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Abstract

A graph is said to be equitably k-colorable if the vertex set V(G) can be
partitioned into k independent subsets V1, V5, ..., Vi such that ||V;| —|V;]| <
1 (1 <i,57 < k). A graph G is equitably k-choosable if, for any given
k-uniform list assignment L, G is L-colorable and each color appears on

at most [@—‘ vertices. In this paper, we prove that if G is a graph

such that mad(G) < 3, then G is equitably k-colorable and equitably k-
choosable where k > max{A(G),4}. Moreover, if G is a graph such that
mad(G) < 1—52, then G is equitably k-colorable and equitably k-choosable
where k > max{A(G), 3}.
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1. INTRODUCTION

The terminology and notation used but undefined in this paper can be found
in [1]. Let G = (V(G), E(G)) be a graph. Let dg(x), or simply d(z), denote the
number of edges incident with the vertex (face) x in G. If d(z) = k, d(z) > k and
d(z) < k, then the vertex x is called a k-vertex, k™-vertex and k™ -vertex, respec-
tively. We use V(G), E(G), A(G) and §(G) to denote the vertex set, edge set,

maximum degree, and minimum degree of G, respectively. The average degree

d
of a graph G is W, and denote it by ad(G). The mazimum average

degree mad(G) of G is the maximum of the average degree of its subgraphs. The
girth of a planar graph is the length of a smallest cycle in the graph, and denote
the girth of a graph G by ¢g(G). We use [x] to denote a minimum integer which
is no less than .

A proper k-coloring of a graph G is a mapping 7 from the vertex set V(G)
to the set of colors {1,2,...,k} such that w(z) # 7(y) for every edge zy € E(G).
A graph G is equitable k-colorable if G has a proper k-coloring such that the size
of the color classes differ by at most 1. The equitable chromatic number of G,
denoted by x.(G), is the smallest integer k such that G is equitably k-colorable.
The equitable chromatic threshold of G, denoted by x%(G), is the smallest integer
k such that G is equitably [-colorable ( for any [ > k).

In 1970, Hajndl and Szemerédi proved that x}(G) < A(G) +1 for any graph
G [9]. This bound is sharp as shown in the example of Ko, 41 2n41. In 1973, Meyer
introduced the notion of equitable coloring and made the following conjecture.

Conjecture 1.1 (Meyer [18]). If G is a connected graph which is neither a
complete graph nor odd cycle, then x.(G) < A(G).

In 1994, Chen, Lih and Wu put forth the following conjecture.

Conjecture 1.2 (Chen, Lih and Wu [2]). For any connected graph G, if it is
different from a complete graph, a complete bipartite graph and an odd cycle, then
Xe(G) < A(G).

Chen, Lih and Wu [2, 3] proved Conjecture 1.2 for graphs with A(G) < 3 or

A(G) > @ In 2012, Chen et al. [4] improved the former result and confirmed
the Conjecture 1.2 for graphs with A(G) > @ + 1. Yap and Zhang [26, 27]

showed that Conjecture 1.2 holds for planar graphs with A(G) > 13. In 2012,
Nakprasit [19] confirmed the Conjecture 1.2 for planar graphs with A(G) > 9.
Lih and Wu [14] verified x}(G) < A(G) for bipartite graphs other than complete
bipartite graphs. Wang and Zhang [23] proved Conjecture 1.2 for line graphs, and
Kostochka and Nakprasit [12,13] proved it for graphs with low average degree,
and d-degenerate graphs with A(G) > 14d + 1. Yan and Wang [25] showed that
Conjecture 1.2 holds for Kronecker products of complete multipartite graphs and
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complete graphs. Wu and Wang [24], Luo et al. [17] confirmed Conjecture 1.2 for
some planar graphs with large girth, respectively. Li et al. [16], Zhu et al. [29],
Dong et al. [5-8], Nakprasit [20] confirmed Conjecture 1.2 for some planar graphs
with some forbidden cycles. Zhang and Wu [28], Zhu and Bu [30] verified the
Conjecture 1.2 for some series-parallel graphs and outerplanar graphs, respec-
tively.

For a graph G and a list assignment L assigning to each vertex v € V(G)
a set L(v) of acceptable colors, an L-coloring of G is a proper vertex coloring
such that for every v € V(G) the color on v belongs to L(v). A list assignment
L for G is k-uniform if |L(v)| = k for all v € V(G). A graph G is list equitably
k-colorable (also called equitably k-choosable) if, for any k-uniform list assignment

L, G is L-colorable and each color appears on at most {@—‘ vertices.

In 2003, Kostochka, Pelsmajer and West investigated the list equitable col-
oring of graphs. They proposed the following conjectures.

