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Abstract

In this paper, through the coupling and martingale method, we prove the
order of the largest component in some critical random intersection graphs is
n

2

3 with high probability and the width of scaling window around the critical
probability is n−

1

3 ; while in some graphs, the order of the largest component
and the width of the scaling window around the critical probability depend
on the parameters in the corresponding definition of random intersection
graphs. Our results show that there is still an “inside” phase transition in
critical random intersection graphs.
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1. Introduction and Main Result

The Erdős-Rényi random graph G(n, p) is obtained by retaining each edge of
the complete graph on n vertices independently with probability p. Since it is
not accurate to characterize real-world networks by G(n, p), Singer-Cohen [?]
Karoński et al. [6] introduced random intersection graph G(n,m, p) which is
defined with V as a set of n vertices and M as a set of m elements. Each vertex
v ∈ V, it is assigned a random subset of M, denoted Fv. Each element of M is
included in Fv independently with probability p. There is an edge between vertices
u and v if and only if Fu ∩ Fv 6= ∅. The graph G(n,m, p) usually is constructed
through the bipartite graph B(n,m, p). B(n,m, p) is a random bipartite graph
with bipartition (V,M). Any vertex in V and any element in M are connected by
an edge in B(n,m, p) independently with probability p. An edge between u and v
in G(n,m, p) is present if both u and v are adjacent to some element in B(n,m, p).
Fill et al. [4] proved that when m = nα and α > 6, G(n,m, p) and G (n, p′) are
equivalent in the sense that the total variation distance between the graph-valued
random variables has a limit of 0 for some suitable p′ as n → ∞. Here, we note

out that when m > 1 and is not an integer, G(n,m, p) means G(n, ⌊m⌋, p) with

⌊m⌋ being the largest integer less than m. Rybarczyk [12] extended this result to
the case of α > 3. However, when α < 1, these two graph models seem to have
different properties.

Next, denote the largest component in G(n,m, p) by C1 (G(n,m, p)) and its
size by |C1|. In G(n,m, p), Behrisch [1] proved that for m = nα and mp2 = c

n
there is a phase transition in G(n,m, p). When α > 1, with high probability3

(w.h.p.) |C1| jumps from the logarithmic order to the linear order in n; when

0 < α < 1, it jumps from n
1−α
2 log n to n

1+α
2 as c grows. Lager̊as and Lindholm

[7] extended this result to the case when m = βn and p = γn−1. |C1| exhibits
a jump from the logarithmic order to the linear order in n around the point
βγ2 = 1. Note the expected value of the vertex degree is (n−1)

(
1 −

(
1 − p2

))m
,

which is approximately equal to c in [1] and βγ2 in [7], respectively. This means
that there is a phase transition in G(n,m, p) when the expected value of the
vertex degree is close to one, which behaves similarly to the Erdős-Rényi random
graph.

It is natural to ask what the order of |C1| is in the critical G(n,m, p). The
interest of this question lies in looking “inside” the phase transition in the growth
of the largest component C1 (G(n,m, p)). And the difficulty of studying G(n,m, p)
is to deal with the dependencies between the edges, especially in the critical
G(n,m, p). Now our main results can be stated in the following way.

3Here for a given graph property A, we say that graph Gn possesses A with high probability
if the probability that Gn possesses A tends to 1 as n → ∞.
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Theorem 1. Let ǫ(n) be a positive function on n such that ǫ(n) → 0 and

n
1
3 ǫ(n) → ∞ as n → ∞. In G(n,m, p), where m = nα and α > 5

3 , the following

statements hold.

(1) If mp2 = 1−ǫ(n)
n , then there are two positive constants C1 and C2 such that

w.h.p.

C1ǫ
−2(n) log

{
nǫ3(n)

}
≤ |C1| ≤ C2ǫ

−2(n) log
{
nǫ3(n)

}
.

(2) If mp2 = 1+λn−

1
3

n for some constant λ, then when λ < 0, there are two

positive functions ω1(n)(< log n) and ω2(n)(< log n) on n which tend to

infinity as n→ ∞ such that w.h.p.

ω−1
1 (n)n

2
3 ≤ |C1| ≤ ω2(n)n

2
3 ,

while when λ > 0, there is a constant C3 > 0 such that w.h.p.

ω−1
1 (n)n

2
3 ≤ |C1| ≤ C3n

2
3 logn.(1)

(3) If mp2 = 1+ǫ(n)
n , then there are two positive constants C4 and C5 such that

w.h.p.

C4nǫ(n) ≤ |C1| ≤ C5nǫ(n) log n.(2)

Theorem 2. Let α ∈
(
1, 53
)
and ǫ(n) > 0 be a function on n such that ǫ(n) → 0

and n
α−1
2 ǫ(n) → ∞ as n → ∞. In G(n,m, p) with m = nα, the following state-

ments hold.

(4) If mp2 = 1−ǫ(n)
n , then there are two positive constants C6 and C7 such that

w.h.p.

C6ǫ
−2(n) log

{
nǫ3(n)

}
≤ |C1| ≤ C7ǫ

−2(n) log
{
nǫ3(n)

}
.

(5) If mp2 = 1+λn−

α−1
2

n for some constant λ, then when λ < 0, there is a positive

constant C8 and a positive function ω3(n)(< logn) on n which tends to

infinity as n→ ∞ such that w.h.p.

C8n
α−1 logn < |C1| ≤ ω3(n)n

3−α
2 .

When λ > 0, there are two positive constants C9 and C10 such that w.h.p.

C9n
3−α
2 < |C1| ≤ C10n

3−α
2 log n.(3)

(6) If mp2 = 1+ǫ(n)
n , then there are two positive constants C11 and C12 such that

w.h.p.

C11nǫ(n) ≤ |C1| ≤ C12nǫ(n) logn.(4)
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Remark 3. (1) Behrisch [1] showed that when α > 1 and m = nα, the order of
|C1| in the subcritical and supercritical cases of G(n,m, p) is independent of α.
However, from Theorem 2, we can see that it depends on α when α ∈

(
1, 53
)

in
critical cases. Theorems 1 and 2 are interesting in that there is still an “inside”
phase transition in the critical case.

Due to technical reasons, there is a factor log n for the upper bound more
than the lower bound in (1)–(4), and it is interesting to remove this factor. We

fail to show that when mp2 = 1+λn−

α−1
2

n for λ < 0 and 1 < α < 5
3 w.h.p. |C1|

is at least of order n
3−α
2 /ω4(n), where ω4(n)(< log n) is a positive function on n

which tends to infinity as n→ ∞.

(2) With the fact that the roles of the vertex and element sets used by [1]
can be interchanged, we can study the |C1| in critical cases when 0 < α < 3

5 and
3
5 < α < 1. For the following example, we only take the case when 0 < α < 3

5 ,
but the alternative may be of interest to readers as well. Let Ew be the vertex
set holding element w ∈ M which is a clique in G(n,m, p). By the Chernoff
inequality,

|Ew| = (1 + o(1))np = (1 + o(1))n
1−α
2

with probability at least 1−me−(np)1/2/3 = 1− o(1), see [1, Lemma 2] for details
of the proof. The roles of the vertex sets and element sets can be interchanged
in which every two elements are connected if a vertex chooses both of them. In
this way G(n,m, p) is dual to G(m,n, p). Now we look for the largest component

C
(e)
1 about the element set in the dual graph, and use

∣∣∣C(e)
1

∣∣∣ to denote its size.

