,Tm, respectively, where Ti ∈
{T1,T2,T3,T4} for 1 ≤ i ≤ m, if m ≥ 1, and T = P3 if m = 0. The proof is by
induction on m. If m = 0, then clearly the statement is true. Assume m ≥ 1 and
that the statement holds for all trees which are obtained from P3 by applying at
most m − 1 operations. Suppose Tm−1 is a tree obtained by applying the first
m − 1 operations T1, . . . ,Tm−1 and let T be obtained from Tm−1 by adding a
new part to the attacher v. Assume that T ′

m−1 is obtained from Tm−1 by adding
a pendant edge uu′ when u ∈ V (Tm−1). We consider four cases.

Case 1. Tm = T1. Then T is obtained from Tm−1 by attaching a path vxy
to v ∈ V (Tm−1). If u ∈ V (Tm−1), then by the inductive hypothesis, σm(Tm−1) =
σm(T ′

m−1) and by Lemma 22 we have σm(T ′) = σm(T ). Suppose u ∈ {x, y}. Let
T ∗ = T ′ − {y, u′}. Then, obviously, T ∗ is obtained from Tm−1 by adding the



1002 H. Aram, M. Atapour and S.M. Sheikholeslami

pendant edge xv. By the inductive hypothesis, σm(T ∗) = σm(Tm−1). Let S be a
σm(T ∗)-set containing x. Then S ∪ {y} is an EmSS of T ′ and by Lemma 22 we
have

σm(T ′) ≤ σm(T ∗) + 1 = σm(Tm−1) + 1 = σm(T ).

Case 2. Tm = T2. Then T is obtained from Tm−1 by adding a star K1,3

with central vertex y and leaves x,w, z and joining x to v. If u ∈ V (Tm−1),
then the result follows from the induction hypothesis and Lemma 23. Assume
that u ∈ {x, y, z, w}. Let T ∗ = T − {y, z, w}. By the induction hypothesis, we
have σm(T ∗) = σm(Tm−1). Let S be a σm(T ∗)-set containing x. Then the set
S ∪ {y, z} if u 6= w and the set S ∪ {y, w} if u = w, is an EmSS of T ′ and so
σm(T ′) ≤ σm(T ∗) + 2. By Lemma 23, we obtain

σm(T ′) ≤ σm(T ∗) + 2 = σm(Tm−1) + 2 = σm(T ).

Case 3. Tm = T3. Then T is obtained from Tm−1 by attaching a pendant
edge vw at v and adding a star K1,2 with central vertex x and leaves y, z and
joining x to v. If u ∈ V (Tm−1), then we deduce from the induction hypothesis
and Lemma 24 that σm(T ′) = σm(T ). If u = x or u = y (the case u = z is
similar), then let T ∗ = T ′ − {u′, x, y, z}. Obviously, T ∗ is obtained from Tm−1

by adding the pendant edge vw at v. By the induction hypothesis, we have
σm(T ∗) = σm(Tm−1). Clearly, adding x, y to any σm(T ∗)-set yields an EmSS of
T ′ and so

σm(T ′) ≤ σm(T ∗) + 2 = σm(Tm−1) + 2 = σm(T ).

If u = w, then let T ∗ = T ′ − {u′, x, y, z}. Obviously, T ∗ is obtained from Tm−1

by adding the pendant edge vw at v. By the inductive hypothesis, σm(T ∗) =
σm(Tm−1). Let S be a σm(T ∗)-set containing w. Then S ∪ {v, x} if v /∈ S and
S ∪ {x, y} if v ∈ S, is an EmSS of T ′ and so

σm(T ′) ≤ σm(T ∗) + 2 = σm(Tm−1) + 2 = σm(T ).

Case 4. Tm = T4. Then T is obtained from Tm−1 by adding two stars K1,2

with central vertices x1 and x2 and joining x1, x2 to v ∈ V (Tm−1). Let yi, zi be
the leaves adjacent to xi for i = 1, 2. If u ∈ V (Tm−1), then the result follows from
the induction hypothesis and Lemma 25. If u = x1 (the case u = x2 is similar),
then adding x1, y1, x2 to any σm(Tm−1)-set containing v yields an EmSS of T ′

and we deduce from Lemma 25 that

σm(T ′) ≤ σm(Tm−1) + 3 = σm(T ).

