MAKING A DOMINATING SET OF A GRAPH CONNECTED

Hengzhe Li
College of Mathematics and Information Science Henan Normal University, Xinxiang 453007, P.R. China
e-mail: lhz@htu.cn
Baoyindureng Wu
College of Mathematics and System Sciences
Xinjiang University, Urumqi 830046, P.R. China
e-mail: baoywu@163.com
AND
Weihua Yang
School of Mathematical Science
Taiyuan University of Technology
Shanxi Taiyuan 030024, P.R. China
e-mail: ywh222@163.com

Abstract

Let $G=(V, E)$ be a graph and $S \subseteq V$. We say that S is a dominating set of G, if each vertex in $V \backslash S$ has a neighbor in S. Moreover, we say that S is a connected (respectively, 2-edge connected or 2-connected) dominating set of G if $G[S]$ is connected (respectively, 2-edge connected or 2 -connected). The domination (respectively, connected domination, or 2edge connected domination, or 2-connected domination) number of G is the cardinality of a minimum dominating (respectively, connected dominating, or 2-edge connected dominating, or 2-connected dominating) set of G, and is denoted $\gamma(G)$ (respectively $\gamma_{1}(G)$, or $\gamma_{2}^{\prime}(G)$, or $\gamma_{2}(G)$). A well-known result of Duchet and Meyniel states that $\gamma_{1}(G) \leq 3 \gamma(G)-2$ for any connected graph G. We show that if $\gamma(G) \geq 2$, then $\gamma_{2}^{\prime}(G) \leq 5 \gamma(G)-4$ when G is a 2-edge connected graph and $\gamma_{2}(G) \leq 11 \gamma(G)-13$ when G is a 2-connected triangle-free graph. Keywords: independent set, dominating set, connected dominating set. 2010 Mathematics Subject Classification: 05C69.

1. Introduction

In this paper, all graphs considered are finite, undirected graphs. We follow the notation and terminology of Bondy and Murty [3], unless otherwise stated.

Let $G=(V(G), E(G))$ be a graph. The order and the size of G are $|V(G)|$ and $|E(G)|$, respectively. We use $c(G)$ to denote the number of components of G. The graph G is trivial if its order is 1 , and nontrivial, otherwise. For $D \subseteq V(G)$, the subgraph of G induced by D, denoted by $G[D]$, is the graph with D as the vertex set, in which two vertices are adjacent if and only if they are adjacent in G. D is an independent set of G if $G[D]$ has no edge. The independence number of G, denoted $\alpha(G)$, is the maximum cardinality of an independent set of G.

Let G be a nontrivial graph and $x, y \in V(G)$ be two distinct vertices. An $x y$-path is a path joining x and y in G. The local connectivity between x and y, denoted $\kappa_{G}(x, y)$, is the maximum number of pairwise internally disjoint $x y$-paths in G. For a nonnegative integer k, G is k-connected if $\kappa_{G}(x, y) \geq k$ for any two distinct vertices x and y. Similarly, the local edge connectivity between x and y, denoted $\kappa_{G}^{\prime}(x, y)$, is the maximum number of pairwise edge-disjoint $x y$-paths in G. For two distinct nonadjacent vertices x and y, an $x y$-vertex cut is a subset S of $V(G) \backslash\{x, y\}$ such that x and y belong to different components of $G-S$. We also say that such a subset S separates x and y. The minimum size of a vertex cut separating x and y is denoted by $c(x, y)$.

For a nonnegative integer k, G is k-edge connected if $\kappa_{G}^{\prime}(x, y) \geq k$ for any two distinct vertices x and y of G. An edge cut $E[X, V(G) \backslash X]$ separates x and y if $x \in X$ and $y \in V(G) \backslash X$. We denote by $c^{\prime}(x, y)$ the minimum cardinality of such an edge cut. The well-known Menger's Theorem asserts that $\kappa_{G}^{\prime}(x, y)=c^{\prime}(x, y)$.

In graph theory, the problem concerning domination of graphs (or networks) is a major area that has attracted a large number of researchers and generated a wealth of important achievements in the past few decades. Let $G=(V, E)$ be a graph and $D \subseteq V$. We call D a dominating set of G if every vertex in $V \backslash D$ has a neighbor in D. Furthermore, if $G[D]$ is k-connected (respectively, k-edge connected), D is called a k-connected (respectively, k-edge connected) dominating set. The k-connected domination number (respectively, k-edge connected domination number) of a graph G, denoted by $\gamma_{k}(G)$ (respectively, by $\gamma_{k}^{\prime}(G)$) is the minimum cardinality of a k-connected (respectively, k-edge connected) dominating set. Clearly, a graph G has a k-connected (respectively, k-edge connected) dominating set if G is k-connected (respectively, k-edge connected). But a graph having a k-connected (respectively, k-edge connected) dominating set needs not to be k-connected (respectively, k-edge connected). It is clear that $\gamma_{0}^{\prime}(G)=\gamma_{0}(G)=\gamma(G)$ and $\gamma_{1}^{\prime}(G)=\gamma_{1}(G)$.

The theory of connected domination of graphs has important applications in communication and computer networks, especially for its role as a virtual
backbone in wireless networks, see Du and Wan [6]. Haynes, Hedetniemi and Slater published two monographs $[10,11]$ concerning domination in graphs, and recently Chellali, Favaron, Hansberg and Volkmann presented a survey paper [4] concerning dominating sets and independent sets. We refer to $[1,2,5,13-15,18]$ for more results concerning connected dominating sets.

An interesting application of the connected domination of graphs is in minor theory. The well-known Hadwiger's conjecture states that if $\chi(G) \geq k$, then G contains a K_{k}-minor, where $\chi(G)$ denotes the chromatic number of G. We use $\alpha(G)$ to denote the independent number of a graph. Since

$$
\alpha(G) \chi(G) \geq n
$$

for a graph G on n vertices, Hadwiger's conjecture implies that any graph G on n vertices has a $\left.K_{\left\lceil\frac{n}{\alpha(G)}\right.}\right\rceil$-minor. Duchet and Meyniel in [8] established the following relation between the connected domination number and the independence number of a connected graph, and by applying this result, they proved that any graph G on n vertices has a $K_{\left\lceil\frac{n}{2 \alpha(G)-1}\right\rceil}$-minor.
Theorem 1 (Duchet and Meyniel [8]). For any connected graph G, $\gamma_{1}(G) \leq$ $\min \{2 \alpha(G)-1,3 \gamma(G)-2\}$.

In some sense, the above theorem of Duchet and Meyniel is related to the following conjecture in combinatorial optimization.

Conjecture 1 [20]. For any connected unit disk graph G, $\alpha(G) \leq 3 \gamma_{1}(G)+2$.
There are a number of papers devoted to the relation of the independence number and the connected domination number of unit disk graphs, for instance, $[12,17,19]$. Best known result on Conjecture 1 is $\alpha(G) \leq 3.399 \gamma_{1}(G)+4.874$ obtained by Du and Du [7]. So, combining this with Theorem 1, for a connected unit disk graph G,

$$
0.5 \gamma_{1}(G)+0.5 \leq \alpha(G) \leq 3.399 \gamma_{1}(G)+4.874
$$

We refer to [20] for more relevant works concerning domination and packing on wireless networks.