By Theorem 1,

P
{∣∣∣C(e)

1

∣∣∣ ≥ ω1(m)m
2
3

}
→ 0, P

{∣∣∣C(e)
1

∣∣∣ ≥ m
2
3

ω2(m)

}
→ 1.

As |Ew| = (1 + o(1))np with probability 1 − o(1), we have

P
{
|C1| ≥ ω1(m)m

2
3 (1 + o(1))np

}
= P

{
|C1| ≥ (1 + o(1))ω1(n

α)n
α+3
6

}
→ 0,

P

{
|C1| ≥

m
2
3

ω2(m)
(1 + o(1))np

}
= P

{
|C1| ≥ (1 + o(1))

n
α+3
6

ω2(nα)

}
→ 1.

We will use the following notation. Write P(·), E(·) and Var(·) for the
probability, expected value and variance of a random event or a random variable,
respectively. For any two positive functions f(n) and g(n) of a natural-valued
parameter n, denote f(n) = O(g(n)) if there is a positive constant C such that
f(n) ≤ Cg(n) when n is large enough; f(n) = Θ(g(n)) if f(n) = O(g(n)) and
g(n) = O(f(n)); and f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.
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The reminder of the paper is organized in the following way. In Section 2, we
include some known results on random graphs which will be used in our proofs.
In Section 3, we prove Theorem 1 by the coupling method, martingale argument
of [10, 11] and the optimal stopping theorem. Since the proof of Theorem 2 is
almost the same as Theorem 1, we put this in the Appendix. Finally, in Section
4 we list some questions for critical random intersection graphs.

2. Auxiliary Theorems

First, we mention the result about vertex degree distribution of G(n,m, p). Let
D(n,m, p) be the random variable for the vertex degree of G(n,m, p) and F (n,
m, p) be the distribution. Stark [14] proved that it has the following probability
generating function

E
[
xD(n,m,p)

]
=

n−1∑

j=0

(
n− 1

j

)
xj(1 − x)n−1−j

[
1 − p+ p(1 − p)n−1−j

]m
.(5)

Hence, from (5) it is easy to see that

E[D(n,m, p)] = (n− 1)
[
1 −

(
1 − p2

)m]
;(6)

E[D(n,m, p)(D(n,m, p) − 1)](7)

= (n− 1)(n− 2)
{

1 − 2
(
1 − p2

)m
+
[
1 − p2(2 − p)

]m}
;

E[D(n,m, p)(D(n,m, p) − 1)(D(n,m, p) − 2)] = (n− 1)(n− 2)(n− 3)(8)

·
{

1 − 3
(
1 − p2

)m
+ 3

[
1 − p2(2 − p)

]m
−
[
1 − p2

(
3 − 3p+ p2

)]m}
.

Next, Rybarczyk [13] proved the following Theorem 4.

Theorem 4 [13, Theorem 1]. Let p′ = mp2
(

1 − (n− 2)p− mp2

2

)
, mp2 < 1, and

A be an increasing graph property. If P (G (n, p′) ∈ A) → 1, then

P (G (n,m, p) ∈ A) → 1,

where G ∈ A denotes that G has property A.

By Theorem 4, to give a lower bound for |C1|, the following theorem on the
largest component in the critical Erdős-Rényi random graph is useful.

Theorem 5 [5, Theorem 5.23], [8]. Let |C′
1| denote the size of the largest compo-

nent in Erdős-Rényi random graph G (n, p′) . For any ω(n)
(
< n

1
6

)
which tends

to infinity as n→ ∞, the following statements hold.
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(a) In G
(
n, 1−ǫ(n)n

)
, if ω(n)n−

1
3 ≤ ǫ(n) ≤ 1

ω(n) , then w.h.p.

∣∣C′
1

∣∣ = (2 + o(1))ǫ−2(n) log
{
nǫ3(n)

}
.

(b) In G
(
n, 1+ǫ(n)n

)
, if ω(n)n−

1
3 ≤ ǫ(n) ≤ n

ω(n) , then w.h.p.

∣∣C′
1

∣∣ = (2 + o(1))nǫ(n).

(c) In G
(
n, 1±ǫ(n)n

)
, if 0 ≤ ǫ(n) ≤ ω(n)n−

1
3 , then w.h.p.

n
2
3

ω2(n)
≤
∣∣C′

1

∣∣ ≤ ω(n)n
2
3 .

Finally, we present the standard exploration process to explore components
of random intersection graphs, which is the same as Erdős-Rényi random graphs.

Exploration process {Yt}t≥0. Let C(v) be the component containing vertex v
in G(n,m, p). In this procedure, the vertices will be active, inactive or neutral.
In the beginning, assuming that all the vertices are neutral, we choose a vertex
v0 uniformly and make it active. At each time t ≥ 1, we choose a vertex vt
uniformly from the active vertices and check the pairs vtv

′, where v′ runs over
all the neutral vertices. If vtv

′ ∈ G(n,m, p), then make v′ active, otherwise keep
it neutral. After checking all the neutral vertices, let vt be inactive. When there
is no active vertex, the component C(v0), which is the set of inactive vertices, is
explored. Then, we choose a neutral vertex uniformly from the rest of the neutral
ones and proceed on.

Let Zt be the number of vertices which become active due to the exploration
of active vertex vt, and Yt be the total number of active vertices at step t ∈
{0, 1, . . . , n}, where Y0 = 1. It is easy to see that for any t ≥ 1,

Yt =

{
Yt−1 + Zt − 1, if Yt−1 > 0,

Zt, if Yt−1 = 0.

Define T to be the least t for which Yt = 0, i.e.,

T = min{t:Yt = 0} = min{t : Z1 + Z2 + · · · + Zt = t− 1}.

Then, at the time T, the set of explored vertices is precisely C(v0), which means
|C(v0)| = T.

3. Proof of Theorem 1

Note that when α > 5
3 and mp2 = 1±ǫ(n)

n ,

p′ = mp2
(

1 − (n− 2)p−
mp2

2

)
=

1 ± ǫ(n)

n
+ o

(
ǫ(n)

n

)
.
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Keeping Theorems 4 and 5 in mind, we can determine the lower bounds directly
for the subcritical, critical and supercritical phases. Therefore, in the rest of this
section, we only need to prove the upper bounds.

3.1. Below the critical window

To overcome the difficulty from dependencies between edges, in this subsection
we use a coupling method to prove the upper bound.

Outline of the proof. We first use the exploration process to explore the com-
ponents of G(n,m, p). Then, for the upper bound on |C1|, we only need to bound
the stopping time T as |C(v0)| = T. For this, we will define a random walk and
a stopping time τ, which is stochastically larger4 than T of the random walk,
then bound the stopping time τ to determine the desired result similar to [11,
Proposition 1]. We need the following lemmas.

