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Abstract

There are only few results concerning crossing numbers of join of some
graphs. In this paper, for some graphs on five vertices, we give the crossing
numbers of its join with n isolated vertices.
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1. Introduction

For graph theory terminology not defined here, we direct the reader to [2]. A
drawing of a graph G = (V,E) is a mapping φ that assigns to each vertex in V

a distinct point in the plane and to each edge uv in E a continuous arc (i.e., a
homeomorphic image of a closed interval) connecting φ(u) and φ(v), not passing
through the image of any other vertex. For simplicity, we impose the following
conditions on a drawing: (a) no three edges have an interior point in common, (b)
if two edges share an interior point p, then they cross at p, and (c) any two edges
of a drawing have only a finite number of crossings (common interior points). The
crossing number, cr(G), of a graph G is the minimum number of edge crossings
in any drawing of G. Let D be a drawing of the graph G, we denote the number
of crossings in D by crD(G).

1This work is supported by the National Natural Science Foundation of China (Grant Nos.
11301169 & 11371133) and Y. Huang is the corresponding author.
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For a graph G, let A,B ⊆ E(G), then, for a drawing D of G, let

crD(A,B) =
∑

a∈A,b∈B

|D(a) ∩D(b)|.

Additionally, let crD(A,A) = crD(A). Informally, crD(A,B) denotes the number
of crossings between every pair of edges where one edge is in A and the other in
B. For three mutually disjoint subsets A,B,C ⊆ E(G), the following equations
hold:

crD(A ∪B) = crD(A) + crD(B) + crD(A,B),

crD(A,B ∪ C) = crD(A,B) + crD(A,C).

For more about crossing number, we refer the reader to [3]. The investigation
on the crossing number of graphs is a classical but very difficult problem. It
is well known that there are only few results concerning crossing numbers of
join of some graphs. The join product of two graphs G1 and G2, denoted by
G1+G2, is obtained from vertex-disjoint copies of G1 and G2 by adding all edges
between V (G1) and V (G2). For |V (G1)| = m and |V (G2)| = n, the edge set of
G1+G2 is the union of disjoint edge sets of the graphs G1, G2, and the complete
bipartite graph Km,n. Let nK1 denote the graph on n isolated vertices (i.e., the
complement of the complete graph Kn).

It has been long conjectured in [8] that the crossing number of the complete
bipartite graph Km,n equals

⌊

m
2

⌋ ⌊

m−1

2

⌋ ⌊

n
2

⌋ ⌊

n−1

2

⌋

. This conjecture was verified
by Kleitman for min{m,n} 6 6 in [6]. Similarly, most results about G1+G2 deal
with the case |V (G1)| 6 6. Moreover, usually G1 is connected and G2 is some
special graph, such as the graph nK1, the path Pn on n vertices or the cycle Cn.
The k-spoke wheel, denoted by Wk, has vertices v0, v1, . . . , vk, where v1, v2, . . . , vk
form a cycle, and v0 is adjacent to all of v1, v2, . . . , vk.

Using Kleitman’s result [6], the crossing numbers for join of two paths, join
of two cycles, or for join of a path and a cycle were studied in [7]. Moreover, the
exact values for crossing numbers of G1+nK1 for all graphs G1 of order at most
four are given. In 1986, Asano started to study crossing numbers of multipartite
complete graphs. In [1], he established the crossing numbers of the tripartite
graphs K1,3,n and K2,3,n (namely K1,3 + nK1 and K2,3 + nK1). For the graph
K1,4,n (namely K1,4 + nK1), the crossing number was given independently in [4]
and [5].

As it is difficult to determine the crossing number of join of the disconnected
graph with nK1, there are only few results concerning that. In this paper, we
determine the crossing number for the join of nK1 with a disconnected graph G

on five vertices, as shown in Figure 1. The approach is seemingly new. As the
disconnected graph may be a subgraph of many connected graphs, we can gain
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Figure 1. Some graphs on five vertices.

crossing numbers of join of some graphs H1 and H2 (see Figure 1) on five vertices
with nK1 directly. The crossing number for the graph G + nK1 enables us, in
Section 3, to give the crossing number of W4 + nK1 cleverly and simply.

In the paper, some proofs are based on Kleitman’s result on crossing numbers
of complete bipartite graphs. More precisely, he [6] proved that

cr(Km,n) =
⌊m

2

⌋

⌊

m− 1

2

⌋

⌊n

2

⌋

⌊

n− 1

2

⌋

, m 6 6.

