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e-mail: {mirko.hornak, stanislav.jendrol, roman.sotak}@upjs.sk

Abstract

Let G be a cellular embedding of a multigraph in a 2-manifold. Two
distinct edges e1, e2 ∈ E(G) are facially adjacent if they are consecutive
on a facial walk of a face f ∈ F (G). An incidence of the multigraph G

is a pair (v, e), where v ∈ V (G), e ∈ E(G) and v is incident with e in
G. Two distinct incidences (v1, e1) and (v2, e2) of G are facially adjacent if
either e1 = e2 or e1, e2 are facially adjacent and either v1 = v2 or v1 6= v2
and there is i ∈ {1, 2} such that ei is incident with both v1, v2. A facial
incidence coloring of G assigns a color to each incidence of G in such a way
that facially adjacent incidences get distinct colors. In this note we show
that any embedded multigraph has a facial incidence coloring with seven
colors. This bound is improved to six for several wide families of plane
graphs and to four for plane triangulations.
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82 M. Horňák, S. Jendrol’ and R. Soták

1. Definitions and Notation

An incidence of an undirected multigraph G is a pair (v, e), where v ∈ V (G),
e ∈ E(G) and v ∼ e (v is incident with e). Let I(G) be the set of incidences of
G. If (v, e) ∈ I(G), we say that (v, e) is an incidence around v and over e. Two
distinct incidences (v1, e1), (v2, e2) ∈ I(G) are adjacent if either e1 = e2 (which
implies that v1 is adjacent to v2) or e1 is adjacent to e2 and either v1 = v2 or
there is i ∈ {1, 2} such that v1 ∼ ei ∼ v2 and v1 6= v2. An incidence coloring of
G is a mapping ϕ : I(G) → C (C is a set of colors) in which adjacent incidences
receive distinct colors. The smallest number of colors in an incidence coloring of
G is called the incidence chromatic number of G, and is denoted by χi(G).

The notion of incidence coloring was introduced (originally for simple graphs)
by Brualdi and Quinn Massey in [5], where they proved that χi(G) ≤ 2∆(G) for
any graph G and found out the incidence chromatic number of trees, complete
bipartite graphs and complete graphs. In the pioneering paper it was conjectured
that χi(G) ≤ ∆(G)+2. The conjecture was disproved by Guiduli [8] who showed
(following the ideas of Algor and Alon [1]) that the Paley graph Gp corresponding
to a prime p ≡ 1 (mod 4) satisfies χi(Gp) ≥ ∆(Gp) + Ω(log∆(Gp)). The upper
bound of 2∆(G) was improved in [8] for large ∆(G) to ∆(G) + 20 log∆(G) + 84.

The trivial inequality χi(G) ≥ ∆(G) + 1 (provided that ∆(G) ≥ 1) follows
immediately from the definition. The lower bound is tight and is attained, for in-
stance, by trees and complete graphs. Some necessary conditions for the equality
χi(G) = ∆(G) + 1 were found by Shiu and Sun [17] as well as by Wu [20].

There are several papers devoted to the incidence chromatic number for spe-
cific families of graphs, see e.g. Shiu, Lam and Chen [16], Wu [20], Maydanskyi
[13], Li and Tu [12], where cubic graphs are studied, and Su [18], where regular
graphs in general are investigated.

A graph G is said to be k-degenerate if each subgraph H of G satisfies δ(H) ≤
k. Hosseini Dolama, Sopena and Zhu proved in [10] that χi(G) ≤ ∆(G)+2k−1 if
G is k-degenerate and χi(G) ≤ ∆(G)+7 if G is planar. Better upper bounds were
found for specific families of graphs, see Wu [20], Wang and Lih [19], Hosseini
Dolama and Sopena [11], Bonamy, Lévêque and Pinlou [4]. The best current
general upper bound for planar graphs G with ∆(G) ≥ 7, namely χi(G) ≤ ∆(G)+
5, is due to Yang [21].