Lemma 6. Let X and Y be two random variables with distributions F (n1,m1, p)
and F (n2,m2, p), respectively. Suppose n1 ≤ n2 and m1 ≤ m2. Then we have

X � Y.

Proof. Note that G(n,m, p) can be constructed through the random bipartite
graph B(n,m, p) with partition(V,M). Any vertex in V and any element in M
are connected by an edge in B(n,m, p) independently with probability p. An edge
between u and v in G(n,m, p) is present if both u and v are adjacent to some
element in B(n,m, p).

Now, suppose V1 = {v1, . . . , vn1} and V2 = {v1, . . . , vn1 , . . . , vn2} ⊇ V1 are
two sets of vertices, and E1 = {e1, . . . , em1} and E2 = {e1, . . . , em1 , . . . , em2} ⊇ E1
are two sets of elements. It is easy to see that Y is the degree of a vertex v in
the random intersection graph G(n2,m2, p) which is derived from the bipartite
graph B(n2,m2, p) with vertex set V2 and element set E2, i.e., Y is distributed
as F (n2,m2, p). Given B(n2,m2, p), B(n1,m1, p) is defined to be the bipartite
subgraph of B(n2,m2, p) induced by the vertex set V1 and element set E1. Then
we can determine the corresponding random intersection graph G(n1,m1, p). By
letting X be the degree of the same vertex v in G(n1,m1, p), we can get that X
is distributed as F (n1,m1, p) and X � Y , since removing vertices vn1+1, . . . , vn2

and elements em1+1, . . . , em2 cannot make the degree of v increase.

Lemma 7 [11, Lemma 8]. Let β be an integer-valued random variable with

E(β2) < ∞ such that for any integer h ≥ 2, P(β ∈ hZ) < 1. Let {βi}
∞
i=1 be

4For two random variables X and Y, we say X is stochastically larger than Y, denote it by
X � Y, if and only if there exists a coupling (X̂, Ŷ ) of X and Y such that P(X̂ ≥ Ŷ ) = 1.
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i.i.d. random variables distributed as β and

Wt = W0 +
t∑

i=1

βi, t ∈ {0, 1, 2, . . .},

where W0 is an integer constant. Define τ to be its hitting time of 0, i.e.,

τ = min{t:Wt = 0}.

If θ0 > 0 satisfies

E
(
βeθ0β

)
= 0,

then for any integer ℓ ≥ 1,

P(τ = ℓ) = Θ
(
ℓ−3/2φ(θ0)

ℓ
)
,

where φ(θ) = E
(
eθβ
)
and the constants in Θ depend only on β and W0, but not

on ℓ.

Proof of the upper bound. To make use of Lemma 7, let {ξt}
∞
t=1 be i.i.d. ran-

dom variables distributed as F (n,m, p). Set

St = 1 +
t∑

i=1

(ξi − 1).

Take β = ξ1 − 1. By (6)–(7) and the following inequality

1 − ǫ(n)

n
−

(1 − ǫ(n))2

2n2
+

(1 − ǫ(n))3

7n3

< 1 −
(
1 − p2

)m
<

1 − ǫ(n)

n
−

(1 − ǫ(n))2

2n2
+

(1 − ǫ(n))3

5n3
,

it is easy to check that, noting nmp2 = 1 − ǫ(n), where α > 5
3 , ǫ(n) → 0 and

n1/3ǫ(n) → ∞ as n→ ∞,

E[β] = E(ξi − 1) = (n− 1)
(
1 −

(
1 − p2

)m)
− 1(9)

= ǫ(n) −
3(1 − ǫ(n))

2n
+O

(
ǫ(n)

n

)
,

E
[
β2
]

= E
[
(ξi − 1)2

]
= E [ξi(ξi − 1)] −E(ξi − 1)(10)

= (n− 1)(n− 2)
{

1 − 2
(
1 − p2

)m
+
[
1 − p2(2 − p)

]m}

− (n− 1)
[
1 −

(
1 − p2

)m]
+ 1

= (n− 1)(n− 2)

[
1 − 2

(
1 −mp2 +

m(m− 1)p4

2

)
+ 1 + ǫ(n)
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− mp2(2 − p) +
m(m− 1)p4(2 − p)2

2
+O

(
m3p6

)]
+O

(
1

n

)

= 1 − ǫ(n) + ǫ2(n) +
(1 − ǫ(n))3/2

n
α−1
2

+ o

(
1

n
α−1
2

)
+O

(
1

n

)
,

E
[
β3
]

= E
[
(ξi − 1)3

]
= E[ξi(ξi − 1)(ξi − 2)] + E(ξi − 1)(11)

= − ǫ(n) −
3(1 − ǫ(n))

2n
+O

(
ǫ(n)

n

)

+ (n− 1)(n− 2)(n− 3)
{

1 − 3
(
1 − p2

)m

+ 3
[
1 − p2(2 − p)

]m
−
[
1 − p2

(
3 − 3p+ p2

)]m}

= (1 − ǫ(n))3 +
3 (1 − ǫ(n))5/2

n
α−1
2

+ o

(
1

n
α−1
2

)
− ǫ(n) +O

(
1

n

)
.

Define

F (θ) = E
[
βeθβ

]
for θ ∈

[
ǫ(n)

2
, ǫ(n) +

ǫ(n)

2 log n

]
.

Next, we will prove that there is a θ0 satisfying

ǫ(n)

2
< θ0 < ǫ(n) +

ǫ(n)

2 log n
and F (θ0) = E

(
βeθ0β

)
= 0.

In fact, first, note β ∈ {−1, 0, 1, . . . , n− 2} and set P(β = i) = pi for i ∈ {−1, 0,
1, . . . , n− 2}. By these notations, rewrite E[β] and E

[
β2
]

as

E[β] =
n−2∑

i=−1

ipi =
n−2∑

i=1

ipi − p−1 = −ǫ(n) −
3(1 − ǫ(n))

2n
+O

(
ǫ(n)

n

)
,(12)

E
[
β2
]

=
n−2∑

i=−1

i2pi =
n−2∑

i=1

i2pi + p−1 = 1 − ǫ(n) + o (ǫ(n)) .(13)

Second, define b(n) := ǫ(n) + ǫ(n)
2 logn . Note that for any natural number i and

x ∈ (0,∞), eix − e−x > (i+ 1)x. Then when n is large enough we can obtain

E
[
βeb(n)β

]
= − e−b(n)p−1 + eb(n)p1 + 2e2b(n)p2 + · · · + (n− 2)e(n−2)b(n)pn−2

(12)

≥ e−b(n)

{
−ǫ(n) −

n−2∑

i=1

ipi − 2n−1

}
+
n−2∑

i=1

ieib(n)pi
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= − ǫ(n)e−b(n) +

n−2∑

i=1

ipi

(
eib(n) − e−b(n)

)
− 2n−1e−b(n)

≥ − ǫ(n)e−b(n) + b(n)
n−2∑

i=1

i(i+ 1)pi − 2n−1e−b(n)

(12)(13)
= − ǫ(n)e−b(n) − 2n−1e−b(n) + b(n)

[
E
(
β2
)
− p−1 + E(β) + p−1

]

(9)(10)

≥ − ǫ(n)
(
1 − b(n) + b2(n)

)
− o

(
ǫ2(n)

)
+ b(n) (1 − 2ǫ(n) + o(ǫ(n)))

≥
2ǫ(n)

logn
− ǫ2(n) + o

(
ǫ2(n)

)
> 0.