For convenience, the number
⌊

m
2

⌋ ⌊

m−1

2

⌋ ⌊

n
2

⌋ ⌊

n−1

2

⌋

is often denoted by Z(m,n)
in our paper. In the proofs of the paper, we will often use the term “region” also
in nonplanar drawings. In this case, crossings are considered to be vertices of the
“map”.

2. The Crossing Number of G+ nK1

The graph G in Figure 1 is isomorphic to the graph C4∪K1. The graph G+nK1

consists of one copy of the graph G and n vertices t1, t2, . . . , tn, where every
vertex ti, i = 1, 2, . . . , n, is adjacent to every vertex of G. For i = 1, 2, . . . , n, let
Ti denote the subgraph induced by five edges incident with the vertex ti and let
Fi = G ∪ Ti. For the simpler labelling, let Gn denote the graph G+ nK1 in this
paper. In Figure 2, we have G + nK1 = Gn = G ∪ (

⋃n
i=1

Ti), and we also have
⋃n

i=1
Ti = K5,n.

Lemma 1. cr(G+ nK1) 6 Z(5, n) +
⌊

n
2

⌋

for n > 1.

Proof. We will display a drawing φ of Gn in the plane such that crφ(Gn) =
Z(5, n) +

⌊

n
2

⌋

. The desired drawing φ is constructed as follows (see Figure 2).

(i) Set all vertices of G on y-axis, ⌈n
2
⌉ isolated vertices on the negative x-axis

and
⌊

n
2

⌋

isolated vertices on the positive x-axis.

(ii) The image of each edge for G is a thick line segment.

Then it is not difficult to see that crφ(Gn) = Z(5, n) +
⌊

n
2

⌋

, and so cr(G +
nK1) 6 Z(5, n) +

⌊

n
2

⌋

.
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Figure 2. A drawing φ of Gn.

Lemma 2. cr(G+K1) = 0, cr(G+ 2K1) = 1.

Proof. The graph G+K1 is planar, so cr(G+K1) = 0. As the graph G+ 2K1

contains a subgraph which is homeomorphic to K3,3, then cr(G+ 2K1) > 1. On
the other hand, by Lemma 1, we have cr(G + 2K1) 6 1. This completes the
proof.

Lemma 3. Let D be an optimal drawing of Gn and let C4 be the 4-cycle of G.

Then we have crD(C4) = 0.

Proof. We assume that there exists an optimal drawing D of Gn such that
crD(C4) 6= 0. There exist two crossed edges e, f ∈ E(C4). We assume that
e = yiyj , f = ykyl, where i, j, k, l are distinct and the 4-cycle of G is yieyjylfykyi.
For convenience, we denote the crossing between e and f by v. In the following,
we shall produce a new good drawing D∗ of Gn as shown in Figure 3.

v

iy

jy

ly

ky

*e

*f

e f

Figure 3. A 4-cycle of G.

First, we connect yi to yl sufficiently close to the section between yi and v

of e and the section between yl and v of f , then we get a new edge e∗ = yiyl.
Analogously, we can get another new edge f∗ = yjyk. Second, we delete two
original edges e and f . In this way, we produce a new 4-cycle (yie

∗ylyjf
∗ykyi)

and a new good drawing D∗ of Gn, such that the crossing v in D is deleted in D∗,
the other crossings are unchanged from D to D∗, and there is no new crossing
occurring in D∗. Now crD∗(Gn) = crD(Gn)−1 contradicts to D being an optimal
drawing.
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Theorem 4. cr(G+ nK1) = Z(5, n) +
⌊

n
2

⌋

for n > 1.

Proof. Lemma 1 shows that cr(G+nK1) 6 Z(5, n)+
⌊

n
2

⌋

and that the theorem
is true if the equality holds. We prove the reverse inequality by induction on n.
Lemma 2 implies that the result is true for the case n = 1, 2.

Suppose now that for 3 6 k 6 n− 1

cr(G+ kK1) > Z(5, k) +

⌊

k

2

⌋

,

and assume there exists such an optimal drawing D of Gn that

(1) crD(G+ nK1) < Z(5, n) +
⌊n

2

⌋

.

Since

crD(G+ nK1) = crD

(

G ∪
n
⋃

i=1

Ti

)

= crD

(

n
⋃

i=1

Ti

)

+ crD(G) + crD

(

G,

n
⋃

i=1

Ti

)

= crD(K5,n) + crD(G) + crD

(

G,

n
⋃

i=1

Ti

)

> Z(5, n) + crD(G) + crD

(

G,

n
⋃

i=1

Ti

)

,

this implies that

(2) crD(G) + crD

(

G,

n
⋃

i=1

Ti

)

<
⌊n

2

⌋

.

