
Discussiones Mathematicae
Graph Theory 38 (2018) 717–741
doi:10.7151/dmgt.2046
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Abstract

Given a graph H, the Turán function ex(n,H) is the maximum number
of edges in a graph on n vertices not containing H as a subgraph. For two
graphs G and H, an H-decomposition of G is a partition of the edge set of
G such that each part is either a single edge or forms a graph isomorphic
to H. Let φ(n,H) be the smallest number φ such that any graph G of
order n admits an H-decomposition with at most φ parts. Pikhurko and
Sousa conjectured that φ(n,H) = ex(n,H) for χ(H) ≥ 3 and all sufficiently
large n. Their conjecture has been verified by Özkahya and Person for all
edge-critical graphs H. In this article, we consider the gem graphs gem

4
and

gem
5
. The graph gem

4
consists of the path P4 with four vertices a, b, c, d and

edges ab, bc, cd plus a universal vertex u adjacent to a, b, c, d, and the graph
gem

5
is similarly defined with the path P5 on five vertices. We determine
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the Turán functions ex(n, gem
4
) and ex(n, gem

5
), and verify the conjecture

of Pikhurko and Sousa when H is the graph gem
4
and gem

5
.

Keywords: gem graph, Turán function, extremal graph, graph decomposi-
tion.
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1. Introduction

Given a graph H, the Turán function ex(n,H) is the maximum number of edges
in a graph on n vertices, and not containing a copy of H as a subgraph. The
important result of Turán [13] states that when H = Kr is the complete graph
on r ≥ 3 vertices, we have ex(n,Kr) = tr−1(n). Here tr−1(n) denotes the number
of edges in the Turán graph of order n, Tr−1(n), which is the unique complete

(r − 1)-partite graph on n vertices where every partition class has either
⌊

n
r−1

⌋

or
⌈

n
r−1

⌉

vertices. Moreover, Tr−1(n) is the unique extremal graph on n vertices

that has the maximum number of edges not containing Kr as a subgraph. For
general graphsH, the Turán function ex(n,H) has been well studied by numerous
researchers, which led to many important results and open problems in extremal
graph theory. For example, when H = C2k is the even cycle of length 2k, where
k ≥ 2, the exact determination of the function ex(n,C2k) is still a wide open
problem. It has been conjectured that ex(n,C2k) = (ck + o(1))n1+1/k for some
constant ck > 0, and this conjecture is only known to be true for k = 2, 3, 5. See
for example [8] and the references therein. When H = Pk is the path of order
k ≥ 3, Faudree and Schelp [5] have determined the function ex(n, Pk) exactly.
In order to obtain ex(n, Pk), we can take the graph on n vertices containing as
many disjoint copies of Kk−1 as possible, and a smaller complete graph on the
remaining vertices. For odd k, this graph is the unique Pk-free extremal graph
attaining ex(n, Pk), and for even k and certain values of n, there are other such
extremal graphs. Here we state the result of Faudree and Schelp as follows, which
will be useful in this paper.

Theorem 1.1 [5]. Let k ≥ 3 and n = a(k−1)+b, where a ≥ 0 and 0 ≤ b < k−1.
Then ex(n, Pk) = a

(

k−1

2

)

+
(

b
2

)

. Moreover, a Pk-free graph on n vertices attaining

ex(n, Pk) is aKk−1 ∪̇Kb, the disjoint union of a copies of Kk−1 and one copy

of Kb.

For two graphs G and H, an H-decomposition of G is a partition of the edge
set of G such that each part is either a single edge or forms a graph isomorphic to
H. Let φ(G,H) be the smallest possible number of parts in an H-decomposition
of G. It is easy to see that, for non-empty H, we have φ(G,H) = e(G) −
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pH(G)(e(H)−1), where pH(G) is the maximum number of pairwise edge-disjoint
copies of H that can be packed into G and e(G) denotes the number of edges
in G. Dor and Tarsi [3] showed that if H has a component with at least three
edges, then the problem of checking whether a graph G admits a partition into H-
subgraphs is NP-complete. Thus, it is NP-hard to compute the function φ(G,H)
for such H. Here we study the function

φ(n,H) = max{φ(G,H) | v(G) = n},

which is the smallest number φ such that any graph G of order n admits an
H-decomposition with at most φ parts.

This function was first studied, in 1966, by Erdős, Goodman and Pósa [4],
who were motivated by the problem of representing graphs by set intersections.
They proved that φ(n,K3) = t2(n). A decade later, this result was extended by
Bollobás [2], who proved that φ(n,Kr) = tr−1(n), for all n ≥ r ≥ 3.

General graphs H were only considered recently by Pikhurko and Sousa [9].
They proved the following result.

Theorem 1.2 (See Theorem 1.1 from [9]). Let H be any fixed graph of chromatic

number r ≥ 3. Then,

φ(n,H) = ex(n,H) + o(n2).

Pikhurko and Sousa also made the following conjecture.

Conjecture 1.3 [9]. For any graph H of chromatic number r ≥ 3, there exists

n0 = n0(H) such that φ(n,H) = ex(n,H) for all n ≥ n0.

A graph H is edge-critical if there exists an edge e ∈ E(H) such that χ(H) >
χ(H − e), where χ(H) denotes the chromatic number of H. For r ≥ 4 a clique-

extension of order r is a connected graph that consists of a Kr−1 plus another
vertex, say v, adjacent to at most r−2 vertices of Kr−1. Conjecture 1.3 has been
verified by Sousa for some edge-critical graphs, namely, clique-extensions of order
r ≥ 4 (n ≥ r) [11] and the cycles of length 5 (n ≥ 6) and 7 (n ≥ 10) [10, 12].
Later, Özkahya and Person [7] verified the conjecture for all edge-critical graphs
with chromatic number r ≥ 3. Their result is the following.

Theorem 1.4 (See Theorem 3 from [7]). For any edge-critical graph H with

chromatic number r ≥ 3, there exists n0 = n0(H) such that φ(n,H) = ex(n,H),
for all n ≥ n0. Moreover, the only graph attaining ex(n,H) is the Turán graph

Tr−1(n).

Recently, as an extension of Özkahya and Person’s work, Allen, Böttcher, and
Person [1] improved the error term obtained by Pikhurko and Sousa in Theorem
1.2. In fact, they proved that the error term o(n2) can be replaced by O(n2−α)
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for some α > 0. Furthermore, they also showed that this error term has the
correct order of magnitude. Their result is indeed an extension of Theorem 1.4
since the error term O(n2−α) that they obtained vanishes for every edge-critical
graph H.

Conjecture 1.3 has also been verified by Liu and Sousa [6] for the k-fan graph

Fk, which is the graph on 2k + 1 vertices consisting of k triangles intersecting in
exactly one common vertex. Observe that χ(Fk) = 3 and for k ≥ 2 the graph Fk

is not edge-critical. Thus, the result of Liu and Sousa is not a particular case of
Theorem 1.4 by Özkahya and Person.

In this article, we consider the gem graphs gem4 and gem5, defined as follows.
For the graph gem4, we take the path P4 with vertices a, b, c, d and edges ab, bc, cd
and add a universal vertex u adjacent to a, b, c, d. Similarly for the graph gem5,
we take the path P5 with vertices a, b, c, d, e and edges ab, bc, cd, de and add a
universal vertex u adjacent to a, b, c, d, e. See Figure 1 below. For convenience,
we write abcd+ u and abcde+ u for these two graphs.
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Figure 1. The graphs gem
4
and gem

5
.

In Section 2, we will determine the Turán functions ex(n, gem4) for n ≥ 6,
and ex(n, gem5) for n ≥ 8. Then, in Section 3, we will prove Pikhurko and Sousa
conjecture for these two gem graphs. That is, we will show that φ(n, gem4) =
ex(n, gem4) for n ≥ 6, and φ(n, gem5) = ex(n, gem5) for n ≥ 8. Note that
χ(gem4) = χ(gem5) = 3, and that gem4 and gem5 are not edge-critical graphs.
Thus, our results are again not implied by Theorem 1.4.

Our notations throughout the paper are fairly standard. For a vertex v in a
graph G, the neighbourhood of v, denoted by N(v), is the set of vertices in G that
are adjacent to v. The degree of v is deg(v) = |N(v)|, and the minimum degree

and maximum degree of G are δ(G) and ∆(G), respectively. For a set U ⊂ V (G),
let deg(v, U) denote the number of vertices in U that are adjacent to v, and let
G[U ] denote the subgraph of G induced by U .

2. Turán Function for the Gem Graphs

In this section, we will determine the Turán functions ex(n, gem4) for n ≥ 6, and
ex(n, gem5) for n ≥ 8. Furthermore, we will determine the extremal graphs in
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each case. That is, we will determine all gem4-free graphs on n ≥ 6 vertices with
ex(n, gem4) edges, and all gem5-free graphs on n ≥ 8 vertices with ex(n, gem5)
edges.