(14)

By (9)–(11) and the inequality e
x
2 < 1 + 2x

3 for x = o(1), when n is large enough
we have

E
[
βe

ǫ(n)
2
β
]

=
n−2∑

i=−1

(
e

ǫ(n)
2

)i
ipi ≤

n−2∑

i=−1

(
1 +

2ǫ(n)

3

)i
ipi

≤
n−2∑

i=−1

(
1 +

2iǫ(n)

3
+

4i2ǫ2(n)

9

)
ipi

=
n−2∑

i=−1

kpk +
2ǫ(n)

3

n−2∑

i=−1

i2pi +
4ǫ2(n)

9

n−2∑

i=−1

i3pi

= E(β) +
2ǫ(n)

3
E
(
β2
)

+
4ǫ2(n)

9
E
(
β3
)

= −
ǫ(n)

3
+ o(ǫ(n)) < 0.

(15)

Third, it is easy to check that F (θ) is continuous in θ when θ ∈
[
ǫ(n)
2 , ǫ(n)+ ǫ(n)

2 logn

]
.

Hence, with the fact that F
(
ǫ(n) + ǫ(n)

2 logn

) (14)
> 0 and F

(
ǫ(n)
2

) (15)
< 0, we have a

constant θ0 ∈
(
ǫ(n)
2 , ǫ(n) + ǫ(n)

2 logn

)
such that F (θ0) = 0. So far by (9)–(10) and

the inequalities ex < 1 + x+ x2, (1 + x)k < 1 + kx+ 2k2x2

3 for any x ∈ (0, 2ǫ(n)),
when n is large enough we can deduce that

E
[
eθ0β

]
=

n−2∑

k=−1

(
eθ0
)k
pk ≤

n−2∑

k=−1

(
1 + θ0 + θ20

)k
pk

≤
n−2∑

k=−1

(
1 + k

(
θ0 + θ20

)
+

2k2

3

(
θ0 + θ20

)2
)
pk



The Largest Component in Critical Random Intersection... 931

=
n−2∑

k=−1

pk +
(
θ0 + θ20

) n−2∑

k=−1

kpk +
2
(
θ0 + θ20

)2

3

n−2∑

k=−1

k2pk

= 1 +
(
θ0 + θ20

)
E(β) +

2
(
θ0 + θ20

)2

3
E
(
β2
)

= 1 −
ǫ2(n)

3
+ o

(
ǫ2(n)

)
.

Now, we are in the position to explore components of G(n,m, p). It is helpful
to keep the bipartite graph B(n,m, p) in mind, so that we can keep track not
only of explored vertices, but also explored elements. When we explore a vertex,
we also say its elements have been explored. Suppose that k vertices have been
explored at step i in the exploration process and ℓ elements have been explored.
When we are in a position of exploration through a vertex, say v, the number
of newly explored vertices Zi through v has the distribution F (n − k,m − ℓ, p).
Therefore, by Lemma 6, Zi � ξi, where ξi is distributed as F (n,m, p). That
is
∑k

i=1 Zi is dominated above by
∑k

i=1 ξi for all k ≤ T, where T is defined
to be min{t:Yt = 0} in the exploration process. Let Ct(v0) denote total inactive
(explored) vertices which are explored from time 0 to t by the exploration process
on G(n,m, p) starting from vertex v0 which is chosen uniformly at random from
vertex set V. Define τ = min{t:St = 0, t ≤ n}. Notice that

|Ct(v0)| = 1 +
t∑

i=1

(Zi − 1) and St = 1 +
t∑

i=1

(ξi − 1).

Hence, there is a coupling
((∣∣∣Ĉt(v0)

∣∣∣
)
t
,
(
Ŝt

)
t

)
of the processes (|Ct(v0)|)t and

(St)t such that

∣∣∣Ĉt(v0)
∣∣∣ ≤ Ŝt, t ≤ min

{
s:
∣∣∣Ĉs(v0)

∣∣∣ = 0
}
,

which means τ is stochastically larger than T. Therefore, by Lemma 7, we have
that

P (|C(v0)| ≥ η) = P (T ≥ η) ≤ P(τ ≥ η) =
∑

ℓ≥η

P(τ = ℓ)

=
∑

ℓ≥η

O

(
ℓ−3/2

(
1 −

ǫ2(n)

3
+ o

(
ǫ2(n)

))ℓ
)
.

(16)

For a positive constant C2 > 3, set η = C2ǫ
−2(n) log

(
nǫ3(n)

)
. Then, by the

inequality 1 − x ≤ e−x, x ≥ 0, we obtain that
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P(τ ≥ η) = O
(
η−3/2

)∑

ℓ≥η

(
1 −

ǫ2(n)

3
+ o

(
ǫ2(n)

))ℓ

= O
(
ǫ−2(n)η−3/2

)(
1 −

ǫ2(n)

3
+ o

(
ǫ2(n)

))η

= O
(
ǫ−2(n)η−3/2

)
exp

{
−
ηǫ2(n)

3
+ o

(
ηǫ2(n)

)}

= O
(
ǫ(n)

(
log nǫ3(n)

)−3/2 (
nǫ3(n)

)−C2/3+o(1)
)
.

Denote Z≥k =
∑

v∈V 1{|C(v)|≥k}. Then

P(|C1| ≥ η) = P(Z≥η ≥ η) ≤
E (Z≥η)

η
=

∑
v∈V E

(
1{|C(v)|≥η}

)

η

=
nP(|C(v0)| ≥ η)

η
≤
nP(τ ≥ η)

η

= O
((
nǫ3(n)

)−(C2/3−1−o(1)) (
log nǫ3(n)

)−5/2
)

= o(1).

3.2. Inside the critical window

3.2.1. The case of λ < 0

In this subsection, when proving the upper bound we make use of the coupling
method and the martingale arguments of [10, 11] to handle the difficulty from
dependencies between the edges. For this we need the following lemma.

Lemma 8. Let m = nα
(
α > 5

3

)
, p be such that nmp2 = 1 + ǫ(n) where ǫ(n) =

λn−
1
3 (λ < 0) and {ξt}t≥1 be i.i.d. random variables distributed as F (n,m, p),

where F (n,m, p) is the vertex degree distribution of G (n,m, p) . Let Wt = 1 +∑t
i=1(ξi − 1) for t ≥ 0. Define

γ = min
{
t > 1:Wt ≥ n

1
3 or Wt = 0

}
.

Then

P
(
Wγ ≥ n

1
3

)
= O

(
n−

1
3

)
and E(γ) = O

(
n

1
3

)
.