The following claims hold for the drawing D.

Claim 5. crD(Ti, Tj) > 1 for all i, j = 1, 2, . . . , n, i 6= j.

Proof. Assume that for some i 6= j, crD(Ti, Tj) = 0, implying that crD(Ti∪Tj) =
0 as crD(Ti) = crD(Tj) = 0 due to D being a good drawing. The subgraph
G ∪ Ti ∪ Tj is isomorphic to the graph G2. Since cr(G2) 6 crD(G ∪ Ti ∪ Tj) =
crD(G, Ti ∪ Tj) + crD(Ti ∪ Tj) + crD(G) and crD(G) = crD(C4) = 0 (by Lemma
3), we have crD(G, Ti ∪ Tj) > cr(G2) − crD(Ti ∪ Tj) − crD(G) = 1. For every
subgraph Tk, k = 1, 2, . . . , n, k 6= i, j, Tk ∪Ti∪Tj is isomorphic to the graph K3,5.
As cr(K3,5) 6 crD(Ti ∪ Tj ∪ Tk) = crD(Tk, Ti ∪ Tj) + crD(Ti ∪ Tj) + crD(Tk), we
have crD(Tk, Ti ∪ Tj) > cr(K3,5)− crD(Ti ∪ Tj)− crD(Tk) = 4. Thus,
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crD(Gn) = crD (Gn−2 ∪ Ti ∪ Tj)

= crD(Gn−2) + crD(Gn−2, Ti ∪ Tj) + crD(Ti ∪ Tj)

= crD(Gn−2) + crD(G, Ti ∪ Tj) + crD(K5,n−2, Ti ∪ Tj) + 0

> Z(5, n− 2) +

⌊

n− 2

2

⌋

+ 1 + 4(n− 2) = Z(5, n) +
⌊n

2

⌋

.

This contradicts (1), and therefore crD(Ti, Tj) > 1 for all i, j = 1, 2, . . . , n, i 6= j.

The inequality (2) immediately implies Claim 6.

Claim 6. In D, there are at least
(⌈

n
2

⌉

+ 1
)

subgraphs Ti, neither of which

crosses G.

Assume, without loss of generality, that crD(G, Tn) = 0. According to Lem-
ma 3 (crD(G) = crD(C4) = 0), the subgraph Fn = G ∪ Tn of the graph Gn has a
unique drawing as shown in Figure 4(1).

)1( )2(

 

1 

2 

3 

1 

2 
nt 1 ntnt

Figure 4. Fn and G∗.

Claim 7. If for any j with 1 6 j 6 n − 1 we have crD(Tj , Fn) = 2, then

crD(Tj , G) > 1.

Proof. Without loss of generality, let j = n − 1. If crD(Tn−1, Fn) = 2 and
crD(Tn−1, G) = 0, then the subgraph G∗ = Tn−1 ∪ Fn of the graph Gn has a
unique drawing (see Figure 4(2)). We claim that no matter where ti (1 6 i 6

n − 2) is placed, we have either crD(Ti, G
∗) > 6, or both crD(Ti, G) > 1 and

crD(Ti, G
∗) > 3. It is also worth mentioning that it is a straightforward case

analysis and some details are left to the reader.
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It is easy to verify that, for every subgraph Ti, 1 6 i 6 n−2, if ti is placed in
the region α, we have crD(Ti, G) > 1. According to Claim 5 (crD(Ti, Tj) > 1, i 6=
j), we have crD(Ti, G

∗) = crD(Ti, G) + crD(Ti, Tn−1) + crD(Ti, Tn) > 3.

If ti is placed in the region β1, β2 or β3, then crD(Ti, G
∗) > 5. Especially, if

crD(Ti, G
∗) = 5, we have crD(Ti, G) > 1.

If ti is placed in other regions, we have crD(Ti, G
∗) > 4. Especially, if

crD(Ti, G
∗) = 4, then crD(Ti, G) > 1. If crD(Ti, G

∗) = 5, we have crD(Ti, G) > 1.
Thus, for all Ti, 1 6 i 6 n− 2, let

A1 = {Ti|3 6 crD(Ti, G
∗) 6 5, crD(Ti, G) > 1},

A2 = {Ti|crD(Ti, G
∗) > 6}.

