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Abstract

Let G = (V,E) be a graph and S ⊆ V . We say that S is a dominat-
ing set of G, if each vertex in V \ S has a neighbor in S. Moreover, we
say that S is a connected (respectively, 2-edge connected or 2-connected)
dominating set of G if G[S] is connected (respectively, 2-edge connected or
2-connected). The domination (respectively, connected domination, or 2-
edge connected domination, or 2-connected domination) number of G is the
cardinality of a minimum dominating (respectively, connected dominating,
or 2-edge connected dominating, or 2-connected dominating) set of G, and is
denoted γ(G) (respectively γ1(G), or γ′

2
(G), or γ2(G)). A well-known result

of Duchet and Meyniel states that γ1(G) ≤ 3γ(G) − 2 for any connected
graph G. We show that if γ(G) ≥ 2, then γ′

2
(G) ≤ 5γ(G) − 4 when G is a

2-edge connected graph and γ2(G) ≤ 11γ(G)− 13 when G is a 2-connected
triangle-free graph.
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1. Introduction

In this paper, all graphs considered are finite, undirected graphs. We follow the
notation and terminology of Bondy and Murty [3], unless otherwise stated.

Let G = (V (G), E(G)) be a graph. The order and the size of G are |V (G)|
and |E(G)|, respectively. We use c(G) to denote the number of components of G.
The graph G is trivial if its order is 1, and nontrivial, otherwise. For D ⊆ V (G),
the subgraph of G induced by D, denoted by G[D], is the graph with D as the
vertex set, in which two vertices are adjacent if and only if they are adjacent in
G. D is an independent set of G if G[D] has no edge. The independence number
of G, denoted α(G), is the maximum cardinality of an independent set of G.

Let G be a nontrivial graph and x, y ∈ V (G) be two distinct vertices. An
xy-path is a path joining x and y in G. The local connectivity between x and y,
denoted κG(x, y), is the maximum number of pairwise internally disjoint xy-paths
in G. For a nonnegative integer k, G is k-connected if κG(x, y) ≥ k for any two
distinct vertices x and y. Similarly, the local edge connectivity between x and y,
denoted κ′G(x, y), is the maximum number of pairwise edge-disjoint xy-paths in
G. For two distinct nonadjacent vertices x and y, an xy-vertex cut is a subset S
of V (G) \ {x, y} such that x and y belong to different components of G− S. We
also say that such a subset S separates x and y. The minimum size of a vertex
cut separating x and y is denoted by c(x, y).

For a nonnegative integer k, G is k-edge connected if κ′G(x, y) ≥ k for any two
distinct vertices x and y of G. An edge cut E[X,V (G) \X] separates x and y if
x ∈ X and y ∈ V (G)\X. We denote by c′(x, y) the minimum cardinality of such
an edge cut. The well-known Menger’s Theorem asserts that κ′G(x, y) = c′(x, y).

In graph theory, the problem concerning domination of graphs (or networks)
is a major area that has attracted a large number of researchers and generated
a wealth of important achievements in the past few decades. Let G = (V,E) be
a graph and D ⊆ V . We call D a dominating set of G if every vertex in V \D
has a neighbor in D. Furthermore, if G[D] is k-connected (respectively, k-edge
connected), D is called a k-connected (respectively, k-edge connected) domi-
nating set. The k-connected domination number (respectively, k-edge connected

domination number) of a graph G, denoted by γk(G) (respectively, by γ′k(G))
is the minimum cardinality of a k-connected (respectively, k-edge connected)
dominating set. Clearly, a graph G has a k-connected (respectively, k-edge con-
nected) dominating set if G is k-connected (respectively, k-edge connected). But
a graph having a k-connected (respectively, k-edge connected) dominating set
needs not to be k-connected (respectively, k-edge connected). It is clear that
γ′0(G) = γ0(G) = γ(G) and γ′1(G) = γ1(G).

The theory of connected domination of graphs has important applications
in communication and computer networks, especially for its role as a virtual
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backbone in wireless networks, see Du and Wan [6]. Haynes, Hedetniemi and
Slater published two monographs [10, 11] concerning domination in graphs, and
recently Chellali, Favaron, Hansberg and Volkmann presented a survey paper [4]
concerning dominating sets and independent sets. We refer to [1, 2, 5, 13–15, 18]
for more results concerning connected dominating sets.

An interesting application of the connected domination of graphs is in minor
theory. The well-known Hadwiger’s conjecture states that if χ(G) ≥ k, then G
contains a Kk-minor, where χ(G) denotes the chromatic number of G. We use
α(G) to denote the independent number of a graph. Since

α(G)χ(G) ≥ n

for a graph G on n vertices, Hadwiger’s conjecture implies that any graph G on n
vertices has a K⌈ n

α(G)
⌉-minor. Duchet and Meyniel in [8] established the following

relation between the connected domination number and the independence number
of a connected graph, and by applying this result, they proved that any graph G
on n vertices has a K⌈

n
2α(G)−1

⌉-minor.

Theorem 1 (Duchet and Meyniel [8]). For any connected graph G, γ1(G) ≤
min{2α(G)− 1, 3γ(G)− 2}.

In some sense, the above theorem of Duchet and Meyniel is related to the
following conjecture in combinatorial optimization.

