TURÁN FUNCTION AND \boldsymbol{H}-DECOMPOSITION PROBLEM FOR GEM GRAPHS

Henry Liu
School of Mathematics and Statistics
Central South University
Changsha 410083, China
e-mail: henry-liu@csu.edu.cn
AND
Teresa Sousa
Escola Naval and Centro de Investigação Naval
Escola Naval - Alfeite
2810-001 Almada, Portugal
and
Centro de Matemática e Aplicações
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
Campus de Caparica
2829-516 Caparica, Portugal
e-mail: teresa.maria.sousa@marinha.pt

Abstract

Given a graph H, the Turán function $\operatorname{ex}(n, H)$ is the maximum number of edges in a graph on n vertices not containing H as a subgraph. For two graphs G and H, an H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a graph isomorphic to H. Let $\phi(n, H)$ be the smallest number ϕ such that any graph G of order n admits an H-decomposition with at most ϕ parts. Pikhurko and Sousa conjectured that $\phi(n, H)=\operatorname{ex}(n, H)$ for $\chi(H) \geq 3$ and all sufficiently large n. Their conjecture has been verified by Ozkahya and Person for all edge-critical graphs H. In this article, we consider the gem graphs gem ${ }_{4}$ and gem ${ }_{5}$. The graph gem ${ }_{4}$ consists of the path P_{4} with four vertices a, b, c, d and edges $a b, b c, c d$ plus a universal vertex u adjacent to a, b, c, d, and the graph gem $_{5}$ is similarly defined with the path P_{5} on five vertices. We determine

the Turán functions ex $\left(n, \operatorname{gem}_{4}\right)$ and ex $\left(n\right.$, gem $\left._{5}\right)$, and verify the conjecture of Pikhurko and Sousa when H is the graph gem $_{4}$ and gem ${ }_{5}$.
Keywords: gem graph, Turán function, extremal graph, graph decomposition.
2010 Mathematics Subject Classification: 05C35, 05C70.

1. INTRODUCTION

Given a graph H, the Turán function $\operatorname{ex}(n, H)$ is the maximum number of edges in a graph on n vertices, and not containing a copy of H as a subgraph. The important result of Turán [13] states that when $H=K_{r}$ is the complete graph on $r \geq 3$ vertices, we have $\operatorname{ex}\left(n, K_{r}\right)=t_{r-1}(n)$. Here $t_{r-1}(n)$ denotes the number of edges in the Turán graph of order $n, T_{r-1}(n)$, which is the unique complete $(r-1)$-partite graph on n vertices where every partition class has either $\left\lfloor\frac{n}{r-1}\right\rfloor$ or $\left\lceil\frac{n}{r-1}\right\rceil$ vertices. Moreover, $T_{r-1}(n)$ is the unique extremal graph on n vertices that has the maximum number of edges not containing K_{r} as a subgraph. For general graphs H, the Turán function $\operatorname{ex}(n, H)$ has been well studied by numerous researchers, which led to many important results and open problems in extremal graph theory. For example, when $H=C_{2 k}$ is the even cycle of length $2 k$, where $k \geq 2$, the exact determination of the function $\operatorname{ex}\left(n, C_{2 k}\right)$ is still a wide open problem. It has been conjectured that $\operatorname{ex}\left(n, C_{2 k}\right)=\left(c_{k}+o(1)\right) n^{1+1 / k}$ for some constant $c_{k}>0$, and this conjecture is only known to be true for $k=2,3,5$. See for example [8] and the references therein. When $H=P_{k}$ is the path of order $k \geq 3$, Faudree and Schelp [5] have determined the function ex $\left(n, P_{k}\right)$ exactly. In order to obtain ex $\left(n, P_{k}\right)$, we can take the graph on n vertices containing as many disjoint copies of K_{k-1} as possible, and a smaller complete graph on the remaining vertices. For odd k, this graph is the unique P_{k}-free extremal graph attaining ex $\left(n, P_{k}\right)$, and for even k and certain values of n, there are other such extremal graphs. Here we state the result of Faudree and Schelp as follows, which will be useful in this paper.

Theorem 1.1 [5]. Let $k \geq 3$ and $n=a(k-1)+b$, where $a \geq 0$ and $0 \leq b<k-1$. Then $\operatorname{ex}\left(n, P_{k}\right)=a\binom{k-1}{2}+\binom{b}{2}$. Moreover, a P_{k}-free graph on n vertices attaining $\operatorname{ex}\left(n, P_{k}\right)$ is a $K_{k-1} \dot{\cup} K_{b}$, the disjoint union of a copies of K_{k-1} and one copy of K_{b}.

For two graphs G and H, an H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a graph isomorphic to H. Let $\phi(G, H)$ be the smallest possible number of parts in an H-decomposition of G. It is easy to see that, for non-empty H, we have $\phi(G, H)=e(G)-$
$p_{H}(G)(e(H)-1)$, where $p_{H}(G)$ is the maximum number of pairwise edge-disjoint copies of H that can be packed into G and $e(G)$ denotes the number of edges in G. Dor and Tarsi [3] showed that if H has a component with at least three edges, then the problem of checking whether a graph G admits a partition into H subgraphs is NP-complete. Thus, it is NP-hard to compute the function $\phi(G, H)$ for such H. Here we study the function

$$
\phi(n, H)=\max \{\phi(G, H) \mid v(G)=n\},
$$

which is the smallest number ϕ such that any graph G of order n admits an H-decomposition with at most ϕ parts.

This function was first studied, in 1966, by Erdős, Goodman and Pósa [4], who were motivated by the problem of representing graphs by set intersections. They proved that $\phi\left(n, K_{3}\right)=t_{2}(n)$. A decade later, this result was extended by Bollobás [2], who proved that $\phi\left(n, K_{r}\right)=t_{r-1}(n)$, for all $n \geq r \geq 3$.

General graphs H were only considered recently by Pikhurko and Sousa [9]. They proved the following result.

Theorem 1.2 (See Theorem 1.1 from [9]). Let H be any fixed graph of chromatic number $r \geq 3$. Then,

$$
\phi(n, H)=\operatorname{ex}(n, H)+o\left(n^{2}\right)
$$

Pikhurko and Sousa also made the following conjecture.
Conjecture 1.3 [9]. For any graph H of chromatic number $r \geq 3$, there exists $n_{0}=n_{0}(H)$ such that $\phi(n, H)=\operatorname{ex}(n, H)$ for all $n \geq n_{0}$.

A graph H is edge-critical if there exists an edge $e \in E(H)$ such that $\chi(H)>$ $\chi(H-e)$, where $\chi(H)$ denotes the chromatic number of H. For $r \geq 4$ a cliqueextension of order r is a connected graph that consists of a K_{r-1} plus another vertex, say v, adjacent to at most $r-2$ vertices of K_{r-1}. Conjecture 1.3 has been verified by Sousa for some edge-critical graphs, namely, clique-extensions of order $r \geq 4(n \geq r)$ [11] and the cycles of length $5(n \geq 6)$ and $7(n \geq 10)$ [10, 12]. Later, Özkahya and Person [7] verified the conjecture for all edge-critical graphs with chromatic number $r \geq 3$. Their result is the following.

Theorem 1.4 (See Theorem 3 from [7]). For any edge-critical graph H with chromatic number $r \geq 3$, there exists $n_{0}=n_{0}(H)$ such that $\phi(n, H)=\operatorname{ex}(n, H)$, for all $n \geq n_{0}$. Moreover, the only graph attaining $\operatorname{ex}(n, H)$ is the Turán graph $T_{r-1}(n)$.

Recently, as an extension of Özkahya and Person's work, Allen, Böttcher, and Person [1] improved the error term obtained by Pikhurko and Sousa in Theorem 1.2. In fact, they proved that the error term $o\left(n^{2}\right)$ can be replaced by $O\left(n^{2-\alpha}\right)$
for some $\alpha>0$. Furthermore, they also showed that this error term has the correct order of magnitude. Their result is indeed an extension of Theorem 1.4 since the error term $O\left(n^{2-\alpha}\right)$ that they obtained vanishes for every edge-critical graph H.

Conjecture 1.3 has also been verified by Liu and Sousa [6] for the k-fan graph F_{k}, which is the graph on $2 k+1$ vertices consisting of k triangles intersecting in exactly one common vertex. Observe that $\chi\left(F_{k}\right)=3$ and for $k \geq 2$ the graph F_{k} is not edge-critical. Thus, the result of Liu and Sousa is not a particular case of Theorem 1.4 by Özkahya and Person.

In this article, we consider the gem graphs gem $_{4}$ and gem ${ }_{5}$, defined as follows. For the graph gem $_{4}$, we take the path P_{4} with vertices a, b, c, d and edges $a b, b c, c d$ and add a universal vertex u adjacent to a, b, c, d. Similarly for the graph gem ${ }_{5}$, we take the path P_{5} with vertices a, b, c, d, e and edges $a b, b c, c d, d e$ and add a universal vertex u adjacent to a, b, c, d, e. See Figure 1 below. For convenience, we write $a b c d+u$ and $a b c d e+u$ for these two graphs.

Figure 1. The graphs gem ${ }_{4}$ and gem $_{5}$.
In Section 2, we will determine the Turán functions ex $\left(n, \operatorname{gem}_{4}\right)$ for $n \geq 6$, and ex $\left(n, \operatorname{gem}_{5}\right)$ for $n \geq 8$. Then, in Section 3, we will prove Pikhurko and Sousa conjecture for these two gem graphs. That is, we will show that $\phi\left(n, \mathrm{gem}_{4}\right)=$ $\operatorname{ex}\left(n, \operatorname{gem}_{4}\right)$ for $n \geq 6$, and $\phi\left(n, \operatorname{gem}_{5}\right)=\operatorname{ex}\left(n, \operatorname{gem}_{5}\right)$ for $n \geq 8$. Note that $\chi\left(\right.$ gem $\left._{4}\right)=\chi\left(\right.$ gem $\left._{5}\right)=3$, and that gem ${ }_{4}$ and gem ${ }_{5}$ are not edge-critical graphs. Thus, our results are again not implied by Theorem 1.4.

Our notations throughout the paper are fairly standard. For a vertex v in a graph G, the neighbourhood of v, denoted by $N(v)$, is the set of vertices in G that are adjacent to v. The degree of v is $\operatorname{deg}(v)=|N(v)|$, and the minimum degree and maximum degree of G are $\delta(G)$ and $\Delta(G)$, respectively. For a set $U \subset V(G)$, let $\operatorname{deg}(v, U)$ denote the number of vertices in U that are adjacent to v, and let $G[U]$ denote the subgraph of G induced by U.

