Discussiones Mathematicae Graph Theory 38 (2018) 829–839 doi:10.7151/dmgt.2049

EQUITABLE COLORING AND EQUITABLE CHOOSABILITY OF GRAPHS WITH SMALL MAXIMUM AVERAGE DEGREE ¹

Aijun Dong

School of Science Shandong Jiaotong University Jinan, 250023, P.R. China

e-mail: dongaijun@mail.sdu.edu.cn

AND

XIN ZHANG

School of Mathematics and Statistics Xidian University Xi'an, 710071, P.R. China

e-mail: xzhang@xidian.edu.cn

Abstract

A graph is said to be equitably k-colorable if the vertex set V(G) can be partitioned into k independent subsets V_1, V_2, \ldots, V_k such that $||V_i| - |V_j|| \le 1$ $(1 \le i, j \le k)$. A graph G is equitably k-choosable if, for any given k-uniform list assignment L, G is L-colorable and each color appears on at most $\left\lceil \frac{|V(G)|}{k} \right\rceil$ vertices. In this paper, we prove that if G is a graph such that mad(G) < 3, then G is equitably k-colorable and equitably k-choosable where $k \ge \max\{\Delta(G), 4\}$. Moreover, if G is a graph such that $mad(G) < \frac{12}{5}$, then G is equitably k-colorable and equitably k-choosable where $k \ge \max\{\Delta(G), 3\}$.

Keywords: graph coloring, equitable choosability, maximum average degree.

2010 Mathematics Subject Classification: 05C15.

¹This work was supported by the National Natural Science Foundation of China (Grant No. 71571111). It was also supported by China Postdoctoral Science Foundation Funded Project (Grant No. 2014M561909); the Nature Science Foundation of Shandong Province of China (Grant No. ZR2014AM028; ZR2014GL001; ZR2014FM033), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JM1010) and the Fundamental Research Funds for the Central Universities (No. JB170706).

1. Introduction

The terminology and notation used but undefined in this paper can be found in [1]. Let G = (V(G), E(G)) be a graph. Let $d_G(x)$, or simply d(x), denote the number of edges incident with the vertex (face) x in G. If d(x) = k, $d(x) \ge k$ and $d(x) \le k$, then the vertex x is called a k-vertex, k+-vertex and k--vertex, respectively. We use V(G), E(G), $\Delta(G)$ and $\delta(G)$ to denote the vertex set, edge set, maximum degree, and minimum degree of G, respectively. The average degree of a graph G is $\frac{\sum_{v \in V(G)} d(v)}{|V(G)|}$, and denote it by ad(G). The maximum average degree mad(G) of G is the maximum of the average degree of its subgraphs. The G is a planar graph is the length of a smallest cycle in the graph, and denote the girth of a graph G by G. We use G to denote a minimum integer which is no less than G.

A proper k-coloring of a graph G is a mapping π from the vertex set V(G) to the set of colors $\{1, 2, ..., k\}$ such that $\pi(x) \neq \pi(y)$ for every edge $xy \in E(G)$. A graph G is equitable k-colorable if G has a proper k-coloring such that the size of the color classes differ by at most 1. The equitable chromatic number of G, denoted by $\chi_e(G)$, is the smallest integer k such that G is equitably k-colorable. The equitable chromatic threshold of G, denoted by $\chi_e^*(G)$, is the smallest integer k such that G is equitably k-colorable (for any $k \geq k$).

In 1970, Hajnál and Szemerédi proved that $\chi_e^*(G) \leq \Delta(G) + 1$ for any graph G [9]. This bound is sharp as shown in the example of $K_{2n+1,2n+1}$. In 1973, Meyer introduced the notion of equitable coloring and made the following conjecture.

Conjecture 1.1 (Meyer [18]). If G is a connected graph which is neither a complete graph nor odd cycle, then $\chi_e(G) \leq \Delta(G)$.

In 1994, Chen, Lih and Wu put forth the following conjecture.

Conjecture 1.2 (Chen, Lih and Wu [2]). For any connected graph G, if it is different from a complete graph, a complete bipartite graph and an odd cycle, then $\chi_e^*(G) \leq \Delta(G)$.