Conjecture 1 [20]. For any connected unit disk graph G, α(G) ≤ 3γ1(G) + 2.

There are a number of papers devoted to the relation of the independence
number and the connected domination number of unit disk graphs, for instance,
[12, 17, 19]. Best known result on Conjecture 1 is α(G) ≤ 3.399γ1(G) + 4.874
obtained by Du and Du [7]. So, combining this with Theorem 1, for a connected
unit disk graph G,

0.5γ1(G) + 0.5 ≤ α(G) ≤ 3.399γ1(G) + 4.874.

We refer to [20] for more relevant works concerning domination and packing on
wireless networks.

There exist a number of algorithms for constructing maximal independent
sets and connected dominating sets. For instance, Vigoda [16] presented a par-
allel algorithm for constructing a maximal independent set of an input graph
on n vertices, in time polynomial in log n and in logn using a polynomial in n
processors, Guha and Khuller [9] presented two polynomial time algorithms for
constructing a connected dominating set that achieves approximation factors of
O(h(∆)), where ∆ is the maximum degree, and h is the harmonic function.
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We shall get a connected dominating set if we can make a dominating set
connected by adding a small vertex set (with respect to the dominating set).
In this paper, we generalize Duchet and Meyniel’s theorem by considering the
following problems.

Problem 1. Given a connected graph G and a dominating set S, what is the
least vertex set T such that G[S ∪ T ] is connected?

Problem 1 was studied in [8] by Duchet and Meyniel. We are maninly con-
cerned with the following two problems.

Problem 2. Given a 2-edge connected graph G and a dominating set S, find a
vertex set T with minimum |T | such that G[S ∪ T ] is 2-edge connected.

Problem 3. Given a 2-connected graph G and a dominating set S, find a vertex
set T with minimum |T | such that G[S ∪ T ] is 2-connected.

2. Minimum Vertex Set Joining a Given Dominating Set

For two vertices u, v ∈ V (G), the distance dG(u, v) between u and v is the number
of edges in a shortest path connecting u and v in G. In general, for X ⊆ V (G)
and Y ⊆ V (G), the distance dG(X,Y ) between X and Y is min{dG(x, y) : x ∈
X, y ∈ Y }. Thus dG(X,Y ) = dG(Y,X). If Y = {y} for a vertex y ∈ V (G), we
simply write dG(X, y) instead of dG(X, {y}).

2.1. Connected dominating set

The idea of the proof of the following theorem is due to Duchet and Meyniel [8].

Theorem 2. Let S be a dominating set of a connected graph G. Then there

exists a set T such that |T | ≤ 2|S| − 2 and G[S ∪ T ] is connected.

Proof. If c(G[S]) = 1, i.e., S is a connected dominating set, then the assertion
of the theorem trivially holds by taking T = ∅. Next we assume that G[S] is
disconnected. Since S is a dominating set of G, there exist two components of
G[S], say G1 and G2, such that dG(V (G1), V (G2)) ≤ 3. Pick a path P which
joins V (G1) and V (G2) with ℓ(P ) = dG(V (G1), V (G2)). Hence S ∪ V (P ) is a
dominating set of G with |S ∪V (P )| ≤ |S|+2 and c(G[S ∪V (P )]) ≤ c(G[S])− 1.
If G[S ∪ V (P )] is connected, then we are done by letting T = V (P ). Otherwise,
let S := S ∪ V (P ), and repeat the above operation until G[S] is connected.

Since c(G[S]) ≤ |S| − 1, |S| increases by at most two and the number of
components decreases by at least one in each iteration of the above operation, we
conclude that the desired set T exists.
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So the following is immediate from the above theorem.

Corollary 1. γ1(G) ≤ 3γ(G)− 2 for any connected graph G.

Algorithm 1. An algorithm for constructing a connected dominating set.
Input: A connected graph G and a dominating set S of G.
Output: A set T such that |T | ≤ 2|S| − 2 and G[S ∪ T ] is connected.
1. Set T := ∅, H := G[S ∪ T ]
2. run BFS to get all components of H, say H1, H2, . . . , Hc, and set C = {Hi : 1 ≤

i ≤ c} and c = |C|
3. if c = 1, then stop
4. else set W := V (G)\S and F := E(G[W ])
5. while W 6= ∅
6. pick a vertex w ∈ W
7. if N(w) ∩ V (Hi) 6= ∅ and N(w) ∩ V (Hj) 6= ∅ for different integers i and j,

then set Hi := G[
⋃

Hi∈H
V (Hi) ∪ {w}], C := (C \ H) ∪ {Hi}, T := T ∪ {w},

H := G[S ∪T ], and k := k−h+1, where H = {Hi : V (Hi)∩NG(w) 6= ∅} and
h = |H|, go to step 3

8. else W := W\{w}
9. end if

10. end while

11. while F 6= ∅, pick f = uv ∈ F
12. pick f = uv ∈ F
13. if N(u)∩ V (Hi) 6= ∅ and N(v)∩ V (Hj) 6= ∅ for different integers i and j, then

set Hi := G[
⋃

Hi∈H
V (Hi) ∪ {u, v}], C := (C \ H) ∪ {Hi}, T := T ∪ {u, v},

H := G[S ∪ T ], and k := k − |H| + 1, where H = {Hi : V (Hi) ∩NG(u) 6= ∅ or
V (Hi) ∩NG(v) 6= ∅} and h = |H|, go to step 3

14. else F := F\{f}.
15. end if

16. end while

17. end if

Remark 1. Let s, ∆, n and m be the size of a dominating set S, the maximum
degree, order and size of G, respectively. Note that the time complexity of BFS
can be expressed as O(n+m). Since the running time of each recursion is at most
∆(n+2m) and this algorithm runs at most s− 1 recursions, the time complexity
of the algorithm is bounded by O((s− 1)∆(n+ 2m)).

