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Abstract

A vertex coloring of a plane graph G is a facial rainbow coloring if any
two vertices of G connected by a facial path have distinct colors. The facial
rainbow number of a plane graph G, denoted by rb(G), is the minimum
number of colors that are necessary in any facial rainbow coloring of G. Let
L(G) denote the order of a longest facial path in G. In the present note
we prove that rb(T ) ≤

⌊

3

2
L(T )

⌋

for any tree T and rb(G) ≤
⌈

5

3
L(G)

⌉

for
arbitrary simple graph G. The upper bound for trees is tight. For any simple
3-connected plane graph G we have rb(G) ≤ L(G) + 5.
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1. Introduction

All graphs considered in this note are simple connected plane graphs. We use a
standard graph theory terminology according to West [30]. However, we recall
some important notions.

A plane graph is a particular drawing of a planar graph in the Euclidean
plane. Let G be a connected plane graph with vertex set V (G), edge set E(G),
and face set F (G). Faces of G are open 2-cells. The boundary of a face α is
the boundary in the usual topological sense. It is a collection of all edges and
vertices contained in the closure of α that can be organized into a closed walk in
G traversing along a simple closed curve lying just inside the face α. This closed
walk is unique up to the choice of initial vertex and direction, and is called the
boundary walk of the face α (see [16], p. 101).
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The size of a face α ∈ F (G) is the length of its boundary walk.

The boundary cycle of a bounded (respectively, unbounded) face α of a con-
nected plane graph G, not being a tree, denoted by C(α), is a cycle which is a
subgraph of the boundary walk of α and the whole α is in the interior (respec-
tively, in the exterior) of this cycle. In the case when G is a tree, we define C(α)
to be empty.

Let α be a face of G having size k and the boundary walk v0v1 · · · vk−1vk,
where vk = v0 with vi ∈ V (G) and vivi+1 ∈ E(G) for every i = 0, 1, . . . , k − 1. A
facial path of α is any path of the form vmvm+1 · · · vn−1vn (subscripts modulo k)
which is a contiguous subsequence of the boundary walk of α.

Let ∆∗(G) and L(G) denote the maximum face size and the order of a longest
facial path of G, respectively.

Two vertices (two edges or two faces) are adjacent if they are connected by
an edge (have a common end-vertex or their boundaries have a common edge,
respectively). A vertex and an edge are incident if the vertex is an end-vertex of
the edge. A vertex (or an edge) and a face are incident if the vertex (or the edge)
lies on the boundary of the face.

A block of a plane graph G is a maximal connected subgraph of G that has no
cut-vertex. If G itself is connected and has no cut-vertex then G is a block. An
edge is a block if and only if it is a cut-edge. A block consisting of a cut-edge is
called trivial. Note that any non-trivial block is 2-connected. In any plane graph
each non-trivial block B is bounded by a cycle belonging to this block, which is
called the block-cycle and is denoted by C(B). A cycle C is called separating in
G if there are edges of G in the interior and also in the exterior of C.

Let α be a face of G. A non-trivial block B is an interior block of α, if all
edges of its block-cycle C(B) are incident with α and edge sets of C(B) and C(α)
are disjoint. A trivial block of G, which is an edge e, is an interior block of α if e
is incident with α. An interior block B of α is an end-block of α if there is, on the
block-cycle C(B) of B, exactly one (unique) cut-vertex with the property that no
other vertex of C(B) is a cut-vertex of any other interior block of α.

Consider now the boundary cycle of C(α). It contains all former cut-vertices
which are, in α, the cut-vertices of some interior blocks of α. Let us denote these
vertices c1, . . . , cd in order following an orientation of C(α) and call them the
vertices of attachment of α.

Let G be a vertex colored graph. A subgraph H of G is called rainbow if
distinct vertices of H receive different colors.

2. Cyclic and Rainbow Colorings

There are two main motivations for this paper. First one comes from an in-
tensive research of various types of rainbow vertex colorings of graphs, see e.g.
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[12, 15, 23] and [24]. The second motivation is from different investigations of
colorings of plane graphs, where restrictions on the properties of colorings are
given by properties of color sequences of facial paths, facial walks, and facial
cycles. For more information in this directions see a recent survey [10].

Many questions considered in facial colorings have their origin in the famous
Four Color Conjecture (4CC). In spite of the fact that the 4CC has become
the Four Color Theorem (see [2, 3]) one can still find some motivations for a
new research. One of the equivalent formulations of the 4CC is: Vertices of any
plane triangulation T can be colored with four colors so that two distinct vertices
incident with the same face of T receive different colors.