There exist a number of algorithms for constructing maximal independent sets and connected dominating sets. For instance, Vigoda [16] presented a parallel algorithm for constructing a maximal independent set of an input graph on n vertices, in time polynomial in $\log n$ and in $\log n$ using a polynomial in n processors, Guha and Khuller [9] presented two polynomial time algorithms for constructing a connected dominating set that achieves approximation factors of $O(h(\Delta))$, where Δ is the maximum degree, and h is the harmonic function.

We shall get a connected dominating set if we can make a dominating set connected by adding a small vertex set (with respect to the dominating set). In this paper, we generalize Duchet and Meyniel's theorem by considering the following problems.

Problem 1. Given a connected graph G and a dominating set S, what is the least vertex set T such that $G[S \cup T]$ is connected?

Problem 1 was studied in [8] by Duchet and Meyniel. We are maninly concerned with the following two problems.

Problem 2. Given a 2-edge connected graph G and a dominating set S, find a vertex set T with minimum $|T|$ such that $G[S \cup T]$ is 2-edge connected.

Problem 3. Given a 2-connected graph G and a dominating set S, find a vertex set T with minimum $|T|$ such that $G[S \cup T]$ is 2 -connected.

2. Minimum Vertex Set Joining a Given Dominating Set

For two vertices $u, v \in V(G)$, the distance $d_{G}(u, v)$ between u and v is the number of edges in a shortest path connecting u and v in G. In general, for $X \subseteq V(G)$ and $Y \subseteq V(G)$, the distance $d_{G}(X, Y)$ between X and Y is $\min \left\{d_{G}(x, y): x \in\right.$ $X, y \in Y\}$. Thus $d_{G}(X, Y)=d_{G}(Y, X)$. If $Y=\{y\}$ for a vertex $y \in V(G)$, we simply write $d_{G}(X, y)$ instead of $d_{G}(X,\{y\})$.

2.1. Connected dominating set

The idea of the proof of the following theorem is due to Duchet and Meyniel [8].
Theorem 2. Let S be a dominating set of a connected graph G. Then there exists a set T such that $|T| \leq 2|S|-2$ and $G[S \cup T]$ is connected.

Proof. If $c(G[S])=1$, i.e., S is a connected dominating set, then the assertion of the theorem trivially holds by taking $T=\emptyset$. Next we assume that $G[S]$ is disconnected. Since S is a dominating set of G, there exist two components of $G[S]$, say G_{1} and G_{2}, such that $d_{G}\left(V\left(G_{1}\right), V\left(G_{2}\right)\right) \leq 3$. Pick a path P which joins $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ with $\ell(P)=d_{G}\left(V\left(G_{1}\right), V\left(G_{2}\right)\right)$. Hence $S \cup V(P)$ is a dominating set of G with $|S \cup V(P)| \leq|S|+2$ and $c(G[S \cup V(P)]) \leq c(G[S])-1$. If $G[S \cup V(P)]$ is connected, then we are done by letting $T=V(P)$. Otherwise, let $S:=S \cup V(P)$, and repeat the above operation until $G[S]$ is connected.

Since $c(G[S]) \leq|S|-1,|S|$ increases by at most two and the number of components decreases by at least one in each iteration of the above operation, we conclude that the desired set T exists.

So the following is immediate from the above theorem.
Corollary 1. $\gamma_{1}(G) \leq 3 \gamma(G)-2$ for any connected graph G.

```
Algorithm 1. An algorithm for constructing a connected dominating set.
Input: A connected graph \(G\) and a dominating set \(S\) of \(G\).
Output: A set \(T\) such that \(|T| \leq 2|S|-2\) and \(G[S \cup T]\) is connected.
    Set \(T:=\emptyset, H:=G[S \cup T]\)
    run BFS to get all components of \(H\), say \(H_{1}, H_{2}, \ldots, H_{c}\), and set \(\mathcal{C}=\left\{H_{i}: 1 \leq\right.\)
    \(i \leq c\}\) and \(c=|\mathcal{C}|\)
    if \(c=1\), then stop
    else set \(W:=V(G) \backslash S\) and \(F:=E(G[W])\)
    while \(W \neq \emptyset\)
    pick a vertex \(w \in W\)
        if \(N(w) \cap V\left(H_{i}\right) \neq \emptyset\) and \(N(w) \cap V\left(H_{j}\right) \neq \emptyset\) for different integers \(i\) and \(j\),
        then set \(H_{i}:=G\left[\bigcup_{H_{i} \in \mathcal{H}} V\left(H_{i}\right) \cup\{w\}\right], \mathcal{C}:=(\mathcal{C} \backslash \mathcal{H}) \cup\left\{H_{i}\right\}, T:=T \cup\{w\}\),
        \(H:=G[S \cup T]\), and \(k:=k-h+1\), where \(\mathcal{H}=\left\{H_{i}: V\left(H_{i}\right) \cap N_{G}(w) \neq \emptyset\right\}\) and
        \(h=|\mathcal{H}|\), go to step 3
        else \(W:=W \backslash\{w\}\)
        end if
    end while
    while \(F \neq \emptyset\), pick \(f=u v \in F\)
    pick \(f=u v \in F\)
        if \(N(u) \cap V\left(H_{i}\right) \neq \emptyset\) and \(N(v) \cap V\left(H_{j}\right) \neq \emptyset\) for different integers \(i\) and \(j\), then
        set \(H_{i}:=G\left[\bigcup_{H_{i} \in \mathcal{H}} V\left(H_{i}\right) \cup\{u, v\}\right], \mathcal{C}:=(\mathcal{C} \backslash \mathcal{H}) \cup\left\{H_{i}\right\}, T:=T \cup\{u, v\}\),
        \(H:=G[S \cup T]\), and \(k:=k-|\mathcal{H}|+1\), where \(\mathcal{H}=\left\{H_{i}: V\left(H_{i}\right) \cap N_{G}(u) \neq \emptyset\right.\) or
        \(\left.V\left(H_{i}\right) \cap N_{G}(v) \neq \emptyset\right\}\) and \(h=|\mathcal{H}|\), go to step 3
        else \(F:=F \backslash\{f\}\).
        end if
    end while
    end if
```

Remark 1. Let s, Δ, n and m be the size of a dominating set S, the maximum degree, order and size of G, respectively. Note that the time complexity of BFS can be expressed as $O(n+m)$. Since the running time of each recursion is at most $\Delta(n+2 m)$ and this algorithm runs at most $s-1$ recursions, the time complexity of the algorithm is bounded by $O((s-1) \Delta(n+2 m))$.

2.2. 2-edge connected dominating set

Let G be a connected graph. A subgraph $F \subseteq G$ is called a maximal 2-edge connected subgraph of G if F is trivial or is 2-edge connected, and there exists no other 2-edge connected subgraph $F^{\prime} \subseteq G$ such that $F \subseteq F^{\prime}$. It is clear from the
definition that every maximal 2-edge connected subgraph F of G is an induced subgraph of G.

For a dominating set S of G, let $H=G[S]$. We use \mathcal{C}_{H} to denote the set of all maximal 2-edge connected subgraphs F of H containing at least one vertex of S, and $c_{H}=\left|\mathcal{C}_{H}\right|$.