2.1. Turán function for gem4

We will now determine the function ex(n, gem4). In order to state our result, we
first define the family of graphs Fn,4, which will consist of all the extremal graphs.
Let n ≥ 6 and Fn,4 be the family of graphs on n vertices as follows. For n ≡ 0
(mod 4), let G0

n be the graph obtained by taking the Turán graph T2(n) and
embedding a maximum matching into a class of T2(n). For n ≡ 1 (mod 4), let
G11

n and G12
n be the graphs obtained by embedding a maximum matching into the

smaller class and the larger class of T2(n), respectively. For n ≡ 2 (mod 4), let G21
n

and G22
n be the graphs obtained by embedding a maximum matching into a class

of T2(n), and into the larger class of the complete bipartite graph Kn/2−1,n/2+1,
respectively. For n ≡ 3 (mod 4), let G3

n be the graph obtained by embedding a
maximum matching into the larger class of T2(n). Let the vertex classes of G0

n

be A0
n and B0

n, with similar notations for the other graphs. Let Fn,4 = {G0
n},

Fn,4 = {G11
n , G12

n }, Fn,4 = {G21
n , G22

n } and Fn,4 = {G3
n} for n ≡ 0, 1, 2, 3 (mod 4),

respectively. Figure 2 below shows the graphs of Fn,4. Note that in G12
n , we have

an unmatched vertex in the class B12
n , and similarly for G21

n with the class B21
n .
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(a) n ≡ 0 (mod 4)
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(b) n ≡ 1 (mod 4)
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(d) n ≡ 3 (mod 4)
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Figure 2. The graphs of Fn,4.
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It is easy to see that every graph of Fn,4 is gem4-free. Let G ∈ Fn,4, and
suppose that there exists a copy of gem4 in G, say abcd + u. We may consider
in turn whether u is in the independent class of G, or in the class containing the
maximum matching. In each case, we can easily verify that no four neighbours
of u form a path P4 in G, which is a contradiction. Also, for any graph of Fn,4,
by adding an edge, we obtain a graph that contains a copy of gem4. Indeed, let
G ∈ Fn,4. Since n ≥ 6, if an edge cu is added to the independent class of G, then
we may find an edge ab and another vertex d in the other class. If an edge bu is
added to the class of G containing the maximum matching, then we may assume
that du is an edge in the matching, and choose vertices a, c in the other class. In
both cases, we have abcd+ u is a copy of gem4.

We can easily check that for n ≥ 6, all graphs of Fn,4 have the same number
of edges. Thus for G ∈ Fn,4, we let en denote the number of edges in the graph
G. Then, we can easily check that the number of edges of G is

e(G) = en =

⌊

n2

4

⌋

+
⌊n

4

⌋

+

{

0 if n ≡ 0, 1, 2 (mod 4),

1 if n ≡ 3 (mod 4).
(1)

Moreover, for n ≥ 7, G ∈ Fn,4 and G′ ∈ Fn−1,4, we have

e(G)− e(G′) = en − en−1 =
⌊n

2

⌋

+

{

0 if n ≡ 0, 1, 2 (mod 4),

1 if n ≡ 3 (mod 4).
(2)

We have the following result for the Turán function ex(n, gem4).

Theorem 2.1. For n ≥ 6, we have

ex(n, gem4) = en =

⌊

n2

4

⌋

+
⌊n

4

⌋

+

{

0 if n ≡ 0, 1, 2 (mod 4),

1 if n ≡ 3 (mod 4).

Moreover, the only gem4-free graphs with n vertices and ex(n, gem4) edges are

the members of Fn,4.

We will prove Theorem 2.1 by induction on n. We first prove the base case
as follows.

Lemma 2.2. ex(6, gem4) = e6 = 10 and the only gem4-free graphs with six

vertices and 10 edges are G21
6 and G22

6 .

Proof. It suffices to prove that, for any graph G with six vertices and e6 = 10
edges, either G contains a copy of the graph gem4, or G ∈ F6,4 = {G21

6 , G22
6 }.

Then for any graph G′ with six vertices and e(G′) ≥ 11, we can take a spanning
subgraph G ⊂ G′ with e(G) = e6 = 10, so that either G contains a copy of gem4,
or G ∈ F6,4. In either case, G′ contains a copy of gem4 and we are done.
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Let G be a graph with six vertices and e6 = 10 edges. Note that G has
either a vertex of degree 5, or two vertices of degree 4. Otherwise, we have
e(G) ≤

⌊

1

2
(4 + 5 · 3)

⌋

= 9 < 10 = e6, a contradiction.

Suppose first that G has a vertex u with deg(u) = 5. By Theorem 1.1, we
have ex(5, P4) =

(

3

2

)

+
(

2

2

)

= 4. We have e(G− u) = 10− 5 = 5 > 4 = ex(5, P4),
and thus G − u contains a copy of the path P4, which together with u, form a
copy of gem4 in G.

Now, suppose that G has two vertices of degree 4, say u and v. Let x1, x2, x3,
x4 be the remaining four vertices, and assume that G does not contain a copy of
gem4. Suppose first that uv ∈ E(G). If u and v have three common neighbours,
say x1, x2, x3, then we must have xix4 ∈ E(G) for i = 1, 2, 3, so that G = G21

6 .
If u and v have two common neighbours, say x1, x2, then let ux3, vx4 ∈ E(G)
and ux4, vx3 6∈ E(G). We see that only the edges x1x2, x3x4 can be added to
avoid creating a copy of gem4, so that G can only have at most nine edges,
a contradiction. Now, suppose that uv 6∈ E(G). Then G contains all edges
between {u, v} and {x1, x2, x3, x4}. If G does not contain a copy of gem4, then
the remaining two edges must be independent within {x1, x2, x3, x4}, so that
G = G22

6 .

We conclude that either G contains a copy of gem4, or G ∈ F6,4, as required.

We are now able to prove Theorem 2.1.

Proof of Theorem 2.1. Let n ≥ 6. The lower bound ex(n, gem4) ≥ en fol-
lows instantly by considering any graph of Fn,4. We prove the upper bound
ex(n, gem4) ≤ en by induction on n. Lemma 2.2 proves the result for n = 6. Now
suppose that n ≥ 7, and the theorem holds for n− 1. We will prove that if G is a
graph on n vertices and e(G) = en, then either G contains a copy of gem4, or G is
one of the graphs of Fn,4. This clearly implies the upper bound ex(n, gem4) ≤ en,
and thus the theorem for n. Indeed, if we have a graph G′ with n vertices and
e(G′) > en, then by taking a spanning subgraph G ⊂ G′ with e(G) = en, we see
that either G contains a copy of gem4, or G ∈ Fn,4. In either case, G′ contains a
copy of gem4.

First, suppose that δ(G) ≤
⌊

n
2

⌋

and let v ∈ V (G) be a vertex of minimum
degree. Then by (2), we have

e(G− v) = e(G)− deg(v) ≥ en −
⌊n

2

⌋

≥ en−1.(3)

If e(G−v) > en−1, then by induction, G−v, and thus G, contains a copy of gem4.
Next, e(G − v) = en−1 holds if and only if deg(v) =

⌊

n
2

⌋

and en − en−1 =
⌊

n
2

⌋

.
The latter condition holds for n 6≡ 3 (mod 4). By induction, either G − v, and
thus G, contains a copy of gem4 and we are done, or G − v ∈ Fn−1,4, and we
must consider the following cases.
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Case 1. n ≡ 0 (mod 4). We have G − v = G3
n−1 with classes A3

n−1 and
B3

n−1, where |A3
n−1| =

n
2
− 1 and |B3

n−1| =
n
2
, and B3

n−1 containing a perfect
matching. Since deg(v) = n

2
, if N(v) = B3

n−1, then G = G0
n. Otherwise, if v has

neighbours c ∈ A3
n−1 and u ∈ B3

n−1, then abcv + u is a copy of gem4 in G, where
a ∈ A3

n−1 \ {c} and b ∈ B3
n−1 is the vertex adjacent to u.

Case 2. n ≡ 1 (mod 4). We have G− v = G0
n−1 with classes A0

n−1 and B0
n−1,

where |A0
n−1| = |B0

n−1| =
n−1

2
, with B0

n−1 containing a perfect matching. Since
deg(v) = n−1

2
, it follows that if N(v) = B0

n−1 then G = G11
n , and if N(v) = A0

n−1

then G = G12
n . Otherwise, v has a neighbour in both A0

n−1 and B0
n−1, so that as

in Case 1, G contains a copy of gem4.

Case 3. n ≡ 2 (mod 4). We have G− v ∈
{

G11
n−1, G

12
n−1

}

. Suppose first that
G−v = G11

n−1. Then the classes of G−v are A11
n−1 and B11

n−1, where |A
11
n−1| =

n
2
−1

and |B11
n−1| =

n
2
, with A11

n−1 containing a perfect matching. Since deg(v) = n
2
, it

follows that if N(v) = B11
n−1, then G = G21

n . Otherwise, v has a neighbour in both
A11

n−1 and B11
n−1, and G contains a copy of gem4 as in Case 1. Now suppose that

G− v = G12
n−1. Then the classes are A12

n−1 and B12
n−1, where |A12

n−1| =
n
2
− 1 and

|B12
n−1| =

n
2
, with B12

n−1 containing a maximum matching with one unmatched
vertex, say w. Since deg(v) = n

2
, it follows that if N(v) = B12

n−1 then again
G = G21

n , and if N(v) = A12
n−1∪{w} then G = G22

n . Otherwise, v has a neighbour
in both A12

n−1 and B12
n−1 \{w}, and again as in Case 1, G contains a copy of gem4.