Proof. When n is large enough,

1 + ǫ(n)

n
−

(1 + ǫ(n))2

2n2
< 1 −

(
1 − p2

)m
<

1 + ǫ(n)

n
−

(1 + ǫ(n))2

3n2
.
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Similarly to (9)–(10), we can deduce that

1 + ǫ(n) − 2n−1 ≤ E (ξ1) = (n− 1)
(
1 −

(
1 − p2

)m)
≤ 1 + ǫ(n) − n−1,(17)

E
[
(ξ1 − 1)2

]
= E [ξ1(ξ1 − 1)] −E [ξ1 − 1] = 1 + ǫ(n) + o (ǫ(n)) .(18)

Set a := 36(|λ| + 1)n−
1
3 . Then, by (5) and the inequality that for x = o(1),

1 − nx+
n2x2

3
≤ (1 − x)n ≤ 1 − nx+

n2x2

2
,

when n is large enough we can determine that

E
[
e−aξt

]

=
n−1∑

j=0

(
n− 1

j

)(
e−a
)j (

1 − e−a
)n−1−j [

1 − p
(
1 − (1 − p)n−1−j

)]m

≥
n−1∑

j=0

(
n− 1

j

)(
e−a
)j (

1 − e−a
)n−1−j

− mp
n−1∑

j=0

(
n− 1

j

)(
e−a
)j (

1 − e−a
)n−1−j [

1 − (1 − p)n−1−j
]

+
m2p2

3

n−1∑

j=0

(
n− 1

j

)(
e−a
)j (

1 − e−a
)n−1−j [

1 − (1 − p)n−1−j
]2

= 1 −mp+mp
(
1 − p+ pe−a

)n−1

+
m2p2

3

{
1 − 2

[
1 − p+ pe−a

]n−1
+
[
1 − p(2 − p)

(
1 − e−a

)]n−1
}

≥ 1 −mp+mp

[
1 − (n− 1)p

(
1 − e−a

)
+

(n− 1)2p2 (1 − e−a)
2

3

]

+
m2p2

3

{
1 − 2

[
1 − (n− 1)p

(
1 − e−a

)
+

(n− 1)2p2

2

(
1 − e−a

)2
]}

+
m2p2

3

{
1 − (n− 1)p(2 − p)

(
1 − e−a

)
+

(n− 1)2p2(2 − p)2 (1 − e−a)
2

3

}

≥ e−a − ǫ(n)
(
1 − e−a

)
+
n2m2p4 (1 − e−a)

2

18

= e−a − ǫ(n)
(
1 − e−a

)
+

(1 + ǫ(n))2 (1 − e−a)
2

18

≥ e−a − ǫ(n)
(
1 − e−a

)
+

(1 − e−a)
2

18
≥ e−a.



934 B. Wang, L. Wang and K. Xiang

So E
(
e−a(ξt−1)

)
≥ 1. Therefore, for any t ≤ γ,

E
(
e−aWt

∣∣W1, . . . ,Wt−1

)
= E

(
e−aWt−1−a(ξt−1)

∣∣∣W1, . . . ,Wt−1

)

= e−aWt−1E
(
e−a(ξt−1)

)
≥ e−aWt−1 .

That is,
{
e−aWt

}
t≥0

is a submartingale for a large enough n. By the optional

stopping theorem (see [2, Theorem 5.7.4]), we obtain that

e−a ≤ E
(
e−aWγ

)

= E
(
e−aWγ

∣∣Wγ ≥ n
1
3

)
P
(
Wγ ≥ n

1
3

)
+ E

(
e−aWγ

∣∣Wγ < n
1
3

)
P
(
Wγ < n

1
3

)

≤ e−an
1
3
P
(
Wγ ≥ n

1
3

)
+ 1 −P

(
Wγ ≥ n

1
3

)
,

which means that

P
(
Wγ ≥ n

1
3

)
≤

1 − e−a

1 − e−an
1
3

= O
(
n−

1
3

)
.(19)

Now set

γ1 = min {t : Wt = 0 and t ≤ n} and γ2 = min
{
t : Wt ≥ n1/3 and t ≤ n

}
.

So γ = min {γ1, γ2} ,

Eγ ≤ min {E (γ1) , E (γ2)} .

It is easy to see that Wt− tE(ξ1−1) is a martingale with respect to the filtration
generated by {ξi}i≥1. Hence, when λ < 0,

E(γ) ≤ E (γ1) =
1

−E(ξ1 − 1)
= O

(
n

1
3

)
.(20)

Now we come to the position of proving the upper bound in the critical case
by the above lemma.

Proof of the upper bound. Now fix a vertex v. To analyze the component of
v in G (n,m, p) , due to the same reason as the subcritical case, we can couple the
sequence {Zt}t≥1 to a sequence of i.i.d. random variables {ξt}t≥1 with distribution
F (n,m, p) so that

∑t
i=1 ξi ≥

∑t
i=1 Zi for t ≤ min{γ, n}. This means that Wt ≥ Yt

for all t, where Wt is defined in Lemma 8 and Yt is defined in the exploration
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process. Define γ as in Lemma 8. Let κ = γ ∧ n
2
3ω(n), where ω(n) tends to

infinity as n→ ∞ and is of the order less than logn. By Lemma 8, we have

P (Wκ > 0) = P
(
Wγ > 0

∣∣∣γ < n
2
3ω(n)

)
P
(
γ < n

2
3ω(n)

)

+ P
(
W
n

2
3 ω(n)

> 0
∣∣∣γ ≥ n

2
3ω(n)

)
P
(
γ ≥ n

2
3ω(n)

)

≤ P
(
Wγ ≥ n

1
3

)
+ P

(
γ ≥ n

2
3ω(n)

)
≤ P

(
Wγ ≥ n

1
3

)
+

E (γ)

n
2
3ω(n)

≤ 2n−
1
3 +O

(
n−

1
3ω−1(n)

)
= O

(
n−

1
3

)
.

Note that when |C(v)| ≥ n
2
3ω(n), then Wκ > 0. So

P
(
|C(v)| ≥ n

2
3ω(n)

)
≤ P (Wκ > 0) = O

(
n−

1
3

)
.

Denote Z≥k =
∑

v∈V 1{|C(v)|≥k}. Then we have

P
(
|C1| ≥ n

2
3ω(n)

)
== P

(
Z
≥n

2
3 ω(n)

≥ n
2
3ω(n)

)

≤
E
(
Z
≥n

2
3 ω(n)

)

n
2
3ω(n)

=

∑
v∈V

E

(
1{

|C(v)|≥n
2
3 ω(n)

}

)

n
2
3ω(n)

≤
nP
(
|C(v)| ≥ n

2
3ω(n)

)

n
2
3ω(n)

→ 0.

3.2.2. The case of λ > 0

When λ > 0, we fail to show that E(γ) is of the order at most n
1
3 likely to Lemma

8. We appeal to the optimal stopping theorem for the upper bound to overcome
the difficulty from the dependencies between edges.

Proof. Recall {ξi}
∞
i=1 is a sequence of the i.i.d. random variables distributed as

F (n,m, p), and

St = 1 +
t∑

i=1

(ξi − 1) and τ = min {t:St = 0, t ≤ n} .

For any θ ∈ R, define

φ(θ) = E
[
eθ(ξi−1)

]
= e−θE

[
eθξi
]

and ψ(θ) = log φ(θ).

