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Abstract

A vertex cut of a connected graph G is a set of vertices whose deletion
disconnects G. A connected graph G is super-connected if the deletion of
every minimum vertex cut of G isolates a vertex. The super-connectivity is
the size of the smallest vertex cut of G such that each resultant component
does not have an isolated vertex. The Kneser graph KG(n, k) is the graph
whose vertices are the k-subsets of {1, 2, . . . , n} and two vertices are adjacent
if the k-subsets are disjoint. We use Baranyai’s Theorem on the decomposi-
tions of complete hypergraphs to show that the Kneser graph KG(n, 2) are
super-connected when n ≥ 5 and that their super-connectivity is

(

n

2

)

− 6
when n ≥ 6.
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1. Introduction

A vertex cut S of a connected graph G is a set of vertices of G whose deletion
creates a disconnected graph or a trivial graph. The connectivity κ = κ(G) of a
graph G is the minimum size over all vertex cuts of G. If the deletion of every
vertex cut of G of size κ isolates a vertex, then G is super-connected and such
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a vertex cut is a trivial vertex cut of G. If G is super-connected, it is generally
of interest to determine the size of the smallest vertex cut which is not trivial.
This gives the super-connectivity κ1 = κ1(G) of G, and such a vertex cut is a
super-vertex cut of G.

The super-connectivity has been studied for various families of graphs, in-
cluding circulant graphs [4], hypercubes [15, 16], permutation graphs [1] and
products of various graphs (see [12] and [6], and the references therein). It arose
from the notion of conditional connectivity proposed by Harary [8]. Given a
graph G and some graph theoretical property P , Harary asked what is the size
of the smallest vertex cut S, if it exists, so that G− S is disconnected and every
component of G− S has property P . Super-connectivity yields a better measure
of the reliability of a network [3] and establishes the cardinality of the smallest
set S such that each one of the resultant components of G− S contains at least
one edge. In the current work, we study another specific family of graphs for its
super-connectivity, namely Kneser graphs.

Let n and k be integers such that n ≥ k ≥ 1 and let [n] = {1, 2, . . . , n}. The

set of all k-subsets of [n] is denoted by
([n]
k

)

. The Kneser graph KG(n, k) is the
graph whose vertex set represents all the k-subsets of [n], and two vertices A1 and
A2 are adjacent if and only if they correspond to disjoint k-subsets. Thus, the
vertex set is V (KG(n, k)) =

([n]
k

)

and the edge set is E(KG(n, k)) = {{Ai, Aj} :
Ai, Aj ∈ V (KG(n, k)) and Ai ∩ Aj = ∅ for i 6= j}. This family of graphs was
introduced in 1955 by Kneser [11]. It is well-known that if n < 2k, then KG(n, k)
is the empty graph (that is, the graph consisting of

(

n
k

)

isolated vertices), while
if n = 2k, then KG(n, k) consists of disjoint copies of the complete graph on two
vertices. The Kneser graph KG(n, 1) is isomorphic to the complete graph on n
vertices.

Chen and Lih [7] showed that Kneser graphs are symmetric, that is vertex-
and edge-transitive. A graph G is vertex-transitive when, for every pair of ver-
tices u, v ∈ V (G), there is an automorphism that maps u to v. Similarly, G
is edge-transitive when there is an automorphism that maps e1 to e2 for ev-
ery pair of edges e1, e2 ∈ E(G). Symmetric graphs are usually preferred when
modelling interconnection networks [9]. Vertex-transitivity permits the imple-
mentation of the same routing and communication schemes at each vertex (or
node) of the network, whereas edge-transitivity allows recursive constructions to
be used. Regularity is also generally sought in networks as this simplifies their
study in terms of diameter and diameter vulnerability problems.