Next, suppose that δ(G) ≥
⌊

n
2

⌋

+ 1. In view of (1), if n is even, then we
have e(G) ≥ n

2
(n
2
+ 1) > en. If n ≡ 1 (mod 4), then e(G) ≥

⌈

n
2

(⌊

n
2

⌋

+ 1
)⌉

=
⌊

n2

4

⌋

+
⌊

n
4

⌋

+ 1 > en. We have a contradiction in these cases. Now let n ≡ 3

(mod 4). We have e(G) ≥
⌈

n
2

(⌊

n
2

⌋

+ 1
)⌉

=
⌊

n2

4

⌋

+
⌊

n
4

⌋

+ 1 = en. We must have

equality, and thus G is a
(⌊

n
2

⌋

+ 1
)

-regular graph. Let v ∈ V (G), so that by (2)

e(G− v) = e(G)− deg(v) = en −
(⌊n

2

⌋

+ 1
)

= en−1.(4)

By induction, either G − v, and thus G, contains a copy of gem4, or G − v ∈
Fn−1,4. If the latter holds, then G − v ∈

{

G21
n−1, G

22
n−1

}

. Suppose first that
G − v = G21

n−1. The classes are A21
n−1 and B21

n−1, where |A21
n−1| = |B21

n−1| =
n−1

2
,

with B21
n−1 containing a maximum matching with one unmatched vertex, say w.

Since deg(v) = n−1

2
+ 1, in order for G to be

(⌊

n
2

⌋

+ 1
)

-regular, we must have
N(v) = A21

n−1 ∪ {w}. This gives G = G3
n. Now, suppose that G − v = G22

n−1.
The classes are A22

n−1 and B22
n−1, where |A22

n−1| =
n−1

2
− 1 and |B22

n−1| =
n−1

2
+ 1,

with B22
n−1 containing a perfect matching. Again since G is

(⌊

n
2

⌋

+ 1
)

-regular, we
must have N(v) = B22

n−1, and this also implies G = G3
n.

This completes the proof of Theorem 2.1.
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2.2. Turán function for gem5

We will next determine the function ex(n, gem5). Analogously, we first define
the family of graphs Fn,5, which will consist of all the extremal graphs. Let
n ≥ 8 and Fn,5 be the family of graphs on n vertices as follows. For n ≥ 11,
we let Fn,5 = Fn,4. For n = 8, 9, 10, the family Fn,5 will consist of all graphs
of Fn,4 and some additional graphs. Let G′

n be the graph obtained by adding
one edge into each class of T2(n). Also for n = 8, let G′′

8 be the graph obtained
by embedding two vertex-disjoint triangles into the larger class of the complete
bipartite graph K2,6. For n = 9, let G′′

9 be the graph obtained by taking G′
8 and

joining another vertex to the four unmatched vertices within the classes of G′
8.

As before, let A′
8 and B′

8 be the classes of G
′
8, with similar notations for the other

graphs. Figure 3 below shows these additional graphs. Let F8,5 = {G0
8, G

′
8, G

′′
8},

F9,5 = {G11
9 , G12

9 , G′
9, G

′′
9}, and F10,5 = {G21

10, G
22
10, G

′
10}.
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Figure 3. The additional graphs in Fn,5 for n = 8, 9, 10.

Note that every graph of Fn,5 is gem5-free. Indeed, let G ∈ Fn,5. If G 6∈
{G′

8, G
′′
8, G

′
9, G

′′
9, G

′
10}, then G is gem4-free as before, so that G is gem5-free.

Suppose that G ∈ {G′
8, G

′′
8, G

′
9, G

′′
9, G

′
10} and G contains a copy of gem5, say

abcde+ u. It is easy to check that in each choice for G, whichever vertex of G is
chosen for u, we have that u does not have five neighbours that form a path P5

in G. This is a contradiction.
Also, by adding an edge to any graph of Fn,5, we obtain a graph that contains

a copy of gem5. To see this, let G ∈ Fn,5. Suppose first that G 6∈ {G′
8, G

′′
8, G

′
9,

G′′
9, G

′
10}. Then similar to before, since n ≥ 8, it follows that if an edge cu is

added to the independent class of G, then we can find two independent edges
ab, de in the other class. If an edge bu is added to the class of G containing the
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maximum matching, then we may assume that du is an edge in the matching,
and choose vertices a, c, e in the other class. In both cases, we have abcde+ u is
a copy of gem5. Next, the case G ∈ {G′

8, G
′
9, G

′
10} can be considered similarly,

according to whether or not the added edge is incident with an edge within a
class of G. Now, consider G = G′′

8. If the edge bu is added into A′′
8, then let cde

be a triangle and a be another vertex in B′′
8 . If an edge is added into B′′

8 , then
there exists a path abcde of order 5 in B′′

8 , and we let u ∈ A′′
8. In both cases,

abcde+ u is a copy of gem5. Finally, consider G = G′′
9. Since G′′

9 contains G′
8 as

a subgraph on A′′
9 ∪ B′′

9 , it follows that if an edge is added into A′′
9 or B′′

9 , then
we have a copy of gem5. Thus, we may assume that the edge au is added to G′′

9,
where a is an end-vertex of the edge in A′′

9, and u is the vertex outside of A′′
9∪B′′

9 .
Then if c, e ∈ A′′

9 and b, d ∈ B′′
9 are the neighbours of u in G′′

9, we have abcde+ u

is a copy of gem5.

We can easily check that for n ≥ 8, all graphs of Fn,5 have the same number
of edges, which is also the same as the number of edges in any graph of Fn,4.
Thus, we may also let en denote the number of edges in any graph of Fn,5. Then,
equations (1) and (2) remain true. That is, for G ∈ Fn,5, we have

e(G) = en =

⌊

n2

4

⌋

+
⌊n

4

⌋

+

{

0 if n ≡ 0, 1, 2 (mod 4),
1 if n ≡ 3 (mod 4),

(5)

and for n ≥ 9, G ∈ Fn,5 and G′ ∈ Fn−1,5, we have

e(G)− e(G′) = en − en−1 =
⌊n

2

⌋

+

{

0 if n ≡ 0, 1, 2 (mod 4),
1 if n ≡ 3 (mod 4).

(6)

We have the following result for the Turán function ex(n, gem5).

Theorem 2.3. For n ≥ 8, we have

ex(n, gem5) = en =

⌊

n2

4

⌋

+
⌊n

4

⌋

+

{

0 if n ≡ 0, 1, 2 (mod 4),
1 if n ≡ 3 (mod 4).

Moreover, the only gem5-free graphs with n vertices and ex(n, gem5) edges are

the members of Fn,5.

As before, Theorem 2.3 will be proved by induction on n. We first prove the
base case, which will involve a bit more of case analysis than in Lemma 2.2.

Lemma 2.4. ex(8, gem5) = e8 = 18 and the only gem5-free graphs with eight

vertices and 18 edges are G0
8, G

′
8 and G′′

8.

To prove Lemma 2.4, the following lemma will be useful.
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Lemma 2.5. Let H be a graph with vertex set A ∪ B, where A = {x, y} and

B = {z1, z2, z3, z4}. Suppose that xy, xz4 ∈ E(H), and H also contains all edges

between {x, y} and {z1, z2, z3}. Suppose that H[B] contains two edges f1, f2, and

either z4 belongs to at least one of f1, f2, or yz4 ∈ E(H). Then H contains a

copy of gem5.

Proof. First, if z4 belongs to one of f1, f2, then we may assume that either
f1 = z1z2, f2 = z3z4 or f1 = z1z2, f2 = z2z4 or f1 = z1z4, f2 = z2z4. Then
z1z2yz3z4+x or z3yz1z2z4+x or z3yz1z4z2+x is a copy of gem5 in H, respectively.

Next, if yz4 ∈ E(H) and z4 does not belong to f1 and f2, then we may assume
that f1 = z1z2 and f2 = z2z3. Then z1z2z3yz4 + x is a copy of gem5 in H.

Proof of Lemma 2.4. Let G be a graph with eight vertices and e8 = 18 edges.
As in Lemma 2.2, it suffices to prove that either G contains a copy of gem5, or
G ∈ F8,5 = {G0

8, G
′
8, G

′′
8}. Let ∆ = ∆(G) be the maximum degree of G. Note

that 5 ≤ ∆ ≤ 7, otherwise if ∆ ≤ 4, then e(G) ≤
⌊

1

2
· 8 · 4

⌋

= 16 < 18 = e8, a
contradiction. Let d1 ≥ d2 ≥ · · · ≥ d8 be the degree sequence of G. Let u ∈ V (G)
be a vertex of maximum degree, so that deg(u) = ∆ = d1. We consider three
cases according to the value of ∆.