Let Xt := Xt(θ) = exp (−θSt − tψ(−θ)) . Then it is easy to check that Xt is a
martingale with X0 = e−θ. By the optimal stopping theorem, we have E[Xτ ] =
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E[X0] = e−θ. To give an upper bound for the stopping time τ, we need to show
that ψ(−ǫ(n)) < 0. To this end, by (5), we obtain that

E
[
e−ǫ(n)ξt

]

=
n−1∑

j=0

(
n− 1

j

)(
e−ǫ(n)

)j (
1 − e−ǫ(n)

)n−1−j [
1 − p

(
1 − (1 − p)n−1−j

)]m

≤
n−1∑

j=0

(
n− 1

j

)(
e−ǫ(n)

)j (
1 − e−ǫ(n)

)n−1−j

− mp
n−1∑

j=0

(
n− 1

j

)(
e−ǫ(n)

)j (
1 − e−ǫ(n)

)n−1−j [
1 − (1 − p)n−1−j

]

+
m2p2

2

n−1∑

j=0

(
n− 1

j

)(
e−ǫ(n)

)j (
1 − e−ǫ(n)

)n−1−j [
1 − (1 − p)n−1−j

]2

= 1 −mp+mp
(

1 − p+ pe−ǫ(n)
)n−1

+
m2p2

2

{
1 − 2

[
1 − p+ pe−ǫ(n)

]n−1
+
[
1 − p(2 − p)

(
1 − e−ǫ(n)

)]n−1
}

≤ 1 −mp+mp

[
1 − (n− 1)p

(
1 − e−ǫ(n)

)
+

(n− 1)2p2
(
1 − e−ǫ(n)

)2

2

]

+
m2p2

2

{
1 − 2

[
1 − np

(
1 − e−ǫ(n)

)

+
n2p2

(
1 − e−ǫ(n)

)2

2
−
n3p3

(
1 − e−ǫ(n)

)3

6

]}

+
m2p2

2

{
1 − (n− 1)p(2 − p)

(
1 − e−ǫ(n)

)

+
(n− 1)2p2(2 − p)2

(
1 − e−ǫ(n)

)2

2

}

≤ e−ǫ(n) − ǫ(n)
(

1 − e−ǫ(n)
)

+
(1 + ǫ(n))2

(
1 − e−ǫ(n)

)2

2

+

(
1 − e−ǫ(n)

)2

n(α−1)/2
+

(
1 − e−ǫ(n)

)3

n(α−1)/2
+

1 − e−ǫ(n)

n
(1 + o(1)),

which means that

φ(−ǫ(n)) ≤ 1 − ǫ(n)
(
eǫ(n) − 1

)
+

(1 + ǫ(n))2
(
eǫ(n) − 1

) (
1 − e−ǫ(n)

)

2

+
2
(
eǫ(n) − 1

) (
1 − e−ǫ(n)

)

n(α−1)/2
+
eǫ(n) − 1

n
= 1 −

ǫ2(n)

2
+ o

(
ǫ2(n)

)
,
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and ψ(−ǫ(n)) < 0 for a large enough n. So for any positive constant C3 >
2

3λ2
,

we have that

P
(
τ ≥ C3n

2
3 log n

)
≤ P

(
e−ψ(−ǫ(n))τ ≥ e−C3ψ(−ǫ(n))n

2
3 logn

)

≤
E[Xτ ]

e−C3ψ(−ǫ(n))n
2
3 log n

= e−ǫ(n)+C3ψ(−ǫ(n))n
2
3 logn

≤ e−ǫ(n)
(

1 −
ǫ2(n)

2
+ o

(
ǫ2(n)

))C3n
2
3 logn

≤ O

(
e−

C3λ
2

2
logn

)
= O

(
n−

C3λ
2

2

)
.

As in the proof of (16), we can determine that

P
(
|C(v0)| ≥ C3n

2
3 logn

)
≤ P

(
τ ≥ C3n

2
3 logn

)
= O

(
n−

C3λ
2

2

)
.

Recall that Z≥k =
∑

v∈V 1{|C(v)|≥k}. Therefore,

P(|C1| ≥ C3n
2
3 logn) = P

(
Z
≥C3n

2
3 logn

≥ C3n
2
3 log n

)

≤
E
(
Z
≥C3n

2
3 logn

)

C3n
2
3 log n

≤

∑
v∈V E

(
1
{|C(v)|≥C3n

2
3 logn}

)

C3n
2
3 log n

≤
nP
(
|C(v0)| ≥ C3n

2
3 log n

)

C3n
2
3 logn

= O
(
n−(C3λ2/2−1/3)/ log n

)
= o(1).

3.3. Above the critical window

In this subsection, the proof is almost the same as in Subsection 3.2.2. In fact,
set

St = 1 +
t∑

i=1

(ξi − 1) and τ = min {t:St = 0, t ≤ n} .

For any θ ∈ R, define

φ(θ) = E
[
eθ(ξi−1)

]
= e−θE

[
eθξi
]

and ψ(θ) = log φ(θ).

Let Xt := Xt(θ) = exp (−θSt − tψ(−θ)) . Then, it is easy to check that Xt is a
martingale with X0 = e−θ. By the optimal stopping theorem, E[Xτ ] = E[X0] =
e−θ. Similar to Subsection 3.2.2, we can show

φ(−ǫ(n)) ≤ 1 −
ǫ2(n)

2
+ o

(
ǫ2(n)

)
,
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and ψ(−ǫ(n)) < 0 for a large enough n. So for any positive constant C5, we have
that

P(τ ≥ C5nǫ(n) log n) ≤ P
(
e−ψ(−ǫ(n))τ ≥ e−C5ψ(−ǫ(n))nǫ(n) logn

)

≤
E[Xτ ]

e−C5ψ(−ǫ(n))nǫ(n) logn
= e−ǫ(n)+C5ψ(−ǫ(n))nǫ(n) logn

≤ e−ǫ(n)
(

1 −
ǫ2(n)

2
+ o

(
ǫ2(n)

))C5nǫ(n) logn

≤ O
(
e−

C5
2
nǫ3(n) logn

)
= O

(
n−

C5
2
nǫ3(n)

)
.

As in the proof of (16), we can determine that

P (|C(v0)| ≥ C5nǫ(n) log n) ≤ P(τ ≥ C5nǫ(n) log n) = O
(
n−

C5
2
nǫ3(n)

)
.

Recall that Z≥k =
∑

v∈V 1{|C(v)|≥k}. Therefore,

P(|C1| ≥ C5nǫ(n) log n) = P
(
Z≥C5nǫ(n) logn ≥ C5nǫ(n) logn

)

≤
E
(
Z≥C5nǫ(n) logn

)

C5nǫ(n) logn
≤

∑
v∈V E

(
1{|C(v)|≥C5nǫ(n) logn}

)

C5nǫ(n) log n

≤
nP (|C(v0)| ≥ C5nǫ(n) log n)

C5nǫ(n) log n
= o(1).

4. Questions

Recall the results for the critical Erdős-Rényi random graph from [5, Theorem
5.23] and [9, Theorem 1.1]. The following questions in G(n,m, p) will be inter-
esting.

Q1: What is the size of the largest component within the critical window of
G(n,m, p) when m = nα and 1 < α < 5

3? With high probability, it may be

of order n
3−α
2 .