2. Turán Function for the Gem Graphs

In this section, we will determine the Turán functions ex $\left(n\right.$, gem $\left._{4}\right)$ for $n \geq 6$, and $\operatorname{ex}\left(n, \operatorname{gem}_{5}\right)$ for $n \geq 8$. Furthermore, we will determine the extremal graphs in
each case. That is, we will determine all gem $_{4}$-free graphs on $n \geq 6$ vertices with ex $\left(n, \operatorname{gem}_{4}\right)$ edges, and all gem $_{5}$-free graphs on $n \geq 8$ vertices with ex $\left(n, \operatorname{gem}_{5}\right)$ edges.

2.1. Turán function for gem $_{4}$

We will now determine the function ex $\left(n\right.$, gem $\left._{4}\right)$. In order to state our result, we first define the family of graphs $\mathcal{F}_{n, 4}$, which will consist of all the extremal graphs. Let $n \geq 6$ and $\mathcal{F}_{n, 4}$ be the family of graphs on n vertices as follows. For $n \equiv 0$ $(\bmod 4)$, let G_{n}^{0} be the graph obtained by taking the Turán graph $T_{2}(n)$ and embedding a maximum matching into a class of $T_{2}(n)$. For $n \equiv 1(\bmod 4)$, let G_{n}^{11} and G_{n}^{12} be the graphs obtained by embedding a maximum matching into the smaller class and the larger class of $T_{2}(n)$, respectively. For $n \equiv 2(\bmod 4)$, let G_{n}^{21} and G_{n}^{22} be the graphs obtained by embedding a maximum matching into a class of $T_{2}(n)$, and into the larger class of the complete bipartite graph $K_{n / 2-1, n / 2+1}$, respectively. For $n \equiv 3(\bmod 4)$, let G_{n}^{3} be the graph obtained by embedding a maximum matching into the larger class of $T_{2}(n)$. Let the vertex classes of G_{n}^{0} be A_{n}^{0} and B_{n}^{0}, with similar notations for the other graphs. Let $\mathcal{F}_{n, 4}=\left\{G_{n}^{0}\right\}$, $\mathcal{F}_{n, 4}=\left\{G_{n}^{11}, G_{n}^{12}\right\}, \mathcal{F}_{n, 4}=\left\{G_{n}^{21}, G_{n}^{22}\right\}$ and $\mathcal{F}_{n, 4}=\left\{G_{n}^{3}\right\}$ for $n \equiv 0,1,2,3(\bmod 4)$, respectively. Figure 2 below shows the graphs of $\mathcal{F}_{n, 4}$. Note that in G_{n}^{12}, we have an unmatched vertex in the class B_{n}^{12}, and similarly for G_{n}^{21} with the class B_{n}^{21}.

Figure 2. The graphs of $\mathcal{F}_{n, 4}$.

It is easy to see that every graph of $\mathcal{F}_{n, 4}$ is gem ${ }_{4}$-free. Let $G \in \mathcal{F}_{n, 4}$, and suppose that there exists a copy of gem_{4} in G, say $a b c d+u$. We may consider in turn whether u is in the independent class of G, or in the class containing the maximum matching. In each case, we can easily verify that no four neighbours of u form a path P_{4} in G, which is a contradiction. Also, for any graph of $\mathcal{F}_{n, 4}$, by adding an edge, we obtain a graph that contains a copy of gem ${ }_{4}$. Indeed, let $G \in \mathcal{F}_{n, 4}$. Since $n \geq 6$, if an edge $c u$ is added to the independent class of G, then we may find an edge $a b$ and another vertex d in the other class. If an edge $b u$ is added to the class of G containing the maximum matching, then we may assume that $d u$ is an edge in the matching, and choose vertices a, c in the other class. In both cases, we have $a b c d+u$ is a copy of gem $_{4}$.

We can easily check that for $n \geq 6$, all graphs of $\mathcal{F}_{n, 4}$ have the same number of edges. Thus for $G \in \mathcal{F}_{n, 4}$, we let e_{n} denote the number of edges in the graph G. Then, we can easily check that the number of edges of G is

$$
e(G)=e_{n}=\left\lfloor\frac{n^{2}}{4}\right\rfloor+\left\lfloor\frac{n}{4}\right\rfloor+ \begin{cases}0 & \text { if } n \equiv 0,1,2(\bmod 4) \tag{1}\\ 1 & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Moreover, for $n \geq 7, G \in \mathcal{F}_{n, 4}$ and $G^{\prime} \in \mathcal{F}_{n-1,4}$, we have

$$
e(G)-e\left(G^{\prime}\right)=e_{n}-e_{n-1}=\left\lfloor\frac{n}{2}\right\rfloor+ \begin{cases}0 & \text { if } n \equiv 0,1,2(\bmod 4) \tag{2}\\ 1 & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

We have the following result for the Turán function $\operatorname{ex}\left(n, \operatorname{gem}_{4}\right)$.
Theorem 2.1. For $n \geq 6$, we have

$$
\operatorname{ex}\left(n, \operatorname{gem}_{4}\right)=e_{n}=\left\lfloor\frac{n^{2}}{4}\right\rfloor+\left\lfloor\frac{n}{4}\right\rfloor+ \begin{cases}0 & \text { if } n \equiv 0,1,2(\bmod 4) \\ 1 & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Moreover, the only gem $_{4}$-free graphs with n vertices and $\operatorname{ex}\left(n, \operatorname{gem}_{4}\right)$ edges are the members of $\mathcal{F}_{n, 4}$.

We will prove Theorem 2.1 by induction on n. We first prove the base case as follows.

Lemma 2.2. $\operatorname{ex}\left(6\right.$, gem $\left._{4}\right)=e_{6}=10$ and the only gem $_{4}$-free graphs with six vertices and 10 edges are G_{6}^{21} and G_{6}^{22}.

Proof. It suffices to prove that, for any graph G with six vertices and $e_{6}=10$ edges, either G contains a copy of the graph gem $_{4}$, or $G \in \mathcal{F}_{6,4}=\left\{G_{6}^{21}, G_{6}^{22}\right\}$. Then for any graph G^{\prime} with six vertices and $e\left(G^{\prime}\right) \geq 11$, we can take a spanning subgraph $G \subset G^{\prime}$ with $e(G)=e_{6}=10$, so that either G contains a copy of gem ${ }_{4}$, or $G \in \mathcal{F}_{6,4}$. In either case, G^{\prime} contains a copy of gem ${ }_{4}$ and we are done.

Let G be a graph with six vertices and $e_{6}=10$ edges. Note that G has either a vertex of degree 5 , or two vertices of degree 4. Otherwise, we have $e(G) \leq\left\lfloor\frac{1}{2}(4+5 \cdot 3)\right\rfloor=9<10=e_{6}$, a contradiction.

Suppose first that G has a vertex u with $\operatorname{deg}(u)=5$. By Theorem 1.1, we have $\operatorname{ex}\left(5, P_{4}\right)=\binom{3}{2}+\binom{2}{2}=4$. We have $e(G-u)=10-5=5>4=\operatorname{ex}\left(5, P_{4}\right)$, and thus $G-u$ contains a copy of the path P_{4}, which together with u, form a copy of gem $_{4}$ in G.

Now, suppose that G has two vertices of degree 4 , say u and v. Let x_{1}, x_{2}, x_{3}, x_{4} be the remaining four vertices, and assume that G does not contain a copy of gem $_{4}$. Suppose first that $u v \in E(G)$. If u and v have three common neighbours, say x_{1}, x_{2}, x_{3}, then we must have $x_{i} x_{4} \in E(G)$ for $i=1,2,3$, so that $G=G_{6}^{21}$. If u and v have two common neighbours, say x_{1}, x_{2}, then let $u x_{3}, v x_{4} \in E(G)$ and $u x_{4}, v x_{3} \notin E(G)$. We see that only the edges $x_{1} x_{2}, x_{3} x_{4}$ can be added to avoid creating a copy of gem_{4}, so that G can only have at most nine edges, a contradiction. Now, suppose that $u v \notin E(G)$. Then G contains all edges between $\{u, v\}$ and $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. If G does not contain a copy of gem ${ }_{4}$, then the remaining two edges must be independent within $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, so that $G=G_{6}^{22}$.

We conclude that either G contains a copy of gem $_{4}$, or $G \in \mathcal{F}_{6,4}$, as required.
We are now able to prove Theorem 2.1.
Proof of Theorem 2.1. Let $n \geq 6$. The lower bound $\operatorname{ex}\left(n, \operatorname{gem}_{4}\right) \geq e_{n}$ follows instantly by considering any graph of $\mathcal{F}_{n, 4}$. We prove the upper bound $\operatorname{ex}\left(n, \operatorname{gem}_{4}\right) \leq e_{n}$ by induction on n. Lemma 2.2 proves the result for $n=6$. Now suppose that $n \geq 7$, and the theorem holds for $n-1$. We will prove that if G is a graph on n vertices and $e(G)=e_{n}$, then either G contains a copy of gem ${ }_{4}$, or G is one of the graphs of $\mathcal{F}_{n, 4}$. This clearly implies the upper bound ex $\left(n\right.$, gem $\left._{4}\right) \leq e_{n}$, and thus the theorem for n. Indeed, if we have a graph G^{\prime} with n vertices and $e\left(G^{\prime}\right)>e_{n}$, then by taking a spanning subgraph $G \subset G^{\prime}$ with $e(G)=e_{n}$, we see that either G contains a copy of gem $_{4}$, or $G \in \mathcal{F}_{n, 4}$. In either case, G^{\prime} contains a copy of gem_{4}.

First, suppose that $\delta(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$ and let $v \in V(G)$ be a vertex of minimum degree. Then by (2), we have

$$
\begin{equation*}
e(G-v)=e(G)-\operatorname{deg}(v) \geq e_{n}-\left\lfloor\frac{n}{2}\right\rfloor \geq e_{n-1} \tag{3}
\end{equation*}
$$

If $e(G-v)>e_{n-1}$, then by induction, $G-v$, and thus G, contains a copy of gem ${ }_{4}$. Next, $e(G-v)=e_{n-1}$ holds if and only if $\operatorname{deg}(v)=\left\lfloor\frac{n}{2}\right\rfloor$ and $e_{n}-e_{n-1}=\left\lfloor\frac{n}{2}\right\rfloor$. The latter condition holds for $n \not \equiv 3(\bmod 4)$. By induction, either $G-v$, and thus G, contains a copy of gem $_{4}$ and we are done, or $G-v \in \mathcal{F}_{n-1,4}$, and we must consider the following cases.