In this work, we consider the class of Kneser graphs with the smallest value
of k for which the super-connectivity is not known, namely KG(n, k) when k = 2
and n ≥ 2k+1. It has been argued by many that a network is more reliable if it
is super-connected (see, for example, [10]). In Section 3, we prove that KG(n, 2)
is super-connected for n ≥ 5. In Section 4, we determine that κ1(KG(n, 2)) is
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(

n
2

)

− 6 for n ≥ 6, and 4 for n = 5. We end by presenting an open problem on
the super-connectivity of KG(n, k).

2. Preliminaries

Let H be a hypergraph (V (H), E(H)), where the vertex set V (H) is a finite set
and E(H) is a multiset of subsets of V (H). The number of edges of H containing
a vertex v is the degree of v, denoted by dH(v). The hypergraph H is almost

regular if |dH(v)− dH(w)| ≤ 1 for all vertices v, w ∈ V (H).
The fundamental tool that we use in this work is Baranyai’s Theorem stated

hereunder in Theorem 1.

Theorem 1 [2]. Let a1, . . . , as be positive integers such that
∑s

j=1 aj =
(

n
k

)

.

Then the edges of the k-uniform hypergraph with vertex set [n] and edge set
([n]
k

)

can be partitioned into almost regular hypergraphs with vertex set [n] and edge set

Ej where |Ej | = aj, for j = 1, . . . , s.

In particular, for the case k = 2, a Baranyai Partition of
(

[n]
2

)

is a family of
m ∈ Z

+ partitions Fi of [n] (for 1 ≤ i ≤ m), where Fi = A1
i ∪A2

i ∪ · · · ∪Ap
i , such

that, for any given i

(i) |A1
i | = |A2

i | = · · · = |Ap
i | = 2;

(ii) Fi = [n] when n is even and Fi = [n] − {xi} when n is odd, where xi ∈
{1, 2, . . . , n} and xi 6= xj for i 6= j;

(iii) each 2-subset of [n] occurs exactly once among the Aj
i ’s,

where
p =

⌊n

2

⌋

and

m =

(

n
2

)

p
=

{

n− 1 when n is even,
n when n is odd.

Such a partition for k = 2 was already known to exist in the nineteenth
century, was discovered for k = 3 by Peltesohn and for k = 4 by Bermond, and
was generalized by Baranyai for all k. For a more detailed historical overview and
an interesting exposition about this problem, the reader is referred to Chapter
38 of [13].

3. KG(n, 2) is Super-Connected

In his beautiful paper investigating the conditions imposed on the connectivity
of graphs by vertex-transitivity and edge-transitivity, Watkins [14] proved that
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if a connected simple graph G is edge-transitive and all vertices have degree at
least r, then κ(G) = r. Thus, the connectivity of the Kneser graphs KG(n, k)
for n > 2k follows immediately, since KG(n, k) is regular of degree

(

n−k
k

)

.

Theorem 2. The connectivity of the Kneser graph G = KG(n, k) for n > 2k is
(

n−k
k

)

.

Henceforth, we consider the case when k = 2 and n ≥ 5. Let G = KG(n, 2)
and let

p =
⌊n

2

⌋

and m =

(

n
2

)

p
.

Each vertex of G = KG(n, 2) is represented by Aj
i , for 1 ≤ i ≤ m and 1 ≤ j ≤ p.

Note that each partition Fi represents a clique in G.
To show that G is super-connected, we need to prove that every vertex cut

of cardinality κ(G) isolates a vertex. First we prove an important result which
we need in the proof of Theorem 4.

Lemma 3. Let S be a vertex set of G = KG(n, 2) such that |S| ≤
(

n−2
2

)

. Then

there are at least two partitions Fi and Fj (i 6= j) each having at least two of

their elements in G− S.

Proof. Suppose not, then either m or m− 1 of the partitions contribute at most
one element to G− S. In either case, we have |S| ≥ (m− 1)(p− 1), and

• if n is even, then |S| ≥ (n− 2)
(

n
2 − 1

)

= 1
2(n− 2)2 > 1

2(n− 2)(n− 3),

• if n is odd, then |S| ≥ (n− 1)
(

n−1
2 − 1

)

= 1
2(n− 1)(n− 3) > 1

2(n− 2)(n− 3).