Q2: For the case m = nα and α > 5
3

(
or 1 < α < 5

3

)
, it is interesting to remove

the factor log n in the upper bound for the supercritical phase and critical
case when λ > 0.

Q3: What is the size of the largest component in the critical G(n,m, p) when
m = nα and α = 1? Also, what is the width of the scaling window around
the critical probability in this case?

Q4: To study the critical G(n,m, p) when m = nα and α = 5
3 is of interest and

a challenge.
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Appendix: Proof of Theorem 2

A.1. Below the critical window

When nmp2 = 1 − ǫ(n) and 1 < α < 5
3 , let ω(n) := ǫ(n)n

α−1
2 which means

ω(n) → ∞ as n→ ∞, and define G(n, p′), where

p′ = mp2
(

1 − (n− 2)p−
mp2

2

)
=

1 − ǫ(n)

n
+ o

(
ǫ(n)

n

)
.

Note that ω(n)

n
4
3
< ǫ(n)

n < ω(n)
n . Then, by Theorems 4 and 5, we can determine that

w.h.p.

|C1| ≥ (2 + o(1))ǫ−2(n) log
{
nǫ3(n)

}
.

Proof of the upper bound. Let {ξt}
∞
t=1 be i.i.d. random variables distributed

as F (n,m, p). Set

St = 1 +
t∑

i=1

(ξi − 1).

Take β = ξ1 − 1. By (6)–(7) and the following inequality

1 − ǫ(n)

n
−

(1 − ǫ(n))2

2n2
+

(1 − ǫ(n))3

7n3

< 1 −
(
1 − p2

)m
<

1 − ǫ(n)

n
−

(1 − ǫ(n))2

2n2
+

(1 − ǫ(n))3

5n3
,

we have that

Eβ = E(ξi − 1) = (n− 1)
(
1 −

(
1 − p2

)m)
− 1

= − ǫ(n) −
3(1 − ǫ(n))

2n
+O

(
ǫ(n)

n

)
;

E
[
β2
]

= E
[
(ξi − 1)2

]
= E [ξi(ξi − 1)] −E(ξi − 1)

= (n− 1)(n− 2)
{

1 − 2
(
1 − p2

)m
+
[
1 − p2(2 − p)

]m}

− (n− 1)
[
1 −

(
1 − p2

)m]

= ǫ(n) +O
(
n−1

)
+ (n− 1)(n− 2)

[
1 − 2

(
1 −mp2 +

m(m− 1)p4

2

)

+ 1 −mp2(2 − p) +
m(m− 1)p4(2 − p)2

2
+O

(
m3p6

)]

= 1 − ǫ(n) + ǫ2(n) +
(1 − ǫ(n))3/2

n
α−1
2

+ o

(
1

n
α−1
2

)
+O

(
1

n

)
;
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E
[
β3
]

= E
[
(ξi − 1)3

]
= E[ξi(ξi − 1)(ξi − 2)] + E(ξi − 1)

= − ǫ(n) −
3(1 − ǫ(n))

2n
+O

(
ǫ(n)

n

)
+ (n− 1)(n− 2)(n− 3)

·
{

1 − 3
(
1 − p2

)m
+ 3

[
1 − p2(2 − p)

]m
−
[
1 − p2

(
3 − 3p+ p2

)]m}

= (1 − ǫ(n))3 +
3 (1 − ǫ(n))5/2

n
α−1
2

+ o

(
1

n
α−1
2

)
− ǫ(n) +O

(
1

n

)
.

Similar to (12) we can prove that there is a θ0 satisfying

ǫ(n)

2
< θ0 < ǫ(n) +

ǫ(n)

2 log n
and E

(
βeθ0β

)
= 0.

Hence, we can deduce that

E
[
eθ0β

]
≤ 1 −

ǫ2(n)

3
+ o

(
ǫ2(n)

)
.

Due to the same reason as in the subcritical case α > 5
3 ,
∑k

i=1 Zi is dom-

inated above by
∑k

i=1 ξi for all k ≤ T, where T = min{t:Yt = 0} in the ex-
ploration process. Let Ct(v0) denote the total inactive (explored) vertices which
are explored from time 0 to t by the exploration process on G(n,m, p) starting
from vertex v0 which is chosen uniformly at random from the vertex set V. Let
τ = min{t:St = 0 and t ≤ n}. Notice that

|Ct(v0)| = 1 +
t∑

i=1

(Zi − 1) and St = 1 +
t∑

i=1

(ξi − 1).

Hence, there is a coupling
((∣∣∣Ĉt(v0)

∣∣∣
)
t
,
(
Ŝt

)
t

)
of the processes (|Ct(v0)|)t and

(St)t such that

∣∣∣Ĉt(v0)
∣∣∣ ≤ Ŝt, t ≤ min

{
s:
∣∣∣Ĉs(v0)

∣∣∣ = 0
}
,

which means that τ is stochastically larger than T. Therefore, by Lemma 7, we
determine

P (|C(v0)| ≥ η) = P (T ≥ η) ≤ P(τ ≥ η) =
∑

ℓ≥η

P(τ = ℓ)

=
∑

ℓ≥η

O

(
ℓ−3/2

[
1 −

ǫ2(n)

3
+ o

(
ǫ2(n)

)]ℓ
)
.
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For a positive constant C6 > 3, set η = C6(1 − ǫ(n))ǫ(n)−2 log
(
nǫ3(n)

)
. Then,

by the inequality that 1 − x ≤ e−x, x ≥ 0, we obtain

P(τ ≥ η) = O
(
η−3/2

)∑

ℓ≥η

(
1 −

ǫ2(n)

3
+ o

(
ǫ2(n)

))ℓ

= O
(
ǫ−2(n)η−3/2

)(
1 −

ǫ2(n)

3
+ o

(
ǫ2(n)

))η

= O
(
ǫ−2(n)η−3/2

)
exp

{
−
ηǫ2(n)

3
+ o

(
ηǫ2(n)

)}

= O
(
ǫ(n)

(
log
(
nǫ3(n)

))−3/2 (
nǫ3(n)

)−C6/3+o(1)
)
.

Let Z≥k =
∑

v∈V 1{|C(v)|≥k}. Then, by the fact that nǫ3(n) = n
5−3α

2 ω3(n) → ∞
as n→ ∞,

P(|C1| ≥ η) = P(Z≥η ≥ η) ≤
E (Z≥η)

η
=

∑
v∈V E

(
1{|C(v)|≥η}

)

η

=
nP(|C(v0)| ≥ η)

η
≤
nP(τ ≥ η)

η

= O
((
nǫ3(n)

)−(C6/3−1−o(1)) (
log
(
nǫ3(n)

))−5/2
)

= o(1).

A.2. Inside the critical window

When λ < 0, define G (n, p∗) , where

p∗ = mp2
(

1 − (n− 2)p−
mp2

2

)
=

1 − (λ+ 1)n−
α−1
2

n
+ o

(
1

n
α+1
2

)
.