Case 1. $n \equiv 0(\bmod 4)$. We have $G-v=G_{n-1}^{3}$ with classes A_{n-1}^{3} and B_{n-1}^{3}, where $\left|A_{n-1}^{3}\right|=\frac{n}{2}-1$ and $\left|B_{n-1}^{3}\right|=\frac{n}{2}$, and B_{n-1}^{3} containing a perfect matching. Since $\operatorname{deg}(v)=\frac{n}{2}$, if $N(v)=B_{n-1}^{3}$, then $G=G_{n}^{0}$. Otherwise, if v has neighbours $c \in A_{n-1}^{3}$ and $u \in B_{n-1}^{3}$, then $a b c v+u$ is a copy of gem ${ }_{4}$ in G, where $a \in A_{n-1}^{3} \backslash\{c\}$ and $b \in B_{n-1}^{3}$ is the vertex adjacent to u.

Case 2. $n \equiv 1(\bmod 4)$. We have $G-v=G_{n-1}^{0}$ with classes A_{n-1}^{0} and B_{n-1}^{0}, where $\left|A_{n-1}^{0}\right|=\left|B_{n-1}^{0}\right|=\frac{n-1}{2}$, with B_{n-1}^{0} containing a perfect matching. Since $\operatorname{deg}(v)=\frac{n-1}{2}$, it follows that if $N(v)=B_{n-1}^{0}$ then $G=G_{n}^{11}$, and if $N(v)=A_{n-1}^{0}$ then $G=G_{n}^{12}$. Otherwise, v has a neighbour in both A_{n-1}^{0} and B_{n-1}^{0}, so that as in Case $1, G$ contains a copy of gem_{4}.

Case 3. $n \equiv 2(\bmod 4)$. We have $G-v \in\left\{G_{n-1}^{11}, G_{n-1}^{12}\right\}$. Suppose first that $G-v=G_{n-1}^{11}$. Then the classes of $G-v$ are A_{n-1}^{11} and B_{n-1}^{11}, where $\left|A_{n-1}^{11}\right|=\frac{n}{2}-1$ and $\left|B_{n-1}^{11}\right|=\frac{n}{2}$, with A_{n-1}^{11} containing a perfect matching. Since $\operatorname{deg}(v)=\frac{n}{2}$, it follows that if $N(v)=B_{n-1}^{11}$, then $G=G_{n}^{21}$. Otherwise, v has a neighbour in both A_{n-1}^{11} and B_{n-1}^{11}, and G contains a copy of gem $_{4}$ as in Case 1. Now suppose that $G-v=G_{n-1}^{12}$. Then the classes are A_{n-1}^{12} and B_{n-1}^{12}, where $\left|A_{n-1}^{12}\right|=\frac{n}{2}-1$ and $\left|B_{n-1}^{12}\right|=\frac{n}{2}$, with B_{n-1}^{12} containing a maximum matching with one unmatched vertex, say w. Since $\operatorname{deg}(v)=\frac{n}{2}$, it follows that if $N(v)=B_{n-1}^{12}$ then again $G=G_{n}^{21}$, and if $N(v)=A_{n-1}^{12} \cup\{w\}$ then $G=G_{n}^{22}$. Otherwise, v has a neighbour in both A_{n-1}^{12} and $B_{n-1}^{12} \backslash\{w\}$, and again as in Case $1, G$ contains a copy of gem ${ }_{4}$.

Next, suppose that $\delta(G) \geq\left\lfloor\frac{n}{2}\right\rfloor+1$. In view of (1), if n is even, then we have $e(G) \geq \frac{n}{2}\left(\frac{n}{2}+1\right)>e_{n}$. If $n \equiv 1(\bmod 4)$, then $e(G) \geq\left\lceil\frac{n}{2}\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)\right\rceil=$ $\left\lfloor\frac{n^{2}}{4}\right\rfloor+\left\lfloor\frac{n}{4}\right\rfloor+1>e_{n}$. We have a contradiction in these cases. Now let $n \equiv 3$ $(\bmod 4)$. We have $e(G) \geq\left\lceil\frac{n}{2}\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor+\left\lfloor\frac{n}{4}\right\rfloor+1=e_{n}$. We must have equality, and thus G is a $\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$-regular graph. Let $v \in V(G)$, so that by (2)

$$
\begin{equation*}
e(G-v)=e(G)-\operatorname{deg}(v)=e_{n}-\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)=e_{n-1} . \tag{4}
\end{equation*}
$$

By induction, either $G-v$, and thus G, contains a copy of gem $_{4}$, or $G-v \in$ $\mathcal{F}_{n-1,4}$. If the latter holds, then $G-v \in\left\{G_{n-1}^{21}, G_{n-1}^{22}\right\}$. Suppose first that $G-v=G_{n-1}^{21}$. The classes are A_{n-1}^{21} and B_{n-1}^{21}, where $\left|A_{n-1}^{21}\right|=\left|B_{n-1}^{21}\right|=\frac{n-1}{2}$, with B_{n-1}^{21} containing a maximum matching with one unmatched vertex, say w. Since $\operatorname{deg}(v)=\frac{n-1}{2}+1$, in order for G to be $\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$-regular, we must have $N(v)=A_{n-1}^{21} \cup\{w\}$. This gives $G=G_{n}^{3}$. Now, suppose that $G-v=G_{n-1}^{22}$. The classes are A_{n-1}^{22} and B_{n-1}^{22}, where $\left|A_{n-1}^{22}\right|=\frac{n-1}{2}-1$ and $\left|B_{n-1}^{22}\right|=\frac{n-1}{2}+1$, with B_{n-1}^{22} containing a perfect matching. Again since G is $\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$-regular, we must have $N(v)=B_{n-1}^{22}$, and this also implies $G=G_{n}^{3}$.

This completes the proof of Theorem 2.1.

2.2. Turán function for gem $_{5}$

We will next determine the function ex $\left(n\right.$, gem $\left._{5}\right)$. Analogously, we first define the family of graphs $\mathcal{F}_{n, 5}$, which will consist of all the extremal graphs. Let $n \geq 8$ and $\mathcal{F}_{n, 5}$ be the family of graphs on n vertices as follows. For $n \geq 11$, we let $\mathcal{F}_{n, 5}=\mathcal{F}_{n, 4}$. For $n=8,9,10$, the family $\mathcal{F}_{n, 5}$ will consist of all graphs of $\mathcal{F}_{n, 4}$ and some additional graphs. Let G_{n}^{\prime} be the graph obtained by adding one edge into each class of $T_{2}(n)$. Also for $n=8$, let $G_{8}^{\prime \prime}$ be the graph obtained by embedding two vertex-disjoint triangles into the larger class of the complete bipartite graph $K_{2,6}$. For $n=9$, let $G_{9}^{\prime \prime}$ be the graph obtained by taking G_{8}^{\prime} and joining another vertex to the four unmatched vertices within the classes of G_{8}^{\prime}. As before, let A_{8}^{\prime} and B_{8}^{\prime} be the classes of G_{8}^{\prime}, with similar notations for the other graphs. Figure 3 below shows these additional graphs. Let $\mathcal{F}_{8,5}=\left\{G_{8}^{0}, G_{8}^{\prime}, G_{8}^{\prime \prime}\right\}$, $\mathcal{F}_{9,5}=\left\{G_{9}^{11}, G_{9}^{12}, G_{9}^{\prime}, G_{9}^{\prime \prime}\right\}$, and $\mathcal{F}_{10,5}=\left\{G_{10}^{21}, G_{10}^{22}, G_{10}^{\prime}\right\}$.

Figure 3. The additional graphs in $\mathcal{F}_{n, 5}$ for $n=8,9,10$.
Note that every graph of $\mathcal{F}_{n, 5}$ is gem $_{5}$-free. Indeed, let $G \in \mathcal{F}_{n, 5}$. If $G \notin$ $\left\{G_{8}^{\prime}, G_{8}^{\prime \prime}, G_{9}^{\prime}, G_{9}^{\prime \prime}, G_{10}^{\prime}\right\}$, then G is gem_{4}-free as before, so that G is gem $_{5}$-free. Suppose that $G \in\left\{G_{8}^{\prime}, G_{8}^{\prime \prime}, G_{9}^{\prime}, G_{9}^{\prime \prime}, G_{10}^{\prime}\right\}$ and G contains a copy of gem ${ }_{5}$, say $a b c d e+u$. It is easy to check that in each choice for G, whichever vertex of G is chosen for u, we have that u does not have five neighbours that form a path P_{5} in G. This is a contradiction.

Also, by adding an edge to any graph of $\mathcal{F}_{n, 5}$, we obtain a graph that contains a copy of gem $_{5}$. To see this, let $G \in \mathcal{F}_{n, 5}$. Suppose first that $G \notin\left\{G_{8}^{\prime}, G_{8}^{\prime \prime}, G_{9}^{\prime}\right.$, $\left.G_{9}^{\prime \prime}, G_{10}^{\prime}\right\}$. Then similar to before, since $n \geq 8$, it follows that if an edge $c u$ is added to the independent class of G, then we can find two independent edges $a b, d e$ in the other class. If an edge $b u$ is added to the class of G containing the
maximum matching, then we may assume that $d u$ is an edge in the matching, and choose vertices a, c, e in the other class. In both cases, we have $a b c d e+u$ is a copy of gem ${ }_{5}$. Next, the case $G \in\left\{G_{8}^{\prime}, G_{9}^{\prime}, G_{10}^{\prime}\right\}$ can be considered similarly, according to whether or not the added edge is incident with an edge within a class of G. Now, consider $G=G_{8}^{\prime \prime}$. If the edge $b u$ is added into $A_{8}^{\prime \prime}$, then let $c d e$ be a triangle and a be another vertex in $B_{8}^{\prime \prime}$. If an edge is added into $B_{8}^{\prime \prime}$, then there exists a path $a b c d e$ of order 5 in $B_{8}^{\prime \prime}$, and we let $u \in A_{8}^{\prime \prime}$. In both cases, $a b c d e+u$ is a copy of gem $_{5}$. Finally, consider $G=G_{9}^{\prime \prime}$. Since $G_{9}^{\prime \prime}$ contains G_{8}^{\prime} as a subgraph on $A_{9}^{\prime \prime} \cup B_{9}^{\prime \prime}$, it follows that if an edge is added into $A_{9}^{\prime \prime}$ or $B_{9}^{\prime \prime}$, then we have a copy of gem $_{5}$. Thus, we may assume that the edge $a u$ is added to $G_{9}^{\prime \prime}$, where a is an end-vertex of the edge in $A_{9}^{\prime \prime}$, and u is the vertex outside of $A_{9}^{\prime \prime} \cup B_{9}^{\prime \prime}$. Then if $c, e \in A_{9}^{\prime \prime}$ and $b, d \in B_{9}^{\prime \prime}$ are the neighbours of u in $G_{9}^{\prime \prime}$, we have $a b c d e+u$ is a copy of gem $_{5}$.