2.2. 2-edge connected dominating set

Let G be a connected graph. A subgraph F ⊆ G is called a maximal 2-edge
connected subgraph of G if F is trivial or is 2-edge connected, and there exists no
other 2-edge connected subgraph F ′ ⊆ G such that F ⊆ F ′. It is clear from the
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definition that every maximal 2-edge connected subgraph F of G is an induced
subgraph of G.

For a dominating set S of G, let H = G[S]. We use CH to denote the set of
all maximal 2-edge connected subgraphs F of H containing at least one vertex
of S, and cH = |CH |.

Next we assume that G is a 2-edge connected graph and let S be a dominating
set of G with |S| ≥ 2, and let T be an output of Algorithm 1 for G and S. If
H = G[S ∪ T ] is 2-edge connected, then S ∪ T is a 2-edge connected dominating
set of G. Otherwise, we shall decrease cH by at least one by adding at most two
vertices, see Lemma 3, Corollary 2, and Lemmas 4–5 for details.

Lemma 3. Let u1 and u2 be two distinct vertices in H. If deleting a cut edge

e separates u1 and u2 in H, then there exists a vertex w ∈ V (G) \ V (H) such

that NG(w)∩V (Xe) 6= ∅ and NG(w)∩V (Ye) 6= ∅, or an edge uv ∈ E(G−V (H))
such that NG(u) ∩ V (Xe) 6= ∅ and NG(v) ∩ V (Ye) 6= ∅, where Xe and Ye are two

components of H \ e.

Proof. Without loss of generality, let u1 ∈ V (Xe) and u2 ∈ V (Ye). Let P =
x1x2 · · ·xk be a shortest path joining Xe and Ye in G \ e, where x1 ∈ V (Xe) and
xk ∈ V (Ye). If k ≤ 4, then P − {x1, xk} is a vertex or an edge, as we desired.
If k ≥ 5, we consider x3. Since S ⊆ V (H) is a dominating set of G, x3 has a
neighbor x′3 ∈ S in G. If x′3 ∈ V (Xe), then x′3x3 · · ·xk is a shorter path than P
that joins Xe and Ye in G \ e, a contradiction; if x′3 ∈ V (Ye), then x1x2x3x

′
3 is a

shorter path than P joining Xe and Ye in G \ e, a contradiction.

Corollary 2. Let u1 and u2 be two distinct vertices in S. If κ′H(u1, u2) = 1 and

dH(u1, u2) = 1, then there exists a vertex w ∈ V (G)\V (H) such that cH′ ≤ cH−1,
where H ′ = G[S ∪ T ∪ {w}], or an edge e = uv ∈ E(G − V (H)) such that

cH′ ≤ cH − 1, where H ′ = G[S ∪ T ∪ {u, v}].

Proof. Note that u1 and u2 belong to two distinct maximal 2-edge connected
subgraphs of H, while they belong to the same maximal 2-edge connected sub-
graphs of H ′ by Lemma 2. Thus cH′ ≤ cH − 1.

Lemma 4. Let u1 and u2 be two distinct vertices in S such that κ′H(u1, u2) = 1
and dH(u1, u2) is as small as possible. If dH(u1, u2) = 2, then there exists a vertex

w ∈ V (G)\V (H) such that cH′ ≤ cH −1, where H ′ = G[S∪T ∪{w}], or an edge

e = uv ∈ E(G − V (H)) such that cH′ ≤ cH − 1, where H ′ = G[S ∪ T ∪ {u, v}],
or a pair of vertices u, v ∈ V (G) \ V (H) such that cH′ ≤ cH − 1, where H ′ =
G[S ∪ T ∪ {u, v}].

Proof. Let u1v1u2 be a path of length 2 in H. By the choice of u1 and u2,
v1 6∈ S. First, we may suppose that u1v1 is a cut edge of H and u2v1 is not. Let
a = u1v1, and let Xa and Ya be two components of H \ a such that u1 ∈ V (Xa)
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and v1 ∈ V (Ya). By Lemma 3, there exists a vertex w ∈ V (G) \ V (H) such that
NG(w) ∩ V (Xa) 6= ∅ and NG(w) ∩ V (Ya) 6= ∅, or an edge uv ∈ E(G − V (H))
such that NG(u) ∩ V (Xa) 6= ∅ and NG(v) ∩ V (Ya) 6= ∅. For the former case, let
H ′ = G[S ∪T ∪{w}]. Clearly κ′H′(u1, u2) ≥ 2. Thus cH′ ≤ cH − 1. For the latter
case, let H ′ = G[S ∪ T ∪ {u, v}]. Clearly κ′H′(u1, u2) ≥ 2. Thus cH′ ≤ cH − 1.