Conjecture 1.3 (Kostochka, Pelsmajer and West [11]). Fvery graph G is equi-
tably k-choosable whenever k > A(G).

Conjecture 1.4 (Kostochka, Pelsmajer and West [11]). If G is a connected graph
with mazimum degree at least 3, then G is equitably A(G)-choosable, unless G is
a complete graph or is Ky ;. for some odd k.

It has been proved that Conjecture 1.3 holds for graphs with A(G) < 3
in [21,22] and then the result was strengthened by Kierstead and Kostochka.
They confirmed the Conjecture 1.3 for graphs with A(G) < 7 in [10]. Kostochka,
Pelsmajer and West proved that a graph G is equitably k-choosable if either G #

K1, K (with k odd in Kj ) and k > max{A, @}, or GG is a connected

interval graph and k£ > A(G) or G is a 2-degenerate graph and k > max{A(G), 5}
in [11]. Pelsmajer proved that every graph is equitably k-choosable for any k >
% + 2 in [21]. In 2009, Conjecture 1.4 were proved for planar graphs
G without 4- and 6-cycles and with A(G) > 6 by Li et al. in [16]. Zhu et al
confirmed Conjecture 1.4 for planar graph G without 3-cycles and with A(G) > 8,
planar graph G without 4- and 5-cycles and with A(G) > 7 in [29], Cs-free planar
graph G without adjacent triangles and with A(G) > 8 in [30], outerplanar graphs
in [31]. Zhang and Wu proved Conjecture 1.4 for series-parallel graphs in [28].
More results can be seen in [5-8] and [15].

As for the sparse graph G with A(G) = 2, it is clear that G is equitably
k-colorable and equitably k-choosable where k£ > max{A(G), 3}, if G is an odd
cycle. Otherwise, G is equitably k-colorable and equitably k-choosable where
k > max{A(G),2}. In this paper, we consider the sparse graph G with A(G) > 3
and show that if G is a graph such that mad(G) < 3, then G is equitably k-
colorable and equitably k-choosable where k > max{A(G),4}. Moreover, if G is
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a graph such that mad(G) < 15—2, then G is equitably k-colorable and equitably
k-choosable where k > max{A(G), 3}.

2. SOME IMPORTANT LEMMAS

Lemma 2.1 (Kostochka, Pelsmajer and West [11]). Let G be a graph with a
k-uniform list assignment L. Let S = {vy,va,...,v;}, where {vi,ve,..., vk} are
distinct vertices in G. If G—S has an equitable L-coloring and |Ng(v;)—S| < k—i
for 1 <i <k, then G has an equitable L-coloring.

Lemma 2.2 (Zhu and Bu [29]). Let S = {vi,va,...,v;} be a set of k different
vertices in G such that G — S has an equitable k-coloring. If |[Ng(v;)) =S| < k—1
for 1 <i <k, then G has an equitable k-coloring.

Lemma 2.3 (Hajnal and Szemerédi [9]). Every graph has an equitable k-coloring
whenever k > A(G) + 1.

Lemma 2.4 (Pelsmajer, Wang and Lih [21,22]). Every graph G with mazimum
degree A(G) < 3 is equitably k-choosable whenever k > A(G) + 1.

Lemma 2.5. Let G be a graph with mad(G) < 3. Then G is 2-degenerate.

Proof. By contradiction, there is subgraph G’ of G such that §(G’) > 3. It is
clear that mad(G’) > 3, a contradiction. |

Lemma 2.6 (Dong, Zou and Li [8]). If G is a graph such that mad(G) < 3, then
G is equitably k-colorable and equitably k-choosable where k > max{A(G),5}.

3.  GRAPHS WITH mad(G) < 3

Lemma 3.1. Let G be a connected graph with order at least 4 and §(G) > 1. If
A(G) <4 and mad(G) < 3, then G has at least one of the structures in Figure 1.

Proof. Let G be a counterexample. Then G does not contain any configuration
H, ~ Hg presented in Figure 1.

For each v € V(G), if d(v) = 2, then v is adjacent to at least one 4-vertex
for the reason that G contains no structure Hy. If d(v) = 4, then v is adjacent
to at most one 2-vertex for the reason that G contains no structure H,. For
convenience, let r denote the number of 4-vertices which are not adjacent to any
2-vertex. Obviously, G has the following property.
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Xk
Xt x X, X, Y, e——o0%Ni
k-2
Te-a — o
Xy X, %

H :1<d(x, ), d(x,_,) <3 H,:1<d(x, )<2 H,
X X, , } i %
l :" X X,
X X, X, 5
H,:2<d(x, )<3 H,:2<d(x,_,)<3 H,
Figure 1

Each configuration depicted in Figure 1 is such that: (1) hollow vertices may
be not distinct while solid vertices are distinct, (2) the degree of the solid vertices
is fixed, and (3) except for specially pointed, the degree of a hollow vertices may
be any integer from [d, A(G)], where d is the number of edges incident with the
hollow vertex in the configuration.