Next we assume that G is a 2 -edge connected graph and let S be a dominating set of G with $|S| \geq 2$, and let T be an output of Algorithm 1 for G and S. If $H=G[S \cup T]$ is 2-edge connected, then $S \cup T$ is a 2-edge connected dominating set of G. Otherwise, we shall decrease c_{H} by at least one by adding at most two vertices, see Lemma 3, Corollary 2, and Lemmas 4-5 for details.

Lemma 3. Let u_{1} and u_{2} be two distinct vertices in H. If deleting a cut edge e separates u_{1} and u_{2} in H, then there exists a vertex $w \in V(G) \backslash V(H)$ such that $N_{G}(w) \cap V\left(X_{e}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{e}\right) \neq \emptyset$, or an edge uv $\in E(G-V(H))$ such that $N_{G}(u) \cap V\left(X_{e}\right) \neq \emptyset$ and $N_{G}(v) \cap V\left(Y_{e}\right) \neq \emptyset$, where X_{e} and Y_{e} are two components of $H \backslash e$.

Proof. Without loss of generality, let $u_{1} \in V\left(X_{e}\right)$ and $u_{2} \in V\left(Y_{e}\right)$. Let $P=$ $x_{1} x_{2} \cdots x_{k}$ be a shortest path joining X_{e} and Y_{e} in $G \backslash e$, where $x_{1} \in V\left(X_{e}\right)$ and $x_{k} \in V\left(Y_{e}\right)$. If $k \leq 4$, then $P-\left\{x_{1}, x_{k}\right\}$ is a vertex or an edge, as we desired. If $k \geq 5$, we consider x_{3}. Since $S \subseteq V(H)$ is a dominating set of G, x_{3} has a neighbor $x_{3}^{\prime} \in S$ in G. If $x_{3}^{\prime} \in V\left(X_{e}\right)$, then $x_{3}^{\prime} x_{3} \cdots x_{k}$ is a shorter path than P that joins X_{e} and Y_{e} in $G \backslash e$, a contradiction; if $x_{3}^{\prime} \in V\left(Y_{e}\right)$, then $x_{1} x_{2} x_{3} x_{3}^{\prime}$ is a shorter path than P joining X_{e} and Y_{e} in $G \backslash e$, a contradiction.

Corollary 2. Let u_{1} and u_{2} be two distinct vertices in S. If $\kappa_{H}^{\prime}\left(u_{1}, u_{2}\right)=1$ and $d_{H}\left(u_{1}, u_{2}\right)=1$, then there exists a vertex $w \in V(G) \backslash V(H)$ such that $c_{H^{\prime}} \leq c_{H}-1$, where $H^{\prime}=G[S \cup T \cup\{w\}]$, or an edge $e=u v \in E(G-V(H))$ such that $c_{H^{\prime}} \leq c_{H}-1$, where $H^{\prime}=G[S \cup T \cup\{u, v\}]$.

Proof. Note that u_{1} and u_{2} belong to two distinct maximal 2-edge connected subgraphs of H, while they belong to the same maximal 2-edge connected subgraphs of H^{\prime} by Lemma 2. Thus $c_{H^{\prime}} \leq c_{H}-1$.

Lemma 4. Let u_{1} and u_{2} be two distinct vertices in S such that $\kappa_{H}^{\prime}\left(u_{1}, u_{2}\right)=1$ and $d_{H}\left(u_{1}, u_{2}\right)$ is as small as possible. If $d_{H}\left(u_{1}, u_{2}\right)=2$, then there exists a vertex $w \in V(G) \backslash V(H)$ such that $c_{H^{\prime}} \leq c_{H}-1$, where $H^{\prime}=G[S \cup T \cup\{w\}]$, or an edge $e=u v \in E(G-V(H))$ such that $c_{H^{\prime}} \leq c_{H}-1$, where $H^{\prime}=G[S \cup T \cup\{u, v\}]$, or a pair of vertices $u, v \in V(G) \backslash V(H)$ such that $c_{H^{\prime}} \leq c_{H}-1$, where $H^{\prime}=$ $G[S \cup T \cup\{u, v\}]$.

Proof. Let $u_{1} v_{1} u_{2}$ be a path of length 2 in H. By the choice of u_{1} and u_{2}, $v_{1} \notin S$. First, we may suppose that $u_{1} v_{1}$ is a cut edge of H and $u_{2} v_{1}$ is not. Let $a=u_{1} v_{1}$, and let X_{a} and Y_{a} be two components of $H \backslash a$ such that $u_{1} \in V\left(X_{a}\right)$
and $v_{1} \in V\left(Y_{a}\right)$. By Lemma 3, there exists a vertex $w \in V(G) \backslash V(H)$ such that $N_{G}(w) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}\right) \neq \emptyset$, or an edge $u v \in E(G-V(H))$ such that $N_{G}(u) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(v) \cap V\left(Y_{a}\right) \neq \emptyset$. For the former case, let $H^{\prime}=G[S \cup T \cup\{w\}]$. Clearly $\kappa_{H^{\prime}}^{\prime}\left(u_{1}, u_{2}\right) \geq 2$. Thus $c_{H^{\prime}} \leq c_{H}-1$. For the latter case, let $H^{\prime}=G[S \cup T \cup\{u, v\}]$. Clearly $\kappa_{H^{\prime}}^{\prime}\left(u_{1}, u_{2}\right) \geq 2$. Thus $c_{H^{\prime}} \leq c_{H}-1$.

So, we now assume that both $u_{1} v_{1}$ and $u_{2} v_{1}$ are cut edges of H. Let $a=u_{1} v_{1}$, and let X_{a}, Y_{a} be two components of $H \backslash a$ such that $u_{1} \in V\left(X_{a}\right)$ and $v_{1} \in V\left(Y_{a}\right)$. We consider the following cases.

Case 1. There exists a vertex $w \in V(G) \backslash V(H)$ such that $N_{G}(w) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}-v_{1}\right) \neq \emptyset$. Then w is the vertex, as we desired.

Case 2. There exists an edge $u v \in E(G-V(H))$ such that $N_{G}(u) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(v) \cap V\left(Y_{a}-v_{1}\right) \neq \emptyset$. Then $u v$ is the edge, as we desired.

Case 3. There exists no vertex $w \in V(G) \backslash V(H)$ such that $N_{G}(w) \cap V\left(X_{a}\right)$ $\neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}-v_{1}\right) \neq \emptyset$, and no edge $u v \in E(G-V(H))$ such that $N_{G}(u) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(v) \cap V\left(Y_{a}-v_{1}\right) \neq \emptyset$.

Let $b=v_{1} u_{2}$, and X_{b} and Y_{b} be two components of $H \backslash b$ such that $v_{1} \in$ $V\left(X_{b}\right)$ and $u_{2} \in V\left(Y_{b}\right)$. If there exists a vertex $w \in V(G) \backslash V(H)$ such that $N_{G}(w) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}\right) \neq \emptyset$, and a vertex $w^{\prime} \in V(G) \backslash V(H)$ such that $N_{G}\left(w^{\prime}\right) \cap V\left(X_{b}\right) \neq \emptyset$ and $N_{G}\left(w^{\prime}\right) \cap V\left(Y_{b}\right) \neq \emptyset$, then w and w^{\prime} are a pair of vertices, as we desired.