Thus, |S| >
(

n−2
2

)

, a contradiction.

Theorem 4. For n ≥ 5, the Kneser graph G = KG(n, 2) is super-connected.

Proof. Suppose that there is a vertex cut S such that |S| =
(

n−2
2

)

and the
resulting graph G− S does not have an isolated vertex.

By Lemma 3, there are at least two partitions, say F1 and F2, each having at
least two of their elements in G−S. Without loss of generality, let these elements
in G − S be

{

A1
1, A

2
1

}

⊆ F1 and
{

A1
2, A

2
2

}

⊆ F2. Since G − S is disconnected,
then it has at least two components, say C1 and C2. Note that, for any i, the
vertices of G corresponding to elements of Fi which are not in S are either all in
C1 or all in C2, otherwise C1 and C2 are linked by some edge in G − S. There
are two cases to consider.

Case 1.
{

A1
1, A

2
1

}

⊆ C1 and
{

A1
2, A

2
2

}

⊆ C2. Since A
1
1 and A1

2 are in different
components, one of their entries is the same. Hence, let A1

1 = {a, b} and A1
2 =

{a, c} for b 6= c. The only elements of F1 that are in G− S are those of the form
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{c, x} for x ∈ [n], x /∈ {a, b, c}, while the only elements of F2 that are in G−S are
those of the form {b, y} for y ∈ [n], y /∈ {a, b, c}. However, since A2

1 and A2
2 are

in different components, we have that x = y = d, for some d ∈ [n], d /∈ {a, b, c}.
Now, out of all the remaining vertices of G, the only ones that are in G− S are
{a, d} and {b, c}, because all the others are adjacent to at least a vertex in C1

and a vertex in C2. Thus |S| ≥
(

n
2

)

−6 = 1
2(n

2−n−12) =
(

n−2
2

)

+2n−9 >
(

n−2
2

)

since 2n− 9 ≥ 1, giving a contradiction.

Case 2.
{

A1
1, A

2
1, A

1
2, A

2
2

}

⊆ C1. Since C2 cannot be empty, without loss
of generality, let A1

3 ∈ C2. Note that A1
3 has common entries with both A1

1 =
{a, b} and A2

1 = {c, d}, since otherwise it is adjacent to them. Let A1
3 = {a, c}.

Similarly, A1
3 has common entries with both A1

2 and A2
2. Thus, let A

1
2 = {a, x} for

x ∈ [n], x /∈ {a, b, c}, and let A2
2 = {c, y} for y ∈ [n], y /∈ {a, c, d}, where x 6= y.

Now, A1
3 cannot be an isolated vertex in C2. Let As

r = {z1, z2} be adjacent to
A1

3, for z1 6= z2. Thus z1 /∈ {a, c} and z2 /∈ {a, c}. Since As
r is not adjacent to any

vertex in C1, we have that {z1, z2} is equal to {b, d, x, y} and this is only possible
when x = d and y = b. This implies that As

r = {b, d} and that the vertices in C1

form two disjoint edges. Thus there is at least another vertex Au
t in C1 which is

adjacent to at least one of
{

A1
1, A

2
1, A

1
2, A

2
2

}

. Without loss of generality, assume
Au

t is adjacent to A1
1 and thus, either

• Au
t = {c, z3} for z3 ∈ [n], z3 /∈ {a, b, c, d}; or

• Au
t = {d, z3} for z3 ∈ [n], z3 /∈ {a, b, c, d}; or

• Au
t = {z3, z4} for z3 ∈ [n], z3 /∈ {a, b, c, d}, and z4 ∈ [n], z4 /∈ {a, b, c, d},

where z3 6= z4.

In either case, Au
t is also adjacent to at least a vertex in C2, a contradiction.

4. Super-Connectivity of KG(n, 2)

In this section we discuss the super-connectivity of G = KG(n, 2). First we note
that KG(5, 2) is the Petersen graph having super-connectivity four [5]. In the
next theorem we determine the super-connectivity of KG(n, 2) for n ≥ 6.