Case 1. ∆ = 7. By Theorem 1.1, we have ex(7, P5) =
(

4

2

)

+
(

3

2

)

= 9. Thus
e(G − u) = 18 − 7 = 11 > 9 = ex(7, P5), and there exists a copy of the path P5

in G− u, which together with u, form a copy of gem5 in G.

Case 2. ∆ = 6. Let v ∈ V (G) \ {u} be a vertex with deg(v) = d2. Note
that deg(v) = 6 or deg(v) = 5, otherwise e(G) ≤

⌊

1

2
(6 + 7 · 4)

⌋

= 17 < 18 = e8,
a contradiction.

Subcase 2.1. deg(v) = 6. Suppose first that uv 6∈ E(G). We have e(G −
{u, v}) = 18 − 2 · 6 = 6. If there exists x ∈ V (G) \ {u, v} with at least three
neighbours in V (G) \ {u, v, x}, say x1, x2, x3, then x1ux2vx3 + x is a copy of
gem5 in G. Otherwise, since e(G − {u, v}) = 6, we see that every vertex of
V (G) \ {u, v} must have exactly two neighbours in V (G) \ {u, v}, and thus, the
subgraph G−{u, v} must be either C6 or two vertex-disjoint copies of C3. If the
former, then there is a copy of P5 in G − {u, v}, which together with u, form a
copy of gem5. If the latter, then G = G′′

8.

Now, suppose that uv ∈ E(G). Observe first that u and v have at least
four common neighbours in V (G) \ {u, v}. If G[N(u) \ {v}] contains two edges,
then Lemma 2.5 implies that G contains a copy of gem5. Otherwise, we may
assume that G[N(u) \ {v}] contains at most one edge. If y is the vertex not
adjacent to u in G, then y has at most five neighbours in N(u) \ {v}. Therefore,
we have e(G − {u, v}) ≤ 1 + 5 = 6. This is a contradiction, since we have
e(G− {u, v}) = 18− 1− 2 · 5 = 7.
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Subcase 2.2. deg(v) = 5. Let w ∈ V (G)\{u, v} be a vertex with deg(w) = d3.
Note that deg(w) = 5, otherwise, e(G) ≤

⌊

1

2
(6 + 5 + 6 · 4)

⌋

= 17 < 18 = e8.
Thus, without loss of generality, we may assume uv ∈ E(G), so that e(G −
{u, v}) = 18− 1− 5− 4 = 8. Let y be the vertex not adjacent to u. Suppose that
G does not contain a copy of gem5.

Let vy 6∈ E(G). Then v has exactly four neighbours in N(u) \ {v}, and by
Lemma 2.5, G[N(u) \ {v}] contains at most one edge, so that e(G− {u, v}) ≤ 6,
a contradiction.

Now let vy ∈ E(G). Let x1, x2, x3 be the common neighbours of u and v, and
z1, z2 be the remaining two vertices, so that uz1, uz2 ∈ E(G) and vz1, vz2 6∈ E(G).
Again by Lemma 2.5, each of y, z1, z2 has at most one neighbour in {x1, x2, x3}.
If there are no edges between {y, z1, z2} and {x1, x2, x3}, then e(G − {u, v}) ≤
6, a contradiction. Otherwise, if there exists an edge between {y, z1, z2} and
{x1, x2, x3}, then by Lemma 2.5, there are no edges in G[{x1, x2, x3}]. Since
there are at most three edges in G[{y, z1, z2}] and at most three edges between
{y, z1, z2} and {x1, x2, x3}, we have e(G− {u, v}) ≤ 6, another contradiction.

Case 3. ∆ = 5. We have d1 = d2 = d3 = d4 = ∆ = 5, otherwise, e(G) ≤
⌊

1

2
(3 · 5 + 5 · 4)

⌋

= 17 < 18 = e8. This means that, we may assume there exists
v ∈ V (G) \ {u} with deg(v) = 5 and uv ∈ E(G), so that e(G − {u, v}) =
18 − 1 − 2 · 4 = 9. If G contains a copy of gem5, then we are done, so assume
otherwise.

Suppose first that u and v have four common neighbours, say x1, x2, x3, x4.
Let y1, y2 be the remaining two vertices. By Lemma 2.5, G[{x1, x2, x3, x4}] con-
tains at most one edge. If there is exactly one edge, say x1x2 ∈ E(G), then there
are 10 edges already in G. The edges between {y1, y2} and {x1, x2, x3, x4}, as
well as y1y2, may possibly be present, and since e(G) = 18, exactly one of these
nine edges is not present. Suppose first that y1y2 ∈ E(G). We may assume that
y1x1, y1x2, y2x1 ∈ E(G), but then uvx2y1y2 + x1 is a copy of gem5. Otherwise,
if y1y2 6∈ E(G), then we have G = G′

8. Finally, if there does not exist an edge
in G[{x1, x2, x3, x4}], then a similar edge count shows that G contains all edges
between {y1, y2} and {x1, x2, x3, x4}, as well as y1y2. This gives G = G0

8.

Next, suppose that u and v have three common neighbours, say x1, x2, x3. Let
y, z1, z2 be the remaining vertices, where uz1, vz2 ∈ E(G) and uy, vy, uz2, vz1 6∈
E(G). By Lemma 2.5, each of z1, z2 has at most one neighbour in {x1, x2, x3}.
If there exists an edge between {z1, z2} and {x1, x2, x3}, then again by Lemma
2.5, there are no edges in G[{x1, x2, x3}]. Since there are at most three edges
in G[{y, z1, z2}], and at most five edges between {y, z1, z2} and {x1, x2, x3}, we
have e(G − {u, v}) ≤ 8, a contradiction. Otherwise, suppose that there are no
edges between {z1, z2} and {x1, x2, x3}. Then we have deg(zi) ≤ 3 for i = 1, 2.
This implies that the remaining six vertices must each have degree 5, otherwise
e(G) ≤

⌊

1

2
(5 · 5 + 4 + 2 · 3)

⌋

= 17 < 18 = e8. In particular, we have xixj ∈ E(G)



Turán Function and H-Decomposition Problem for Gem Graphs 729

for 1 ≤ i 6= j ≤ 3 and yxi ∈ E(G) for i = 1, 2, 3. But then uvx2x3y+x1 is a copy
of gem5.

Finally, suppose that u and v have two common neighbours, say x1, x2.
Let y1, y2, z1, z2 be the remaining vertices, where uy1, uy2, vz1, vz2 ∈ E(G) and
uz1, uz2, vy1, vy2 6∈ E(G). Suppose first that there are at most two edges in
G[{x1, x2, y1, y2}], and at most two edges in G[{x1, x2, z1, z2}]. Since there are
at most four edges between {y1, y2} and {z1, z2}, we have e(G − {u, v}) ≤
2 · 2 + 4 = 8, a contradiction. Now, suppose that there are at least three
edges in G[{x1, x2, y1, y2}]. If x1y1, y1y2 ∈ E(G) or x1y1, x2y2 ∈ E(G), then
x2vx1y1y2 + u or y1x1vx2y2 + u is a copy of gem5. Thus, we may assume that
x1x2, x1y1, x2y1 ∈ E(G) and x1y2, x2y2, y1y2 6∈ E(G). If there are at most two
edges in G[{x1, x2, z1, z2}], including x1x2, then since there are at most four edges
between {y1, y2} and {z1, z2}, we have e(G−{u, v}) ≤ 3+1+4 = 8, a contradic-
tion. Thus, there are at least three edges in G[{x1, x2, z1, z2}], and by similarly
considering the edges inG[{x1, x2, z1, z2}], we may assume that x1z1, x2z1 ∈ E(G)
and x1z2, x2z2, z1z2 6∈ E(G). But now, y1ux2vz1 + x1 is a copy of gem5.

Therefore, we conclude that either G contains a copy of gem5, or G ∈ F8,5.
This completes the proof of Lemma 2.4.

We are now able to prove Theorem 2.3. The proof is generally similar to that
of Theorem 2.1 but with a little more case analysis.

Proof of Theorem 2.3. Let n ≥ 8. Again, the lower bound ex(n, gem5) ≥ en
follows by considering any graph of Fn,5. We prove the upper bound ex(n, gem5) ≤
en by induction on n. Lemma 2.4 proves the result for n = 8. Now suppose that
n ≥ 9, and the theorem holds for n− 1. As before, it suffices to prove that if G
is a graph on n vertices and e(G) = en, then either G contains a copy of gem5,
or G ∈ Fn,5.

First, suppose that δ(G) ≤
⌊

n
2

⌋

and let v ∈ V (G) be a vertex of minimum
degree. Then exactly as in (3), we have e(G − v) ≥ en−1. Again we are done
unless e(G − v) = en−1, whence deg(v) =

⌊

n
2

⌋

and en − en−1 =
⌊

n
2

⌋

, and n 6≡ 3
(mod 4). By induction, either G − v, and thus G, contains a copy of gem5 and
we are done, or G− v ∈ Fn−1,5, and we must consider the following cases.