So, we now assume that both u1v1 and u2v1 are cut edges of H. Let a = u1v1,
and let Xa, Ya be two components of H \a such that u1 ∈ V (Xa) and v1 ∈ V (Ya).
We consider the following cases.

Case 1. There exists a vertex w ∈ V (G)\V (H) such that NG(w)∩V (Xa) 6= ∅
and NG(w) ∩ V (Ya − v1) 6= ∅. Then w is the vertex, as we desired.

Case 2. There exists an edge uv ∈ E(G−V (H)) such that NG(u)∩V (Xa) 6= ∅
and NG(v) ∩ V (Ya − v1) 6= ∅. Then uv is the edge, as we desired.

Case 3. There exists no vertex w ∈ V (G) \ V (H) such that NG(w) ∩ V (Xa)
6= ∅ and NG(w) ∩ V (Ya − v1) 6= ∅, and no edge uv ∈ E(G − V (H)) such that
NG(u) ∩ V (Xa) 6= ∅ and NG(v) ∩ V (Ya − v1) 6= ∅.

Let b = v1u2, and Xb and Yb be two components of H \ b such that v1 ∈
V (Xb) and u2 ∈ V (Yb). If there exists a vertex w ∈ V (G) \ V (H) such that
NG(w) ∩ V (Xa) 6= ∅ and NG(w) ∩ V (Ya) 6= ∅, and a vertex w′ ∈ V (G) \ V (H)
such that NG(w

′)∩V (Xb) 6= ∅ and NG(w
′)∩V (Yb) 6= ∅, then w and w′ are a pair

of vertices, as we desired.
Next we show that there exist such a pair of vertices in H. Without loss

of generality, suppose that there exists no vertex w ∈ V (G) \ V (H) such that
NG(w) ∩ V (Xa) 6= ∅ and NG(w) ∩ V (Ya) 6= ∅. By Lemma 3, there exists an
edge uv ∈ E(G− V (H)) such that NG(u) ∩ V (Xa) 6= ∅ and NG(v) ∩ V (Ya) 6= ∅.
Since v1 6∈ S, S ⊆ V (H) and S is a dominating set of G, it follows that v has
a neighbor v′ ∈ S which belong to V (Xa) ∩ S or V (Ya − v1). If v′ ∈ V (Xa),
then NG(v) ∩ V (Xa) 6= ∅ and NG(v) ∩ V (Ya) 6= ∅, a contradiction. Otherwise,
v′ ∈ V (Ya−v1), then uv is an edge with the specified property in the assumption,
a contradiction.

So, the proof is completed.

Lemma 5. Let u1 and u2 be two distinct vertices in S such that κ′H(u1, u2) = 1
and dH(u1, u2) is as small as possible. If dH(u1, u2) = 3, then there exists a vertex

w ∈ V (G)\V (H) such that cH′ ≤ cH −1, where H ′ = G[S∪T ∪{w}], or an edge

e = uv ∈ E(G − V (H)) such that cH′ ≤ cH − 1, where H ′ = G[S ∪ T ∪ {u, v}],
or a pair of vertices u, v ∈ V (G) \ V (H) such that cH′ ≤ cH − 1, where H ′ =
G[S ∪ T ∪ {u, v}].

Proof. Let P = u1v1v2u2 be a path of length 3 in H. By the choice of u1 and
u2, we have v1 6∈ S and v2 6∈ S. If exactly one edge of P is a cut edge of H, then
by Lemma 3 the result follows. If exactly two adjacent edges of P are cut edges,
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then by a similar argument to the proof of Lemma 6, we may show the assertion
of the lemma. So, we consider the remaining cases.

Case 1. u1v1 and v2u2 are cut edges of H and v1v2 is not. Let a = u1v1, and
let Xa, Ya be two components of H \ a such that u1 ∈ Xa and v1 ∈ Ya. Similarly,
let b = u2v2, and let Xb, Yb be two components of H \ b such that v2 ∈ V (Xb)
and u2 ∈ V (Yb).

Subcase 1.1. There exists a vertex w ∈ V (G) \ V (H) such that NG(w) ∩
V (Xa) 6= ∅ and NG(w) ∩ V (Ya) 6= ∅, and a vertex w′ ∈ V (G) \ V (H) such that
NG(w

′) ∩ V (Xb) 6= ∅ and NG(w
′) ∩ V (Yb) 6= ∅. If w = w′, then w is a vertex we

want, otherwise w and w′ are a pair of vertices we want.

Subcase 1.2. There exists no pair of vertices w and w′ which satisfies the
condition of Subcase 1.1. Without loss of generality, assume that there exists no
vertex w ∈ V (G) \ V (H) such that NG(w)∩ V (Xa) 6= ∅ and NG(w)∩ V (Ya) 6= ∅.
By Lemma 3, there exists an edge uv ∈ E(G−V (H)) such thatNG(u)∩V (Xa) 6= ∅
and NG(v)∩V (Ya) 6= ∅. Since v1, v2 6∈ S, S ⊆ V (H) and S is a dominating set of
G, we know that v has a neighbor v′ in Xa or Ya − {v1, v2}. If v′ ∈ V (Xa), this
contradicts our assumption that there exists no vertex w ∈ V (G)\V (H) such that
NG(w) ∩ V (Xa) 6= ∅ and NG(w) ∩ V (Ya) 6= ∅. Otherwise, v′ ∈ V (Ya − {v1, v2}),
and the edge uv is an our desired edge.