Chen, Lih and Wu [2,3] proved Conjecture 1.2 for graphs with $\Delta(G) \leq 3$ or $\Delta(G) \geq \frac{|V(G)|}{2}$. In 2012, Chen et al. [4] improved the former result and confirmed the Conjecture 1.2 for graphs with $\Delta(G) \geq \frac{|V(G)|}{3} + 1$. Yap and Zhang [26,27] showed that Conjecture 1.2 holds for planar graphs with $\Delta(G) \geq 13$. In 2012, Nakprasit [19] confirmed the Conjecture 1.2 for planar graphs with $\Delta(G) \geq 9$. Lih and Wu [14] verified $\chi_e^*(G) \leq \Delta(G)$ for bipartite graphs other than complete bipartite graphs. Wang and Zhang [23] proved Conjecture 1.2 for line graphs, and Kostochka and Nakprasit [12,13] proved it for graphs with low average degree, and d-degenerate graphs with $\Delta(G) \geq 14d + 1$. Yan and Wang [25] showed that Conjecture 1.2 holds for Kronecker products of complete multipartite graphs and

complete graphs. Wu and Wang [24], Luo et al. [17] confirmed Conjecture 1.2 for some planar graphs with large girth, respectively. Li et al. [16], Zhu et al. [29], Dong et al. [5–8], Nakprasit [20] confirmed Conjecture 1.2 for some planar graphs with some forbidden cycles. Zhang and Wu [28], Zhu and Bu [30] verified the Conjecture 1.2 for some series-parallel graphs and outerplanar graphs, respectively.

For a graph G and a list assignment L assigning to each vertex $v \in V(G)$ a set L(v) of acceptable colors, an L-coloring of G is a proper vertex coloring such that for every $v \in V(G)$ the color on v belongs to L(v). A list assignment L for G is k-uniform if |L(v)| = k for all $v \in V(G)$. A graph G is list equitably k-colorable (also called equitably k-choosable) if, for any k-uniform list assignment L, G is L-colorable and each color appears on at most $\left\lceil \frac{|V(G)|}{k} \right\rceil$ vertices.

In 2003, Kostochka, Pelsmajer and West investigated the list equitable coloring of graphs. They proposed the following conjectures.

Conjecture 1.3 (Kostochka, Pelsmajer and West [11]). Every graph G is equitably k-choosable whenever $k > \Delta(G)$.

Conjecture 1.4 (Kostochka, Pelsmajer and West [11]). If G is a connected graph with maximum degree at least 3, then G is equitably $\Delta(G)$ -choosable, unless G is a complete graph or is $K_{k,k}$ for some odd k.

It has been proved that Conjecture 1.3 holds for graphs with $\Delta(G) \leq 3$ in [21,22] and then the result was strengthened by Kierstead and Kostochka. They confirmed the Conjecture 1.3 for graphs with $\Delta(G) \leq 7$ in [10]. Kostochka, Pelsmajer and West proved that a graph G is equitably k-choosable if either $G \neq K_{k+1}, K_{k,k}$ (with k odd in $K_{k,k}$) and $k \geq \max\left\{\Delta, \frac{|V(G)|}{2}\right\}$, or G is a connected interval graph and $k \geq \Delta(G)$ or G is a 2-degenerate graph and $k \geq \max\{\Delta(G), 5\}$ in [11]. Pelsmajer proved that every graph is equitably k-choosable for any $k \geq \frac{\Delta(G)(\Delta(G)-1)}{2}+2$ in [21]. In 2009, Conjecture 1.4 were proved for planar graphs G without 4- and 6-cycles and with $\Delta(G) \geq 6$ by Li et al. in [16]. Zhu et al. confirmed Conjecture 1.4 for planar graph G without 3-cycles and with $\Delta(G) \geq 8$, planar graph G without 4- and 5-cycles and with $\Delta(G) \geq 7$ in [29], C_5 -free planar graph G without adjacent triangles and with $\Delta(G) \geq 8$ in [30], outerplanar graphs in [31]. Zhang and Wu proved Conjecture 1.4 for series-parallel graphs in [28]. More results can be seen in [5-8] and [15].