Next we show that there exist such a pair of vertices in H. Without loss of generality, suppose that there exists no vertex $w \in V(G) \backslash V(H)$ such that $N_{G}(w) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}\right) \neq \emptyset$. By Lemma 3, there exists an edge $u v \in E(G-V(H))$ such that $N_{G}(u) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(v) \cap V\left(Y_{a}\right) \neq \emptyset$. Since $v_{1} \notin S, S \subseteq V(H)$ and S is a dominating set of G, it follows that v has a neighbor $v^{\prime} \in S$ which belong to $V\left(X_{a}\right) \cap S$ or $V\left(Y_{a}-v_{1}\right)$. If $v^{\prime} \in V\left(X_{a}\right)$, then $N_{G}(v) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(v) \cap V\left(Y_{a}\right) \neq \emptyset$, a contradiction. Otherwise, $v^{\prime} \in V\left(Y_{a}-v_{1}\right)$, then $u v$ is an edge with the specified property in the assumption, a contradiction.

So, the proof is completed.
Lemma 5. Let u_{1} and u_{2} be two distinct vertices in S such that $\kappa_{H}^{\prime}\left(u_{1}, u_{2}\right)=1$ and $d_{H}\left(u_{1}, u_{2}\right)$ is as small as possible. If $d_{H}\left(u_{1}, u_{2}\right)=3$, then there exists a vertex $w \in V(G) \backslash V(H)$ such that $c_{H^{\prime}} \leq c_{H}-1$, where $H^{\prime}=G[S \cup T \cup\{w\}]$, or an edge $e=u v \in E(G-V(H))$ such that $c_{H^{\prime}} \leq c_{H}-1$, where $H^{\prime}=G[S \cup T \cup\{u, v\}]$, or a pair of vertices $u, v \in V(G) \backslash V(H)$ such that $c_{H^{\prime}} \leq c_{H}-1$, where $H^{\prime}=$ $G[S \cup T \cup\{u, v\}]$.

Proof. Let $P=u_{1} v_{1} v_{2} u_{2}$ be a path of length 3 in H. By the choice of u_{1} and u_{2}, we have $v_{1} \notin S$ and $v_{2} \notin S$. If exactly one edge of P is a cut edge of H, then by Lemma 3 the result follows. If exactly two adjacent edges of P are cut edges,
then by a similar argument to the proof of Lemma 6, we may show the assertion of the lemma. So, we consider the remaining cases.

Case 1. $u_{1} v_{1}$ and $v_{2} u_{2}$ are cut edges of H and $v_{1} v_{2}$ is not. Let $a=u_{1} v_{1}$, and let X_{a}, Y_{a} be two components of $H \backslash a$ such that $u_{1} \in X_{a}$ and $v_{1} \in Y_{a}$. Similarly, let $b=u_{2} v_{2}$, and let X_{b}, Y_{b} be two components of $H \backslash b$ such that $v_{2} \in V\left(X_{b}\right)$ and $u_{2} \in V\left(Y_{b}\right)$.

Subcase 1.1. There exists a vertex $w \in V(G) \backslash V(H)$ such that $N_{G}(w) \cap$ $V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}\right) \neq \emptyset$, and a vertex $w^{\prime} \in V(G) \backslash V(H)$ such that $N_{G}\left(w^{\prime}\right) \cap V\left(X_{b}\right) \neq \emptyset$ and $N_{G}\left(w^{\prime}\right) \cap V\left(Y_{b}\right) \neq \emptyset$. If $w=w^{\prime}$, then w is a vertex we want, otherwise w and w^{\prime} are a pair of vertices we want.

Subcase 1.2. There exists no pair of vertices w and w^{\prime} which satisfies the condition of Subcase 1.1. Without loss of generality, assume that there exists no vertex $w \in V(G) \backslash V(H)$ such that $N_{G}(w) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}\right) \neq \emptyset$. By Lemma 3, there exists an edge $u v \in E(G-V(H))$ such that $N_{G}(u) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(v) \cap V\left(Y_{a}\right) \neq \emptyset$. Since $v_{1}, v_{2} \notin S, S \subseteq V(H)$ and S is a dominating set of G, we know that v has a neighbor v^{\prime} in X_{a} or $Y_{a}-\left\{v_{1}, v_{2}\right\}$. If $v^{\prime} \in V\left(X_{a}\right)$, this contradicts our assumption that there exists no vertex $w \in V(G) \backslash V(H)$ such that $N_{G}(w) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}\right) \neq \emptyset$. Otherwise, $v^{\prime} \in V\left(Y_{a}-\left\{v_{1}, v_{2}\right\}\right)$, and the edge $u v$ is an our desired edge.

Case 2. All edges of P are cut edges in H. Let $a=v_{1} v_{2}$, and let X_{a}, Y_{a} be two components of $H \backslash a$ such that $v_{1} \in V\left(X_{a}\right)$ and $v_{2} \in V\left(Y_{a}\right)$. Consider the following three subcases.

Subcase 2.1. There exists a vertex $w \in V(G) \backslash V(H)$ such that $N_{G}(w) \cap$ $V\left(X_{a}-v_{1}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}-v_{2}\right) \neq \emptyset$. Then w is a vertex, as we desired.

Subcase 2.2. There exists an edge $u v \in V(G) \backslash V(H)$ such that $N_{G}(u) \cap\left(X_{a}-\right.$ $\left.v_{1}\right) \neq \emptyset$ and $N_{G}(v) \cap\left(Y_{a}-v_{2}\right) \neq \emptyset$. Then $u v$ is an edge, as we desired.

Subcase 2.3. There exists no such vertex satisfying the condition of Subcase 2.1 , and no such edge satisfying the condition of Subcase 2.2 . We shall show that there exists a pair of vertices which satisfies the assertion of this lemma.

Claim 1. There exists a vertex $w \in V(G) \backslash V(H)$ such that $N_{G}(w) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}-v_{2}\right) \neq \emptyset$, or $N_{G}(w) \cap V\left(Y_{a}\right) \neq \emptyset$, and $N_{G}(w) \cap V\left(X_{a}-v_{1}\right) \neq \emptyset$.
Proof. Assume that there exists a vertex w satisfying $N_{G}(w) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}\right) \neq \emptyset$. If $N_{G}(w) \cap V\left(X_{a}\right)=\left\{v_{1}\right\}$ and $N_{G}(w) \cap Y_{a}=\left\{v_{2}\right\}$, then it contradicts the assumption that S is a dominating set of G. Thus, w is a vertex, as we want.