In this paper we are interested in a relaxation of the incidence chromatic num-
ber for cellular embeddings of (connected) multigraphs into 2-manifolds (without
boundary); we shall refer to such embeddings as to embedded multigraphs. Two
distinct edges of an embedded multigraph G are said to be facially adjacent (see
e.g. Fabrici, Jendrol’ and Vrbjarová [6]) if they are consecutive in a facial walk of
a face of G. Similarly, two distinct incidences (v1, e1) and (v2, e2) of G are facially
adjacent if either e1 = e2 or e1 is facially adjacent to e2 and either v1 = v2 or
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there is i ∈ {1, 2} such that v1 ∼ ei ∼ v2 and v1 6= v2. A facial incidence coloring

τ : I(G) → C assigns a color from a set C to each incidence of G in such a way
that facially adjacent incidences get distinct colors. A facial incidence k-coloring

is a facial incidence coloring τ : I(G) → C with |C| = k. The smallest k, for
which there is a facial incidence k-coloring of G, is called the facial incidence

chromatic number of G, and is denoted by χfi(G).

We prove that χfi(G) ≤ 7 for any embedded multigraph G. The upper
bound 7 is improved for triangulations with small chromatic number, embedded
multigraphs that have an edge coloring with at most three colors, in which facially
adjacent edges receive distinct colors, embeddings of bipartite graphs, as well as
some families of plane graphs, especially Eulerian graphs and graphs of girth (the
length of a shortest cycle) at least five.

2. General Results

For an embedded multigraph G let Cfi(G) be the facial incidence conflict graph

of G, the graph with V (Cfi(G)) = I(G), in which two distinct incidences are
adjacent if and only if they are facially adjacent in G.

Proposition 1. If G is an embedded multigraph, then χfi(G) = χ(Cfi(G)).

The number of incidences of G is equal to the sum of degrees of vertices of G.

Proposition 2. If G is an embedded multigraph, then |V (Cfi(G))| = |I(G)| =
2|E(G)|.

Let G be an embedded multigraph and let v ∈ V (G). A v-sequence is a
sequence {ei}i∈Z of edges of G incident with v as they are encountered when
rotating around v, which means that ei is facially adjacent to ei+1 (as well as to
ei−1, since the facial adjacency relation is symmetric) for each i ∈ Z.

Proposition 3. Let G be an embedded multigraph and let d = deg(v) ≥ 2 for a

vertex v ∈ V (G). If d is odd, then χfi(G) ≥ 4, otherwise χfi(G) ≥ 3.

Proof. Consider a v-sequence {ei}i∈Z. The incidences (v, ei), i = 1, . . . , d, induce
in Cfi(G) a cycle of length d. Therefore, if d is odd and a surjection τ : I(G) → C

is a facial incidence coloring of G, then without loss of generality the incidences
(v, ei), i = 1, 2, 3, receive three distinct colors. Suppose that e2 ∼ v2, v2 6= v.
Then the incidence (v2, e2) is facially adjacent to each of the incidences (v, ei),
i = 1, 2, 3, hence τ(v2, e2) 6= τ(v, ei), i = 1, 2, 3, and |C| ≥ 4. If d is even, then
the incidences (v, e1), (v, e2) and (v2, e2) are pairwise facially adjacent in G, and
so χfi(G) ≥ 3.
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The degree of a face f of an embedded graph is the number deg(f) of edges
incident with f inG, where edges incident with f only are counted twice. The face
f is simple if it is incident with deg(f) distinct edges. An embedded multigraph
T is a triangulation if deg(f) = 3 for each f ∈ F (T ).

Proposition 4. Let G be an embedded multigraph and let d = deg(f) for a simple

face f ∈ F (G). If d 6≡ 0 (mod 3), then χfi(G) ≥ 4.

Proof. Let {ei : i = 1, . . . , d} be the set of edges incident with f in G. It is easy
to see that the 2d incidences of G over the edges ei, i = 1, . . . , d, induce in Cfi(G)
a supergraph H of a graph C2

2d (the square of a cycle of length 2d). If d 6≡ 0
(mod 3), then 2d 6≡ 0 (mod 3), and, by Proposition 1, χfi(G) = χ(Cfi(G)) ≥
χ(H) ≥ χ(C2

2d) = 4 (a “folklore result”).