Observation 3.2. n4(G) > n2(G) + r.

By Lemma 2.5, we have 6(G) < 2.

Suppose §(G) = 2. By Observation 3.2, we have ad(G) = 222lG)+3na(C)+ins(G)

ng(G)+n3(G)+n4(G)
2n2(G)+3n3(G)+4(n2(G)+r) _ 6n2(G)+3n3(G)+4r _ 3[2n2(G)+n3(G)+r]+r > 3. a con-
= n2(G)+n3(G)+n2(G)+r  —  2n2(G)+n3(G)+r —  2n2(G)+n3(G)+r =

tradiction to mad(G) < 3.

Suppose §(G) = 1. Since G contains no structure Hs, there is only one 1-
vertex v in G. Furthermore, the vertex v must be adjacent to a 4-vertex u for
the reason that G contains no structure Hy. Since G contains no structure Hs,
the other adjacent vertices of u must be 4-vertices. For convenience, we use u;
(1 <i < 3) to denote the 4-vertices which are adjacent to u. Since G contains no

structure Hg, u; (1 < i < 3) is not adjacent to any 2-vertex. From the above dis-

ni (G)+2n2(G)+3n3(G)+4n4(G)
n1(G)+n2(G)+n3(G)+na(G)

14+2n2(G)+3n3(G)+4(n2(G)+r) _ 146n2(G)+3n3(G)+4r _ 14+6n2(G)+3n3(G)+3r+4 _
1+n2(G)+n3(G)+n2(G)+r = 1+2n2(G)+n3(G)+r —  14+2n2(G)+n3(G)+r

3[1+2ns(G G 2 I
! 1++;L§2((G%;fss(((;;rﬁ+ > 3, a contradiction to mad(G) < 3.

cussion, we have r > 4. Obviously, we have ad(G) =

In the following, let us give the proof of the main theorems.

Theorem 3.3. If G is a graph such that mad(G) < 3, then G is equitably k-
colorable where k > max{A(G),4}.
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Proof. By Lemma 2.6, we only need to focus on the situation where A(G) < 4.
Let G be a counterexample with the smallest number of vertices. Clearly, 6(G) >
1. If each component of G has at most four vertices, then A(G) < 3. So G is
equitably k-colorable by Lemma 2.3. Otherwise, there is at least one component
with at least four vertices. By Lemma 3.1, G has one of the structures H; ~
Hg, taking it and the vertices are labelled as they are in Figure 1. If there are
vertices labelled repeatedly, then we take the larger (x; is larger than x;_1). In
the following, we show how to find S in Lemma 2.2. If G has Hy, Hs or Hs, then
let S" = {zk, vk_1, 2,21} If G has Hs or Hy, then let S" = {zy, 51,21}
If G has Hg, then let S’ = {xp,xx_1,22,21}. By Lemma 2.5, G is 2-degenerate,
thus we can find the remaining unspecified positions in S from highest to lowest
indices by choosing a vertex with minimum degree in the graph obtained from G
by deleting the vertices already being chosen for S at each step. By the minimality
of |V(G)| and since k > A(G) > A(G — S), G — S is equitably k-colorable. So G
is also equitably k-colorable by Lemma 2.2. [

Corollary 3.4. Let G be a graph such that mad(G) < 3. If A(G) > 4, then
Xe(G) < A(G).

Corollary 3.5. Let G be a graph such that mad(G) < 3. If A(G) > 4, then
Xe(G) < A(G).

Theorem 3.6. If G is a graph such that mad(G) < 3 and k > max{4, A(G)},
then G is equitably k-choosable.

Proof. Let G be a counterexample with the smallest number of vertices. If
each component of G has at most 4 vertices, then A(G) < 3. So G is equitably
k-choosable by Lemma 2.4. Otherwise, the statement is similar to that in the
corresponding cases of Theorem 3.3. By Lemma 2.1 and Lemma 2.4, we have
this theorem. ]

Corollary 3.7. Let G be a graph such that mad(G) < 3. If A(G) > 4, then G
is equitably A(G)-choosable.

For a planar graph with girth g, by mad(G) < 92%, we have the following

corollary.

Corollary 3.8. Let G be a planar graph with girth g > 6. If A(G) > 4, then G
is equitably A(G)-colorable and equitably A(G)-choosable.

4. GRAPHS WITH mad(G) < L

Lemma 4.1. Let G be a connected graph with order at least 4 and mad(G) < 2.

5
Then G has at least one of the structures in Figure 2.
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Proof. Let G be a counterexample. Then G does not contain any configuration
Fy ~ Fj presented in Figure 2.