Assume that u = y1 (the cases u = z1, u = y2, u = z2 are similar). Let T ∗ =
T ′ − {x1, y1, z1, u

′, y2, z2}. Obviously, T ∗ is obtained from Tm−1 by adding pen-
dant edge vx2 at v. By the inductive hypothesis, we have σm(T ∗) = σm(Tm−1).
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Clearly, adding x1, y1, y2 to any σm(T ∗)-set containing x2, yields an EmSS of T ′

and this implies that

σm(T ′) ≤ σm(T ∗) + 3 = σm(Tm−1) + 3 = σm(T ).

Hence σm(T ′) ≤ σm(T ). Thus σm(T ′) = σm(T ) and the proof is complete.

Theorem 27. If T ∈ T, then bσm
(T ) = 2.

Proof. Let T ∈ T, e ∈ E(T ) and T ′ = T − e. Clearly σm(T ′) ≥ σm(T ). Now
we show that σm(T ′) ≤ σm(T ). Let P3 := v1v2v3 and let T be obtained from
P3 by successive operations T1, . . . ,Tm, respectively, where Ti ∈ {T1,T2,T3,T4}
for 1 ≤ i ≤ m if m ≥ 1 and T = P3 if m = 0. The proof is by induction
on m. If m = 0, then the statement is true by Corollary 4. Assume m ≥ 1
and that the statement holds for all trees obtained from P3 by applying at most
m − 1 operations. Suppose Tm−1 is a tree obtained by applying the first m − 1
operations T1, . . . ,Tm−1. We consider four cases.

Case 1. Tm = T1. Then T is obtained from Tm−1 by attaching a path vxy
at v ∈ V (Tm−1). If e ∈ E(Tm−1), then we deduce from the induction hypothesis
and Lemma 22 that

σm(T ′) = σm(Tm−1 − e) + 1 = σm(Tm−1) + 1 = σm(T ).

If e = vx, then clearly σm(T ′) = σm(Tm−1) + 1 = σm(T ). Assume that e = xy.
Let T ∗ = T ′ − {y}. Then T ∗ is obtained from Tm−1 by adding a pendant path
vx at v. Clearly σm(T ′) = σm(T ∗) + 1. It follows from Lemmas 26 and 22 that

σm(T ′) = σm(T ∗) + 1 = σm(Tm−1) + 1 = σm(T ).

Case 2. Tm = T2. Then T is obtained from Tm−1 by adding a star K1,3 with
central vertex y and leaves x,w, z and joining x to v. If e ∈ E(Tm−1), then by
the inductive hypothesis and Lemma 23 we have

σm(T ′) = σm(Tm−1 − e) + 2 = σm(Tm−1) + 2 = σm(T ).

If e = vx, then clearly σm(T ′) = σm(Tm−1) + 2 = σm(T ). If e = xy, then
let T ∗ = T − {y, z, w}. By Lemma 26, we have σm(T ∗) = σm(Tm−1). Clearly
σm(T ′) = σm(T ∗) + 2 and by Lemma 23 we have

σm(T ′) = σm(T ∗) + 2 = σm(Tm−1) + 2 = σm(T ).

Assume that e = yz. Let T ∗ = T ′ − {z, w}. Then T ∗ is obtained from Tm−1 by
Operation T1 and so T ∗ ∈ T and σm(T ∗) = σm(Tm−1)+1. By Lemma 26, we have
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σm(T ∗ + yw) = σm(T ∗). Now it is easy to check that σm(T ′) ≤ σm(T ∗ + yw) + 1
and by Lemma 23 we have

σm(T ′) ≤ σm(T ∗) + 1 = σm(Tm−1) + 2 = σm(T ).

Case 3. Tm = T3. Then T is obtained from Tm−1 by adding a pendant edge
vw at a leaf v ∈ V (Tm−1) and adding a star K1,2 with central vertex x and leaves
y, z and joining x to v. If e ∈ E(Tm−1), then we conclude from the induction
hypothesis and Lemma 24 that

σm(T ′) = σm(Tm−1 − e) + 2 = σm(Tm−1) + 2 = σm(T ).

If e = vw, then let T ∗ = T − {y, z, w}. Then we have σm(T ∗) = σm(Tm−1)
by Lemma 26. On the other hand, adding y, w to any σm(T ∗)-set containing x,
yields an EmSS of T ′ and we deduce from Lemma 24 that

σm(T ′) ≤ σm(T ∗) + 2 = σm(Tm−1) + 2 = σm(T ).

If e ∈ {xv, xy, xz}, then let T ∗ = T ′ − {x, y, z}. Then T ∗ is obtained from Tm−1

by attaching a pendant edge vw. By Lemma 26, we have σm(T ∗) = σm(Tm−1).
On the other hand, adding x, y to any σm(T ∗)-set yields an EmSS of T ′ and it
follows from Lemma 24 that

σm(T ′) ≤ σm(T ∗) + 2 = σm(Tm−1) + 2 = σm(T ).