It is important to realize that a multigraph G can have nonisomorphic em-
beddings G1, G2 with χfi(G1) 6= χfi(G2). Indeed, for example, the 3-connected
planar graph O of the regular octahedron has an (essentially unique) plane em-
beding O0 with χfi(O0) = 3 (as one can easily see) as well as an embedding O1

into S1 (a torus) with six simple faces of degree 4, so that, by Proposition 4,
χfi(O1) ≥ 4.

Theorem 5. If G is an embedded multigraph, then χfi(G) ≤ 7.

Proof. An edge e ∈ E(G) with u1 ∼ e ∼ u2, u1 6= u2, is facially adjacent to
at most m(u1) +m(u2) edges of G, where m(ui) = min(2, deg(ui)− 1), i = 1, 2,
and, for both i ∈ {1, 2}, the incidence (ui, e) is facially adjacent to at most
1 + 2m(ui) +m(u3−i) incidences of G. Namely, if the edge e is facially adjacent
in G to edges eji , i, j = 1, 2, where ui ∼ e

j
i ∼ vj , vj 6= ui, then, for both i ∈ {1, 2},

the incidence (ui, e) is facially adjacent to the incidences (u3−i, e), (ui, e
j
i ), (v

j , e
j
i )

and (u3−i, e
j
3−i), j = 1, 2. Thus, ∆(Cfi(G)) ≤ 7. Moreover, Cfi(G) 6= K8. Indeed,

by Proposition 2, the assumption I(G) = K8 means that |E(G)| = 4. In such a
case, if δ(G) ≤ 2 and deg(u1) = δ(G), u1 ∼ e, then the incidence (u1, e) is facially
adjacent in G to at most 1 + 2deg(u1) ≤ 5 incidences, a contradiction. On the
other hand, if δ(G) ≥ 3, then 2 ≤ |V (G)| ≤

⌊

8

3

⌋

= 2, V (G) = {u1, u2}, and
E(G) consists of four edges incident with both u1, u2. Consider a u1-sequence
{ei}i∈Z. Since e1 is not facially adjacent to e3, the incidence (u1, e1) is not facially
adjacent to the incidence (u1, e3), a contradiction again. By Brooks’ theorem
the graph Cfi(G) is 7-colorable and the statement of our theorem follows from
Proposition 1.

Theorem 6. If an embedded multigraph T is a triangulation, then χfi(T ) ≤ χ(T ).

Proof. Consider a proper vertex coloring ϕ : V (T ) → C that uses χ(T ) colors.
Let τ : I(G) → C be the coloring of incidences of T defined as follows: If e ∈ E(T )
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and u ∼ e ∼ v, u 6= v, then τ(u, e) = ϕ(v) and τ(v, e) = ϕ(u). It suffices to show
that τ is a facial incidence coloring. For that purpose take two facially adjacent
incidences (v1, e1), (v2, e2) ∈ I(T ). If e1 = e2, then v1 ∼ e1 = e2 ∼ v2, v1 6= v2,
and τ(v1, e1) = ϕ(v2) 6= ϕ(v1) = τ(v2, e2). Otherwise, e1 is facially adjacent to
e2 in T (which means that if ej ∼ wj , and wj 6= vj , j = 1, 2, then |S| = 3 for the
set S = {v1, w1} ∪ {v2, w2} and the vertices of S are pairwise adjacent in T ) and
either (i) v1 = v2 or (ii) there is i ∈ {1, 2} such that v1 ∼ ei ∼ v2, v1 6= v2. If (i)
is true, then w1 6= w2 and τ(v1, e1) = ϕ(w1) 6= ϕ(w2) = τ(v2, e2). On the other
hand, if (ii) applies, ei is incident with v1, v2 and wi, hence there is j ∈ {1, 2} such
that wi = vj ; then the vertex w3−i is not incident with ei (otherwise |S| = 2), as
a consequence w3−i 6= wi (wi is incident with ei), w3−i is adjacent to wi in T and
τ(vi, ei) = ϕ(w3−i) 6= ϕ(wi) = τ(v3−i, e3−i).

Corollary 7. If T is a plane triangulation, then χfi(T ) ≤ 4.