This formulation of the 4CC led Ore and Plummer [25] to introduce the cyclic
coloring of embedded graphs. A cyclic coloring of a connected plane graph G is a
coloring of its vertices such that two distinct vertices incident with the same face
of G receive different colors. The cyclic chromatic number of a connected plane
graph G, denoted by χc(G), is the smallest number of colors used in a cyclic
coloring of G.

It is an intensively studied parameter of plane graphs. If G is a 2-connected
plane graph, then χc(G) is trivially bounded from below by the size ∆∗(G) of a
largest face of G.

Ore and Plummer [25] proved the first upper bound 2∆∗ for χc(G). Borodin
[6] slightly improved this bound to 2∆∗ − 3 for ∆∗ ≥ 8. Significant progress has
been made by Borodin, Sanders and Zhao [9]. They managed to prove the upper
bound of

⌈

9

5
∆∗

⌉

. The following, currently best known, general upper bound is
due to Sanders and Zhao [29].

Theorem 1 [29]. If G is a connected plane graph, then χc(G) ≤
⌈

5

3
∆∗(G)

⌉

.

Better results are known for graphs with small maximum face sizes, i.e., for
small values of ∆∗. The case of cyclic coloring of plane triangulations, i.e., ∆∗ = 3,
is equivalent to the famous Four Color Theorem which was proved by Appel and
Haken in [2] and [3] (see also [28] for a refinement of its proof). Hence χc(G) ≤ 4
for ∆∗ = 3. The case of ∆∗ = 4 is Ringel’s problem [27]. The problem was solved
and it was shown that χc(G) ≤ 6 by Borodin [5, 7]. The case χc(G) ≤ 9 for
∆∗ = 6 was proved by Hebdige and Kráľ [18]. The bounds of χc(G) for ∆∗ = 3,
∆∗ = 4, and ∆∗ = 6 are the only ones which are currently known to be tight.
The upper bound 8 for ∆∗ = 5 is proved in [6], 11 for ∆∗ = 7 in [18] and 14 for
∆∗ = 8 in [29].

The bound
⌊

3

2
∆∗

⌋

for cyclic coloring of connected plane graphs is conjectured
to be the best possible upper bound by Borodin [5], see also the well-known
monograph [22] on graph coloring problems by Jensen and Toft.

Amini, Esperet and van den Heuvel [1] proved the following theorem.
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Theorem 2 [1]. For every ε > 0, there exists ∆ε such that every connected

plane graph of maximum face size ∆∗ ≥ ∆ε admits a cyclic coloring with at most
(

3

2
+ ε

)

∆∗ colors.

Restricting attention to 3-connected plane graphs, Plummer and Toft [26]
proved that χc(G) ≤ ∆∗ + 9 and proposed the conjecture that every 3-connected
plane graph has a cyclic coloring with at most ∆∗ + 2 colours. This conjecture is
true for 3-connected plane graphs with ∆∗ ≥ 16, see Horňák and Jendroľ [19] for
∆∗ ≥ 24, Horňák and Zlámalová [20] for ∆∗ ≥ 18 and Dvořák et al. [11] for the
remaining cases. Enomoto, Horňák, and Jendroľ [14] obtained for ∆∗ ≥ 60 even
stronger results, namely χc ≤ ∆∗ + 1. Azarija et al. [4] proved the same bound
for plane graphs in which all faces of size four or more are vertex-disjoint.

The best known general upper bound is due to Enomoto and Horňák [13].

Theorem 3 [13]. If G is a 3-connected plane graph, then

χc(G) ≤ ∆∗(G) + 5.

The above mentioned formulation of the 4CC has led us to introduce the
following new type of a coloring of plane graphs. A facial rainbow coloring of a
connected plane graph G is a coloring of its vertices such that two distinct vertices
connected by a facial path receive different colors. The facial rainbow number of
G, denoted by rb(G), is the smallest number of colors used in a facial rainbow
coloring of G. Observe that if G is 2-connected, then χc(G) = rb(G). In general
these two types of colorings differ. For example, for the star K1,r, r ≥ 3, we
have rb(K1,r) = 3 if r is even and rb(K1,r) = 4 if r is odd. It is easy to see that
χc(T ) = n for any tree on n vertices. Evidently, rb(G) ≥ L(G) for any plane
graph G.