We can easily check that for $n \geq 8$, all graphs of $\mathcal{F}_{n, 5}$ have the same number of edges, which is also the same as the number of edges in any graph of $\mathcal{F}_{n, 4}$. Thus, we may also let e_{n} denote the number of edges in any graph of $\mathcal{F}_{n, 5}$. Then, equations (1) and (2) remain true. That is, for $G \in \mathcal{F}_{n, 5}$, we have

$$
e(G)=e_{n}=\left\lfloor\frac{n^{2}}{4}\right\rfloor+\left\lfloor\frac{n}{4}\right\rfloor+ \begin{cases}0 & \text { if } n \equiv 0,1,2(\bmod 4) \tag{5}\\ 1 & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

and for $n \geq 9, G \in \mathcal{F}_{n, 5}$ and $G^{\prime} \in \mathcal{F}_{n-1,5}$, we have

$$
e(G)-e\left(G^{\prime}\right)=e_{n}-e_{n-1}=\left\lfloor\frac{n}{2}\right\rfloor+ \begin{cases}0 & \text { if } n \equiv 0,1,2(\bmod 4) \tag{6}\\ 1 & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

We have the following result for the Turán function $\operatorname{ex}\left(n, \operatorname{gem}_{5}\right)$.
Theorem 2.3. For $n \geq 8$, we have

$$
\operatorname{ex}\left(n, \operatorname{gem}_{5}\right)=e_{n}=\left\lfloor\frac{n^{2}}{4}\right\rfloor+\left\lfloor\frac{n}{4}\right\rfloor+ \begin{cases}0 & \text { if } n \equiv 0,1,2(\bmod 4) \\ 1 & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Moreover, the only gem $_{5}$-free graphs with n vertices and $\operatorname{ex}\left(n\right.$, gem $\left._{5}\right)$ edges are the members of $\mathcal{F}_{n, 5}$.

As before, Theorem 2.3 will be proved by induction on n. We first prove the base case, which will involve a bit more of case analysis than in Lemma 2.2.

Lemma 2.4. $\operatorname{ex}\left(8, \mathrm{gem}_{5}\right)=e_{8}=18$ and the only gem_{5}-free graphs with eight vertices and 18 edges are $G_{8}^{0}, G_{8}^{\prime}$ and $G_{8}^{\prime \prime}$.

To prove Lemma 2.4, the following lemma will be useful.

Lemma 2.5. Let H be a graph with vertex set $A \cup B$, where $A=\{x, y\}$ and $B=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$. Suppose that $x y, x z_{4} \in E(H)$, and H also contains all edges between $\{x, y\}$ and $\left\{z_{1}, z_{2}, z_{3}\right\}$. Suppose that $H[B]$ contains two edges f_{1}, f_{2}, and either z_{4} belongs to at least one of f_{1}, f_{2}, or $y z_{4} \in E(H)$. Then H contains a copy of gem_{5}.

Proof. First, if z_{4} belongs to one of f_{1}, f_{2}, then we may assume that either $f_{1}=z_{1} z_{2}, f_{2}=z_{3} z_{4}$ or $f_{1}=z_{1} z_{2}, f_{2}=z_{2} z_{4}$ or $f_{1}=z_{1} z_{4}, f_{2}=z_{2} z_{4}$. Then $z_{1} z_{2} y z_{3} z_{4}+x$ or $z_{3} y z_{1} z_{2} z_{4}+x$ or $z_{3} y z_{1} z_{4} z_{2}+x$ is a copy of gem ${ }_{5}$ in H, respectively.

Next, if $y z_{4} \in E(H)$ and z_{4} does not belong to f_{1} and f_{2}, then we may assume that $f_{1}=z_{1} z_{2}$ and $f_{2}=z_{2} z_{3}$. Then $z_{1} z_{2} z_{3} y z_{4}+x$ is a copy of gem ${ }_{5}$ in H.

Proof of Lemma 2.4. Let G be a graph with eight vertices and $e_{8}=18$ edges. As in Lemma 2.2, it suffices to prove that either G contains a copy of gem ${ }_{5}$, or $G \in \mathcal{F}_{8,5}=\left\{G_{8}^{0}, G_{8}^{\prime}, G_{8}^{\prime \prime}\right\}$. Let $\Delta=\Delta(G)$ be the maximum degree of G. Note that $5 \leq \Delta \leq 7$, otherwise if $\Delta \leq 4$, then $e(G) \leq\left\lfloor\frac{1}{2} \cdot 8 \cdot 4\right\rfloor=16<18=e_{8}$, a contradiction. Let $d_{1} \geq d_{2} \geq \cdots \geq d_{8}$ be the degree sequence of G. Let $u \in V(G)$ be a vertex of maximum degree, so that $\operatorname{deg}(u)=\Delta=d_{1}$. We consider three cases according to the value of Δ.

Case 1. $\Delta=7$. By Theorem 1.1, we have ex $\left(7, P_{5}\right)=\binom{4}{2}+\binom{3}{2}=9$. Thus $e(G-u)=18-7=11>9=\operatorname{ex}\left(7, P_{5}\right)$, and there exists a copy of the path P_{5} in $G-u$, which together with u, form a copy of gem $_{5}$ in G.

Case 2. $\Delta=6$. Let $v \in V(G) \backslash\{u\}$ be a vertex $\operatorname{with} \operatorname{deg}(v)=d_{2}$. Note that $\operatorname{deg}(v)=6$ or $\operatorname{deg}(v)=5$, otherwise $e(G) \leq\left\lfloor\frac{1}{2}(6+7 \cdot 4)\right\rfloor=17<18=e_{8}$, a contradiction.

Subcase 2.1. $\operatorname{deg}(v)=6$. Suppose first that $u v \notin E(G)$. We have $e(G-$ $\{u, v\})=18-2 \cdot 6=6$. If there exists $x \in V(G) \backslash\{u, v\}$ with at least three neighbours in $V(G) \backslash\{u, v, x\}$, say x_{1}, x_{2}, x_{3}, then $x_{1} u x_{2} v x_{3}+x$ is a copy of gem_{5} in G. Otherwise, since $e(G-\{u, v\})=6$, we see that every vertex of $V(G) \backslash\{u, v\}$ must have exactly two neighbours in $V(G) \backslash\{u, v\}$, and thus, the subgraph $G-\{u, v\}$ must be either C_{6} or two vertex-disjoint copies of C_{3}. If the former, then there is a copy of P_{5} in $G-\{u, v\}$, which together with u, form a copy of gem $_{5}$. If the latter, then $G=G_{8}^{\prime \prime}$.

Now, suppose that $u v \in E(G)$. Observe first that u and v have at least four common neighbours in $V(G) \backslash\{u, v\}$. If $G[N(u) \backslash\{v\}]$ contains two edges, then Lemma 2.5 implies that G contains a copy of gem ${ }_{5}$. Otherwise, we may assume that $G[N(u) \backslash\{v\}]$ contains at most one edge. If y is the vertex not adjacent to u in G, then y has at most five neighbours in $N(u) \backslash\{v\}$. Therefore, we have $e(G-\{u, v\}) \leq 1+5=6$. This is a contradiction, since we have $e(G-\{u, v\})=18-1-2 \cdot 5=7$.

Subcase 2.2. $\operatorname{deg}(v)=5$. Let $w \in V(G) \backslash\{u, v\}$ be a vertex with $\operatorname{deg}(w)=d_{3}$. Note that $\operatorname{deg}(w)=5$, otherwise, $e(G) \leq\left\lfloor\frac{1}{2}(6+5+6 \cdot 4)\right\rfloor=17<18=e_{8}$. Thus, without loss of generality, we may assume $u v \in E(G)$, so that $e(G-$ $\{u, v\})=18-1-5-4=8$. Let y be the vertex not adjacent to u. Suppose that G does not contain a copy of gem $_{5}$.

Let $v y \notin E(G)$. Then v has exactly four neighbours in $N(u) \backslash\{v\}$, and by Lemma 2.5, $G[N(u) \backslash\{v\}]$ contains at most one edge, so that $e(G-\{u, v\}) \leq 6$, a contradiction.

Now let $v y \in E(G)$. Let x_{1}, x_{2}, x_{3} be the common neighbours of u and v, and z_{1}, z_{2} be the remaining two vertices, so that $u z_{1}, u z_{2} \in E(G)$ and $v z_{1}, v z_{2} \notin E(G)$. Again by Lemma 2.5, each of y, z_{1}, z_{2} has at most one neighbour in $\left\{x_{1}, x_{2}, x_{3}\right\}$. If there are no edges between $\left\{y, z_{1}, z_{2}\right\}$ and $\left\{x_{1}, x_{2}, x_{3}\right\}$, then $e(G-\{u, v\}) \leq$ 6 , a contradiction. Otherwise, if there exists an edge between $\left\{y, z_{1}, z_{2}\right\}$ and $\left\{x_{1}, x_{2}, x_{3}\right\}$, then by Lemma 2.5, there are no edges in $G\left[\left\{x_{1}, x_{2}, x_{3}\right\}\right]$. Since there are at most three edges in $G\left[\left\{y, z_{1}, z_{2}\right\}\right]$ and at most three edges between $\left\{y, z_{1}, z_{2}\right\}$ and $\left\{x_{1}, x_{2}, x_{3}\right\}$, we have $e(G-\{u, v\}) \leq 6$, another contradiction.

Case 3. $\Delta=5$. We have $d_{1}=d_{2}=d_{3}=d_{4}=\Delta=5$, otherwise, $e(G) \leq$ $\left\lfloor\frac{1}{2}(3 \cdot 5+5 \cdot 4)\right\rfloor=17<18=e_{8}$. This means that, we may assume there exists $v \in V(G) \backslash\{u\}$ with $\operatorname{deg}(v)=5$ and $u v \in E(G)$, so that $e(G-\{u, v\})=$ $18-1-2 \cdot 4=9$. If G contains a copy of gem $_{5}$, then we are done, so assume otherwise.