Proof. See the Four-Color Theorem (Appel and Haken [2] or else Robertson et

al. [15]).

By Proposition 3 the bound in Corollary 7 is tight and the facial incidence
chromatic number of each plane triangulation is either three or four.

Theorem 8. If an embedded multigraph G is bipartite, then χfi(G) ≤ 6.

Proof. Let {X,X ′} be the bipartition of G. Consider a set of colors {a1, a2, a3,
b1, b2, b3} and a coloring of incidences of G defined as follows: Suppose that x ∈ X

and {ei}i∈Z is an x-sequence. Express p = deg(x) (in a unique way) as 2k + l

with integers k ≥ 0 and l ∈ {0, 1}. Color the incidences (x, ei), i = 1, . . . , 2k,
alternately with the colors a1, a2, and then, if l = 1, the incidence (x, e2k+1) =
(x, ep) with the color a3. If x′ ∈ X ′, p′ = deg(x′) and {e′i}i∈Z is an x′-sequence,
then the incidences (x′, e′i), i = 1, . . . , p′, are colored similarly using the colors
b1, b2, b3 and the expression p′ = 2k′ + l′, k′ ≥ 0, l′ ∈ {0, 1}. Clearly, we have
obtained a facial incidence 6-coloring of G.

An edge coloring of an embedded multigraph G is facially proper if any two
facially adjacent edges of G receive distinct colors. If |V (G)| = 2 and |E(G)| = 5,
it is possible that all edges of G are pairwise facially adjacent, and then a facially
proper edge coloring of G necessarily uses five colors. Otherwise, the fact that
each edge of G is facially adjacent to at most four edges of G allows us to prove
(proceeding similarly as in the proof of Theorem 5 with the facial adjacency of
edges instead of the facial adjacency of incidences) that there is a facially proper
edge coloring of G with four colors.

Theorem 9. If there is a facially proper edge coloring of an embedded multigraph

G with k colors, then χfi(G) ≤ 2k.
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Proof. Let ϕ : E(G) → {1, . . . , k} be a facially proper coloring of G. The
coloring τ of the incidences of G defined so that if uv ∈ E(G), then τ(u, uv) =
(ϕ(uv), 1) and τ(v, uv) = (ϕ(uv), 2), uses 2k colors and assigns distinct colors to
facially adjacent incidences of G.

Let G be a multigraph whose vertices are colored with colors from a set S.
Consider a color s ∈ S. By an s-vertex we mean any vertex that is colored
with the color s and by an s-component we understand any component of the
submultigraph of G induced by its s-vertices.

Poh [14] and Goddard [7] independently proved that every planar (simple)
graph G has a vertex coloring with at most three colors such that each monochro-
matic subgraph of G is a linear forest (i.e., all its components are paths). We
say that an embedded multigraph G has a strong Poh-Goddard coloring (an SPG
coloring for short) provided that it has a vertex coloring with at most three colors
such that each its monochromatic component is a simple graph isomorphic to a
path and every trivial (i.e., a single vertex) component is formed by a vertex of
an even degree in G.

Theorem 10. If G is an embedding of a multigraph that has an SPG coloring,

then χfi(G) ≤ 6.

Proof. Let a, b and c (maybe not all of them are used) be three distinct colors of
an SPG coloring of G. We are going to color the incidences of G with colors from
the set C = {a1, a2, b1, b2, c1, c2} = {t1, t2 : t ∈ {a, b, c}} of six distinct colors.

Consider an s-vertex v, s ∈ {a, b, c}, a v-sequence {ei}i∈Z, the sequence
{vi}i∈Z, where ei ∼ vi, vi 6= v, for i ∈ Z, and a maximal nonempty injective
subsequence (ek, . . . , el) of the sequence {ei}i∈Z such that each vertex in the
sequence (vk, . . . , vl) is colored with a color belonging to the set {a, b, c} − {s};
let us call it an s̄-sequence corresponding to v. Color the incidences (v, ei), i =
k, . . . , l, alternately with the colors s1 and s2. If v forms a trivial s-component
of the SPG coloring, then l+ 1− k = deg(v) ≡ 0 (mod 2). Otherwise, v belongs
to a nontrivial s-component H, and the number of neighbors of v colored s is
either one or two. Moreover, there are at most two s̄-sequences corresponding
to the sequence {ei}i∈Z that have no common terms; note that no s̄-sequence
corresponding to v exists if deg(v) = 2 and v is an internal vertex of H. Let
s̄(v) denote the maximum number of s̄-sequences corresponding to v with no
common terms. If s̄(v) = 2, there is an s̄-sequence (e′k, . . . , e