Case 1. n ≡ 0 (mod 4). We have G − v = G3
n−1 with classes A3

n−1 and
B3

n−1, where |A3
n−1| =

n
2
− 1 and |B3

n−1| =
n
2
, and B3

n−1 containing a perfect
matching. We have deg(v) = n

2
. If N(v) = B3

n−1, then G = G0
n. Otherwise, if v

has neighbours c, d ∈ A3
n−1 and u ∈ B3

n−1, then abcvd+u is a copy of gem5 in G,
where a ∈ A3

n−1 \{c, d} and b ∈ B3
n−1 is the vertex adjacent to u. If v has exactly

one neighbour u ∈ A3
n−1, then since |B3

n−1| =
n
2
> 4, we can find a, b, c, d ∈ B3

n−1

such that ab, cd, bv, cv ∈ E(G). We have abvcd+ u is a copy of gem5 in G.
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Case 2. n ≡ 1 (mod 4). If n ≥ 13, we have G− v = G0
n−1. If n = 9, we have

G− v ∈ {G0
8, G

′
8, G

′′
8}.

Subcase 2.1. n ≥ 9 and G − v = G0
n−1. The classes of G − v are A0

n−1 and
B0

n−1. Since |B0
n−1| =

n−1

2
≥ 4, this subcase can be considered by combining the

arguments used in Case 2 of Theorem 2.1 and in Case 1 above. We find that
either G contains a copy of gem5, or G ∈ {G11

n , G12
n }.

Subcase 2.2. n = 9 and G − v ∈ {G′
8, G

′′
8}. Suppose first that G − v = G′

8,
so that the classes of G − v are A′

8 and B′
8 with |A′

8| = |B′
8| = 4, and each class

containing one edge, say cu and ab are the edges in A′
8 and B′

8. We have deg(v) =
4. If N(v) = A′

8 or N(v) = B′
8, then G = G′

9, and if N(v) = (A′
8∪B

′
8)\{a, b, c, u},

then G = G′′
9. Otherwise, let d ∈ B′

8 \ {a, b}. We may assume that uv ∈ E(G),
and either av ∈ E(G) or dv ∈ E(G). Then vabcd + u or abcdv + u is a copy of
gem5.

Now, suppose that G − v = G′′
8. The classes of G − v are A′′

8 and B′′
8 with

|A′′
8| = 2, |B′′

8 | = 6, and there are two vertex-disjoint triangles embedded into
B′′

8 . Let A
′′
8 = {b, d} and acu be one of the triangles in B′′

8 . We have deg(v) = 4.
If bv, dv ∈ E(G), then we may assume that uv ∈ E(G). We have abcdv + u is
a copy of gem5. Otherwise, v has at least three neighbours in B′′

8 , and we may
assume that av, uv ∈ E(G). Then vabcd+ u is a copy of gem5.

Case 3. n ≡ 2 (mod 4). If n ≥ 14, then we have G − v ∈ {G11
n−1, G

12
n−1}. If

n = 10, then we have G− v ∈ {G11
9 , G12

9 , G′
9, G

′′
9}.

Subcase 3.1. n ≥ 10 and G − v ∈ {G11
n−1, G

12
n−1}. If G − v = G11

n−1, then
|A11

n−1| =
n
2
−1 ≥ 4. If G−v = G12

n−1, then G−v has the class B12
n−1 which contains

a maximum matching with an unmatched vertex, say w. We have |B12
n−1 \{w}| =

n
2
− 1 ≥ 4. Since deg(v) = n

2
, this subcase can be considered by combining the

arguments used in Case 3 of Theorem 2.1 and in Case 1 above. We find that
either G contains a copy of gem5, or G ∈ {G21

n , G22
n }.

Subcase 3.2. n = 10 and G − v ∈ {G′
9, G

′′
9}. Suppose first that G − v = G′

9,
so that the classes of G−v are A′

9 and B′
9 with |A′

9| = 4, |B′
9| = 5, and each class

containing one edge. We have deg(v) = 5. If N(v) = B′
9, then G = G′

10. If v has
a neighbour which is incident with the edge in A′

9 or the edge in B′
9, then as in the

argument in the first part of Subcase 2.2, G contains a copy of gem5. Otherwise,
N(v) consists of the five vertices not incident with the two edges within A′

9 and
B′

9. Therefore, if b, d ∈ A′
9 and a, c, e ∈ B′

9 are these five neighbours of v, then
abcde+ v is a copy of gem5.

Now, suppose that G− v = G′′
9. The graph G− v consists of two sets A′′

9 and
B′′

9 where |A′′
9| = |B′′

9 | = 4, with one edge in each set, say f1 in A′′
9 and f2 in B′′

9 ,
and another vertex, say z, joined to the four vertices not incident with f1, f2. Let
b, d ∈ A′′

9 and a, c ∈ B′′
9 be the neighbours of z in G − v. We have deg(v) = 5.
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Again, if v has a neighbour in each of A′′
9 and B′′

9 where at least one is incident
with f1 or f2, then by the argument in Subcase 2.2, G contains a copy of gem5.
Otherwise, we may assume that N(v) = A′′

9 ∪ {z} or N(v) = {a, b, c, d, z}, and
abcdv + z is a copy of gem5.

This concludes the case when δ(G) ≤
⌊

n
2

⌋

.
Next, suppose that δ(G) ≥

⌊

n
2

⌋

+1. Then exactly as in the proof of Theorem
2.1, we must have n ≡ 3 (mod 4), and that G is a

(⌊

n
2

⌋

+ 1
)

-regular graph. Again
for v ∈ V (G), we have e(G−v) = en−1, using exactly the same argument as in (4).
By induction, either G−v, and thus G, contains a copy of gem5, or G−v ∈ Fn−1,5.
If the latter holds, then for n ≥ 15 we have G−v ∈ {G21

n−1, G
22
n−1}, and for n = 11

we have G− v ∈ {G21
10, G

22
10, G

′
10}. If n ≥ 11 and G− v ∈ {G21

n−1, G
22
n−1}, then as

in the proof of Theorem 2.1, the fact that G is a
(⌊

n
2

⌋

+ 1
)

-regular graph implies
that G = G3

n. Otherwise, we have n = 11 and G−v = G′
10. Then G is a 6-regular

graph, which means that N(v) consists of the six vertices not incident with the
two edges within A′

10 and B′
10. Therefore, if a, c, e ∈ A′

10 and b, d ∈ B′
10 are

neighbours of v, then abcde+ v is a copy of gem5.
This completes the proof Theorem 2.3.

3. Decompositions of Graphs Into Gem Graphs and Single Edges

Recall that for a fixed graph H, φ(n,H) denotes the smallest integer φ such that
any graph on n vertices admits an H-decomposition with at most φ parts. In
this section we will verify Pikhurko and Sousa conjecture (Conjecture 1.3) for the
gem graphs gem4 and gem5. That is, we will show that φ(n, gem4) = ex(n, gem4)
for n ≥ 6, and φ(n, gem5) = ex(n, gem5) for n ≥ 8.

3.1. gem4-decompositions

We begin by considering gem4-decompositions, and prove the following result.

Theorem 3.1. For n ≥ 6 we have

φ(n, gem4) = ex(n, gem4).

Moreover, the only graphs attaining ex(n, gem4) are the members of Fn,4.

Proof. Let n ≥ 6. The lower bound φ(n, gem4) ≥ ex(n, gem4) holds by consid-
ering any graph of Fn,4. We prove the matching upper bound. By Theorem 2.1,
we know that ex(n, gem4) = en for n ≥ 6. Let G be a graph on n ≥ 6 vertices.
We must prove that φ(G, gem4) ≤ ex(n, gem4) = en, with equality if and only if
G ∈ Fn,4.

We proceed by induction on n. For n = 6, if e(G) < e6 = 10, then we can
simply decompose G into single edges to obtain φ(G, gem4) < e6. Otherwise, let
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10 = e6 ≤ e(G) ≤ 15. By Theorem 2.1, we either have G ∈ F6,4, or G contains a
copy of gem4. If G ∈ F6,4, then e(G) = e6 = 10 and we must decompose G into
single edges, thus, φ(G, gem4) = e6 as required. If G contains a copy of gem4,
then φ(G, gem4) ≤ 1 + e(G) − e(gem4) ≤ 9 < 10 = e6. Thus, the theorem holds
for n = 6.

Now, let n ≥ 7, and suppose that the theorem holds for n − 1. Let G be
a graph on n vertices. As before, if e(G) < en, then φ(G, gem4) < en, simply
by decomposing G into single edges. If e(G) = en, then by Theorem 2.1, either
G contains a copy of gem4, in which case φ(G, gem4) ≤ 1 + e(G) − e(gem4) =
en − 6 < en, or G ∈ Fn,4, in which case we can only decompose G into en single
edges for a gem4-decomposition, and φ(G, gem4) = en as required.

Now, suppose that e(G) > en, and let v ∈ V (G) be a vertex of minimum
degree. If deg(v) ≤

⌊

n
2

⌋

, then by equation (2) we have e(G−v) = e(G)−deg(v) >
en−

⌊

n
2

⌋

≥ en−1, that is, G−v 6∈ Fn−1,4 and by the induction hypothesis we have

φ(G− v, gem4) < ex(n− 1, gem4) = en−1.