As for the sparse graph G with $\Delta(G)=2$, it is clear that G is equitably k-colorable and equitably k-choosable where $k \geq \max\{\Delta(G), 3\}$, if G is an odd cycle. Otherwise, G is equitably k-colorable and equitably k-choosable where $k \geq \max\{\Delta(G), 2\}$. In this paper, we consider the sparse graph G with $\Delta(G) \geq 3$ and show that if G is a graph such that mad(G) < 3, then G is equitably k-colorable and equitably k-choosable where $k \geq \max\{\Delta(G), 4\}$. Moreover, if G is

a graph such that $mad(G) < \frac{12}{5}$, then G is equitably k-colorable and equitably k-choosable where $k \ge \max\{\Delta(G), 3\}$.

2. Some Important Lemmas

Lemma 2.1 (Kostochka, Pelsmajer and West [11]). Let G be a graph with a k-uniform list assignment L. Let $S = \{v_1, v_2, \ldots, v_k\}$, where $\{v_1, v_2, \ldots, v_k\}$ are distinct vertices in G. If G-S has an equitable L-coloring and $|N_G(v_i)-S| \leq k-i$ for $1 \leq i \leq k$, then G has an equitable L-coloring.

Lemma 2.2 (Zhu and Bu [29]). Let $S = \{v_1, v_2, ..., v_k\}$ be a set of k different vertices in G such that G - S has an equitable k-coloring. If $|N_G(v_i) - S| \le k - i$ for $1 \le i \le k$, then G has an equitable k-coloring.

Lemma 2.3 (Hajnal and Szemerédi [9]). Every graph has an equitable k-coloring whenever $k \ge \Delta(G) + 1$.

Lemma 2.4 (Pelsmajer, Wang and Lih [21,22]). Every graph G with maximum degree $\Delta(G) \leq 3$ is equitably k-choosable whenever $k \geq \Delta(G) + 1$.

Lemma 2.5. Let G be a graph with mad(G) < 3. Then G is 2-degenerate.

Proof. By contradiction, there is subgraph G' of G such that $\delta(G') \geq 3$. It is clear that $mad(G') \geq 3$, a contradiction.

Lemma 2.6 (Dong, Zou and Li [8]). If G is a graph such that $mad(G) \leq 3$, then G is equitably k-colorable and equitably k-choosable where $k \geq \max\{\Delta(G), 5\}$.

3. Graphs with mad(G) < 3

Lemma 3.1. Let G be a connected graph with order at least 4 and $\delta(G) \geq 1$. If $\Delta(G) \leq 4$ and mad(G) < 3, then G has at least one of the structures in Figure 1.

Proof. Let G be a counterexample. Then G does not contain any configuration $H_1 \sim H_6$ presented in Figure 1.

For each $v \in V(G)$, if d(v) = 2, then v is adjacent to at least one 4-vertex for the reason that G contains no structure H_1 . If d(v) = 4, then v is adjacent to at most one 2-vertex for the reason that G contains no structure H_2 . For convenience, let r denote the number of 4-vertices which are not adjacent to any 2-vertex. Obviously, G has the following property.

Figure 1

Each configuration depicted in Figure 1 is such that: (1) hollow vertices may be not distinct while solid vertices are distinct, (2) the degree of the solid vertices is fixed, and (3) except for specially pointed, the degree of a hollow vertices may be any integer from $[d, \Delta(G)]$, where d is the number of edges incident with the hollow vertex in the configuration.

Observation 3.2. $n_4(G) \ge n_2(G) + r$.

By Lemma 2.5, we have $\delta(G) \leq 2$.