′

l) corresponding to
v such that ei 6= e′j for each i ∈ {k, . . . , l} and j ∈ {k′, . . . , l′}, and we color
the incidences (v, e′j), j = k′, . . . , l′, in a similar way as the incidences (v, ei),
i = k, . . . , l. Clearly, after doing this for all vertices v ∈ V (G) we obtain a partial
facial incidence coloring ϕ of G (no conflicts are present among incidences colored
so far) using at most 6 colors. We call this first phase of coloring the stage A.
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What remains is to color in the stage B incidences over edges belonging to
components created by the SPG coloring under consideration. We do that step by
step using an arbitrary ordering of those components. Let xi, i = 1, . . . , p, p ≥ 2,
be consecutive vertices of the first component P , and let P be an s-component,
s ∈ {a, b, c}. Since P is a simple graph, its edges are xixi+1, i = 1, . . . , p−1. The
incidences over these edges can be ordered to form the natural sequence

ξ = ((x1, x1x2), (x2, x1x2), . . . , (xp−1, xp−1xp), (xp, xp−1xp)).

We shall color the incidences of ξ using mostly the colors of the set T =
{t1, t2 : t ∈ {a, b, c} − {s}}. Consider a subsequence Xq,r = (xq, . . . , xr) of
the sequence X1,p = (x1, . . . , xp). The sequence Xq,r is a 1-sequence if it is a
maximal subsequence of X1,p such that s̄(xi) = 1 for each i ∈ {q + 1, . . . , r − 1}.
The sequence Xq,r is a (0, 2)-sequence if it is a maximal subsequence of X1,p

such that s̄(xi) ∈ {0, 2} for each i ∈ {q, . . . , r} − {1, p}. Clearly, there is a
(uniquely determined) subsequence (p1, . . . , pt) of the sequence (1, . . . , p) such
that p1 = 1, pt = p and Xpi,pi+1

is either a 1-sequence or a (0, 2)-sequence for
each i ∈ {1, . . . , t − 1}; moreover, 1-sequences and (0, 2)-sequences alternate in
the sequence

(

Xp1,p2 , Xp2,p3 . . . , Xpt−1,pt

)

.
For each (q, r) ∈ {(p1, p2), (p2, p3), . . . , (pt−1, pt)} we color the incidences of

the subsequence

ξq,r = ((xq, xqxq+1), (xq+1, xqxq+1), . . . , (xr−1, xr−1xr), (xr, xr−1xr))

of the sequence ξ separately step by step in the order given by the sequence
((p1, p2), (p2, p3), . . . , (pt−1, pt)). When jumping from the incidence (pj−1, pj)
to (q, r) = (pj , pj+1), j ∈ {2, t − 1}, we only have to take care if s̄(xq) =
0, since then colors of (xq−1, xq−1xq) and (xq, xq−1xq) intervene in coloring of
(xq, xqxq+1) and (xq+1, xqxq+1). Let ϕj , j ∈ {1, . . . , t − 1}, be a continuation of
ϕ (a partial facial incidence coloring of G), in which the last colored incidence is
(xpj+1

, xpj+1−1xpj+1
). We begin with ϕ0 = ϕ and we define ϕj with j ≥ 1 as a

continuation of the coloring ϕj−1.
Suppose first that Xq,r is a (0, 2)-sequence. We color the involved incidences

with colors from T in the following order:

(xq+1, xqxq+1), (xq, xqxq+1), . . . , (xr, xr−1xr), (xr−1, xr−1xr).