Therefore, when going from G−v to G we only need to use the edges joining v to
the other vertices of G, and there are at most

⌊

n
2

⌋

of these edges at v. We have

φ(G, gem4) ≤ φ(G− v, gem4) + deg(v) < en−1 +
⌊n

2

⌋

≤ en,

as required.
Therefore, we may assume that deg(v) ≥

⌊

n
2

⌋

+ 1 and let deg(v) =
⌊

n
2

⌋

+m

for some integer m ≥ 1. For every x ∈ N(v), we have

deg(x,N(v)) ≥
⌊n

2

⌋

+m−
(

n−
⌊n

2

⌋

−m
)

= 2
⌊n

2

⌋

+ 2m− n ≥ 2m− 1.(7)

This means that G[N(v)] must contain a path P2m on 2m vertices. Otherwise, if
the longest path in G[N(v)] has at most 2m− 1 vertices, say with an end-vertex
y, then all neighbours of y in N(v) must lie in the path, so that deg(y,N(v)) ≤
2m− 2, contradicting (7).

If m ≥ 2, then the path P2m contains
⌊

2m
4

⌋

=
⌊

m
2

⌋

vertex-disjoint paths of
order 4. Thus, we have

⌊

m
2

⌋

edge-disjoint copies of gem4, where each copy is
formed by a path of order 4, together with v. Let F ⊂ G− v be the subgraph of
order n − 1 obtained by deleting the edges of the paths of order 4 from G − v.
By induction and (2), and since m ≥ 2, we have

φ(G, gem4) ≤ φ(F, gem4) +
⌊m

2

⌋

+ deg(v)− 4
⌊m

2

⌋

≤ en−1 +
⌊n

2

⌋

+m− 3
⌊m

2

⌋

< en−1 +
⌊n

2

⌋

≤ en.
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To complete the proof it remains to consider the case m = 1. For this case,
we will repeatedly use the following claim.

Claim 3.2. Suppose that there exists a vertex z ∈ V (G) with deg(z) =
⌊

n
2

⌋

+ 1,
and G has a copy of gem4 with at least three edges incident to z. Then φ(G, gem4)
< en.

Proof. Let F ⊂ G − z be the subgraph on n − 1 vertices obtained from G − z

by deleting the edges of the copy of gem4. By induction and (2), we have

φ(G, gem4) ≤ φ(F, gem4) + 1 + deg(z)− 3 ≤ en−1 +
⌊n

2

⌋

− 1 < en.

We now consider three cases. Let N(v) = V (G)\ (N(v)∪{v}), and note that

|N(v)| =
⌊n

2

⌋

+ 1 ≥ 4 and |N(v)| =
⌈n

2

⌉

− 2 ≥ 2.

Case 1. G[N(v)] contains a path P of order 4. Then P and v form a copy of
gem4, and we have φ(G, gem4) < en by Claim 3.2.

Case 2. The order of the longest path in G[N(v)] is 3. Let x1xx2 be a path
of order 3 in G[N(v)].

Subcase 2.1. x1x2 ∈ E(G). We have deg(x,N(v)) = 2, for otherwise G[N(v)]
would contain a P4. We must have deg(x,N(v)) ≥

⌊

n
2

⌋

+ 1 − 3 ≥ |N(v)| − 1.
Similarly for x1, x2. This implies that two of x, x1, x2 have a common neighbour
in N(v), say y ∈ N(v) is a common neighbour of x, x1. Then x2vx1y + x is a
copy of gem4, and by Claim 3.2 with z = v, we have φ(G, gem4) < en.

Subcase 2.2. x1x2 6∈ E(G). Let N(v) = {x, x1, x2, . . . , x⌊n/2⌋}. For i = 1, 2,
we have deg(xi, N(v)) = 1, and

deg(xi, N(v)) ≥
⌊n

2

⌋

+ 1− 2 ≥
⌈n

2

⌉

− 2 = |N(v)|.(8)

We must have equality to hold throughout, whence n is odd, deg(x1) = deg(x2) =
⌊

n
2

⌋

+1, and both x1, x2 are adjacent to all vertices of N(v). If x has a neighbour
y ∈ N(v), then x1vx2y+x is a copy of gem4, and again φ(G, gem) < en by Claim
3.2 with z = v.

Otherwise, suppose that x does not have a neighbour inN(v). Then deg(x) ≤
|N(v) ∪ {v}| − 1 =

⌊

n
2

⌋

+ 1, so that deg(x) =
⌊

n
2

⌋

+ 1 and xxi ∈ E(G) for all
1 ≤ i ≤

⌊

n
2

⌋

. Moreover, we have xixj 6∈ E(G) for all i 6= j, otherwise there
would exist a copy of P4 in G[N(v)]. By a similar argument as in (8), we have
deg(xi) =

⌊

n
2

⌋

+1, and xi is adjacent to all vertices of N(v) for all 1 ≤ i ≤
⌊

n
2

⌋

. In
order to get a contradiction, suppose that there does not exist a path of order 3



734 H. Liu and T. Sousa

in G[N(v)]. Then the maximum number of edges in G[N(v)] is
⌊

1

2
|N(v)|

⌋

. Recall
that n is odd. We have

e(G) ≤ 2|N(v)| − 1 + (|N(v)| − 1)|N(v)|+

⌊

1

2
|N(v)|

⌋

= 2
⌊n

2

⌋

+ 1 +
⌊n

2

⌋(⌈n

2

⌉

− 2
)

+

⌊

1

2

(⌈n

2

⌉

− 2
)

⌋

=

⌊

n2

4

⌋

+

⌊

n+ 1

4

⌋

= en,

by (1), which contradicts the assumption e(G) > en. Therefore, G[N(v)] must
have a path of order 3, say y1y2y3. Note that |N(v)| = ⌈n

2
⌉ − 2 ≥ 3 and thus

we must have n odd and n ≥ 9. Then, x1y1x2y3 + y2 is a copy of gem4, and by
Claim 3.2 with z = x1, we have φ(G, gem) < en.

Case 3. The longest path in G[N(v)] has order 2. Note that this is indeed
the remaining case, since deg(x,N(v)) ≥ 2m − 1 = 1 for all x ∈ N(v) by (7).
Moreover, N(v) induces a perfect matching in G. Now by a similar argument as
in (8), we must have n odd, and for every x ∈ N(v), we have deg(x) =

⌊

n
2

⌋

+ 1
and x is adjacent to all vertices of N(v). Thus, we can find an edge x1x2 in
G[N(v)] and a common neighbour y ∈ N(v) of x1, x2. Now, since vx2y is a path
of order 3 in G[N(x1)], we are done by applying Case 1 or Case 2 with x1 in place
of v.

The induction step is complete, and this completes the proof of Theorem 3.1.

3.2. gem5-decompositions

By using the same ideas as in the proof of Theorem 3.1, but with more case
analysis, we will be able to prove a similar result for gem5-decompositions. That
is, we will prove the following theorem.

Theorem 3.3. For n ≥ 8 we have

φ(n, gem5) = ex(n, gem5).

Moreover, the only graphs attaining ex(n, gem5) are the members of Fn,5.

Proof. Let n ≥ 8. As before, we have φ(n, gem5) ≥ ex(n, gem5) by considering
any graph of Fn,5. By Theorem 2.3, to prove the matching upper bound, we must
prove that if G is a graph on n ≥ 8 vertices, then φ(G, gem5) ≤ ex(n, gem5) = en,
with equality if and only if G ∈ Fn,5.

We proceed by induction on n. For n = 8, if e(G) < e8 = 18, then we
can simply decompose G into single edges to obtain φ(G, gem4) < e8. Next,
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suppose that 18 = e8 ≤ e(G) ≤ 25. By Theorem 2.3, we either have G ∈ F8,5,
or G contains a copy of gem5. If G ∈ F8,5, then e(G) = e8 = 18 and we must
decompose G into single edges, and φ(G, gem5) = e8. If G contains a copy of
gem5, then φ(G, gem5) ≤ 1 + e(G) − e(gem5) ≤ 17 < 18 = e8. Finally, suppose
that 26 ≤ e(G) ≤ 28. Clearly, there exist two vertices x, y ∈ V (G) of degree 7,
so that e(G − {x, y}) ≥ 26 − 1 − 2 · 6 = 13. Since ex(6, P5) =

(

4

2

)

+
(

2

2

)

= 7
by Theorem 1.1, this means that we can find two edge-disjoint copies of P5 in
G−{x, y}. These two copies of P5, together with x and y, form two edge-disjoint
copies of gem5 in G. Thus, φ(G, gem5) ≤ 2 + e(G) − 2e(gem5) ≤ 12 < 18 = e8.
The theorem holds for n = 8.

Now, let n ≥ 9, and suppose that the theorem holds for n − 1. Let G be
a graph on n vertices. As before, if e(G) < en, then φ(G, gem5) < en, simply
by decomposing G into single edges. If e(G) = en, then by Theorem 2.3, either
G contains a copy of gem5, in which case φ(G, gem5) ≤ 1 + e(G) − e(gem5) =
en − 8 < en, or G ∈ Fn,5, in which case we can only decompose G into en single
edges for a gem5-decomposition, and φ(G, gem5) = en as required.