Suppose first that u and v have four common neighbours, say $x_{1}, x_{2}, x_{3}, x_{4}$. Let y_{1}, y_{2} be the remaining two vertices. By Lemma 2.5, $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]$ contains at most one edge. If there is exactly one edge, say $x_{1} x_{2} \in E(G)$, then there are 10 edges already in G. The edges between $\left\{y_{1}, y_{2}\right\}$ and $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, as well as $y_{1} y_{2}$, may possibly be present, and since $e(G)=18$, exactly one of these nine edges is not present. Suppose first that $y_{1} y_{2} \in E(G)$. We may assume that $y_{1} x_{1}, y_{1} x_{2}, y_{2} x_{1} \in E(G)$, but then $u v x_{2} y_{1} y_{2}+x_{1}$ is a copy of gem ${ }_{5}$. Otherwise, if $y_{1} y_{2} \notin E(G)$, then we have $G=G_{8}^{\prime}$. Finally, if there does not exist an edge in $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]$, then a similar edge count shows that G contains all edges between $\left\{y_{1}, y_{2}\right\}$ and $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, as well as $y_{1} y_{2}$. This gives $G=G_{8}^{0}$.

Next, suppose that u and v have three common neighbours, say x_{1}, x_{2}, x_{3}. Let y, z_{1}, z_{2} be the remaining vertices, where $u z_{1}, v z_{2} \in E(G)$ and $u y, v y, u z_{2}, v z_{1} \notin$ $E(G)$. By Lemma 2.5, each of z_{1}, z_{2} has at most one neighbour in $\left\{x_{1}, x_{2}, x_{3}\right\}$. If there exists an edge between $\left\{z_{1}, z_{2}\right\}$ and $\left\{x_{1}, x_{2}, x_{3}\right\}$, then again by Lemma 2.5 , there are no edges in $G\left[\left\{x_{1}, x_{2}, x_{3}\right\}\right]$. Since there are at most three edges in $G\left[\left\{y, z_{1}, z_{2}\right\}\right]$, and at most five edges between $\left\{y, z_{1}, z_{2}\right\}$ and $\left\{x_{1}, x_{2}, x_{3}\right\}$, we have $e(G-\{u, v\}) \leq 8$, a contradiction. Otherwise, suppose that there are no edges between $\left\{z_{1}, z_{2}\right\}$ and $\left\{x_{1}, x_{2}, x_{3}\right\}$. Then we have $\operatorname{deg}\left(z_{i}\right) \leq 3$ for $i=1,2$. This implies that the remaining six vertices must each have degree 5 , otherwise $e(G) \leq\left\lfloor\frac{1}{2}(5 \cdot 5+4+2 \cdot 3)\right\rfloor=17<18=e_{8}$. In particular, we have $x_{i} x_{j} \in E(G)$
for $1 \leq i \neq j \leq 3$ and $y x_{i} \in E(G)$ for $i=1,2,3$. But then $u v x_{2} x_{3} y+x_{1}$ is a copy of gem_{5}.

Finally, suppose that u and v have two common neighbours, say x_{1}, x_{2}. Let $y_{1}, y_{2}, z_{1}, z_{2}$ be the remaining vertices, where $u y_{1}, u y_{2}, v z_{1}, v z_{2} \in E(G)$ and $u z_{1}, u z_{2}, v y_{1}, v y_{2} \notin E(G)$. Suppose first that there are at most two edges in $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$, and at most two edges in $G\left[\left\{x_{1}, x_{2}, z_{1}, z_{2}\right\}\right]$. Since there are at most four edges between $\left\{y_{1}, y_{2}\right\}$ and $\left\{z_{1}, z_{2}\right\}$, we have $e(G-\{u, v\}) \leq$ $2 \cdot 2+4=8$, a contradiction. Now, suppose that there are at least three edges in $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$. If $x_{1} y_{1}, y_{1} y_{2} \in E(G)$ or $x_{1} y_{1}, x_{2} y_{2} \in E(G)$, then $x_{2} v x_{1} y_{1} y_{2}+u$ or $y_{1} x_{1} v x_{2} y_{2}+u$ is a copy of gem ${ }_{5}$. Thus, we may assume that $x_{1} x_{2}, x_{1} y_{1}, x_{2} y_{1} \in E(G)$ and $x_{1} y_{2}, x_{2} y_{2}, y_{1} y_{2} \notin E(G)$. If there are at most two edges in $G\left[\left\{x_{1}, x_{2}, z_{1}, z_{2}\right\}\right]$, including $x_{1} x_{2}$, then since there are at most four edges between $\left\{y_{1}, y_{2}\right\}$ and $\left\{z_{1}, z_{2}\right\}$, we have $e(G-\{u, v\}) \leq 3+1+4=8$, a contradiction. Thus, there are at least three edges in $G\left[\left\{x_{1}, x_{2}, z_{1}, z_{2}\right\}\right]$, and by similarly considering the edges in $G\left[\left\{x_{1}, x_{2}, z_{1}, z_{2}\right\}\right]$, we may assume that $x_{1} z_{1}, x_{2} z_{1} \in E(G)$ and $x_{1} z_{2}, x_{2} z_{2}, z_{1} z_{2} \notin E(G)$. But now, $y_{1} u x_{2} v z_{1}+x_{1}$ is a copy of gem ${ }_{5}$.

Therefore, we conclude that either G contains a copy of gem $_{5}$, or $G \in \mathcal{F}_{8,5}$. This completes the proof of Lemma 2.4.

We are now able to prove Theorem 2.3. The proof is generally similar to that of Theorem 2.1 but with a little more case analysis.

Proof of Theorem 2.3. Let $n \geq 8$. Again, the lower bound $\operatorname{ex}\left(n\right.$, gem $\left._{5}\right) \geq e_{n}$ follows by considering any graph of $\mathcal{F}_{n, 5}$. We prove the upper bound ex $\left(n, \operatorname{gem}_{5}\right) \leq$ e_{n} by induction on n. Lemma 2.4 proves the result for $n=8$. Now suppose that $n \geq 9$, and the theorem holds for $n-1$. As before, it suffices to prove that if G is a graph on n vertices and $e(G)=e_{n}$, then either G contains a copy of gem ${ }_{5}$, or $G \in \mathcal{F}_{n, 5}$.

First, suppose that $\delta(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$ and let $v \in V(G)$ be a vertex of minimum degree. Then exactly as in (3), we have $e(G-v) \geq e_{n-1}$. Again we are done unless $e(G-v)=e_{n-1}$, whence $\operatorname{deg}(v)=\left\lfloor\frac{n}{2}\right\rfloor$ and $e_{n}-e_{n-1}=\left\lfloor\frac{n}{2}\right\rfloor$, and $n \not \equiv 3$ $(\bmod 4)$. By induction, either $G-v$, and thus G, contains a copy of gem ${ }_{5}$ and we are done, or $G-v \in \mathcal{F}_{n-1,5}$, and we must consider the following cases.

Case 1. $n \equiv 0(\bmod 4)$. We have $G-v=G_{n-1}^{3}$ with classes A_{n-1}^{3} and B_{n-1}^{3}, where $\left|A_{n-1}^{3}\right|=\frac{n}{2}-1$ and $\left|B_{n-1}^{3}\right|=\frac{n}{2}$, and B_{n-1}^{3} containing a perfect matching. We have $\operatorname{deg}(v)=\frac{n}{2}$. If $N(v)=B_{n-1}^{3}$, then $G=G_{n}^{0}$. Otherwise, if v has neighbours $c, d \in A_{n-1}^{3}$ and $u \in B_{n-1}^{3}$, then abcvd $+u$ is a copy of gem ${ }_{5}$ in G, where $a \in A_{n-1}^{3} \backslash\{c, d\}$ and $b \in B_{n-1}^{3}$ is the vertex adjacent to u. If v has exactly one neighbour $u \in A_{n-1}^{3}$, then since $\left|B_{n-1}^{3}\right|=\frac{n}{2}>4$, we can find $a, b, c, d \in B_{n-1}^{3}$ such that $a b, c d, b v, c v \in E(G)$. We have $a b v c d+u$ is a copy of gem $_{5}$ in G.

Case 2 . $n \equiv 1(\bmod 4)$. If $n \geq 13$, we have $G-v=G_{n-1}^{0}$. If $n=9$, we have $G-v \in\left\{G_{8}^{0}, G_{8}^{\prime}, G_{8}^{\prime \prime}\right\}$.

Subcase 2.1. $n \geq 9$ and $G-v=G_{n-1}^{0}$. The classes of $G-v$ are A_{n-1}^{0} and B_{n-1}^{0}. Since $\left|B_{n-1}^{0}\right|=\frac{n-1}{2} \geq 4$, this subcase can be considered by combining the arguments used in Case 2 of Theorem 2.1 and in Case 1 above. We find that either G contains a copy of gem $_{5}$, or $G \in\left\{G_{n}^{11}, G_{n}^{12}\right\}$.

Subcase 2.2. $n=9$ and $G-v \in\left\{G_{8}^{\prime}, G_{8}^{\prime \prime}\right\}$. Suppose first that $G-v=G_{8}^{\prime}$, so that the classes of $G-v$ are A_{8}^{\prime} and B_{8}^{\prime} with $\left|A_{8}^{\prime}\right|=\left|B_{8}^{\prime}\right|=4$, and each class containing one edge, say $c u$ and $a b$ are the edges in A_{8}^{\prime} and B_{8}^{\prime}. We have $\operatorname{deg}(v)=$ 4. If $N(v)=A_{8}^{\prime}$ or $N(v)=B_{8}^{\prime}$, then $G=G_{9}^{\prime}$, and if $N(v)=\left(A_{8}^{\prime} \cup B_{8}^{\prime}\right) \backslash\{a, b, c, u\}$, then $G=G_{9}^{\prime \prime}$. Otherwise, let $d \in B_{8}^{\prime} \backslash\{a, b\}$. We may assume that $u v \in E(G)$, and either $a v \in E(G)$ or $d v \in E(G)$. Then $v a b c d+u$ or $a b c d v+u$ is a copy of gem $_{5}$.

Now, suppose that $G-v=G_{8}^{\prime \prime}$. The classes of $G-v$ are $A_{8}^{\prime \prime}$ and $B_{8}^{\prime \prime}$ with $\left|A_{8}^{\prime \prime}\right|=2,\left|B_{8}^{\prime \prime}\right|=6$, and there are two vertex-disjoint triangles embedded into $B_{8}^{\prime \prime}$. Let $A_{8}^{\prime \prime}=\{b, d\}$ and $a c u$ be one of the triangles in $B_{8}^{\prime \prime}$. We have $\operatorname{deg}(v)=4$. If $b v, d v \in E(G)$, then we may assume that $u v \in E(G)$. We have $a b c d v+u$ is a copy of gem ${ }_{5}$. Otherwise, v has at least three neighbours in $B_{8}^{\prime \prime}$, and we may assume that $a v, u v \in E(G)$. Then $v a b c d+u$ is a copy of gem $_{5}$.