It is sufficient to show that if i ∈ {q, . . . , r− 1}, then, for both (xi+1, xixi+1) and
(xi, xixi+1), in the moment when the incidence under consideration is colored,
at most three colors from T are forbidden for it. In the case of the incidence
(xi+1, xixi+1) those forbidden colors are the color of (xi, xi−1xi) (if i ≥ 2 and
s̄(xi) = 0) and at most two colors assigned by ϕ to incidences around neighbors
of xi+1 outside V (P ). Further, when coloring (xi, xixi+1), we cannot use the
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color of (xi+1, xixi+1) and either the colors of (xi−1, xi−1xi) and (xi, xi−1xi) (if
i ≥ 2 and s̄(xi) = 0) or at most two colors assigned by ϕ to incidences around
neighbors of xi outside V (P ) (if i = 1 or s̄(xi) = 2).

Now let Xq,r be a 1-sequence (note that then r ≥ q + 2). We are going to
color the involved incidences according to the order (from the left to the right)
given by the sequence ξq,r. For an incidence (v, e) of this sequence let C(v, e)
be the set of candidate colors containing those colors of the set C that are not
assigned by ϕj−1 to incidences adjacent to (v, e) in the graph Cfi(G).

If q = 1 or s̄(xq) = 2, then |C(xq, xqxq+1) ∩ T | ≥ 2, since at most two colors
from T , used for incidences around neighbors of xq, are forbidden for (xq, xqxq+1).
If q ≥ 2 and s̄(xq) = 0, then we have C(xq, xqxq+1) = C − {ϕj−1(xq−1, xq−1xq),
ϕj−1(xq, xq−1xq)}, and |C(xq, xqxq+1) ∩ T | ≥ 2 is true, too.

For each i ∈ {q+ 1, . . . , r− 1} we have s̄(xi) = 1, and, consequently, there is
exactly one incidence

(

vi−1
i , ei−1

i

)

around a neighbor of xi out of V (P ) that is adja-

cent to (xi, xi−1xi) as well as exactly one incidence
(

vi+1
i , ei+1

i

)

around a neighbor
of xi out of V (P ) that is adjacent to (xi, xixi+1); evidently, if deg(xi) = 3, then
(

vi+1
i , ei+1

i

)

=
(

vi−1
i , ei−1

i

)

. Thus, |C(xq+1, xqxq+1)| ≥ 3 and |C(xq+1, xqxq+1) ∩
T | ≥ 2.

Let i ∈ {q + 1, . . . , r − 2}. Without loss of generality we may suppose that
ϕ
(

xi+1, e
i
i+1

)

= ϕ
(

xi, e
i+1
i

)

. Indeed, during the phase A we can color incidences
around the vertices xq+1, . . . , xr−1 that are not over edges of P with colors from
{s1, s2} starting with incidences around xq+1, and, if incidences around xk, k ∈
{q+1, . . . , r−2}, are already colored, then we color incidences around xk+1 in such
a way that first the incidence

(

xk+1, e
k
k+1

)

is colored the same as the incidence
(

xk, e
k+1

k

)

, and then remaining incidences around xk+1 are colored alternately

with the colors s1 and s2; the last colored incidence is
(

xk+1, e
k+2

k+1

)

. Therefore,

|C(xi, xixi+1)| = |C(xi+1, xixi+1)| = 4, and, if ϕ
(

xi, e
i+1
i

)

= sl, l ∈ {1, 2}, then
C(xi, xixi+1) ∩ {s1, s2} = C(xi+1, xixi+1) ∩ {s1, s2} = {s3−l}.

We have |C(xr−1, xr−1xr) ∩ T | ≥ 3. Finally, for the incidence (xr, xr−1xr)
it holds either |C(xr, xr−1xr) ∩ T | ≥ 2 (in the case s̄(xr) = 2 or r = p) or
|C(xr, xr−1xr)| = 5 (in the case s̄(xr) = 0 and r ≤ p − 1), which implies the
inequality |C(xr, xr−1xr) ∩ T | ≥ 2.

To find a required continuation ϕj of ϕj−1 it suffices to choose for each
incidence (v, e) a color from C(v, e) in such a way that these new colors are not
in conflict with each other.