Case 2. All edges of P are cut edges in H. Let a = v1v2, and let Xa, Ya be
two components of H \ a such that v1 ∈ V (Xa) and v2 ∈ V (Ya). Consider the
following three subcases.

Subcase 2.1. There exists a vertex w ∈ V (G) \ V (H) such that NG(w) ∩
V (Xa − v1) 6= ∅ and NG(w)∩ V (Ya − v2) 6= ∅. Then w is a vertex, as we desired.

Subcase 2.2. There exists an edge uv ∈ V (G)\V (H) such that NG(u)∩(Xa−
v1) 6= ∅ and NG(v) ∩ (Ya − v2) 6= ∅. Then uv is an edge, as we desired.

Subcase 2.3. There exists no such vertex satisfying the condition of Sub-
case 2.1, and no such edge satisfying the condition of Subcase 2.2. We shall show
that there exists a pair of vertices which satisfies the assertion of this lemma.

Claim 1. There exists a vertex w ∈ V (G) \ V (H) such that NG(w)∩ V (Xa) 6= ∅
and NG(w)∩V (Ya−v2) 6= ∅, or NG(w)∩V (Ya) 6= ∅, and NG(w)∩V (Xa−v1) 6= ∅.

Proof. Assume that there exists a vertex w satisfying NG(w) ∩ V (Xa) 6= ∅ and
NG(w) ∩ V (Ya) 6= ∅. If NG(w) ∩ V (Xa) = {v1} and NG(w) ∩ Ya = {v2}, then it
contradicts the assumption that S is a dominating set of G. Thus, w is a vertex,
as we want.

Assume that there does not exist a vertex w satisfying NG(w) ∩ V (Xa) 6= ∅
and NG(w)∩V (Ya) 6= ∅. By Lemma 3, there exists an edge uv satisfying NG(u)∩
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V (Xa) 6= ∅ and NG(v) ∩ V (Ya) 6= ∅. Since v1 /∈ S, v2 6∈ S, S ⊆ V (H) and S is
a dominating set of G, we know that u has an neighbor u′ ∈ S which belong to
Xa − v1 or Ya − v2, and v has an neighbor v′ ∈ S which belong to Xa − v1 or
Ya − v2. If u

′ and v′ belong to different components of H \ a, then uv is an edge
which contradicts the assumption of Subcase 2.3. Thus u′ and v′ belong to the
same component of H \ a. We may suppose that u′, v′ ∈ V (Xa − v1). Then v is
the vertex, as we want. This proves the claim.

By Claim 1, we may assume that there exists a vertex w ∈ V (G)\V (H) such
that NG(w) ∩ V (Xa − v1) 6= ∅ and NG(w) ∩ V (Ya) 6= ∅.

Let b = v2u2, and Xb and Yb be two components of H \ b such that v2 ∈
V (Xb) and u2 ∈ V (Yb). If there exists a vertex w′ ∈ V (G) \ V (H) such that
NG(w

′) ∩ V (Xb) 6= ∅ and NG(w
′) ∩ V (Yb) 6= ∅, then w and w′ are a pair of

vertices, as we desired. If this is not the case, then by Lemma 3, there is an edge
uv ∈ E(G− V (H)) such that NG(u) ∩ V (Xb) 6= ∅ and NG(v) ∩ V (Yb) 6= ∅. Since
v1 /∈ S, v2 6∈ S, S ⊆ V (H) and S is a dominating set of G, it follows that u has
a neighbor u′ ∈ S which belongs to Xb − {v1, v2} or Yb. If u

′ ∈ V (Xb − {v1, v2}),
then uv is an edge that contradicts the assumption of Subcase 2.3. So, u′ ∈ V (Yb),
which implies that NG(u) ∩ V (Xb) 6= ∅ and NG(u) ∩ V (Yb) 6= ∅. Hence w and u
are a pair of vertices, as we desired.

Theorem 6. Let G be 2-edge connected graph. If S is a dominating set of G with

|S| ≥ 2, then there exists a set T ⊆ V (G) such that |T | ≤ 4|S| − 4 and G[S ∪ T ]
is 2-edge connected.

Proof. For G and S, let T be an output of Algorithm 1 and H = G[S ∪ T ]. We
may suppose that cH ≥ 2 and pick a pair of vertices u1 ∈ S and u2 ∈ S such that
κ′H(u1, u2) = 1 and dH(u1, u2) is as small as possible.

Claim 2. dH(u1, u2) ≤ 3.

Proof. Suppose that the claim is not true, and let P = x1x2 · · ·xk be a shortest
path joining u1 and u2 in H, where k ≥ 5, x1 = u1 and xk = u2. We consider x3.
Since S is a dominating set of H, x3 has a neighbor x′3 ∈ S in H.