Assume that there does not exist a vertex w satisfying $N_{G}(w) \cap V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}\right) \neq \emptyset$. By Lemma 3, there exists an edge $u v$ satisfying $N_{G}(u) \cap$
$V\left(X_{a}\right) \neq \emptyset$ and $N_{G}(v) \cap V\left(Y_{a}\right) \neq \emptyset$. Since $v_{1} \notin S, v_{2} \notin S, S \subseteq V(H)$ and S is a dominating set of G, we know that u has an neighbor $u^{\prime} \in S$ which belong to $X_{a}-v_{1}$ or $Y_{a}-v_{2}$, and v has an neighbor $v^{\prime} \in S$ which belong to $X_{a}-v_{1}$ or $Y_{a}-v_{2}$. If u^{\prime} and v^{\prime} belong to different components of $H \backslash a$, then $u v$ is an edge which contradicts the assumption of Subcase 2.3. Thus u^{\prime} and v^{\prime} belong to the same component of $H \backslash a$. We may suppose that $u^{\prime}, v^{\prime} \in V\left(X_{a}-v_{1}\right)$. Then v is the vertex, as we want. This proves the claim.

By Claim 1, we may assume that there exists a vertex $w \in V(G) \backslash V(H)$ such that $N_{G}(w) \cap V\left(X_{a}-v_{1}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(Y_{a}\right) \neq \emptyset$.

Let $b=v_{2} u_{2}$, and X_{b} and Y_{b} be two components of $H \backslash b$ such that $v_{2} \in$ $V\left(X_{b}\right)$ and $u_{2} \in V\left(Y_{b}\right)$. If there exists a vertex $w^{\prime} \in V(G) \backslash V(H)$ such that $N_{G}\left(w^{\prime}\right) \cap V\left(X_{b}\right) \neq \emptyset$ and $N_{G}\left(w^{\prime}\right) \cap V\left(Y_{b}\right) \neq \emptyset$, then w and w^{\prime} are a pair of vertices, as we desired. If this is not the case, then by Lemma 3, there is an edge $u v \in E(G-V(H))$ such that $N_{G}(u) \cap V\left(X_{b}\right) \neq \emptyset$ and $N_{G}(v) \cap V\left(Y_{b}\right) \neq \emptyset$. Since $v_{1} \notin S, v_{2} \notin S, S \subseteq V(H)$ and S is a dominating set of G, it follows that u has a neighbor $u^{\prime} \in S$ which belongs to $X_{b}-\left\{v_{1}, v_{2}\right\}$ or Y_{b}. If $u^{\prime} \in V\left(X_{b}-\left\{v_{1}, v_{2}\right\}\right)$, then $u v$ is an edge that contradicts the assumption of Subcase 2.3. So, $u^{\prime} \in V\left(Y_{b}\right)$, which implies that $N_{G}(u) \cap V\left(X_{b}\right) \neq \emptyset$ and $N_{G}(u) \cap V\left(Y_{b}\right) \neq \emptyset$. Hence w and u are a pair of vertices, as we desired.

Theorem 6. Let G be 2-edge connected graph. If S is a dominating set of G with $|S| \geq 2$, then there exists a set $T \subseteq V(G)$ such that $|T| \leq 4|S|-4$ and $G[S \cup T]$ is 2 -edge connected.

Proof. For G and S, let T be an output of Algorithm 1 and $H=G[S \cup T]$. We may suppose that $c_{H} \geq 2$ and pick a pair of vertices $u_{1} \in S$ and $u_{2} \in S$ such that $\kappa_{H}^{\prime}\left(u_{1}, u_{2}\right)=1$ and $d_{H}\left(u_{1}, u_{2}\right)$ is as small as possible.

Claim 2. $d_{H}\left(u_{1}, u_{2}\right) \leq 3$.
Proof. Suppose that the claim is not true, and let $P=x_{1} x_{2} \cdots x_{k}$ be a shortest path joining u_{1} and u_{2} in H, where $k \geq 5, x_{1}=u_{1}$ and $x_{k}=u_{2}$. We consider x_{3}. Since S is a dominating set of H, x_{3} has a neighbor $x_{3}^{\prime} \in S$ in H.

If at least one of $x_{1} x_{2}$ and $x_{2} x_{3}$ is a cut edge of H, then u_{1} and x_{3}^{\prime} are a pair of vertices such that $\kappa_{H}^{\prime}\left(u_{1}, x_{3}^{\prime}\right)=1$ and $d_{H}\left(u_{1}, x_{3}^{\prime}\right)<d_{H}\left(u_{1}, u_{2}\right)$, a contradiction; otherwise, at least one edge of the path $x_{3} x_{4} \cdots x_{k}$ is a cut edge of H. Thus u_{2} and x_{3}^{\prime} are a pair of vertices of S such that $\kappa_{H}^{\prime}\left(x_{3}^{\prime}, u_{2}\right)=1$ and $d_{H}\left(x_{3}^{\prime}, u_{2}\right)<$ $d_{H}\left(u_{1}, u_{2}\right)$, a contradiction. Thus $d_{H}\left(u_{1}, u_{2}\right) \leq 3$.

By Lemmas 3, 4 and 5 , there exists a vertex set T^{\prime} such that $\left|T^{\prime}\right| \leq 2$ and $c_{H^{\prime}} \leq c_{H}-1$, where $H^{\prime}=G\left[S \cup T \cup T^{\prime}\right]$. If H^{\prime} is 2-edge connected, then we are done by letting $T:=T \cup T^{\prime}$. Otherwise, let $T:=T \cup T^{\prime}$, and repeat the above operation until $G[S \cup T]$ is 2-edge connected.

Since $c_{H} \leq|S|,|T|$ increases by at most two and c_{H} decreases by at least one in each iteration of the above operation, we conclude that the desired set T exists.

Corollary 3. For a 2-edge connected graph G, if $\gamma(G) \geq 2$, then $\gamma_{2}^{\prime}(G) \leq$ $5 \gamma(G)-4$.