Notice that in this case (|λ| + 1)n−
α−1
2 > ω̃(n)n−

1
3 , where ω̃(n) → ∞ in a suf-

ficiently slow rate as n → ∞. By Theorems 4 and 5, we can determine that
w.h.p.

|C1| ≥ (2 + o(1))
(

(|λ| + 1)n−
α−1
2

)−2
log

{
n
(

(|λ| + 1)n−
α−1
2

)3}

= 5 − 3α+ o(1) (|λ| + 1)−2 nα−1 log n.

Alternatively, when λ > 0, define G (n, p′) , where

p′ = mp2
(

1 − (n− 2)p−
mp2

2

)
=

1 + (λ+ 1)n−
α−1
2

n
+ o

(
1

n
α+1
2

)
.



944 B. Wang, L. Wang and K. Xiang

Notice (λ+ 1)n−
α−1
2 > ω̃(n)n−

1
3 , where ω̃(n) → ∞ in a sufficiently slow rate as

n→ ∞. By Theorems 4 and 5, we can determine that w.h.p.

|C1| ≥ (2(λ+ 1) + o(1))n
3−α
2 .

For the upper bound, we follow the line of the proof in Subsection 3.2.2.
Similar to Lemma 8, we have the following lemma for the case λ < 0.

Lemma A. Let m = nα
(
1 < α < 5

3

)
and p be such that nmp2 = 1 + ǫ(n) with

ǫ(n) = λn−
α−1
2 (λ < 0) and {ξt}t≥1 be i.i.d. random variables distributed as

F (n,m, p) . Let Wt = 1 +
∑t

i=1(ξi − 1) for t ≥ 0. Define

γ = min
{
t > 1:Wt ≥ n

3−α
4 or Wt = 0

}
.

Then, we have

E(γ) = O
(
n

α−1
2

)
and P

(
Wγ ≥ n

3−α
4

)
= O

(
n−

α−1
2

)
.

Now fix a vertex v. To analyze the component of v in G (n,m, p) , due to
the same reason as the subcritical case, we can couple the sequence {Zt}t≥1 to
a sequence of the i.i.d. random variable {ξt}t≥1 with distribution F (n,m, p) so
that

∑t
i=1 ξi ≥

∑t
i=1 Zi for t ≤ min{γ, n}. This means that Wt ≥ Yt for all t,

where Yt is defined in the exploration process. Define γ the same as in Lemma

A. Let κ = γ ∧ n
3−α
2 ω(n), where ω(n) tends to infinity as n→ ∞ and is of order

less than log n. By Lemma A, we have

P (Wκ > 0) = P
(
Wγ > 0

∣∣∣γ < n
3−α
2 ω(n)

)
P
(
γ < n

3−α
2 ω(n)

)

+ P
(
Wγ > 0

∣∣∣γ ≥ n
3−α
2 ω(n)

)
P
(
γ ≥ n

3−α
2 ω(n)

)

≤ P
(
Wγ ≥ n

3−α
4

)
+ P

(
γ ≥ n

3−α
2 ω(n)

)

≤ P
(
Wγ ≥ n

3−α
4

)
+

E (γ)

n
3−α
2 ω(n)

= O
(
n−

α−1
2

)
+O

(
nα−2/ω(n)

)
.

Note that when |C(v)| ≥ n
3−α
2 ω(n), then Wκ > 0. Thus

P
(
|C(v)| ≥ n

3−α
2 ω(n)

)
≤ P (Wκ > 0) = O

(
n−

α−1
2

)
+O

(
nα−2/ω(n)

)
.
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Denote Z≥k =
∑

v∈V 1{|C(v)|≥k}. Then we have

P
(
|C1| ≥ n

3−α
2 ω(n)

)
= P

(
Z
≥n

1+α
4 ω(n)

≥ n
3−α
2 ω(n)

)

≤

E

(
Z
≥n

3−α
2 ω(n)

)

n
3−α
2 ω(n)

≤

∑
v∈V

E

(
1{

|C(v)|≥n
3−α
2 ω(n)

}

)

n
3−α
2 ω(n)

= O

(
1

ω(n)

)
+O

(
n

3α−5
2

ω2(n)

)
→ 0.

When λ > 0, the proof is almost the same as in the following proof of the
supercritical phase. We omit this for simplicity.

A.3. Above the critical window

For the lower bound, we only notice that in this case

p′ = mp2
(

1 − (n− 2)p−
mp2

2

)
=

1 + ǫ(n)

n
+ o

(
ǫ(n)

n

)
.

By Theorems 4 and 5, we can determine that in G(n,m, p) w.h.p.

|C1| ≥ (2 + o(1))nǫ(n).

For the upper bound, recall that {ξi}
∞
i=1 is a sequence of the i.i.d. random

variables distributed as F (n,m, p), St = 1 +
∑t

i=1(ξi − 1) and τ = min{t:St = 0
and t ≤ n}. For any θ ∈ R, let

φ(θ) = E
[
eθ(ξi−1)

]
= e−θE

[
eθξi
]
, ψ(θ) = log φ(θ), Xt = exp (−θSt − tψ(−θ)) .

Then it is easy to see that Xt is a martingale with X0 = e−θ. By the optimal
stopping theorem, we have

E[Xτ ] = E[X0] = e−θ.

Similar to the proof in Subsection 3.2.2 we have

φ(−ǫ(n)) ≤ 1 − ǫ(n)
(
eǫ(n) − 1

)
+

(1 + ǫ(n))2
(
eǫ(n) − 1

) (
1 − e−ǫ(n)

)

2

+
2
(
eǫ(n) − 1

) (
1 − e−ǫ(n)

)

n(α−1)/2
+
eǫ(n) − 1

n
= 1 −

ǫ2(n)

2
+ o

(
ǫ2(n)

)
,
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and further ψ(−ǫ(n)) < 0 for a large enough n. So for any positive constant C12,
we have that

P(τ ≥ C12nǫ(n) logn) ≤ P
(
e−ψ(−ǫ(n))τ ≥ e−C12ψ(−ǫ(n))nǫ(n) logn

)

≤
E[Xτ ]

e−C12ψ(−ǫ(n))nǫ(n) logn
= e−ǫ(n)+C12ψ(−ǫ(n))nǫ(n) logn

≤ e−ǫ(n)
(

1 −
ǫ2(n)

2
+ o

(
ǫ2(n)

))C12nǫ(n) logn

≤ O
(
e−

C12
2
nǫ3(n) logn

)
= O

(
n−

C12
2
nǫ3(n)

)
.

As in the proof of (16), we can determine that

P (|C(v0)| ≥ C12nǫ(n) log n) ≤ P(τ ≥ C12nǫ(n) logn) = O
(
n−

C12
2
nǫ3(n)

)
.

Recall that Z≥k =
∑

v∈V 1{|C(v)|≥k}. Therefore,

P (|C1| ≥ C12nǫ(n) log n) = P
(
Z≥C12nǫ(n) logn ≥ C12nǫ(n) log n

)

≤
E
(
Z≥C12nǫ(n) logn

)

C12nǫ(n) log n
≤

∑
v∈V E

(
1{|C(v)|≥C12nǫ(n) logn}

)

C12nǫ(n) logn

≤
nP (|C(v0)| ≥ C12nǫ(n) log n)

C12nǫ(n) logn
= o(1).
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