Theorem 5. The super-connectivity of the Kneser graph G = KG(n, 2) for n ≥ 6
is

(

n
2

)

− 6.

Proof. Let S ⊆ V (G) be a super-vertex cut of G and let C1, C2, . . . , Cs be the
components of the resulting graph G − S, where n ≥ 6 and s ≥ 2. Since S
is a super-vertex cut, each component Ci contains at least two vertices, where
i ∈ {1, 2, . . . , s}. Suppose, for contradiction, that |S| <

(

n
2

)

− 6. Since S is
a super-vertex cut, there are two adjacent vertices in C1. These two vertices
do not share any common entries, so let {{a, b}, {c, d}} ⊆ C1. Similarly, there
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are two adjacent vertices in C2 and they share at least one common entry with
every vertex in C1, otherwise there will be an edge between C1 and C2. Thus
{{a, c}, {b, d}} ⊆ C2. Vertex cut S contains the common neighbors of the vertices
in the different components. Note that any vertex Au

t given by either

• Au
t = {x, y} for x ∈ {a, b, c, d} and y ∈ [n], y /∈ {a, b, c, d}, or

• Au
t = {x, y} for x ∈ [n], x /∈ {a, b, c, d} and y ∈ [n], y /∈ {a, b, c, d}, where

x 6= y,

must belong to S, otherwise components C1 and C2 of G − S are not different.
There are

(

n−4
2

)

+4(n−4) possible candidates for the vertex Au
t described above.

Hence, |S| ≥
(

n−4
2

)

+ 4(n− 4) =
(

n
2

)

− 6.
Finally, to see that the super-connectivity of G is equal to

(

n
2

)

− 6, consider
any four elements a, b, c, d ∈ [n]. The vertex set W = {{x, y} : x ∈ {a, b, c, d} and
y ∈ {a, b, c, d}, where x 6= y} has cardinality

(

4
2

)

and induces a graph consisting
of three disjoint copies of the complete graph on two vertices. As a consequence,
V (G) \W forms a super-vertex cut of G of cardinality

(

n
2

)

− 6.

5. Open Problem

We envisage that the technique used to prove our results in the case k = 2 can
be extended to values of k ≥ 3, although the exact way forward is still elusive.
This is the main motivation why we mentioned Baranyai’s Theorem instead of
describing only the partitions for the particular case k = 2.

Conjecture 6. Let G = KG(n, k) for n ≥ 2k + 1. Then the super-connectivity

κ1 = κ1(G) is given by

κ1 =







2
(

(

n−k
k

)

− 1
)

if 2k + 1 ≤ n < 3k,

2
(

(

n−k
k

)

− 1
)

−
(

n−2k
k

)

if n ≥ 3k.
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[6] G. Boruzanlı Ekinci and A. Kırlangiç, Super connectivity of Kronecker product of

complete bipartite graphs and complete graphs , Discrete Math. 339 (2016) 1950–
1953.
doi:10.1016/j.disc.2015.10.036

[7] B.-L. Chen and K.-W. Lih, Hamiltonian uniform subset graphs , J. Combin. Theory,
Ser. B 42 (1987) 257–263.
doi:10.1016/0095-8956(87)90044-X

[8] F. Harary, Conditional connectivity , Networks 13 (1983) 347–357.
doi:10.1002/net.3230130303

[9] M.-C. Heydemann, Cayley graphs and interconnection networks , in: Graph Sym-
metry: Algebraic Methods and Applications, G. Hahn and G. Sabidussi (Ed(s)),
(Springer, Dordrecht, 1997) 167–224.
doi:10.1007/978-94-015-8937-6 5

[10] L.-H. Hsu and C.-K. Lin, Graph Theory and Interconnection Networks (CRC Press,
2008).

[11] M. Kneser, Aufgabe 360, Jahresber. Dtsch. Math.-Ver. 58 (1955) 27.
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