Algorithm 2. An algorithm for constructing a 2-edge connected dominating set. Input: A 2-edge connected graph G, a dominating set S with at least 2 vertices. Output: A set T such that $|T| \leq 4|S|-4$ and $G[S \cup T]$ is 2-edge connected.
I. run Algorithm 1 to get set T
II. 1. for $G[S \cup T]$, run DFS to get all blocks, say $B_{1}, B_{2}, \ldots, B_{k}$, and all cut vertices, say $w_{1}, w_{2}, \ldots, w_{\ell}$
2. set $H:=G[S \cup T], W=\left\{w_{1}, w_{2}, \ldots, w_{\ell}\right\}$, and \mathcal{B} the set of blocks B_{i} in H such that $\left|V\left(B_{i}\right)\right| \geq 3$
3. if $W=\emptyset$, then stop
. else pick $w \in W$
if $B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{r}}$ are blocks in G such that $w \in V\left(B_{i_{1}}\right) \cap V\left(B_{i_{2}}\right) \cap \cdots \cap V\left(B_{i_{r}}\right)$, then set $B_{i_{1}}=B_{i_{1}} \cup B_{i_{2}} \cup \cdots \cup B_{i_{r}}, W=W \backslash\{w\}$, go to Step 3
else $W=W \backslash\{w\}$
. end if
. end if
III. 1. set $\mathcal{B}=\mathcal{B} \cup\left(S \backslash \bigcup_{B_{i} \in \mathcal{B}} V\left(B_{i}\right)\right), b:=|\mathcal{B}|$
. if $b=1$, then stop
. else set $W:=V \backslash V(H), F:=E(G[W])$, and $R:=W \times W$
while $F \neq \emptyset$
pick $f=u v \in F$
if $N_{G}(u) \cap V\left(B_{i}\right) \neq \emptyset$ and $N_{G}(u) \cap V\left(B_{j}\right) \neq \emptyset$ for different integers i and j, then set $B_{i}:=G\left[\bigcup_{B_{i} \in \mathcal{H}} V\left(B_{i}\right) \cup\{u, v\}\right], \mathcal{B}:=(\mathcal{B} \backslash \mathcal{H}) \cup\left\{B_{i}\right\}, T:=T \cup\{u, v\}$, $H:=G[S \cup T]$, and $b:=b-h+1$, where $\mathcal{H}=\left\{H_{i}: N_{G}\left(B_{i}\right) \cap N_{G}(u) \neq \emptyset\right.$ or $\left.N_{G}\left(B_{i}\right) \cap N_{G}(v) \neq \emptyset\right\}$ and $h=|\mathcal{H}|$, go to Step 2
else $F:=F \backslash\{f\}$
end if
end while
while $W \neq \emptyset$,
pick $w \in W$
if $N_{G}(w) \cap V\left(B_{i}\right) \neq \emptyset$ and $N_{G}(w) \cap V\left(B_{j}\right) \neq \emptyset$ for different integers i and j, then set $B_{i}:=G\left[\bigcup_{B_{i} \in \mathcal{H}} V\left(B_{i}\right) \cup\{w\}\right], \mathcal{B}:=(\mathcal{B} \backslash \mathcal{H}) \cup\left\{B_{i}\right\}, T:=T \cup\{w\}$, $H:=G[S \cup T]$, and $b:=b-h+1$, where $\mathcal{H}=\left\{B_{i}: N_{G}\left(B_{i}\right) \cap N_{G}(w) \neq \emptyset\right\}$ and $h=|\mathcal{H}|$, go to Step 2
else $W:=W \backslash\{w\}$
end if
end while
while $R \neq \emptyset$,
pick $r=(u, v) \in R$

```
    if N}\mp@subsup{N}{G}{(u)\capV(\mp@subsup{B}{i}{})\not=\emptyset,\mp@subsup{N}{G}{}(u)\cap\mp@subsup{N}{H}{}(\mp@subsup{B}{j}{\prime})\not=\emptyset,\mp@subsup{N}{G}{}(v)\capV(\mp@subsup{B}{i}{})\not=\emptyset,\mathrm{ and N}\mp@subsup{N}{G}{}(v)\cap
    N
    {u,v}],\mathcal{B}:=(\mathcal{B}\\mathcal{H})\cup\mp@subsup{B}{i}{},T:=T\cup{u,v},H:=G[S\cupT], and b:= b-h+1,
    where }\mathcal{H}={\mp@subsup{H}{i}{}:\mp@subsup{N}{G}{}(\mp@subsup{H}{i}{})\cap\mp@subsup{N}{G}{}(u)\not=\emptyset\mathrm{ or }\mp@subsup{N}{G}{}(\mp@subsup{H}{i}{})\cap\mp@subsup{N}{G}{}(v)\not=\emptyset}\mathrm{ and }h=|\mathcal{H}|\mathrm{ ,
    go to Step 2
    else R:= R\{r}
    end if
    end while
end if
```

Remark 2. Let s, Δ, n and m be the size of a dominating set S, the maximum degree, order and size of G, respectively. Note that the time complexity of stage I can be expressed as $O((s-1) \Delta(n+2 m)$), and the time complexity of II can be expressed as $O(m+k \ell)$. In III, since the running time of each recursion is at most $\Delta\left(n+2 m+n^{2}\right)$ and III runs at most $s-1$ recursions. Thus the time complexity of this algorithm is bounded by $O\left((s-1) \Delta\left(m+n^{2}\right)\right)$.

2.3. 2-connected dominating set

Let G be a connected graph which is not complete, let X be a vertex cut of G, and let Y be the vertex set of a component of $G-X$. The subgraph H of G induced by $X \cup Y$ is called an X-component of G. We simply write x-component if $X=\{x\}$.

Lemma 7. Let S be a dominating set of a 2 -edge connected graph G with $|S| \geq 2$. If T is an output of Algorithm 2 for G and S, and $T^{\prime} \subseteq T$ is an output of stage I of Algorithm 2 for G and S, then the following is true for $H=G[S \cup T]$:
(i) if u is a cut vertex in H, then $u \in S \cup T^{\prime}$,
(ii) $b(H) \leq 2|S|-2$, where $b(H)$ is the number of blocks in H.

Proof. To show (i), it suffices to show that each vertex $u \in T \backslash T^{\prime}$ is not a cut vertex of H. Since T^{\prime} is an output of stage I of Algorithm 2 for G and $S, S \cup T^{\prime}$ is a connected dominating set of G, and thus $S \cup T^{\prime}$ is also a connected dominating set of H. Therefore $H-u$ is connected, i.e., u is not a cut vertex of H.

Suppose that (ii) is not true, and G is a graph of minimum order satisfying the conditions of this lemma but $b(H)>2|S|-2 \geq 2$. If $|S|=2$, then $b(H) \leq 2$, and thus $b(H)=2 \leq 2|S|-2$, a contradiction. So, $|S| \geq 3$. Let u be a cut vertex of H. We consider the following two cases according to (i).

Case 1. $u \in S$. Let $H_{1}, H_{2}, \ldots, H_{k}$ be the u-components of H. Clearly H_{i} is 2-edge connected. Let $S_{i}=V\left(H_{i}\right) \cap S$ and $T_{i}=V\left(H_{i}\right) \backslash S_{i}$ for $i=1,2, \ldots, k$. Since T_{i} is a possible output of Algorithm 2 for H_{i} and S_{i}, we have $b\left(H_{i}\right)=$
$b\left(G\left[S_{i} \cup T_{i}\right]\right) \leq 2\left|S_{i}\right|-2$ by the minimality of G. Thus $b(H)=\sum_{i=1}^{k} b\left(H_{i}\right) \leq$ $\sum_{i=1}^{k}\left(2\left|S_{i}\right|-2\right) \leq 2 \sum_{i=1}^{k}\left|S_{i}\right|-2 k=2(|S|+k-1)-2 k=2|S|-2$, a contradiction.

Case 2. $u \in T^{\prime}$. Let $H_{1}, H_{2}, \ldots, H_{k}$ be the u-components of H. Clearly H_{i} is 2-edge connected. Let $S_{i}=V\left(H_{i}\right) \cap S$ and $T_{i}=V\left(H_{i}\right) \backslash S_{i}$ for $i=1,2, \ldots, k$. Without loss of generality, let $N_{H_{i}}(u) \cap S_{i} \neq \emptyset$ for $1 \leq i \leq r$ for an integer r and $N_{H_{j}}(u) \cap S_{j}=\emptyset, r<j \leq k$. Since S is a dominating set of $H, r \geq 1$.

When $1 \leq i \leq r$, since T_{i} is a possible output of Algorithm 2 for H_{i} and S_{i}, we have $b\left(H_{i}\right)=b\left(G\left[S_{i} \cup T_{i}\right]\right) \leq 2\left|S_{i}\right|-2$ by the minimality of G.