The inequality (2) implies |A1| 6
⌊

n
2

⌋

− 1. Therefore, using |A1|+ |A2| = n− 2,
we have

crD(Gn) = crD

(

G ∪
n
⋃

i=1

Ti

)

= crD

(

n−2
⋃

i=1

Ti

)

+ crD

(

G∗,

n−2
⋃

i=1

Ti

)

+ crD(G
∗)

= crD(K5,n−2) + crD

(

G∗,

n−2
⋃

i=1

Ti

)

+ crD(G
∗)

> Z(5, n− 2) + 3|A1|+ 6|A2|+ 2

= Z(5, n)− (4n− 8) + 3|A1|+ 6|A2|+ 2

= Z(5, n)− (4n− 8) + 6(n− 2)− 3|A1|+ 2 = Z(5, n) + 2n− 2− 3|A1|

> Z(5, n) + 2n− 2− 3
(⌊n

2

⌋

− 1
)

> Z(5, n) +
⌊n

2

⌋

.

This contradicts (1).

Now, we consider Figure 4(1). It is easy to verify that, for every subgraph
Ti, 1 6 i 6 n − 1, if ti is placed in the region α1, we have crD(Ti, Fn) > 2.
Especially, according to Claim 7, if crD(Ti, Fn) = 2, then crD(Ti, G) > 1.

If ti is placed in the region α2, then crD(Ti, G) > 1 and crD(Ti, Fn) =
crD(Ti, Tn) + crD(Ti, G) > 2.

If ti is placed in other regions, we have crD(Ti, Fn) > 3. Thus, for all Ti, 1 6

i 6 n− 1, let

B1 = {Ti|crD(Ti, Fn) = 2, crD(Ti, G) > 1},

B2 = {Ti|crD(Ti, Fn) > 3}.

The inequality (2) implies |B1| 6
⌊

n
2

⌋

− 1.
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Hence, using |B1|+ |B2| = n− 1, we have

crD(Gn) = crD

(

G ∪
n
⋃

i=1

Ti

)

= crD

(

n−1
⋃

i=1

Ti

)

+ crD

(

Fn,

n−1
⋃

i=1

Ti

)

+ crD(Fn)

= crD(K5,n−1) + crD

(

Fn,

n−1
⋃

i=1

Ti

)

+ 0

> Z(5, n− 1) + 2|B1|+ 3|B2| = Z(5, n)− 4

⌊

n− 1

2

⌋

+ 3(n− 1)− |B1|

> Z(5, n)− 4

⌊

n− 1

2

⌋

+ 3(n− 1)−
(⌊n

2

⌋

− 1
)

> Z(5, n) +
⌊n

2

⌋

.

This contradicts our assumption (1) and completes the proof.

Corollary 8. For n > 1, cr(H1 + nK1) = cr(H2 + nK1) = Z(5, n) +
⌊

n
2

⌋

.

Proof. The graphsH1 andH2 are shown in Figure 1. Figure 2 shows the drawing
of the graph G + nK1 with Z(5, n) +

⌊

n
2

⌋

crossings. One can easily see that in
this drawing it is possible to add one edge which form the graph H1 or add two
edges which form the graph H2 on the vertices of G in such a way that there is
no new crossing occurring. Hence, we have cr(H1 + nK1) 6 Z(5, n) +

⌊

n
2

⌋

and
cr(H2+nK1) 6 Z(5, n)+

⌊

n
2

⌋

. On the other hand, as G is a subgraph of H1 and is
a subgraph of H2, clearly, we have cr(H2+nK1) > cr(H1+nK1) > cr(G+nK1).
Thus, this completes the proof.

3. The Crossing Number of W4 + nK1

Lemma 9. cr(W4 + nK1) 6 Z(5, n) + n+
⌊

n
2

⌋

for n > 1.

Proof. We will display a drawing ϕ of W4+nK1 in the plane such that crϕ(W4+
nK1) = Z(5, n) + n+

⌊

n
2

⌋

. The desired drawing ϕ is constructed as follows (see
Figure 5).

(i) Set all vertices of W4 on y-axis,
⌈

n
2

⌉

isolated vertices on the negative x-axis
and

⌊

n
2

⌋

isolated vertices on the positive x-axis.

(ii) The image of each edge for W4 is a thick line segment.

Then it is not difficult to see that crϕ(W4 + nK1) = Z(5, n) + n+
⌊

n
2

⌋

, and
so cr(W4 + nK1) 6 Z(5, n) + n+

⌊

n
2

⌋

.