Suppose $\delta(G) = 2$. By Observation 3.2, we have $ad(G) = \frac{2n_2(G) + 3n_3(G) + 4n_4(G)}{n_2(G) + n_3(G) + n_4(G)} \ge \frac{2n_2(G) + 3n_3(G) + 4(n_2(G) + r)}{n_2(G) + n_3(G) + r} = \frac{6n_2(G) + 3n_3(G) + 4r}{2n_2(G) + n_3(G) + r} = \frac{3[2n_2(G) + n_3(G) + r] + r}{2n_2(G) + n_3(G) + r} \ge 3$, a contradiction to mad(G) < 3.

Suppose $\delta(G)=1$. Since G contains no structure H_3 , there is only one 1-vertex v in G. Furthermore, the vertex v must be adjacent to a 4-vertex u for the reason that G contains no structure H_4 . Since G contains no structure H_5 , the other adjacent vertices of u must be 4-vertices. For convenience, we use u_i $(1 \le i \le 3)$ to denote the 4-vertices which are adjacent to u. Since G contains no structure H_6 , u_i $(1 \le i \le 3)$ is not adjacent to any 2-vertex. From the above discussion, we have $r \ge 4$. Obviously, we have $ad(G) = \frac{n_1(G) + 2n_2(G) + 3n_3(G) + 4n_4(G)}{n_1(G) + n_2(G) + n_3(G) + n_4(G)} = \frac{1 + 2n_2(G) + 3n_3(G) + 4(n_2(G) + r)}{1 + 2n_2(G) + n_3(G) + r} = \frac{1 + 6n_2(G) + 3n_3(G) + 4r}{1 + 2n_2(G) + n_3(G) + r} = \frac{3[1 + 2n_2(G) + n_3(G) + r] + 2}{1 + 2n_2(G) + n_3(G) + r} \ge 3$, a contradiction to mad(G) < 3.

In the following, let us give the proof of the main theorems.

Theorem 3.3. If G is a graph such that mad(G) < 3, then G is equitably k-colorable where $k \ge \max\{\Delta(G), 4\}$.

Proof. By Lemma 2.6, we only need to focus on the situation where $\Delta(G) \leq 4$. Let G be a counterexample with the smallest number of vertices. Clearly, $\delta(G) \geq 1$. If each component of G has at most four vertices, then $\Delta(G) \leq 3$. So G is equitably k-colorable by Lemma 2.3. Otherwise, there is at least one component with at least four vertices. By Lemma 3.1, G has one of the structures $H_1 \sim H_6$, taking it and the vertices are labelled as they are in Figure 1. If there are vertices labelled repeatedly, then we take the larger $(x_i$ is larger than x_{i-1}). In the following, we show how to find G in Lemma 2.2. If G has G has G has G or G has G or G has G has G or G has G or G has G or G has G or G has G has G or G has G or G has G or G has G or G is 2-degenerate, thus we can find the remaining unspecified positions in G from highest to lowest indices by choosing a vertex with minimum degree in the graph obtained from G by deleting the vertices already being chosen for G at each step. By the minimality of G and since G deleting the vertices already being chosen for G is equitably G has equitably G by Lemma 2.2.

Corollary 3.4. Let G be a graph such that mad(G) < 3. If $\Delta(G) \geq 4$, then $\chi_e(G) \leq \Delta(G)$.

Corollary 3.5. Let G be a graph such that mad(G) < 3. If $\Delta(G) \ge 4$, then $\chi_e^*(G) \le \Delta(G)$.

Theorem 3.6. If G is a graph such that mad(G) < 3 and $k \ge max\{4, \Delta(G)\}$, then G is equitably k-choosable.

Proof. Let G be a counterexample with the smallest number of vertices. If each component of G has at most 4 vertices, then $\Delta(G) \leq 3$. So G is equitably k-choosable by Lemma 2.4. Otherwise, the statement is similar to that in the corresponding cases of Theorem 3.3. By Lemma 2.1 and Lemma 2.4, we have this theorem.

Corollary 3.7. Let G be a graph such that mad(G) < 3. If $\Delta(G) \geq 4$, then G is equitably $\Delta(G)$ -choosable.

For a planar graph with girth g, by $mad(G) < \frac{2g}{g-2}$, we have the following corollary.