If at least one of x1x2 and x2x3 is a cut edge of H, then u1 and x′3 are a pair
of vertices such that κ′H(u1, x

′
3) = 1 and dH(u1, x

′
3) < dH(u1, u2), a contradiction;

otherwise, at least one edge of the path x3x4 · · ·xk is a cut edge of H. Thus u2
and x′3 are a pair of vertices of S such that κ′H(x′3, u2) = 1 and dH(x′3, u2) <
dH(u1, u2), a contradiction. Thus dH(u1, u2) ≤ 3.

By Lemmas 3, 4 and 5, there exists a vertex set T ′ such that |T ′| ≤ 2 and
cH′ ≤ cH − 1, where H ′ = G[S ∪ T ∪ T ′]. If H ′ is 2-edge connected, then we are
done by letting T := T ∪ T ′. Otherwise, let T := T ∪ T ′, and repeat the above
operation until G[S ∪ T ] is 2-edge connected.
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Since cH ≤ |S|, |T | increases by at most two and cH decreases by at least
one in each iteration of the above operation, we conclude that the desired set T
exists.

Corollary 3. For a 2-edge connected graph G, if γ(G) ≥ 2, then γ′2(G) ≤
5γ(G)− 4.

Algorithm 2. An algorithm for constructing a 2-edge connected dominating set.
Input: A 2-edge connected graph G, a dominating set S with at least 2 vertices.
Output: A set T such that |T | ≤ 4|S| − 4 and G[S ∪ T ] is 2-edge connected.

I. run Algorithm 1 to get set T
II. 1. for G[S ∪ T ], run DFS to get all blocks, say B1, B2, . . . , Bk, and all cut vertices,

say w1, w2, . . . , wℓ

2. set H := G[S ∪ T ], W = {w1, w2, . . . , wℓ}, and B the set of blocks Bi in H such
that |V (Bi)| ≥ 3

3. if W = ∅, then stop
4. else pick w ∈ W
5. ifBi1 , Bi2 , . . . , Bir are blocks inG such that w ∈ V (Bi1)∩V (Bi2)∩· · · ∩V (Bir ),

then set Bi1 = Bi1 ∪Bi2 ∪ · · · ∪Bir , W = W \ {w}, go to Step 3
6. else W = W \ {w}
7. end if

8. end if

III. 1. set B = B ∪
(

S \
⋃

Bi∈B
V (Bi)

)

, b := |B|
2. if b = 1, then stop
3. else set W := V \V (H), F := E(G[W ]), and R := W ×W
4. while F 6= ∅
5. pick f = uv ∈ F
6. if NG(u)∩V (Bi) 6= ∅ and NG(u)∩V (Bj) 6= ∅ for different integers i and j,

then set Bi := G[
⋃

Bi∈H
V (Bi)∪{u, v}], B := (B\H)∪{Bi}, T := T∪{u, v},

H := G[S ∪ T ], and b := b − h + 1, where H = {Hi : NG(Bi) ∩NG(u) 6= ∅
or NG(Bi) ∩NG(v) 6= ∅} and h = |H|, go to Step 2

7. else F := F \ {f}
8. end if

9. end while

11. while W 6= ∅,
12. pick w ∈ W
13. if NG(w)∩V (Bi) 6= ∅ and NG(w)∩V (Bj) 6= ∅ for different integers i and j,

then set Bi := G[
⋃

Bi∈H
V (Bi)∪ {w}], B := (B \H)∪ {Bi}, T := T ∪ {w},

H := G[S ∪ T ], and b := b− h+ 1, where H = {Bi : NG(Bi) ∩NG(w) 6= ∅}
and h = |H|, go to Step 2

14. else W := W\{w}
15. end if

16. end while

17. while R 6= ∅,
18. pick r = (u, v) ∈ R
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19. ifNG(u)∩V (Bi) 6= ∅, NG(u)∩NH(Bj) 6= ∅, NG(v)∩V (Bi) 6= ∅, andNG(v)∩
NH(Bi) 6= ∅ for different integers i and j, then set Bi := G[

⋃

Bi∈H
V (Bi)∪

{u, v}], B := (B\H)∪Bi, T := T ∪{u, v}, H := G[S∪T ], and b := b−h+1,
whereH = {Hi : NG(Hi)∩NG(u) 6= ∅ or NG(Hi)∩NG(v) 6= ∅} and h = |H|,
go to Step 2

20. else R := R\{r}
21. end if

22. end while

23. end if

Remark 2. Let s, ∆, n and m be the size of a dominating set S, the maximum
degree, order and size of G, respectively. Note that the time complexity of stage
I can be expressed as O((s − 1)∆(n + 2m)), and the time complexity of II can
be expressed as O(m + kℓ). In III, since the running time of each recursion is
at most ∆(n + 2m + n2) and III runs at most s − 1 recursions. Thus the time
complexity of this algorithm is bounded by O((s− 1)∆(m+ n2)).

2.3. 2-connected dominating set

Let G be a connected graph which is not complete, let X be a vertex cut of G,
and let Y be the vertex set of a component of G − X. The subgraph H of G
induced by X ∪ Y is called an X-component of G. We simply write x-component

if X = {x}.