Now, suppose that e(G) > en, and let v ∈ V (G) be a vertex of minimum
degree. If deg(v) ≤

⌊

n
2

⌋

, then by equation (6), we have e(G − v) = e(G) −
deg(v) > en −

⌊

n
2

⌋

≥ en−1, that is, G − v 6∈ Fn−1,5. By induction, we have
φ(G− v, gem5) < ex(n− 1, gem5) = en−1. Thus, when going from G− v to G we
only need to use the edges joining v to the other vertices of G. We have

φ(G, gem5) ≤ φ(G− v, gem5) + deg(v) < en−1 +
⌊n

2

⌋

≤ en.

Therefore, we may assume that deg(v) ≥
⌊

n
2

⌋

+1 and let deg(v) =
⌊

n
2

⌋

+m for
some integerm ≥ 1. As in (7), for every x ∈ N(v), we have deg(x,N(v)) ≥ 2m−1,
and that G[N(v)] must contain a path P2m on 2m vertices.

If m ≥ 3, then the path P2m contains
⌊

2m
5

⌋

vertex-disjoint paths of order 5.
Thus, we have

⌊

2m
5

⌋

edge-disjoint copies of gem5, where each copy is formed by
a path of order 5, together with v. Let F ⊂ G− v be the subgraph of order n− 1
obtained by deleting the edges of the paths of order 5 from G− v. By induction
and (6), and since m ≥ 3, we have

φ(G, gem5) ≤ φ(F, gem5) +

⌊

2m

5

⌋

+ deg(v)− 5

⌊

2m

5

⌋

≤ en−1 +
⌊n

2

⌋

+m− 4

⌊

2m

5

⌋

< en−1 +
⌊n

2

⌋

≤ en.

For the rest of the proof, let N(v) = V (G) \ (N(v) ∪ {v}). Next, suppose
that m = 2, so that |N(v)| =

⌊

n
2

⌋

+ 2 ≥ 6 and |N(v)| = ⌈n
2
⌉ − 3 ≥ 2. If G[N(v)]

contains a path P5 of order 5, then this path together with v form a copy of gem5.
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Let F ⊂ G− v be the subgraph of order n− 1, obtained by deleting the edges of
the P5. Then,

φ(G, gem5) ≤ φ(F, gem5) + 1 + deg(v)− 5 ≤ en−1 +
⌊n

2

⌋

+ 2− 4 < en.

Therefore, we may assume that the longest path in G[N(v)] has order 4. Let
x1x2x3x4 be such a path in G[N(v)]. Since deg(x1, N(v)) ≥ 2 · 2 − 1 = 3, we
must have x1x3, x1x4 ∈ E(G). Moreover, the only neighbours of x1 in N(v) are
x2, x3, x4, so that

deg(x1, N(v)) ≥
⌊n

2

⌋

+ 2− 4 ≥
⌈n

2

⌉

− 3 = |N(v)|.

We must have equality, so that n is odd, deg(x1) =
⌊

n
2

⌋

+ 2, and x1 is adjacent
to every vertex of N(v). The same argument holds for x4, so that x1, x4 have
a common neighbour y ∈ N(v). Now, since vx2x3x4y is a path of order 5 in
G[N(x1)], we are done by applying the previous argument with x1 in place of v.

To complete the proof it remains to consider the case m = 1. As before, we
will repeatedly use the following claim which is analogous to Claim 3.2.

Claim 3.4. Suppose that there exists a vertex z ∈ V (G) with deg(z) =
⌊

n
2

⌋

+ 1,
and G has a copy of gem5 with at least three edges incident to z. Then φ(G, gem5)
< en.

Proof. Exactly the same as the proof of Claim 3.2.

We now consider four cases. Note that we have

|N(v)| =
⌊n

2

⌋

+ 1 ≥ 5 and |N(v)| =
⌈n

2

⌉

− 2 ≥ 3.

Case 1. G[N(v)] contains a path P of order 5. Then P and v form a copy of
gem5, and we have φ(G, gem5) < en by Claim 3.4.

Case 2. The order of the longest path in G[N(v)] is 4. Let x1x2x3x4 be such
a path in G[N(v)]. It suffices to consider the following subcases.

Subcase 2.1. x1x3, x1x4 ∈ E(G). For i = 1, 2, 3, 4, xi does not have a
neighbour in N(v) \ {x1, x2, x3, x4}, so that deg(xi, N(v)) ≤ 3. Thus,

deg(xi, N(v)) ≥
⌊n

2

⌋

+ 1− 4 ≥
⌈n

2

⌉

− 4 = |N(v)| − 2.(9)

If x2x4 6∈ E(G), then we have deg(xj , N(v)) = 2, and deg(xj , N(v)) ≥ |N(v)| − 1
for j = 2, 4. With (9), this implies that either x1, x2 or x2, x3 or x1, x3, have a
common neighbour y ∈ N(v). Then, either x4vx3x2y + x1; or x4vx1x2y + x3;
or x4vx2x3y + x1, is a copy of gem5, respectively. By Claim 3.4 with z = v, we
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have φ(G, gem5) < en. Now, if x2x4 ∈ E(G), then by (9), two of x1, x2, x3, x4
have a common neighbour in N(v). We may assume that x1, x2 have a common
neighbour y ∈ N(v). Then we have φ(G, gem5) < en by the same argument.

Subcase 2.2. x1x3 ∈ E(G) and x1x4, x2x4 6∈ E(G). We see that x3 is the
only neighbour of x4 in N(v), so that

deg(x4, N(v)) ≥
⌊n

2

⌋

+ 1− 2 ≥
⌈n

2

⌉

− 2 = |N(v)|.

We must have equality throughout, so that deg(x4) =
⌊

n
2

⌋

+ 1 and n is odd.
Moreover, x4 is adjacent to every vertex of N(v). If x3 has a neighbour y ∈ N(v),
then x1x2vx4y + x3 is a copy of gem5, and we have φ(G, gem5) < en by Claim
3.4 with z = v. Now suppose that x3 does not have a neighbour in N(v). Let
x5, x6, . . . , x⌊n/2⌋+1 be the remaining vertices of N(v). Then deg(x3) ≥

⌊

n
2

⌋

+ 1
implies that x3xi ∈ E(G) for every i ≥ 5. Moreover, we have x1xi, x2xi 6∈ E(G)
for all i ≥ 5, otherwise we are in Subcase 2.1. This means that deg(xi) =

⌊

n
2

⌋

+1
and xi is adjacent to every vertex of N(v) for all i ≥ 4. Also, note that for
i = 1, 2,

deg(xi, N(v)) ≥
⌊n

2

⌋

+ 1− 3 =
⌈n

2

⌉

− 3 = |N(v)| − 1.

Suppose first that G[N(v)] contains a path of order 3, say y1y2y3. If n ≥ 11
so that |N(v)| =

⌊

n
2

⌋

+ 1 ≥ 6, then x4y1x5y3x6 + y2 is a copy of gem5, and
we have φ(G, gem5) < en by Claim 3.4 with z = x5. Now let n = 9, and
suppose that x1y1, x1y2 ∈ E(G). Then x1y1x4y3x5 + y2 is a copy of gem5, and
we have φ(G, gem5) < en by Claim 3.4 with z = x4. Thus, we may assume that
x1y1, x1y3, x2y1, x2y3 ∈ E(G) and x1y2, x2y2 6∈ E(G). It is easy to check that
G is the graph G′′

9 with A′′
9 = {x1, x2, x4, x5}, B

′′
9 = {v, x3, y1, y3}, and y2 is the

remaining vertex, so that φ(G, gem5) = e9 = ex(9, gem5).

Now, suppose that G[N(v)] contains an edge, say y1y2. If x1 is adjacent to
every vertex in N(v), then we may assume that x2y1 ∈ E(G). Then x3vx2y1y2+
x1 is a copy of gem5, and we have φ(G, gem5) < en by Claim 3.4 with z = v.
Thus we may assume that x1 and x2 are not adjacent to exactly one vertex in
N(v). Since there are at most |N(v)| edges in G[N(v)] and at most

⌊

1

2
|N(v)|

⌋

edges in G[N(v)], we have

e(G) ≤ 2|N(v)|+ 2(|N(v)| − 1) + (|N(v)| − 3)|N(v)|+

⌊

1

2
|N(v)|

⌋

= 2n− 4 +
(⌊n

2

⌋

− 2
)(⌈n

2

⌉

− 2
)

+

⌊

1

2

(⌈n

2

⌉

− 2
)

⌋

=

⌊

n2

4

⌋

+

⌊

n+ 1

4

⌋

= en,
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by (5) and since n is odd, which contradicts the assumption e(G) > en. Finally,
if G[N(v)] does not contain an edge, then

e(G) ≤ 2|N(v)|+ (|N(v)| − 1)|N(v)|

= 2
(⌊n

2

⌋

+ 1
)

+
⌊n

2

⌋(⌈n

2

⌉

− 2
)

=

⌊

n2

4

⌋

+ 2 ≤ en,

another contradiction.