Corollary 3.8. Let G be a planar graph with girth $g \geq 6$. If $\Delta(G) \geq 4$, then G is equitably $\Delta(G)$ -colorable and equitably $\Delta(G)$ -choosable.

4. Graphs with $mad(G) < \frac{12}{5}$

Lemma 4.1. Let G be a connected graph with order at least 4 and $mad(G) < \frac{12}{5}$. Then G has at least one of the structures in Figure 2.

Proof. Let G be a counterexample. Then G does not contain any configuration $F_1 \sim F_4$ presented in Figure 2.

Figure 2

Each configuration depicted in Figure 2 is such that: (1) hollow vertices may be not distinct while solid vertices are distinct, (2) the degree of the solid vertices is fixed, and (3) except for specially pointed, the degree of a hollow vertices may be any integer from $[d, \Delta(G)]$, where d is the number of edges incident with the hollow vertex in the configuration.

In the following, we use the discharging method to get a contradiction. For every $v \in V(G)$, we define the original charge of v to be $w(v) = d(v) - \frac{12}{5}$. The total charge of the vertices of G is equal to

$$\sum_{v \in V(G)} \left(d(v) - \frac{12}{5} \right) = |V(G)| \times \left(ad(G) - \frac{12}{5} \right) \leq |V(G)| \times \left(mad(G) - \frac{12}{5} \right) < 0.$$

In the following, we redistribute the charge according to the given discharging rules and let w'(v) be the new charge of a vertex $v \in V(G)$, for convenience. If $\sum_{v \in V(G)} w'(v) > 0$ can be deduced, we can show that the assumption is wrong.

Define discharging rules as the following statements.

D1 Transfer charge $\frac{7}{5}$ from each 4⁺-vertex to every adjacent 1-vertex.

D2 Transfer charge $\frac{1}{5}$ from each 3⁺-vertex to every adjacent 2-vertex.

In the following, let us check the charge of each element v for $v \in V(G)$. For each $v \in V(G)$, if d(v) = 1, then $w(v) = -\frac{7}{5}$. Since G contains no structure F_1 , there is at most one 1-vertex in G. Furthermore, the 1-vertex must be adjacent to a 4⁺-vertex for the reason that G contains no structure F_2 . So $w'(v) \ge -\frac{7}{5} + \frac{7}{5} = 0$ by D1.

If d(v) = 2, then $w(v) = -\frac{2}{5}$. Since G contains no structure F_3 , v is not adjacent to any 2⁻-vertex. We have $w'(v) \ge -\frac{2}{5} + \frac{1}{5} \times 2 = 0$ by D2.

If d(v) = 3, then $w(v) = \frac{3}{5}$. Since G contains no structure F_2 , v is not adjacent to any 1-vertex. Then we have $w'(v) \ge \frac{3}{5} - \frac{1}{5} \times 3 = 0$ by D2. Suppose $d(v) \ge 4$. Then $w(v) = d(v) - \frac{12}{5}$. Since G contains no structure F_4 ,

the vertex v is adjacent to at most one 1-vertex. If v is adjacent to a 1-vertex,

then v is not adjacent to any 2^- -vertex for the reason that G contains no structure F_4 . We have $w'(v) \geq d(v) - \frac{12}{5} - \frac{7}{5} \geq 4 - \frac{12}{5} - \frac{7}{5} = \frac{1}{5} > 0$ by D1. Otherwise, we have $w'(v) \geq d(v) - \frac{12}{5} - \frac{1}{5} \times d(v) = \frac{4}{5}d(v) - \frac{12}{5} \geq \frac{4}{5} \times 4 - \frac{12}{5} = \frac{4}{5} > 0$ by D2. From the above discussion, we have $\sum_{v \in V(G)} w'(v) \geq 0$, a contradiction.

In the following, let us give the proof of the main theorem.

Theorem 4.2. If G is a graph such that $mad(G) < \frac{12}{5}$, then G is equitably k-colorable where $k \ge \max\{\Delta(G), 3\}$.