Lemma 7. Let S be a dominating set of a 2-edge connected graph G with |S| ≥ 2.
If T is an output of Algorithm 2 for G and S, and T ′ ⊆ T is an output of stage

I of Algorithm 2 for G and S, then the following is true for H = G[S ∪ T ]:

(i) if u is a cut vertex in H, then u ∈ S ∪ T ′,

(ii) b(H) ≤ 2|S| − 2, where b(H) is the number of blocks in H.

Proof. To show (i), it suffices to show that each vertex u ∈ T \ T ′ is not a cut
vertex of H. Since T ′ is an output of stage I of Algorithm 2 for G and S, S∪T ′ is
a connected dominating set of G, and thus S ∪T ′ is also a connected dominating
set of H. Therefore H − u is connected, i.e., u is not a cut vertex of H.

Suppose that (ii) is not true, and G is a graph of minimum order satisfying
the conditions of this lemma but b(H) > 2|S| − 2 ≥ 2. If |S| = 2, then b(H) ≤ 2,
and thus b(H) = 2 ≤ 2|S|− 2, a contradiction. So, |S| ≥ 3. Let u be a cut vertex
of H. We consider the following two cases according to (i).

Case 1. u ∈ S. Let H1, H2, . . . , Hk be the u-components of H. Clearly Hi

is 2-edge connected. Let Si = V (Hi) ∩ S and Ti = V (Hi) \ Si for i = 1, 2, . . . , k.
Since Ti is a possible output of Algorithm 2 for Hi and Si, we have b(Hi) =
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b(G[Si ∪ Ti]) ≤ 2|Si| − 2 by the minimality of G. Thus b(H) =
∑k

i=1
b(Hi) ≤

∑k
i=1

(2|Si|−2) ≤ 2
∑k

i=1
|Si|−2k = 2(|S|+k−1)−2k = 2|S|−2, a contradiction.

Case 2. u ∈ T ′. Let H1, H2, . . . , Hk be the u-components of H. Clearly Hi

is 2-edge connected. Let Si = V (Hi) ∩ S and Ti = V (Hi) \ Si for i = 1, 2, . . . , k.
Without loss of generality, let NHi

(u) ∩ Si 6= ∅ for 1 ≤ i ≤ r for an integer r and
NHj

(u) ∩ Sj = ∅, r < j ≤ k. Since S is a dominating set of H, r ≥ 1.
When 1 ≤ i ≤ r, since Ti is a possible output of Algorithm 2 for Hi and Si,

we have b(Hi) = b(G[Si ∪ Ti]) ≤ 2|Si| − 2 by the minimality of G.
When r < j ≤ k, let S′

j = Sj ∪ {u} and T ′
j = (Tj \ u). Since T ′

j is a possible
output of Algorithm 2 for Hj and S′

j , we have b(Hj) = b(G[Sj∪Tj ]) ≤ 2|S′
j |−2 =

2(|Sj |+ 1)− 2 by the choice of G.

Thus b(H) =
∑k

i=1
b(Hi) =

∑r
i=1

(2|Si| − 2) +
∑k

j=r+1
(2(|Sj | + 1) − 2) ≤

∑r
i=1

(2|Si| − 2) +
∑k

j=r+1
(2|Sj |) ≤ 2|S| − 2r ≤ 2|S| − 2, a contradiction. This

shows (ii).

Theorem 8. Let G be a 2-connected triangle-free graph G. If S is a dominating

set of G with |S| ≥ 2, then there exists a set T ⊆ V (G) such that |T | ≤ 10|S|−13
and G[S ∪ T ] is 2-connected.

Proof. Let T be an output of Algorithm 2 for G and S. We may suppose that
G[S∪T ] is not 2-connected and let b(H) be the number of blocks in H = G[S∪T ].
Since H is 2-edge connected, each block of H is 2-edge connected. Let u be a cut
vertex in H, let B1 and B2 be two blocks of H such that u ∈ V (B1) ∩ V (B2),
and let H1 and H2 be u-components such that Bi ⊆ Hi for i = 1, 2.

Let P = x1x2 · · ·xk be a shortest path connecting V (H1) and V (H2) in G\u
where x1 ∈ V (H1), xk ∈ V (H2) and x2, x3, . . . , xk−1 6∈ V (H1) ∪ V (H2). Suppose
k ≥ 6. Then ux3, ux4 ∈ E(G) since S ⊆ V (H) is a dominating set of G, and P is
a shortest path connecting V (H1) and V (H2) in G \ u. Thus ux3x4 is a triangle,
a contradiction. Thus k ≤ 5. Let T ′ = V (P )\{x1, xk}. Then |T ′| ≤ 3.

Hence S ∪ T ∪ T ′ is a 2-edge connected dominating set of G with |T ∪ T ′| ≤
|T | + 2 ≤ 4|S| − 4 + 3 and b(G[S ∪ T ∪ T ′]) ≤ b(G[S ∪ T ]) − 1 = b(H) − 1. If
G[S∪T ∪T ′] is 2-connected, then we are done by letting T := T ∪T ′. Otherwise,
let T := T ∪ T ′, and repeat the above operation until G[S ∪ T ] is 2-connected.