Subcase 2.3. x1x4 ∈ E(G) and x1x3, x2x4 6∈ E(G). For i = 1, 2, 3, 4, xi does
not have a neighbour in N(v) \ {x1, x2, x3, x4}, so that deg(xi, N(v)) = 2. Thus,

deg(xi, N(v)) ≥
⌊n

2

⌋

+ 1− 3 ≥
⌈n

2

⌉

− 3 = |N(v)| − 1.(10)

If deg(x1, N(v)) = |N(v)|, then we can find y1, y2 ∈ N(v) such that y1 is a
common neighbour of x1, x2, and y2 is a common neighbour of x2, x3. Then
y1x1vx3y2+x2 is a copy of gem5, and we have φ(G, gem5) < en by Claim 3.4 with
z = v. Otherwise, we must have equality in (10) for i = 1, 2, 3, 4, so that n is odd,
and for i = 1, 2, 3, 4, we have deg(xi) =

⌊

n
2

⌋

+1, and xi is not adjacent to exactly
one vertex in N(v). If n ≥ 11 so that |N(v)| = ⌈n

2
⌉ − 2 ≥ 4, then we can again

find the vertices y1, y2 ∈ N(v) and we are done as before. Now let n = 9, so that
|N(v)| = 5, |N(v)| = 3, and each xi has exactly two neighbours in N(v). If x1 and
x2 have two common neighbours in N(v), then we can again find y1, y2 ∈ N(v) as
before and we are done. Otherwise, we may assume that N(v) = {z1, z2, z3} with
x1z1, x1z2, x2z1, x2z3 ∈ E(G). If z1z2 ∈ E(G), then x4vx2z1z2 + x1 is a copy of
gem5, and again φ(G, gem5) < en by Claim 3.4 with z = v. A similar argument
holds if z1z3 ∈ E(G). Otherwise, we have at most one edge in G[N(v)], and since
there are exactly nine edges in G[N(v) ∪ {v}] and at most 4 · 2 + 3 = 11 edges
between N(v) and N(v), we have e(G) ≤ 1 + 9 + 11 = 21 < 22 = e9, which is a
contradiction.

Subcase 2.4. x1x3, x1x4, x2x4 6∈ E(G). We first note that x2 is the only
neighbour of x1 in N(v), so that

deg(x1, N(v)) ≥
⌊n

2

⌋

+ 1− 2 ≥
⌈n

2

⌉

− 2 = |N(v)|.

We must have equality throughout, so that n is odd, deg(x1) =
⌊

n
2

⌋

+ 1, and x1
is adjacent to all vertices of N(v). The exact same properties hold for x4. Next,
suppose that x2 has p neighbours in N(v)\{x1, x2, x3, x4}, where 0 ≤ p ≤

⌊

n
2

⌋

−3.
Let S2 be the set of these p neighbours. We have

deg(x2, N(v)) ≥
⌊n

2

⌋

+ 1− 3− p =
⌈n

2

⌉

− 3− p.(11)
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Now, x3 does not have a neighbour in S2, otherwise there would exist a path of
order 5 in G[N(v)]. Thus, x3 has at most |N(v)|−4−p =

⌊

n
2

⌋

−3−p neighbours
in N(v) \ {x1, x2, x3, x4}. Let S3 be these neighbours of x3, so that S2 ∩ S3 = ∅.
We have

deg(x3, N(v)) ≥
⌊n

2

⌋

+ 1− 3−
(⌊n

2

⌋

− 3− p
)

= p+ 1.(12)

Suppose that x2, x3 have a common neighbour y1 ∈ N(v). Clearly, from
(11) and (12), at least one of x2, x3 has at least two neighbours in N(v). If
x2 has this property, then x1, x2 have a common neighbour y2 ∈ N(v) \ {y1}.
Thus, y1x3vx1y2 + x2 is a copy of gem5, and by Claim 3.4 with z = v, we have
φ(G, gem5) < en. A similar argument holds if x3 has at least two neighbours in
N(v), with x4 in place of x1.

Thus, if T2, T3 ⊂ N(v) are the sets of neighbours of x2, x3 in N(v), respec-
tively, then we may assume that T2 ∩ T3 = ∅. Note that from (11) and (12), we
have

deg(x2, N(v)) + deg(x3, N(v)) ≥
⌈n

2

⌉

− 2 = |N(v)|.

Thus, we must have equality above, as well as in (11) and (12). This means that
deg(x2) = deg(x3) =

⌊

n
2

⌋

+1, and we have the partitions N(v)\{x1, x2, x3, x4} =
S2 ∪̇S3 and N(v) = T2 ∪̇T3. Clearly, there are no edges in G[S2 ∪ S3], otherwise
there would exist a path of order 5 in G[N(v)]. Next, suppose that there is a path
of order 3 in G[N(v)], say y1y2y3. Suppose that y2 ∈ T2. Then x2x1y1x4y3 + y2
is a copy of gem5, so that by Claim 3.4 with z = x1, we have φ(G, gem5) < en.
A similar argument holds if y2 ∈ T3. Otherwise, we have |N(v)| − 1 edges in
G[N(v)], |N(v)| edges between {x2, x3} and N(v), and at most

⌊

1

2
|N(v)|

⌋

edges
in G[N(v)]. By (5) and since n is odd,

e(G) ≤ 2|N(v)| − 1 + |N(v)|+ (|N(v)| − 2)|N(v)|+

⌊

1

2
|N(v)|

⌋

= 2
⌊n

2

⌋

+
⌈n

2

⌉

− 1 +
(⌊n

2

⌋

− 1
)(⌈n

2

⌉

− 2
)

+

⌊

1

2

(⌈n

2

⌉

− 2
)

⌋

=

⌊

n2

4

⌋

+

⌊

n+ 1

4

⌋

= en,

which contradicts the assumption e(G) > en.

Case 3. The order of the longest path in G[N(v)] is 3. Let x1xx2 be such a
path in G[N(v)]. We consider the following subcases.

Subcase 3.1. x1x2 ∈ E(G). We have deg(x,N(v)) = 2, for otherwise G[N(v)]
would contain a P4. Thus

deg(x,N(v)) ≥
⌊n

2

⌋

+ 1− 3 ≥
⌈n

2

⌉

− 3 = |N(v)| − 1.
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Similar inequalities hold for x1, x2. If deg(x,N(v)) = |N(v)|, then there ex-
ist y1, y2 ∈ N(v) such that yi is a common neighbour of x, xi for i = 1, 2.
Then y1x1vx2y2 + x is a copy of gem5, and by Claim 3.4 with z = v, we have
φ(G, gem5) < en. Otherwise, we have deg(x,N(v)) = |N(v)| − 1, whence n is
odd and deg(x) =

⌊

n
2

⌋

+1. We may assume that x, x1 have a common neighbour
y ∈ N(v). Now, vx2x1y is a path of order 4 in G[N(x)], and we are done by
applying Case 1 or Case 2 with x in place of v.

Subcase 3.2. x1x2 6∈ E(G). Let N(v) = {x, x1, x2, . . . , x⌊n/2⌋}. For i = 1, 2,
we have

deg(xi, N(v)) ≥
⌊n

2

⌋

+ 1− 2 ≥
⌈n

2

⌉

− 2 = |N(v)|.(13)

We must have equality to hold throughout, whence n is odd, deg(x1) = deg(x2) =
⌊

n
2

⌋

+1, and both x1, x2 are adjacent to all vertices of N(v). If x has neighbours
y1, y2 ∈ N(v), then we are done as in Subcase 3.1. If x has exactly one neighbour
y ∈ N(v), then we have

deg(x,N(v) \ {x, x1, x2}) ≥
⌊n

2

⌋

+ 1− 4 ≥ 1,

and we may assume that xx3 ∈ E(G). Then x1yx2vx3 + x is a copy of gem5,
and we have φ(G, gem5) < en by Claim 3.4 with z = v. Otherwise, suppose that
x does not have a neighbour in N(v). We may apply the exact same argument
as in Subcase 2.2 of Theorem 3.1 to deduce that xi is adjacent to all vertices of
N(v) for all 1 ≤ i ≤

⌊

n
2

⌋

, and G[N(v)] must contain a path of order 3, say y1y2y3.
Then x1y1x2y3x3 + y2 is a copy of gem5, and by Claim 3.4 with z = x2, we have
φ(G, gem5) < en.

Case 4. The longest path in G[N(v)] has order 2. Note that this is indeed
the remaining case, since deg(x,N(v)) ≥ 2m− 1 = 1 for all x ∈ N(v). Moreover,
N(v) induces a perfect matching in G. By a similar argument as in (13), we must
have n odd, and for every x ∈ N(v), we have deg(x) =

⌊

n
2

⌋

+1 and x is adjacent
to all vertices of N(v). Thus, we can find an edge x1x2 in G[N(v)] and a common
neighbour y ∈ N(v) of x1, x2. Now, since vx2y is a path of order 3 in G[N(x1)],
we are done by applying Case 1, Case 2 or Case 3 with x1 in place of v.

The induction step is complete, and this completes the proof of Theorem 3.3.
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