Proof. Let G be a counterexample with smallest number of vertices. If each component of G has at most 3 vertices, then $\Delta(G) \leq 2$. So G is equitably k-colorable by Lemma 2.3. Otherwise, there is at least one component with at least four vertices. By Lemma 4.1, G has one of the structures $F_1 \sim F_4$, taking it and the vertices are labelled as they are in Figure 1. If there are vertices labelled repeatedly, then we take the larger $(x_i$ is larger than x_{i-1}). In the following, we show how to find G in Lemma 2.2. Let $G' = \{x_k, x_{k-1}, x_1\}$. By Lemma 2.5, G is 2-degenerate, hence we can find the remaining unspecified positions in G from highest to lowest indices by choosing a vertex with minimum degree in the graph obtained from G by deleting the vertices already being chosen for G at each step. By the minimality of |V(G)| and since E and E by Lemma 2.2.

Corollary 4.3. Let G be a graph such that $mad(G) < \frac{12}{5}$. If $\Delta(G) \geq 3$, then $\chi_e(G) \leq \Delta(G)$.

Corollary 4.4. Let G be a graph such that $mad(G) < \frac{12}{5}$. If $\Delta(G) \geq 3$, then $\chi_e^*(G) \leq \Delta(G)$.

Theorem 4.5. If G is a graph such that $mad(G) < \frac{12}{5}$ and $k \ge max\{3, \Delta(G)\}$, then G is equitably k-choosable.

Proof. Let G be a counterexample with the smallest number of vertices. If each component of G has at most 3 vertices, then $\Delta(G) \leq 2$. So G is equitably k-choosable by Lemma 2.4. Otherwise, the statement is similar to that in the corresponding cases of Theorem 4.2. By Lemma 2.1 and Lemma 2.4, we have this theorem.

Corollary 4.6. Let G be a graph such that $mad(G) < \frac{12}{5}$. If $\Delta(G) \geq 3$, then G is equitably $\Delta(G)$ -choosable.

For a planar graph with girth g, we have the following corollary.

Corollary 4.7. Let G be a planar graph with girth $g \ge 12$. If $\Delta(G) \ge 3$, then G is equitably $\Delta(G)$ -colorable and equitably $\Delta(G)$ -choosable.

References

- J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York, 1976).
- B.L. Chen, K.W. Lih and P.L. Wu, Equitable coloring and the maximum degree, European J. Combin. 15 (1994) 443–447.
 doi:10.1006/eujc.1994.1047
- [3] B.L. Chen and K.W. Lih, Equitable coloring of trees, J. Combin. Theory Ser. B 611 (1994) 83–87.
 doi:10.1006/jctb.1994.1032
- [4] B.L. Chen and C.H. Yen, Equitable Δ -coloring of graphs, Discrete Math. **312** (2012) 1512–1517. doi:10.1016/j.disc.2011.05.020
- [5] A.J. Dong, X. Tan, X. Zhang and G.J. Li, Equitable coloring and equitable choosability of planar graphs without 6- and 7-cycles, Ars Combin. 103 (2012) 333–352.
- [6] A.J. Dong, X. Zhang and G.J. Li, Equitable coloring and equitable choosability of planar graphs without 5- and 7-cycles, Bull. Malays. Math. Sci. Soc. 35 (2012) 897–910.
- [7] A.J. Dong, G.J. Li and G.H. Wang, Equitable and list equitable colorings of planar graphs without 4-cycles, Discrete Math. 313 (2013) 1610–1619. doi:10.1016/j.disc.2013.04.011
- [8] A.J. Dong, Q.S. Zou and G.J. Li, Equitable and list equitable colorings of graphs with bounded maximum average degree, Ars Combin. 124 (2016) 303–311.
- [9] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdős, in: A. Rényi, V.T. Sós (Eds.), Combinatorial Theory and Its Applications (North-Holland, Amsterdam, 1970) 601–623.
- [10] H.A. Kierstead and A.V. Kostochka, Equitable list coloring of graphs with bounded degree, J. Graph Theory 74 (2013) 309–334. doi:10.1002/jgt.21710
- [11] A.V. Kostochka, M.J. Pelsmajer and D.B. West, A list analogue of equitable coloring, J. Graph Theory 47 (2003) 166–177. doi:10.1002/jgt.10137
- [12] A.V. Kostochka and K. Nakprasit, Equitable colorings of k-degenerate graphs, Combin. Probab. Comput. 12 (2003) 53–60. doi:10.1017/S0963548302005485
- [13] A.V. Kostochka and K. Nakprasit, Equitable Δ-colorings of graphs with low average degree, Theoret. Comput. Sci. 349 (2005) 82–91. doi:10.1016/j.tcs.2005.09.031
- [14] K.W. Lih and P.L. Wu, On equitable coloring of bipartite graphs, Discrete Math. 151 (1996) 155–160. doi:10.1016/0012-365X(94)00092-W