Since |T | ≤ 4|S|−4, b(H) ≤ 2|S|−2, |T | increases by at most three and b(H)
decreases by at least one in each iteration of the above operation, we conclude
that the desired set T exists since |T | ≤ 4|S| − 4 + 3(b(H)− 1) = 10|S| − 13.

Corollary 4. For a 2-connected triangle-free graph G, if γ(G) ≥ 2, then γ2(G) ≤
11γ(G)− 13.

Remark 3. For a graph with triangle, Theorem 8 does not holds. For example,
let G be the graph in Figure 1. Since {u, v, w} is a smallest dominating set
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and any proper subgraph of G is not 2-connected, we have that γ(G) = 3 but
γ2(G) = V (G) , that is, there is not a constant k such that γ2(G) ≤ kγ(G) for
graphs with triangle. So the condition that G is triangle-free is indispensable.

u v w

Figure 1. A graph with γ(G) = 3 but γ2 = V (G).

Algorithm 3. An algorithm for constructing a 2-connected dominating set.
Input: A 2-connected graph G, a dominating set S with at least 2 vertices.

Output: A set T such that |T | ≤ 10|S| − 13 and G[S ∪ T ] is 2-connected.

I. run Algorithm 2.

II. run DFS to get all blocks of G[S ∪ T ], say B1, B2, . . . , Bk

III. 1. set H := G[S ∪ T ], B = {Bi : 1 ≤ i ≤ k}, b := |B|

2. if b = 1, then stop

3. else set W := V \V (H) and F := E(G[W ])

4. while F 6= ∅

5. pick f = uv ∈ F

6. if NG(u) ∩ V (Bi) 6= ∅ and w ∈ NG(v) ∩ NG(Bj) 6= ∅, then set Bi :=
G[

⋃

Bi∈H
V (Bi)∪{u, v}], B := (B\H)∪{Bi}, T := T∪{u, v, w}, H := G[S∪

T ], b := b−h+1, whereH = {Bi : V (Bi)∩NG(u) 6= ∅ or V (Bi)∩NG(v) 6= ∅},
and h = |H|, go to Step 2

7. else F := F\{f}

8. end if

9. end while

10. while W 6= ∅

11. pick w ∈ W

12. if NG(w) ∩ V (Bi) 6= ∅ and NG(w) ∩ V (Bj) 6= ∅, then set Bi :=
G[

⋃

Bi∈H
V (Bi)∪ {w}], B := (B \H)∪ {Bi}, T := T ∪ {w}, H := G[S ∪ T ],

b := b − h + 1, where H = {Bi : V (Bi) ∩ NG(w) 6= ∅}, and h = |H|, go to
Step 2

13. else F := F\{f}

14. end if

15. end while

16. end if
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Remark 4. Let s, ∆, n and m be the size of a dominating set S, the maximum
degree, order and size of G, respectively. Note the time complexity of stage I is
O((s − 1)∆(m + n2)), and the time complexity of II is O(m). In III, since the
running time of each recursion is at most 2∆n2 and III implements at most
s − 1 recursions. Thus the time complexity of the algorithm is bounded by
O((s− 1)∆(m+ n2)).

3. Concluding Remarks

Let P = u0u1 · · ·u3k and Q = v0v1 · · · v3k be two path of length 3k. The symbol
G denotes the graph obtained from P and Q by identifying u3i and v3i (denote
the resulting vertex by w3i), where 0 ≤ i ≤ n. It is easy to check that G is
2-edge connected and S = {w3i : 0 ≤ i ≤ n} is a dominating set. Note that
T = {u3i+1, u3i+2 : 0 ≤ i ≤ n − 1} and T ′ = {v3i+1, v3i+2 : 0 ≤ i ≤ n − 1} are
minimum sets of vertices such that G[S ∪ T ] and G[S ∪ T ′] are connected, and
Q = T ∪ T ′ is the unique set of vertices such that G[S ∪Q] is 2-edge connected.
Thus the bounds given in Theorem 2, 6 and Corollary 3 are sharp.

We suspect that the bound of Theorem 8 is not sharp and the best possible
bound might be the following.

Conjecture 2. For a dominating set S of a 2-connected triangle-free graph G
with |S| ≥ 2, there exists a vertex set T ⊆ V (G) with |T | ≤ 5|S| such that G[S∪T ]
is 2-connected.

Inspired by Corollaries 1, 3 and 4, one may ask the following two problems.

Problem 4. Does there exist an absolute constant c′k for a given integer k ≥ 1
such that γ′k(G) ≤ c′kγ(G) for any k-edge connected graph G?

Problem 5. Does there exist an absolute constant ck for a given integer k ≥ 1
such that γk(G) ≤ ckγ(G) for any k-connected graph G?

By our main results, c′k and ck exist for 1 ≤ k ≤ 2. But, c′k and ck do not
exist for an integer k ≥ 3. Let Cn and Kk−2 be the cycle of order n and the
complete graph of order k − 2. Let Gn,k = Cn ∨ Kk−2, be the graph obtained
from Cn and Kk−2 by joining every vertex of Cn to all vertices of Kk−2. It is
clear that Gn,k is k-connected, and thus k-edge connected. But, γ(Gn,k) = 1 and
γ′k(Gn,k) = γk(Gn,k) = n+ k.
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