Theorem 10. cr(W4 + nK1) = Z(5, n) + n+
⌊

n
2

⌋

for n > 1.
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Figure 5. A drawing ϕ of W4 + nK1.

Proof. Lemma 9 shows that cr(W4+nK1) 6 Z(5, n)+n+
⌊

n
2

⌋

. Thus, in order to
prove the theorem, we need only to prove that crφ(W4+nK1) > Z(5, n)+n+

⌊

n
2

⌋

for any drawing φ of W4 + nK1. Let ei denote the edge xyi of W4, i = 1, 2, 3, 4,
wherein x is a vertex of degree 4 and yi are vertices of degree 3 inW4. Without loss
of generality, assume that under any drawing φ, the clockwise order of these four
images φ(ei) around φ(x) is φ(e1) → φ(e2) → φ(e3) → φ(e4). The graphW4+nK1

has additional n edges fj = tjx incident with x (1 6 j 6 n). Let Ai denote the
set of all those images fj , each of which lies in the angle αi formed between φ(ei)
and φ(ei+1), where the indices are read modulo 4 (see Figure 6(1)). We note that
|A1| + |A2| + |A3| + |A4| = n. Again, we see that in the plane R

2, there exists
a circular neighborhood around φ(x), N(φ(x), ε) = {s ∈ R

2 : ||s − φ(x)|| < ε},
where ε is a sufficiently small positive number, such that for any other edge e of
W4+nK1 not incident with x, φ(e)∩N(φ(x), ε) = ∅. We now consider two cases.

)1(

1 

2 

1e 2e

3e4e

3 

4 2A

1A

3A

4A x

)2(

1 

2 

1e
2e

3e4e

3 

4 2A

1A

3A

4A x

1 nt

Figure 6. A drawing φ∗ of Gn+1 obtained from φ(W4 + nK1).
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Case 1. Assume n is even. We consider arbitrarily a pair A1 and A3 or A2

and A4, say A1 and A3. Without loss of generality, assume |A1| 6 |A3|. In the
following, we produce the graph Gn+1 (Gn+1 = G+ (n+ 1)K1 and G = C4 ∪K1

in Figure 1) together with its drawing φ∗.

Step 1. Add a new vertex tn+1 in some location of φ(e2) ∩N(φ(x), ε).

Step 2. For all 1 6 i 6 4, remove the part of φ(ei) lying in N(φ(x), ε)(do not
remove the vertex tn+1).

Step 3. Connect tn+1 to each vertex in {φ(x), φ(y1), φ(y2), φ(y3), φ(y4)} in such
a way as described in Figure 6(2).

For example, connect tn+1 to φ(x) along the section of φ(e2) ∩ N(φ(x), ε),
connect tn+1 to φ(y2) first along the section of φ(e2)∩N(φ(x), ε) and then along
the original section φ(e2) outside N(φ(x), ε). Again, the way of connecting tn+1

to φ(y4) is first by successively traversing through the angles α1 and α4 (near to
φ(x)), and then along the original section of φ(e4) outside N(φ(x), ε). Thus, we
obtain a drawing φ∗ of the graph Gn+1. It is easy to see that

crφ∗(Gn+1) = crφ(W4 + nK1) + 2|A1|+ |A2|+ |A4|

6 crφ(W4 + nK1) + n.

Under any drawing φ of W4 + nK1, using Theorem 4,

crφ(W4 + nK1) > crφ∗(Gn+1)− n > Z(5, n+ 1) +

⌊

n+ 1

2

⌋

− n

> Z(5, n) + n+
⌊n

2

⌋

.

Case 2. Assume n is odd. First, if |A1| = |A3| and |A2| = |A4|, then it follows
that n =

∑

4

i=1
|Ai| = 2(|A1| + |A2|). This contradicts that n is odd. Therefore,

either |A1| 6= |A3| or |A2| 6= |A4|. Without loss of generality, let |A1| 6= |A3|, and
moreover let |A3| > |A1|+ 1. Completely analogously to Case 1 above,

crφ∗(Gn+1) = crφ(W4 + nK1) + 2|A1|+ |A2|+ |A4|

6 crφ(W4 + nK1) + n− 1.

Thus, we have

crφ(W4 + nK1) > crφ∗(Gn+1)− n+ 1 > Z(5, n+ 1) +

⌊

n+ 1

2

⌋

− n+ 1

> Z(5, n) + n+
⌊n

2

⌋

.

Thereby, from the arguments above we finish the proof of the theorem.
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