X X
X, —ox, k I_kal N k-1
xk*] xl
xk
F, F,il<d(x,_)<3 Fi:1<d(x,,)<2 F,

Figure 2

Each configuration depicted in Figure 2 is such that: (1) hollow vertices may
be not distinct while solid vertices are distinct, (2) the degree of the solid vertices
is fixed, and (3) except for specially pointed, the degree of a hollow vertices may
be any integer from [d, A(G)], where d is the number of edges incident with the
hollow vertex in the configuration.

In the following, we use the discharging method to get a contradiction. For
every v € V(G), we define the original charge of v to be w(v) = d(v) — %2 The
total charge of the vertices of G is equal to

3 (d(v) _ 152> _ V(G| % <ad(G) - 152) < V()| x (mad(G) - 152> <0,

veV(G)

In the following, we redistribute the charge according to the given discharging
rules and let w’(v) be the new charge of a vertex v € V(G), for convenience. If
> vev(c) W' (v) > 0 can be deduced, we can show that the assumption is wrong.

Define discharging rules as the following statements.

D1 Transfer charge % from each 4'-vertex to every adjacent 1-vertex.

D2 Transfer charge % from each 3T-vertex to every adjacent 2-vertex.

In the following, let us check the charge of each element v for v € V(G). For
each v € V(G), if d(v) = 1, then w(v) = —%. Since G contains no structure F},
there is at most one 1-vertex in G. Furthermore, the 1-vertex must be adjacent to
a 4T -vertex for the reason that G contains no structure F». So w'(v) > —%—i—% =0
by D1.

If d(v) = 2, then w(v) = —2. Since G contains no structure F3, v is not
adjacent to any 27 -vertex. We have w'(v) > —% + % x 2 =0 by D2.
If d(v) = 3, then w(v) = 2. Since G contains no structure Fy, v is not

adjacent to any 1-vertex. Then we have w'(v) > 2 — 1 x 3 =0 by D2.
Suppose d(v) > 4. Then w(v) = d(v) — % Since G contains no structure Fy,
the vertex v is adjacent to at most one 1-vertex. If v is adjacent to a 1-vertex,
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then v is not adjacent to any 2~ -vertex for the reason that G contains no structure

Fy. We have w'(v) > d(v) — 2 -1 >4—-12 I =1>0by D1. Otherwise, we
12 1 4 127 4 12 _ 4

haVewl(’U)Zd(v)—§—5Xd('l)):gd('l))—g25X4—?:g>0byD2

From the above discussion, we have 3~ v ¢ w'(v) >0, a contradiction. =
In the following, let us give the proof of the main theorem.

Theorem 4.2. If G is a graph such that mad(G) < %, then G is equitably
k-colorable where k > max{A(G), 3}.

Proof. Let G be a counterexample with smallest number of vertices. If each
component of G has at most 3 vertices, then A(G) < 2. So G is equitably k-
colorable by Lemma 2.3. Otherwise, there is at least one component with at least
four vertices. By Lemma 4.1, G has one of the structures Fy ~ Fy, taking it and
the vertices are labelled as they are in Figure 1. If there are vertices labelled
repeatedly, then we take the larger (z; is larger than x;_1). In the following, we
show how to find S in Lemma 2.2. Let S’ = {z,xx_1,21}. By Lemma 2.5, G
is 2-degenerate, hence we can find the remaining unspecified positions in S from
highest to lowest indices by choosing a vertex with minimum degree in the graph
obtained from G by deleting the vertices already being chosen for S at each step.
By the minimality of |V (G)| and since k > A(G) > A(G —S), G — S is equitably
k-colorable. So (G is also equitably k-colorable by Lemma 2.2. [

Corollary 4.3. Let G be a graph such that mad(G) < 2. If A(G) > 3, then
Xe(G) < A(G).

Corollary 4.4. Let G be a graph such that mad(G) < 2. If A(G) > 3, then
Xe(G) < A(G).

Theorem 4.5. If G is a graph such that mad(G) < %2 and k > max{3, A(G)},
then G is equitably k-choosable.

Proof. Let G be a counterexample with the smallest number of vertices. If
each component of G has at most 3 vertices, then A(G) < 2. So G is equitably
k-choosable by Lemma 2.4. Otherwise, the statement is similar to that in the
corresponding cases of Theorem 4.2. By Lemma 2.1 and Lemma 2.4, we have
this theorem. ]

Corollary 4.6. Let G be a graph such that mad(G) < % If A(G) >3, then G
is equitably A(G)-choosable.

For a planar graph with girth g, we have the following corollary.

Corollary 4.7. Let G be a planar graph with girth g > 12. If A(G) > 3, then
G is equitably A(G)-colorable and equitably A(G)-choosable.
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