When $r<j \leq k$, let $S_{j}^{\prime}=S_{j} \cup\{u\}$ and $T_{j}^{\prime}=\left(T_{j} \backslash u\right)$. Since T_{j}^{\prime} is a possible output of Algorithm 2 for H_{j} and S_{j}^{\prime}, we have $b\left(H_{j}\right)=b\left(G\left[S_{j} \cup T_{j}\right]\right) \leq 2\left|S_{j}^{\prime}\right|-2=$ $2\left(\left|S_{j}\right|+1\right)-2$ by the choice of G.

Thus $b(H)=\sum_{i=1}^{k} b\left(H_{i}\right)=\sum_{i=1}^{r}\left(2\left|S_{i}\right|-2\right)+\sum_{j=r+1}^{k}\left(2\left(\left|S_{j}\right|+1\right)-2\right) \leq$ $\sum_{i=1}^{r}\left(2\left|S_{i}\right|-2\right)+\sum_{j=r+1}^{k}\left(2\left|S_{j}\right|\right) \leq 2|S|-2 r \leq 2|S|-2$, a contradiction. This shows (ii).

Theorem 8. Let G be a 2-connected triangle-free graph G. If S is a dominating set of G with $|S| \geq 2$, then there exists a set $T \subseteq V(G)$ such that $|T| \leq 10|S|-13$ and $G[S \cup T]$ is 2-connected.

Proof. Let T be an output of Algorithm 2 for G and S. We may suppose that $G[S \cup T]$ is not 2-connected and let $b(H)$ be the number of blocks in $H=G[S \cup T]$. Since H is 2-edge connected, each block of H is 2-edge connected. Let u be a cut vertex in H, let B_{1} and B_{2} be two blocks of H such that $u \in V\left(B_{1}\right) \cap V\left(B_{2}\right)$, and let H_{1} and H_{2} be u-components such that $B_{i} \subseteq H_{i}$ for $i=1,2$.

Let $P=x_{1} x_{2} \cdots x_{k}$ be a shortest path connecting $V\left(H_{1}\right)$ and $V\left(H_{2}\right)$ in $G \backslash u$ where $x_{1} \in V\left(H_{1}\right), x_{k} \in V\left(H_{2}\right)$ and $x_{2}, x_{3}, \ldots, x_{k-1} \notin V\left(H_{1}\right) \cup V\left(H_{2}\right)$. Suppose $k \geq 6$. Then $u x_{3}, u x_{4} \in E(G)$ since $S \subseteq V(H)$ is a dominating set of G, and P is a shortest path connecting $V\left(H_{1}\right)$ and $V\left(H_{2}\right)$ in $G \backslash u$. Thus $u x_{3} x_{4}$ is a triangle, a contradiction. Thus $k \leq 5$. Let $T^{\prime}=V(P) \backslash\left\{x_{1}, x_{k}\right\}$. Then $\left|T^{\prime}\right| \leq 3$.

Hence $S \cup T \cup T^{\prime}$ is a 2-edge connected dominating set of G with $\left|T \cup T^{\prime}\right| \leq$ $|T|+2 \leq 4|S|-4+3$ and $b\left(G\left[S \cup T \cup T^{\prime}\right]\right) \leq b(G[S \cup T])-1=b(H)-1$. If $G\left[S \cup T \cup T^{\prime}\right]$ is 2-connected, then we are done by letting $T:=T \cup T^{\prime}$. Otherwise, let $T:=T \cup T^{\prime}$, and repeat the above operation until $G[S \cup T]$ is 2-connected.

Since $|T| \leq 4|S|-4, b(H) \leq 2|S|-2,|T|$ increases by at most three and $b(H)$ decreases by at least one in each iteration of the above operation, we conclude that the desired set T exists since $|T| \leq 4|S|-4+3(b(H)-1)=10|S|-13$.

Corollary 4. For a 2 -connected triangle-free graph G, if $\gamma(G) \geq 2$, then $\gamma_{2}(G) \leq$ $11 \gamma(G)-13$.

Remark 3. For a graph with triangle, Theorem 8 does not holds. For example, let G be the graph in Figure 1. Since $\{u, v, w\}$ is a smallest dominating set
and any proper subgraph of G is not 2-connected, we have that $\gamma(G)=3$ but $\gamma_{2}(G)=V(G)$, that is, there is not a constant k such that $\gamma_{2}(G) \leq k \gamma(G)$ for graphs with triangle. So the condition that G is triangle-free is indispensable.

Figure 1. A graph with $\gamma(G)=3$ but $\gamma_{2}=V(G)$.

```
Algorithm 3. An algorithm for constructing a 2-connected dominating set.
Input: A 2-connected graph \(G\), a dominating set \(S\) with at least 2 vertices.
Output: A set \(T\) such that \(|T| \leq 10|S|-13\) and \(G[S \cup T]\) is 2-connected.
    I. run Algorithm 2.
    II. run DFS to get all blocks of \(G[S \cup T]\), say \(B_{1}, B_{2}, \ldots, B_{k}\)
III. 1. set \(H:=G[S \cup T], \mathcal{B}=\left\{B_{i}: 1 \leq i \leq k\right\}, b:=|\mathcal{B}|\)
    2. if \(b=1\), then stop
    3. else set \(W:=V \backslash V(H)\) and \(F:=E(G[W])\)
    while \(F \neq \emptyset\)
    pick \(f=u v \in F\)
        if \(N_{G}(u) \cap V\left(B_{i}\right) \neq \emptyset\) and \(w \in N_{G}(v) \cap N_{G}\left(B_{j}\right) \neq \emptyset\), then set \(B_{i}:=\)
        \(G\left[\bigcup_{B_{i} \in \mathcal{H}} V\left(B_{i}\right) \cup\{u, v\}\right], \mathcal{B}:=(\mathcal{B} \backslash \mathcal{H}) \cup\left\{B_{i}\right\}, T:=T \cup\{u, v, w\}, H:=G[S \cup\)
        \(T], b:=b-h+1\), where \(\mathcal{H}=\left\{B_{i}: V\left(B_{i}\right) \cap N_{G}(u) \neq \emptyset\right.\) or \(\left.V\left(B_{i}\right) \cap N_{G}(v) \neq \emptyset\right\}\),
        and \(h=|\mathcal{H}|\), go to Step 2
        else \(F:=F \backslash\{f\}\)
        end if
        end while
    while \(W \neq \emptyset\)
    pick \(w \in W\)
        if \(N_{G}(w) \cap V\left(B_{i}\right) \neq \emptyset\) and \(N_{G}(w) \cap V\left(B_{j}\right) \neq \emptyset\), then set \(B_{i}:=\)
        \(G\left[\bigcup_{B_{i} \in \mathcal{H}} V\left(B_{i}\right) \cup\{w\}\right], \mathcal{B}:=(\mathcal{B} \backslash \mathcal{H}) \cup\left\{B_{i}\right\}, T:=T \cup\{w\}, H:=G[S \cup T]\),
        \(b:=b-h+1\), where \(\mathcal{H}=\left\{B_{i}: V\left(B_{i}\right) \cap N_{G}(w) \neq \emptyset\right\}\), and \(h=|\mathcal{H}|\), go to
        Step 2
        else \(F:=F \backslash\{f\}\)
        end if
    end while
    16. end if
```

Remark 4. Let s, Δ, n and m be the size of a dominating set S, the maximum degree, order and size of G, respectively. Note the time complexity of stage I is $O\left((s-1) \Delta\left(m+n^{2}\right)\right)$, and the time complexity of II is $O(m)$. In III, since the running time of each recursion is at most $2 \Delta n^{2}$ and III implements at most $s-1$ recursions. Thus the time complexity of the algorithm is bounded by $O\left((s-1) \Delta\left(m+n^{2}\right)\right)$.