Case 4. Tm = T4. Then T is obtained from Tm−1 by adding two stars
K1,2 with central vertices x1 and x2 and joining x1, x2 to a leaf v. Let yi, zi be
the leaves adjacent to xi for i = 1, 2. If e ∈ E(Tm−1), then by the inductive
hypothesis and Lemma 25 we have

σm(T ′) = σm(Tm−1 − e) + 3 = σm(Tm−1) + 3 = σm(T ).

If e = x1v or e = x1y1, then let T ∗ = T ′ − {x1, y1, z1, y2, z2}. Then T ∗ is
obtained from Tm−1 by attaching a pendant edge vx2 at v. By Lemma 26, we
have σm(T ∗) = σm(Tm−1). On the other hand, adding x1, y1, y2 to any σm(T ∗)-
set containing x2 yields an EmSS of T ′ and it follows from Lemma 25 that

σm(T ′) ≤ σm(T ∗) + 3 = σm(Tm−1) + 3 = σm(T ).

In the other cases, we can see that σm(T ′) ≤ σm(T ) as above. Hence σm(T ′) ≤
σm(T ). Thus σm(T ′) = σm(T ) and this implies that bσm

(T ) ≥ 2. Now the result
follows from Theorem 21.

Now we are ready to prove the main theorem of this section.
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Theorem 28. Let T be a tree of order n ≥ 3. Then bσm
(T ) = 2 if and only if

T ∈ T.

Proof. According to Theorem 27, we only need to prove the necessity. We
proceed by the induction on n. If n = 3, then the result is trivial. Assume that
n ≥ 4 and the statement holds for all trees T of order less than n. Let T be a
tree of order n with bσm

(T ) = 2. Since bσm
(K1,n−1) = 1, we have diam(T ) ≥ 3.

Suppose P := v1 · · · vk is a diametral path in T such that deg(v2) is as small
as possible and root T at vk. If deg(v2) = 2, then let T ′ = T − {v1, v2}. By
Lemma 22, we have σm(T ) = σm(T ′) + 1 and bσm

(T ′) = 2. It follows from the
induction hypothesis that T ′ ∈ T. Now T can be obtained from T ′ by Operation
T1 and hence T ∈ T. Let deg(v2) ≥ 3. We conclude from Proposition 7 that
deg(v2) = 3. Let w 6= v1 be a leaf adjacent to v2. If deg(v3) = 2, then let
T ′ = T − {v1, v2, v3, w}. By Lemma 23, we have σm(T ) = σm(T ′) + 2 and
bσm

(T ′) = 2. By the induction hypothesis, we obtain T ′ ∈ T. Now T can be
obtained from T ′ by Operation T2 and so T ∈ T. Let deg(v3) ≥ 3. We consider
the following cases.

Case 1. There exists a path v3xy in T such that x 6∈ {v2, v4}. By the choice
of diametral path and Proposition 7, we have deg(x) = 3. If v3 is a support
vertex and u is a leaf adjacent to v3, then it is not hard to see that deleting the
edge v3u increases the eternal m-security number which leads to a contradiction.
Suppose v3 is not a support vertex. If v3 is adjacent to a support vertex w other
than x, v2, v4, then as above we may assume that deg(w) = 3. It is easy to see
that deleting the edge v3w increases the eternal m-security number which leads
to a contradiction. Hence, deg(v3) = 3. Let T ′ = T − {v1, v2, w, x, y, z} where y
and z are the leaves adjacent to x. Then σm(T ) = σm(T ′) + 3 and bσm

(T ′) = 2
by Lemma 25. We deduce from the induction hypothesis that T ′ ∈ T and so T
can be obtained from T ′ by Operation T4. Hence T ∈ T .

Case 2. Any neighbor of v3, except v2, v4, is a leaf. Let u be a leaf adjacent to
v3. If deg(v3) ≥ 4, then it is easy to see that deleting the edge v3u increases the
eternalm-security number and so bσm

(T ) = 1, a contradiction. Thus deg(v3) = 3.
Let T ′ = T − {v1, v2, u, w}. By Lemma 24 we have σm(T ) = σm(T ′) + 2 and
bσm

(T ′) = 2. It follows from the inductive hypothesis that T ′ ∈ T. By Operation
T3, T can be obtained from T ′ and so T ∈ T . This completes the proof.
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