The following three theorems are our main results.

Theorem 4. If T is a tree, then rb(T ) ≤
⌊

3

2
L(T )

⌋

. Moreover, the bound is tight.

Theorem 5. If G is a connected plane graph, then rb(G) ≤
⌈

5

3
L(G)

⌉

.

Theorem 6. For every ε > 0, there exists an nε such that every connected plane

graph with L(G) ≥ nε admits a rainbow coloring with
(

3

2
+ ε

)

L(G) colors.

3. Proofs of Theorems

Proof of Theorem 4. The theorem is evidently true for paths and stars. Sup-
pose that the theorem is not true. Let T be a counterexample on minimum number
n of vertices. Then ∆(T ) ≥ 3 and L = L(T ) ≥ 4. Let S be a tree obtained from
T by replacing any maximal u − v-path P with all internal degree-2 vertices (in
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T ) by an edge uv. Clearly, deg(u) 6= 2 6= deg(v). Let x be an internal vertex of S
adjacent to exactly one other internal vertex of S. Clearly, degS(x) ≥ 3.

Let v1, v2, and v3 be consecutive neighbors of x in S in an order around x

such that v1 and v2 are leaves of S. Let x − v1-path P1 and x − v2-path P2

be corresponding paths, in T , to the facially adjacent edges xv1 and xv2 of S,
respectively, having lengths a and b. We can suppose, without loss of generality,
that b ≥ a. Let Q1 be the (unique) maximal facial v1 − v2-path in T , which is a
concatenation of P1 and P2. (Recall that a path is a maximal facial path, if it is
not a proper subgraph of any longer facial path.) Let Q2 be the unique maximal
facial v2− y-path containing P2 and passing the vertex v3 (or terminating in v3 if
it is a leaf). Here the vertex y is a leaf of T (and also of S). Let P3 be the facial
x− y-path which is a subpath of Q2. Let the length of P3 be denoted by c. From
the above considerations we have

1 + a+ b ≤ L, 1 + b+ c ≤ L, and 1 + a+ c ≤ L,

this gives a+ b+ c ≤ 3

2
(L− 1).

Let T ′ be the tree obtained from T by deleting all vertices of P2 except of x.
The resulting tree T ′ has less vertices than T and, by the above, L(T ′) ≤ L. Hence,
T ′ is no counterexample to our theorem and so it has a facial rainbow coloring
with at most

⌊

3

2
L
⌋

colors. This coloring induces a partial rainbow coloring of T
with only b vertices of the path P2 not being colored. Because of the inequality
in the previous paragraph we have enough colors to our disposal for coloring the
uncolored vertices.

To see that the bound
⌊

3

2
L
⌋

is tight, consider a generalized star S(3, r) con-
sisting of a central vertex x of degree-3 from which three paths emanate, each of
length r. For any two vertices u and v of this graph there exists a facial u−v-path,
so every facial rainbow coloring of this graph requires exactly 3r + 1 colors. As
the order of a longest facial path of this graph is 2r + 1, we are done.

Proof of Theorem 5. Let G be a counterexample with minimum number b of
non-trivial blocks and with minimum number of trivial blocks among all coun-
terexamples having b non-trivial blocks. If G is a tree or G is 2-connected, then
from Theorem 3 or Theorem 1, respectively, it follows that rb(G) ≤

⌈

5

3
L(G)

⌉

. So
we can suppose that b ≥ 1 and G has at least two blocks.

Observation 1. No face of G has an interior non-trivial end-block.

Proof. Suppose that there is a face α having an interior non-trivial end-block B.
Let x be the (unique) common cut-vertex of B and α. We distinguish two cases.

Case 1. C(B) is not a separating cycle in G. Let e be an edge of C(B)
incident with the vertex x. Put G′ = G − {e}. Observe that G′ has b − 1 non-
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trivial blocks, L(G′) = L(G), and that rb(G) = rb(G′) ≤
⌈

5

3
L(G)

⌉

, which is a
contradiction.

Case 2. C(B) is a separating cycle in G. In this case we consider two
subgraphs G1 and G2 of G, where G1 consists of the cycle C(B) and the interior
of C(B), and G2 is isomorphic to G with the interior of C(B) deleted. Clearly,
G1 has less than b non-trivial blocks or has exactly b non-trivial blocks but less
trivial blocks. Hence, G1 is not a counterexample. Because L(G1) ≤ L(G), G1

has a facial rainbow coloring with at most
⌈

5

3
L(G)

⌉

.