3. Concluding Remarks

Let $P=u_{0} u_{1} \cdots u_{3 k}$ and $Q=v_{0} v_{1} \cdots v_{3 k}$ be two path of length $3 k$. The symbol G denotes the graph obtained from P and Q by identifying $u_{3 i}$ and $v_{3 i}$ (denote the resulting vertex by $w_{3 i}$), where $0 \leq i \leq n$. It is easy to check that G is 2-edge connected and $S=\left\{w_{3 i}: 0 \leq i \leq n\right\}$ is a dominating set. Note that $T=\left\{u_{3 i+1}, u_{3 i+2}: 0 \leq i \leq n-1\right\}$ and $T^{\prime}=\left\{v_{3 i+1}, v_{3 i+2}: 0 \leq i \leq n-1\right\}$ are minimum sets of vertices such that $G[S \cup T]$ and $G\left[S \cup T^{\prime}\right]$ are connected, and $Q=T \cup T^{\prime}$ is the unique set of vertices such that $G[S \cup Q]$ is 2-edge connected. Thus the bounds given in Theorem 2, 6 and Corollary 3 are sharp.

We suspect that the bound of Theorem 8 is not sharp and the best possible bound might be the following.

Conjecture 2. For a dominating set S of a 2-connected triangle-free graph G with $|S| \geq 2$, there exists a vertex set $T \subseteq V(G)$ with $|T| \leq 5|S|$ such that $G[S \cup T]$ is 2 -connected.

Inspired by Corollaries 1, 3 and 4, one may ask the following two problems.
Problem 4. Does there exist an absolute constant c_{k}^{\prime} for a given integer $k \geq 1$ such that $\gamma_{k}^{\prime}(G) \leq c_{k}^{\prime} \gamma(G)$ for any k-edge connected graph G ?

Problem 5. Does there exist an absolute constant c_{k} for a given integer $k \geq 1$ such that $\gamma_{k}(G) \leq c_{k} \gamma(G)$ for any k-connected graph G ?

By our main results, c_{k}^{\prime} and c_{k} exist for $1 \leq k \leq 2$. But, c_{k}^{\prime} and c_{k} do not exist for an integer $k \geq 3$. Let C_{n} and K_{k-2} be the cycle of order n and the complete graph of order $k-2$. Let $G_{n, k}=C_{n} \vee K_{k-2}$, be the graph obtained from C_{n} and K_{k-2} by joining every vertex of C_{n} to all vertices of K_{k-2}. It is clear that $G_{n, k}$ is k-connected, and thus k-edge connected. But, $\gamma\left(G_{n, k}\right)=1$ and $\gamma_{k}^{\prime}\left(G_{n, k}\right)=\gamma_{k}\left(G_{n, k}\right)=n+k$.

Acknowledgments

We would like to thank the referees for helpful suggestions and comments. The first author gratefully acknowledges the support by NSFC No. 1140118 and Foun-
dation of Henan Educational Committee 15A110032. The second author gratefully acknowledges the support by NSFC No. 11571294. The third author gratefully acknowledges the support by NSFC No. 11671296.

References

[1] L. Arseneau, A. Finbow, B. Hartnell, A. Hynick, D. MacLean and L. O'Sullivan, On minimal connected dominating sets, J. Combin. Math. Combin. Comput. 24 (1997) 185-191.
[2] C. Bo and B. Liu, Some inequalities about the connected domination number, Discrete Math. 159 (1996) 241-245. doi:10.1016/0012-365X(95)00088-E
[3] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer, London, 2008).
[4] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k-independence in graphs: A survey, Graphs Combin. 28 (2012) 1-55. doi:10.1007/s00373-011-1040-3
[5] C.J. Colbourn and L.K. Stewart, Permutaion graphs: Connected domination and Steiner trees, Discrete Math. 86 (1990) 179-189. doi:10.1016/0012-365X(90)90359-P
[6] D.-Z. Du and P.-J. Wan, Connected Dominating Set: Theory and Applications (Springer, New York, 2013). doi:10.1007/978-1-4614-5242-3
[7] Y.L. Du and H.W. Du, A new bound on maximum independent set and minimum connected dominating set in unit disk graphs, J. Comb. Optim. 30 (2015) 1173-1179. doi:10.1007/s10878-013-9690-0
[8] P. Duchet and H. Meyniel, On Hadwiger's number and the stability number, NorthHolland Math. Studies 62 (1982) 71-73. doi:10.1016/S0304-0208(08)73549-7
[9] S. Guha and S. Khuller, Approximation algorithms for connected dominating sets, Algorithmica 20(1998) 374-387. doi:10.1007/PL00009201
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: The Theory (Marcel Dekker, New York, 1997).
[11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Selected Topics (Marcel Dekker, New York, 1997).
[12] M. Li, P.-J. Wan and F. Yao, Tighter approximation bounds for minimum CDS in unit disk graphs, Algorithmica 61 (2011) 1000-1021. doi:10.1007/s00453-011-9512-7
[13] X. Li and Z. Zhang, Two algorithms for minimum 2-connected r-hop dominating set, Inform. Process. Lett. 110 (2010) 986-991.
doi:10.1016/j.ipl.2010.08.008
[14] M. Moscarini, Doubly chordal graphs, Steiner trees, and connected domination, Networks 23 (1993) 59-69.
doi:10.1002/net. 3230230108
[15] E. Sampathkumar and H.B. Walikar, The connected domination number of a graphs, J. Math. Phys. Sci. 13 (1979) 607-613.
[16] E. Vigoda, Lecture Notes on a Parallel Algorithm for Generating a Maximal Independent Set, Georgia Institute of Technology, last updated for 7530 - Randomized Algorithms, Spring 2010.
[17] P.-J. Wan, L. Wang and F. Yao, Two-phased approximation algorithms for minimum CDS in wireless ad hoc networks, in: IEEE ICDCS (2008) 337-344. doi:10.1109/ICDCS.2008.15
[18] K. White, M. Farber and W.R. Pulleyblank, Steiner trees, connected domination and strongly chordal graphs, Networks 15 (1985) 109-124. doi:10.1002/net. 3230150109
[19] W. Wu, H. Du, X. Jia, Y. Li and S. Huang, Minimum connected dominating sets and maximal independent sets in unit disk graphs, Theoret. Comput. Sci. 352 (2006) 1-7.
doi:10.1016/j.tcs.2005.08.037
[20] W. Wu, X. Gao, P.M. Pardalos and D.-Z. Du, Wireless networking, dominating and packing, Optim. Lett. 4 (2010) 347-358.
doi:10.1007/s11590-009-0151-8