- [15] K.W. Lih, Equitable Coloring of Graphs (Springer Science+Business Media, New York, 2013).
- [16] Q. Li and Y.H. Bu, Equitable list coloring of planar graphs without 4- and 6-cycles, Discrete Math. 309 (2009) 280–287. doi:10.1016/j.disc.2007.12.070
- [17] R. Luo, J.S. Sereni, D.C. Stephens and G. Yu, Equitable coloring of sparse planar graphs, SIAM J. Discrete Math. 24 (2010) 1572–1583. doi:10.1137/090751803
- [18] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920–922. doi:10.2307/2319405
- [19] K. Nakprasit, Equitable colorings of planar graphs with maximum degree at least nine, Discrete Math. 312 (2012) 1019–1024. doi:10.1016/j.disc.2011.11.004
- [20] K. Nakprasit and K. Nakprasit, Equitable colorings of planar graphs without short cycles, Theoret. Comput. Sci. 465 (2012) 21–27. doi:10.1016/j.tcs.2012.09.014
- [21] M.F. Pelsmajer, Equitable list coloring for graphs of maximum degree 3, J. Graph Theory 47 (2004) 1–8. doi:10.1002/jgt.20011
- [22] W.F. Wang and K.W. Lih, Equitable list coloring of graphs, Taiwanese J. Math. 8 (2004) 747–759. doi:10.11650/twjm/1500407716
- [23] W.F. Wang and K.M. Zhang, Equitable colorings of line graphs and complete r-partite graphs, System Sci. Math. Sci. 13 (2000) 190–194.
- [24] J.L. Wu and P. Wang, Equiiable coloring planar graphs with large girth, Discrete Math. 308 (2008) 985–990. doi:10.1016/j.disc.2007.08.059
- [25] Z. Yan and W. Wang, Equitable coloring of Kronecker products of complete multipartite graphs and complete graphs, Discrete Appl. Math. 162 (2014) 328–333. doi:10.1016/j.dam.2013.08.042
- [26] H.P. Yap and Y. Zhang, The equitable Δ -coloring conjecture holds for outerplanar graphs, Bull. Inst. Math. Acad. Sin. **25** (1997) 143–149.
- [27] H.-P. Yap and Y. Zhang, Equitable colorings of planar graphs, J. Combin. Math. Combin. Comput. 27 (1998) 97–105.
- [28] X. Zhang and J.L. Wu, On equitable and equitable list coloring of series-parallel graphs, Discrete Math. 311 (2011) 800–803. doi:10.1016/j.disc.2011.02.001
- [29] J.L. Zhu and Y.H. Bu, Equitable list colorings of planar graphs without short cycles, Theoret. Comput. Sci. 407 (2008) 21–28. doi:10.1016/j.tcs.2008.04.018

- [30] J.L. Zhu, Y.H. Bu and X. Min, Equitable list-coloring for C_5 -free plane graphs without adjacent triangles, Graphs Combin. **31** (2015) 795–804. doi:10.1007/s00373-013-1396-7
- [31] J.L. Zhu and Y.H. Bu, Equitable and equitable list colorings of graphs, Theoret. Comput. Sci. 411 (2010) 3873–3876. doi:10.1016/j.tcs.2010.06.027

Received 10 October 2016 Revised 16 February 2017 Accepted 16 February 2017