Case 3. $n \equiv 2(\bmod 4)$. If $n \geq 14$, then we have $G-v \in\left\{G_{n-1}^{11}, G_{n-1}^{12}\right\}$. If $n=10$, then we have $G-v \in\left\{G_{9}^{11}, G_{9}^{12}, G_{9}^{\prime}, G_{9}^{\prime \prime}\right\}$.

Subcase 3.1. $n \geq 10$ and $G-v \in\left\{G_{n-1}^{11}, G_{n-1}^{12}\right\}$. If $G-v=G_{n-1}^{11}$, then $\left|A_{n-1}^{11}\right|=\frac{n}{2}-1 \geq 4$. If $G-v=G_{n-1}^{12}$, then $G-v$ has the class B_{n-1}^{12} which contains a maximum matching with an unmatched vertex, say w. We have $\left|B_{n-1}^{12} \backslash\{w\}\right|=$ $\frac{n}{2}-1 \geq 4$. Since $\operatorname{deg}(v)=\frac{n}{2}$, this subcase can be considered by combining the arguments used in Case 3 of Theorem 2.1 and in Case 1 above. We find that either G contains a copy of gem $_{5}$, or $G \in\left\{G_{n}^{21}, G_{n}^{22}\right\}$.

Subcase 3.2. $n=10$ and $G-v \in\left\{G_{9}^{\prime}, G_{9}^{\prime \prime}\right\}$. Suppose first that $G-v=G_{9}^{\prime}$, so that the classes of $G-v$ are A_{9}^{\prime} and B_{9}^{\prime} with $\left|A_{9}^{\prime}\right|=4,\left|B_{9}^{\prime}\right|=5$, and each class containing one edge. We have $\operatorname{deg}(v)=5$. If $N(v)=B_{9}^{\prime}$, then $G=G_{10}^{\prime}$. If v has a neighbour which is incident with the edge in A_{9}^{\prime} or the edge in B_{9}^{\prime}, then as in the argument in the first part of Subcase $2.2, G$ contains a copy of gem ${ }_{5}$. Otherwise, $N(v)$ consists of the five vertices not incident with the two edges within A_{9}^{\prime} and B_{9}^{\prime}. Therefore, if $b, d \in A_{9}^{\prime}$ and $a, c, e \in B_{9}^{\prime}$ are these five neighbours of v, then $a b c d e+v$ is a copy of gem $_{5}$.

Now, suppose that $G-v=G_{9}^{\prime \prime}$. The graph $G-v$ consists of two sets $A_{9}^{\prime \prime}$ and $B_{9}^{\prime \prime}$ where $\left|A_{9}^{\prime \prime}\right|=\left|B_{9}^{\prime \prime}\right|=4$, with one edge in each set, say f_{1} in $A_{9}^{\prime \prime}$ and f_{2} in $B_{9}^{\prime \prime}$, and another vertex, say z, joined to the four vertices not incident with f_{1}, f_{2}. Let $b, d \in A_{9}^{\prime \prime}$ and $a, c \in B_{9}^{\prime \prime}$ be the neighbours of z in $G-v$. We have $\operatorname{deg}(v)=5$.

Again, if v has a neighbour in each of $A_{9}^{\prime \prime}$ and $B_{9}^{\prime \prime}$ where at least one is incident with f_{1} or f_{2}, then by the argument in Subcase $2.2, G$ contains a copy of gem $_{5}$. Otherwise, we may assume that $N(v)=A_{9}^{\prime \prime} \cup\{z\}$ or $N(v)=\{a, b, c, d, z\}$, and $a b c d v+z$ is a copy of gem_{5}.

This concludes the case when $\delta(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Next, suppose that $\delta(G) \geq\left\lfloor\frac{n}{2}\right\rfloor+1$. Then exactly as in the proof of Theorem 2.1, we must have $n \equiv 3(\bmod 4)$, and that G is a $\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$-regular graph. Again for $v \in V(G)$, we have $e(G-v)=e_{n-1}$, using exactly the same argument as in (4). By induction, either $G-v$, and thus G, contains a copy of gem $_{5}$, or $G-v \in \mathcal{F}_{n-1,5}$. If the latter holds, then for $n \geq 15$ we have $G-v \in\left\{G_{n-1}^{21}, G_{n-1}^{22}\right\}$, and for $n=11$ we have $G-v \in\left\{G_{10}^{21}, G_{10}^{22}, G_{10}^{\prime}\right\}$. If $n \geq 11$ and $G-v \in\left\{G_{n-1}^{21}, G_{n-1}^{22}\right\}$, then as in the proof of Theorem 2.1, the fact that G is a $\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$-regular graph implies that $G=G_{n}^{3}$. Otherwise, we have $n=11$ and $G-v=G_{10}^{\prime}$. Then G is a 6-regular graph, which means that $N(v)$ consists of the six vertices not incident with the two edges within A_{10}^{\prime} and B_{10}^{\prime}. Therefore, if $a, c, e \in A_{10}^{\prime}$ and $b, d \in B_{10}^{\prime}$ are neighbours of v, then $a b c d e+v$ is a copy of gem ${ }_{5}$.

This completes the proof Theorem 2.3.

3. Decompositions of Graphs Into Gem Graphs and Single Edges

Recall that for a fixed graph $H, \phi(n, H)$ denotes the smallest integer ϕ such that any graph on n vertices admits an H-decomposition with at most ϕ parts. In this section we will verify Pikhurko and Sousa conjecture (Conjecture 1.3) for the gem graphs gem $_{4}$ and gem_{5}. That is, we will show that $\phi\left(n, \operatorname{gem}_{4}\right)=\operatorname{ex}\left(n, \operatorname{gem}_{4}\right)$ for $n \geq 6$, and $\phi\left(n, \operatorname{gem}_{5}\right)=\operatorname{ex}\left(n\right.$, gem $\left._{5}\right)$ for $n \geq 8$.

3.1. gem $_{4}$-decompositions

We begin by considering gem $_{4}$-decompositions, and prove the following result.
Theorem 3.1. For $n \geq 6$ we have

$$
\phi\left(n, \operatorname{gem}_{4}\right)=\operatorname{ex}\left(n, \operatorname{gem}_{4}\right)
$$

Moreover, the only graphs attaining $\operatorname{ex}\left(n, \operatorname{gem}_{4}\right)$ are the members of $\mathcal{F}_{n, 4}$.
Proof. Let $n \geq 6$. The lower bound $\phi\left(n, \operatorname{gem}_{4}\right) \geq \operatorname{ex}\left(n, \operatorname{gem}_{4}\right)$ holds by considering any graph of $\mathcal{F}_{n, 4}$. We prove the matching upper bound. By Theorem 2.1, we know that $\operatorname{ex}\left(n, \operatorname{gem}_{4}\right)=e_{n}$ for $n \geq 6$. Let G be a graph on $n \geq 6$ vertices. We must prove that $\phi\left(G\right.$, gem $\left._{4}\right) \leq \operatorname{ex}\left(n\right.$, gem $\left._{4}\right)=e_{n}$, with equality if and only if $G \in \mathcal{F}_{n, 4}$.

We proceed by induction on n. For $n=6$, if $e(G)<e_{6}=10$, then we can simply decompose G into single edges to obtain $\phi\left(G\right.$, gem $\left._{4}\right)<e_{6}$. Otherwise, let
$10=e_{6} \leq e(G) \leq 15$. By Theorem 2.1, we either have $G \in \mathcal{F}_{6,4}$, or G contains a copy of gem ${ }_{4}$. If $G \in \mathcal{F}_{6,4}$, then $e(G)=e_{6}=10$ and we must decompose G into single edges, thus, $\phi\left(G\right.$, gem $\left._{4}\right)=e_{6}$ as required. If G contains a copy of gem ${ }_{4}$, then $\phi\left(G\right.$, gem $\left._{4}\right) \leq 1+e(G)-e\left(\operatorname{gem}_{4}\right) \leq 9<10=e_{6}$. Thus, the theorem holds for $n=6$.

Now, let $n \geq 7$, and suppose that the theorem holds for $n-1$. Let G be a graph on n vertices. As before, if $e(G)<e_{n}$, then $\phi\left(G\right.$, gem $\left.{ }_{4}\right)<e_{n}$, simply by decomposing G into single edges. If $e(G)=e_{n}$, then by Theorem 2.1, either G contains a copy of gem $_{4}$, in which case $\phi\left(G\right.$, gem $\left._{4}\right) \leq 1+e(G)-e\left(\right.$ gem $\left._{4}\right)=$ $e_{n}-6<e_{n}$, or $G \in \mathcal{F}_{n, 4}$, in which case we can only decompose G into e_{n} single edges for a gem $_{4}$-decomposition, and $\phi\left(G\right.$, gem $\left._{4}\right)=e_{n}$ as required.

Now, suppose that $e(G)>e_{n}$, and let $v \in V(G)$ be a vertex of minimum degree. If $\operatorname{deg}(v) \leq\left\lfloor\frac{n}{2}\right\rfloor$, then by equation (2) we have $e(G-v)=e(G)-\operatorname{deg}(v)>$ $e_{n}-\left\lfloor\frac{n}{2}\right\rfloor \geq e_{n-1}$, that is, $G-v \notin \mathcal{F}_{n-1,4}$ and by the induction hypothesis we have

$$
\phi\left(G-v, \operatorname{gem}_{4}\right)<\operatorname{ex}\left(n-1, \operatorname{gem}_{4}\right)=e_{n-1}
$$

Therefore, when going from $G-v$ to G we only need to use the edges joining v to the other vertices of G, and there are at most $\left\lfloor\frac{n}{2}\right\rfloor$ of these edges at v. We have

$$
\phi\left(G, \operatorname{gem}_{4}\right) \leq \phi\left(G-v, \operatorname{gem}_{4}\right)+\operatorname{deg}(v)<e_{n-1}+\left\lfloor\frac{n}{2}\right\rfloor \leq e_{n}
$$

as required.
Therefore, we may assume that $\operatorname{deg}(v) \geq\left\lfloor\frac{n}{2}\right\rfloor+1$ and let $\operatorname{deg}(v)=\left\lfloor\frac{n}{2}\right\rfloor+m$ for some integer $m \geq 1$. For every $x \in N(v)$, we have

$$
\begin{align*}
\operatorname{deg}(x, N(v)) & \geq\left\lfloor\frac{n}{2}\right\rfloor+m-\left(n-\left\lfloor\frac{n}{2}\right\rfloor-m\right) \\
& =2\left\lfloor\frac{n}{2}\right\rfloor+2 m-n \geq 2 m-1 \tag{7}
\end{align*}
$$

This means that $G[N(v)]$ must contain a path $P_{2 m}$ on $2 m$ vertices. Otherwise, if the longest path in $G[N(v)]$ has at most $2 m-1$ vertices, say with an end-vertex y, then all neighbours of y in $N(v)$ must lie in the path, so that $\operatorname{deg}(y, N(v)) \leq$ $2 m-2$, contradicting (7).