The graph G2 has also L(G2) ≤ L(G). Now, as C(B) is not a separating
cycle in G2, we continue as in Case 1. The result is that rb(G2) ≤

⌈

5

3
L(G)

⌉

.

In any facial rainbow colorings of all three graphs G, G1, and G2 the vertices
of the cycle C(B) must be colored with different colors. Hence we can suppose,
without loss of generality, that the corresponding vertices of C(B) receive the
same colors in the corresponding facial rainbow colorings of G1 and G2. These
colorings provide a facial rainbow coloring of G with at most

⌈

5

3
L(G)

⌉

colors,
which is a contradiction.

Observation 2. No face α of G has a vertex of attachment.

Proof. Suppose first that there is a face α with d ≥ 2 vertices of attachment.
All of the interior end-blocks of α are trivial by Observation 1. Denote their
degree-1 vertices by v1, v2, . . . , vl in an order given by the unique boundary walk
of α. Denote by Pi,i+1 the unique facial vi − vi+1-path in α, subscripts modulo l.
Because d ≥ 2, we have l ≥ 2. It is easy to see that the set {Pi,i+1 : i = 1, . . . , l,
subscripts modulo l} is the set of (all) maximal facial paths in α.

Next we extend the graph G to a graph G1. Let l ≥ 3. In the first step, we
insert new edges vivi+1 for every i = 1, . . . , l; subscripts modulo l. The face α is
replaced by the faces α1, . . . , αl, and β, where αi is bounded by the path Pi,i+1

and the edge vivi+1. The remaining l-gonal face β is bounded by the inserted
edges vivi+1. Next we insert l − 3 diagonals into β to get l − 2 triangular faces
instead of β. If l = 2, we only add the edge v1v2.

In both cases the result is graph G1. Because all interior blocks of α and
the cycle C(α) are subgraphs of the same block of G1, the number b1 of non-
trivial blocks of G1 is at most b. However, the number of trivial blocks has been
reduced. Because of our construction, L(G1) ≤ L(G), so the graph G1 has a facial
rainbow coloring with rb(G1) ≤

⌈

5

3
L(G)

⌉

. This facial coloring of G1 induces a
facial rainbow coloring of G with at most

⌈

5

3
L(G)

⌉

colors. This is because outside
of α the rainbow colorings of G1 and G are identical and, in α, each facial path
Pi,i+1 is colored rainbowly. Again we have a contradiction.

Suppose now that there is a face α with exactly one vertex, x, of attachment.
Consider the cycle C(α). We define two graphs G1 and G2 as follows. The graph
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G1 is a plane graph consisting of C(α) and its interior in G. The graph G2 is
obtained from G by deleting the interior of C(α). Obviously, L(Gi) ≤ L(G) for
i = 1, 2. The graph G2 has less nontrivial blocks than G, so it has a required
coloring with all vertices of C(α) colored distinctly. To see that G1 has a required
coloring with all vertices on C(α) colored with different colors we first delete an
edge xy from C(α), where y is a neighbor of x and then continue as in the proof
of Observation 1.

From Observations 1 and 2 it follows that G has to be a 2-connected plane
graph. By Theorem 1 and the fact that in this case χc(G) = rb(G), the graph G

has a facial rainbow coloring with
⌈

5

3
L(G)

⌉

colors; a contradiction.

Proof of Theorem 6. This proof is analogous to the proof of Theorem 5. The
only difference is that we apply Theorem 2 instead of Theorem 1. Also we let
nε = ∆ε and L(G) = ∆∗, and use the bound

(

3

2
+ ε

)

L(G) instead of
⌈

5

3
L(G)

⌉

.

4. Concluding Remarks

We believe that the following analogue of the above mentioned conjecture of
Borodin [6] holds.

Conjecture 7. Let G be a connected plane graph. Then rb(G) ≤
⌊

3

2
L(G)

⌋

.

A weaker result for trees than Theorem 4 (namely with the upper bound
⌈

5

3
L(T )

⌉

) is proved in our paper [21]. For trees having no degree-2 vertices there
are proved stronger results, e.g. the following.

Theorem 8 [21]. If T is a plane tree having no degree-2 vertices, then rb(G) ≤
L(T ) + 5.

It would be interesting to study an extension of the problem studied in this
paper for cellular embeddings of connected graphs into compact surfaces different
from the sphere.
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