If r = q + 2, recall that both C(xq, xqxq+1) and C(xq+2, xq+1xq+2) have at
least two colors and both C(xq+1, xqxq+1) and C(xq+1, xq+1xq+2) have at least
three colors. Provided that there is α ∈ C(xq, xqxq+1) ∩ C(xq+2, xq+1xq+2), we
set ϕj(xq, xqxq+1) = ϕj(xq+2, xq+1xq+2) = α, and then find ϕj(xq+1, xqxq+1) and
ϕj(xq+1, xq+1xq+2). On the other hand, if the sets C(xq, xqxq+1) and C(xq+2,
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xq+1xq+2) are disjoint, then, because of Hall’s theorem (see [9]), the family of
sets {C(xq, xqxq+1), C(xq+1, xqxq+1), C(xq+1, xq+1xq+2), C(xq+2, xq+1xq+2)} has
a system of distinct representatives, which yields a desired coloring ϕj .

If r ≥ q+3, we are able to find a continuation ϕ′

j of ϕj−1, in which only the in-
cidences (xr−1, xr−1xr) and (xr, xr−1xr) of the sequence ξq,r are not colored, and
which uses a color from the set {s1, s2} just for the incidence (xr−1, xr−2xr−1).
We determine colors of involved incidences in the order given by (the subse-
quence of) the sequence ξq,r. The first two incidences of ξq,r can be colored
in an appropriate way, since their corresponding candidate sets have at least
two colors from T . If i ∈ {q + 1, . . . , r − 2}, we use for ϕ′

j(xi, xixi+1) a color
from the (nonempty) set (C(xi, xixi+1) ∩ T )− {ϕ′

j(xi−1, xi−1xi), ϕ
′

j(xi, xi−1xi)}.
Moreover, if i ∈ {q + 1, . . . , r − 3}, we use for ϕ′

j(xi+1, xixi+1) a color from the
(nonempty) set (C(xi+1, xixi+1) ∩ T ) − {ϕ′

j(xi, xi−1xi), ϕ
′

j(xi, xixi+1)}. Then a
color ϕ′

j(xr−1, xr−2xr−1) can be chosen (in a unique way) so that it is one of the
colors s1, s2.

Finally, we define ϕj as a continuation of ϕ′

j . Since |C(xr−1, xr−1xr)| ≥
3, there is a color ϕj(xr−1, xr−1xr) ∈ C(xr−1, xr−1xr) that is distinct from
both ϕ′

j(xr−2, xr−2xr−1) and ϕ′

j(xr−1, xr−2xr−1). Further, from the fact that
ϕ′

j(xr−1, xr−2xr−1) ∈ {s1, s2} and from the inequality |C(xr, xr−1xr) ∩ T | ≥ 2 it
follows that we are done by taking ϕj(xr, xr−1xr) ∈ C(xr, xr−1xr) so that this
color is distinct from both ϕ′

j(xr−1, xr−2xr−1) (a color outside T ) and ϕj(xr−1,

xr−1xr).
We proceed similarly as above with all remaining components created by our

SPG coloring (so that, for example, when working with the second component,
ϕp plays the role of ϕ). After finishing the stage B we obtain a facial incidence
6-coloring of G.

Theorem 11. If G is a plane graph of girth at least 6, then χfi(G) ≤ 6.

Proof. By a theorem of Axenovich, Ueckerdt and Weiner [3] the graph G has
a vertex coloring using the colors a and b such that for both s ∈ {a, b} each
s-component is a path (moreover, of length at most 14). Color the incidences of
G as in the proof of Theorem 10 and set a3 = c1, b3 = c2. If there is a trivial
s-component, s ∈ {a, b}, that is formed by a vertex v of an odd degree 2k+1, let
{ei}i∈Z be a v-sequence. Color the incidences (v, ei), i = 1, . . . , 2k, alternately
with the colors s1 and s2, and, finally, color the incidence (v, e2k+1) with the color
s3. Evidently, we have obtained a facial incidence 6-coloring of G.