If $m \geq 2$, then the path $P_{2 m}$ contains $\left\lfloor\frac{2 m}{4}\right\rfloor=\left\lfloor\frac{m}{2}\right\rfloor$ vertex-disjoint paths of order 4. Thus, we have $\left\lfloor\frac{m}{2}\right\rfloor$ edge-disjoint copies of gem 4 , where each copy is formed by a path of order 4 , together with v. Let $F \subset G-v$ be the subgraph of order $n-1$ obtained by deleting the edges of the paths of order 4 from $G-v$. By induction and (2), and since $m \geq 2$, we have

$$
\begin{aligned}
\phi\left(G, \operatorname{gem}_{4}\right) & \leq \phi\left(F, \operatorname{gem}_{4}\right)+\left\lfloor\frac{m}{2}\right\rfloor+\operatorname{deg}(v)-4\left\lfloor\frac{m}{2}\right\rfloor \\
& \leq e_{n-1}+\left\lfloor\frac{n}{2}\right\rfloor+m-3\left\lfloor\frac{m}{2}\right\rfloor<e_{n-1}+\left\lfloor\frac{n}{2}\right\rfloor \leq e_{n}
\end{aligned}
$$

To complete the proof it remains to consider the case $m=1$. For this case, we will repeatedly use the following claim.

Claim 3.2. Suppose that there exists a vertex $z \in V(G)$ with $\operatorname{deg}(z)=\left\lfloor\frac{n}{2}\right\rfloor+1$, and G has a copy of gem_{4} with at least three edges incident to z. Then $\phi\left(G, \mathrm{gem}_{4}\right)$ $<e_{n}$.

Proof. Let $F \subset G-z$ be the subgraph on $n-1$ vertices obtained from $G-z$ by deleting the edges of the copy of gem_{4}. By induction and (2), we have

$$
\phi\left(G, \operatorname{gem}_{4}\right) \leq \phi\left(F, \operatorname{gem}_{4}\right)+1+\operatorname{deg}(z)-3 \leq e_{n-1}+\left\lfloor\frac{n}{2}\right\rfloor-1<e_{n} .
$$

We now consider three cases. Let $\bar{N}(v)=V(G) \backslash(N(v) \cup\{v\})$, and note that

$$
|N(v)|=\left\lfloor\frac{n}{2}\right\rfloor+1 \geq 4 \quad \text { and } \quad|\bar{N}(v)|=\left\lceil\frac{n}{2}\right\rceil-2 \geq 2
$$

Case 1. $G[N(v)]$ contains a path P of order 4. Then P and v form a copy of gem $_{4}$, and we have $\phi\left(G, \mathrm{gem}_{4}\right)<e_{n}$ by Claim 3.2.

Case 2. The order of the longest path in $G[N(v)]$ is 3 . Let $x_{1} x x_{2}$ be a path of order 3 in $G[N(v)]$.

Subcase 2.1. $x_{1} x_{2} \in E(G)$. We have $\operatorname{deg}(x, N(v))=2$, for otherwise $G[N(v)]$ would contain a P_{4}. We must have $\operatorname{deg}(x, \bar{N}(v)) \geq\left\lfloor\frac{n}{2}\right\rfloor+1-3 \geq|\bar{N}(v)|-1$. Similarly for x_{1}, x_{2}. This implies that two of x, x_{1}, x_{2} have a common neighbour in $\bar{N}(v)$, say $y \in \bar{N}(v)$ is a common neighbour of x, x_{1}. Then $x_{2} v x_{1} y+x$ is a copy of gem_{4}, and by Claim 3.2 with $z=v$, we have $\phi\left(G, \mathrm{gem}_{4}\right)<e_{n}$.

Subcase 2.2. $x_{1} x_{2} \notin E(G)$. Let $N(v)=\left\{x, x_{1}, x_{2}, \ldots, x_{\lfloor n / 2\rfloor}\right\}$. For $i=1,2$, we have $\operatorname{deg}\left(x_{i}, N(v)\right)=1$, and

$$
\begin{equation*}
\operatorname{deg}\left(x_{i}, \bar{N}(v)\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1-2 \geq\left\lceil\frac{n}{2}\right\rceil-2=|\bar{N}(v)| . \tag{8}
\end{equation*}
$$

We must have equality to hold throughout, whence n is odd, $\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=$ $\left\lfloor\frac{n}{2}\right\rfloor+1$, and both x_{1}, x_{2} are adjacent to all vertices of $\bar{N}(v)$. If x has a neighbour $y \in \bar{N}(v)$, then $x_{1} v x_{2} y+x$ is a copy of gem_{4}, and again $\phi(G$, gem $)<e_{n}$ by Claim 3.2 with $z=v$.

Otherwise, suppose that x does not have a neighbour in $\bar{N}(v)$. Then $\operatorname{deg}(x) \leq$ $|N(v) \cup\{v\}|-1=\left\lfloor\frac{n}{2}\right\rfloor+1$, so that $\operatorname{deg}(x)=\left\lfloor\frac{n}{2}\right\rfloor+1$ and $x x_{i} \in E(G)$ for all $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$. Moreover, we have $x_{i} x_{j} \notin E(G)$ for all $i \neq j$, otherwise there would exist a copy of P_{4} in $G[N(v)]$. By a similar argument as in (8), we have $\operatorname{deg}\left(x_{i}\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$, and x_{i} is adjacent to all vertices of $\bar{N}(v)$ for all $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$. In order to get a contradiction, suppose that there does not exist a path of order 3
in $G[\bar{N}(v)]$. Then the maximum number of edges in $G[\bar{N}(v)]$ is $\left\lfloor\frac{1}{2}|\bar{N}(v)|\right\rfloor$. Recall that n is odd. We have

$$
\begin{aligned}
e(G) & \leq 2|N(v)|-1+(|N(v)|-1)|\bar{N}(v)|+\left\lfloor\frac{1}{2}|\bar{N}(v)|\right\rfloor \\
& =2\left\lfloor\frac{n}{2}\right\rfloor+1+\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lceil\frac{n}{2}\right\rceil-2\right)+\left\lfloor\frac{1}{2}\left(\left\lceil\frac{n}{2}\right\rceil-2\right)\right\rfloor \\
& =\left\lfloor\frac{n^{2}}{4}\right\rfloor+\left\lfloor\frac{n+1}{4}\right\rfloor=e_{n}
\end{aligned}
$$

by (1), which contradicts the assumption $e(G)>e_{n}$. Therefore, $G[\bar{N}(v)]$ must have a path of order 3 , say $y_{1} y_{2} y_{3}$. Note that $|\bar{N}(v)|=\left\lceil\frac{n}{2}\right\rceil-2 \geq 3$ and thus we must have n odd and $n \geq 9$. Then, $x_{1} y_{1} x_{2} y_{3}+y_{2}$ is a copy of gem_{4}, and by Claim 3.2 with $z=x_{1}$, we have $\phi(G$, gem $)<e_{n}$.

Case 3. The longest path in $G[N(v)]$ has order 2. Note that this is indeed the remaining case, since $\operatorname{deg}(x, N(v)) \geq 2 m-1=1$ for all $x \in N(v)$ by (7). Moreover, $N(v)$ induces a perfect matching in G. Now by a similar argument as in (8), we must have n odd, and for every $x \in N(v)$, we have $\operatorname{deg}(x)=\left\lfloor\frac{n}{2}\right\rfloor+1$ and x is adjacent to all vertices of $\bar{N}(v)$. Thus, we can find an edge $x_{1} x_{2}$ in $G[N(v)]$ and a common neighbour $y \in \bar{N}(v)$ of x_{1}, x_{2}. Now, since $v x_{2} y$ is a path of order 3 in $G\left[N\left(x_{1}\right)\right.$, we are done by applying Case 1 or Case 2 with x_{1} in place of v.

The induction step is complete, and this completes the proof of Theorem 3.1.

3.2. gem $_{5}$-decompositions

By using the same ideas as in the proof of Theorem 3.1, but with more case analysis, we will be able to prove a similar result for gem 5_{5}-decompositions. That is, we will prove the following theorem.

Theorem 3.3. For $n \geq 8$ we have

$$
\phi\left(n, \operatorname{gem}_{5}\right)=\operatorname{ex}\left(n, \operatorname{gem}_{5}\right)
$$

Moreover, the only graphs attaining $\operatorname{ex}\left(n, \mathrm{gem}_{5}\right)$ are the members of $\mathcal{F}_{n, 5}$.
Proof. Let $n \geq 8$. As before, we have $\phi\left(n, \operatorname{gem}_{5}\right) \geq \operatorname{ex}\left(n, \operatorname{gem}_{5}\right)$ by considering any graph of $\mathcal{F}_{n, 5}$. By Theorem 2.3 , to prove the matching upper bound, we must prove that if G is a graph on $n \geq 8$ vertices, then $\phi\left(G, \operatorname{gem}_{5}\right) \leq \operatorname{ex}\left(n\right.$, gem $\left._{5}\right)=e_{n}$, with equality if and only if $G \in \mathcal{F}_{n, 5}$.

We proceed by induction on n. For $n=8$, if $e(G)<e_{8}=18$, then we can simply decompose G into single edges to obtain $\phi\left(G\right.$, gem $\left._{4}\right)<e_{8}$. Next,
suppose that $18=e_{8} \leq e(G) \leq 25$. By Theorem 2.3, we either have $G \in \mathcal{F}_{8,5}$, or G contains a copy of gem $_{5}$. If $G \in \mathcal{F}_{8,5}$, then $e(G)=e_{8}=18$ and we must decompose G into single edges, and $\phi\left(G\right.$, gem $\left._{5}\right)=e_{8}$. If G contains a copy of gem $_{5}$, then $\phi\left(G\right.$, gem $\left._{5}\right) \leq 1+e(G)-e\left(\right.$ gem $\left._{5}\right) \leq 17<18=e_{8}$. Finally, suppose that $26 \leq e(G) \leq 28$. Clearly, there exist two vertices $x, y \in V(G)$ of degree 7, so that $e(G-\{x, y\}) \geq 26-1-2 \cdot 6=13$. Since ex $\left(6, P_{5}\right)=\binom{4}{2}+\binom{2}{2}=7$ by Theorem 1.1, this means that we can find two edge-disjoint copies of P_{5} in $G-\{x, y\}$. These two copies of P_{5}, together with x and y, form two edge-disjoint copies of gem $_{5}$ in G. Thus, $\phi\left(G\right.$, gem $\left._{5}\right) \leq 2+e(G)-2 e\left(\right.$ gem $\left._{5}\right) \leq 12<18=e_{8}$. The theorem holds for $n=8$.