3. Wheels

Let n ≥ 3 be an integer and let K1, Cn be vertex disjoint graphs with V (K1) =
{u}, V (Cn) = {vi : i = 1, . . . , vn} and E(Cn) = {vivi+1 : i = 1, . . . , n} (with
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indices counted modulo n). The wheel Wn is the join Cn + K1, i.e., the graph
with V (Wn) = V (K1) ∪ V (Cn) and E(Wn) = E(Cn) ∪ {uvi : i = 1, . . . , n}. The
graph Wn is 3-connected, hence it has an essentially unique plane embedding.
In what follows we shall consider a plane embedding W̃n of Wn in which the
unbounded face is incident with the edges vivi+1, i = 1, . . . , n.

Theorem 12. Let n ≥ 3 be an integer. If n = 5, then χfi

(

W̃n

)

= 5, otherwise

χfi

(

W̃n

)

= 4.

Proof. Since deg(v1) = 3, by Proposition 3 we know that χfi

(

W̃n

)

≥ 4. Let

Ij,k = {(u, uvi), (vi, uvi), (vi, vivi+1), (vi+1, vivi+1) : i = j, . . . , j + k − 1}

and let ϕj,k : Ij,k → {1, 2, 3, 4} be the mapping determined by Figure 1 (k = 3)
or Figure 2 (k = 4), where small full circles are auxiliary “vertices” that “cut”
an edge joining two ordinary (empty circle) vertices x and y into two “halfedges”
representing the incidences (x, xy) and (y, xy).

vj vj+1 vj+3vj+2

u

1 2

2 2

3

3 3

44 4

1 1

Figure 1. Coloring of twelve incidences of the wheel W̃n.

vj vj+1 vj+3 vj+4vj+2

u

1

1

1

1

2

2

2

23 3

3

3

4

4

4

4

Figure 2. Coloring of sixteen incidences of the wheel W̃n.
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If n 6= 5, then n = 3p + 4q with integers p ≥ 0 and q ∈ {0, 1, 2}. Let
ϕ : I(W̃n) → {1, 2, 3, 4} be the mapping which is created from the mappings
ϕ3l+1,3, l = 0, . . . , p−1 and ϕ3p+4l+1,4, l = 0, . . . , q−1 (the restriction of ϕ to Ij,k
is ϕj,k for all pairs (j, k)). It is straightforward to see that ϕ is a facial incidence 4-
coloring of W̃n. For that purpose it is useful to realize that, given a pair (j1, k1),
there are at most three pairs (j2, k2) such that there is an incidence in Ij1,k1
facially adjacent to an incidence in Ij2,k2 (including the case (j1, k1) = (j2, k2)).

Suppose now that there is a facial incidence 4-coloring ψ of W̃5. Then
there exists i ∈ {1, 2, 3, 4, 5} such that ψ(u, uvi−1) = c = ψ(u, uvi+1) (with
indices counted modulo 5). For both j ∈ {i − 1, i + 1} each of the incidences
(u, uvj), (vj−1, vj−1vj), (vj+1, vjvj+1) is facially adjacent to all the incidences
in the set {(vj , vj−1vj), (vj , uvj), (vj , vjvj+1)} of pairwise facially adjacent inci-
dences. Therefore, all the six mentioned incidences must be colored with the
color c. This, however, is a contradiction, since the incidences (vi, vi−1vi) and
(vi, vivi+1) are facially adjacent in W̃5.

1

1

1

2

2

3

3

3

4

4

4

4 5

55

2

2

3

1

5

Figure 3. A facial incidence 5-coloring of the wheel W̃5.

Thus, to finish the proof it is sufficient to check that Figure 3 determines a
facial incidence 5-coloring of W̃5.

4. Concluding Remarks

A plane embedding of the planar multigraph with two vertices and three (paral-
lel) edges has six incidences that are pairwise facially adjacent so that its facial
incidence chromatic number is six. For the moment we do not know any other
embedded multigraph with facial incidence chromatic number six.

Problem 1. Does there exist an embedded simple graph G with χfi(G) = 6?

Problem 2. Does there exist an embedded multigraph G with χfi(G) = 7?
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We strongly believe that the following could be proved.

Conjecture 1. If G is a plane embedding of a planar multigraph, then χfi(G)
≤ 6.
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