Now, let $n \geq 9$, and suppose that the theorem holds for $n-1$. Let G be a graph on n vertices. As before, if $e(G)<e_{n}$, then $\phi\left(G\right.$, gem $\left._{5}\right)<e_{n}$, simply by decomposing G into single edges. If $e(G)=e_{n}$, then by Theorem 2.3, either G contains a copy of gem_{5}, in which case $\phi\left(G, \mathrm{gem}_{5}\right) \leq 1+e(G)-e\left(\mathrm{gem}_{5}\right)=$ $e_{n}-8<e_{n}$, or $G \in \mathcal{F}_{n, 5}$, in which case we can only decompose G into e_{n} single edges for a gem $_{5}$-decomposition, and $\phi\left(G\right.$, gem $\left._{5}\right)=e_{n}$ as required.

Now, suppose that $e(G)>e_{n}$, and let $v \in V(G)$ be a vertex of minimum degree. If $\operatorname{deg}(v) \leq\left\lfloor\frac{n}{2}\right\rfloor$, then by equation (6), we have $e(G-v)=e(G)-$ $\operatorname{deg}(v)>e_{n}-\left\lfloor\frac{n}{2}\right\rfloor \geq e_{n-1}$, that is, $G-v \notin \mathcal{F}_{n-1,5}$. By induction, we have $\phi\left(G-v, \operatorname{gem}_{5}\right)<\operatorname{ex}\left(n-1, \mathrm{gem}_{5}\right)=e_{n-1}$. Thus, when going from $G-v$ to G we only need to use the edges joining v to the other vertices of G. We have

$$
\phi\left(G, \operatorname{gem}_{5}\right) \leq \phi\left(G-v, \operatorname{gem}_{5}\right)+\operatorname{deg}(v)<e_{n-1}+\left\lfloor\frac{n}{2}\right\rfloor \leq e_{n}
$$

Therefore, we may assume that $\operatorname{deg}(v) \geq\left\lfloor\frac{n}{2}\right\rfloor+1$ and $\operatorname{let} \operatorname{deg}(v)=\left\lfloor\frac{n}{2}\right\rfloor+m$ for some integer $m \geq 1$. As in (7), for every $x \in N(v)$, we have $\operatorname{deg}(x, N(v)) \geq 2 m-1$, and that $G[N(v)]$ must contain a path $P_{2 m}$ on $2 m$ vertices.

If $m \geq 3$, then the path $P_{2 m}$ contains $\left\lfloor\frac{2 m}{5}\right\rfloor$ vertex-disjoint paths of order 5 . Thus, we have $\left\lfloor\frac{2 m}{5}\right\rfloor$ edge-disjoint copies of gem ${ }_{5}$, where each copy is formed by a path of order 5 , together with v. Let $F \subset G-v$ be the subgraph of order $n-1$ obtained by deleting the edges of the paths of order 5 from $G-v$. By induction and (6), and since $m \geq 3$, we have

$$
\begin{aligned}
\phi\left(G, \operatorname{gem}_{5}\right) & \leq \phi\left(F, \operatorname{gem}_{5}\right)+\left\lfloor\frac{2 m}{5}\right\rfloor+\operatorname{deg}(v)-5\left\lfloor\frac{2 m}{5}\right\rfloor \\
& \leq e_{n-1}+\left\lfloor\frac{n}{2}\right\rfloor+m-4\left\lfloor\frac{2 m}{5}\right\rfloor<e_{n-1}+\left\lfloor\frac{n}{2}\right\rfloor \leq e_{n}
\end{aligned}
$$

For the rest of the proof, let $\bar{N}(v)=V(G) \backslash(N(v) \cup\{v\})$. Next, suppose that $m=2$, so that $|N(v)|=\left\lfloor\frac{n}{2}\right\rfloor+2 \geq 6$ and $|\bar{N}(v)|=\left\lceil\frac{n}{2}\right\rceil-3 \geq 2$. If $G[N(v)]$ contains a path P_{5} of order 5 , then this path together with v form a copy of gem ${ }_{5}$.

Let $F \subset G-v$ be the subgraph of order $n-1$, obtained by deleting the edges of the P_{5}. Then,

$$
\phi\left(G, \operatorname{gem}_{5}\right) \leq \phi\left(F, \operatorname{gem}_{5}\right)+1+\operatorname{deg}(v)-5 \leq e_{n-1}+\left\lfloor\frac{n}{2}\right\rfloor+2-4<e_{n}
$$

Therefore, we may assume that the longest path in $G[N(v)]$ has order 4 . Let $x_{1} x_{2} x_{3} x_{4}$ be such a path in $G[N(v)]$. Since $\operatorname{deg}\left(x_{1}, N(v)\right) \geq 2 \cdot 2-1=3$, we must have $x_{1} x_{3}, x_{1} x_{4} \in E(G)$. Moreover, the only neighbours of x_{1} in $N(v)$ are x_{2}, x_{3}, x_{4}, so that

$$
\operatorname{deg}\left(x_{1}, \bar{N}(v)\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+2-4 \geq\left\lceil\frac{n}{2}\right\rceil-3=|\bar{N}(v)|
$$

We must have equality, so that n is odd, $\operatorname{deg}\left(x_{1}\right)=\left\lfloor\frac{n}{2}\right\rfloor+2$, and x_{1} is adjacent to every vertex of $\bar{N}(v)$. The same argument holds for x_{4}, so that x_{1}, x_{4} have a common neighbour $y \in \bar{N}(v)$. Now, since $v x_{2} x_{3} x_{4} y$ is a path of order 5 in $G\left[N\left(x_{1}\right)\right]$, we are done by applying the previous argument with x_{1} in place of v.

To complete the proof it remains to consider the case $m=1$. As before, we will repeatedly use the following claim which is analogous to Claim 3.2.

Claim 3.4. Suppose that there exists a vertex $z \in V(G)$ with $\operatorname{deg}(z)=\left\lfloor\frac{n}{2}\right\rfloor+1$, and G has a copy of gem_{5} with at least three edges incident to z. Then $\phi\left(G\right.$, gem $\left._{5}\right)$ $<e_{n}$.

Proof. Exactly the same as the proof of Claim 3.2.
We now consider four cases. Note that we have

$$
|N(v)|=\left\lfloor\frac{n}{2}\right\rfloor+1 \geq 5 \quad \text { and } \quad|\bar{N}(v)|=\left\lceil\frac{n}{2}\right\rceil-2 \geq 3
$$

Case 1. $G[N(v)]$ contains a path P of order 5 . Then P and v form a copy of gem $_{5}$, and we have $\phi\left(G\right.$, gem $\left._{5}\right)<e_{n}$ by Claim 3.4.

Case 2. The order of the longest path in $G[N(v)]$ is 4 . Let $x_{1} x_{2} x_{3} x_{4}$ be such a path in $G[N(v)]$. It suffices to consider the following subcases.

Subcase 2.1. $x_{1} x_{3}, x_{1} x_{4} \in E(G)$. For $i=1,2,3,4, x_{i}$ does not have a neighbour in $N(v) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, so that $\operatorname{deg}\left(x_{i}, N(v)\right) \leq 3$. Thus,

$$
\begin{equation*}
\operatorname{deg}\left(x_{i}, \bar{N}(v)\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1-4 \geq\left\lceil\frac{n}{2}\right\rceil-4=|\bar{N}(v)|-2 \tag{9}
\end{equation*}
$$

If $x_{2} x_{4} \notin E(G)$, then we have $\operatorname{deg}\left(x_{j}, N(v)\right)=2$, and $\operatorname{deg}\left(x_{j}, \bar{N}(v)\right) \geq|\bar{N}(v)|-1$ for $j=2$, 4. With (9), this implies that either x_{1}, x_{2} or x_{2}, x_{3} or x_{1}, x_{3}, have a common neighbour $y \in \bar{N}(v)$. Then, either $x_{4} v x_{3} x_{2} y+x_{1}$; or $x_{4} v x_{1} x_{2} y+x_{3}$; or $x_{4} v x_{2} x_{3} y+x_{1}$, is a copy of gem $_{5}$, respectively. By Claim 3.4 with $z=v$, we
have $\phi\left(G\right.$, gem $\left._{5}\right)<e_{n}$. Now, if $x_{2} x_{4} \in E(G)$, then by (9), two of $x_{1}, x_{2}, x_{3}, x_{4}$ have a common neighbour in $\bar{N}(v)$. We may assume that x_{1}, x_{2} have a common neighbour $y \in \bar{N}(v)$. Then we have $\phi\left(G, \mathrm{gem}_{5}\right)<e_{n}$ by the same argument.

Subcase 2.2. $x_{1} x_{3} \in E(G)$ and $x_{1} x_{4}, x_{2} x_{4} \notin E(G)$. We see that x_{3} is the only neighbour of x_{4} in $N(v)$, so that

$$
\operatorname{deg}\left(x_{4}, \bar{N}(v)\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1-2 \geq\left\lceil\frac{n}{2}\right\rceil-2=|\bar{N}(v)| .
$$

We must have equality throughout, so that $\operatorname{deg}\left(x_{4}\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$ and n is odd. Moreover, x_{4} is adjacent to every vertex of $\bar{N}(v)$. If x_{3} has a neighbour $y \in \bar{N}(v)$, then $x_{1} x_{2} v x_{4} y+x_{3}$ is a copy of gem_{5}, and we have $\phi\left(G, \mathrm{gem}_{5}\right)<e_{n}$ by Claim 3.4 with $z=v$. Now suppose that x_{3} does not have a neighbour in $\bar{N}(v)$. Let $x_{5}, x_{6}, \ldots, x_{\lfloor n / 2\rfloor+1}$ be the remaining vertices of $N(v)$. Then $\operatorname{deg}\left(x_{3}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1$ implies that $x_{3} x_{i} \in E(G)$ for every $i \geq 5$. Moreover, we have $x_{1} x_{i}, x_{2} x_{i} \notin E(G)$ for all $i \geq 5$, otherwise we are in Subcase 2.1. This means that $\operatorname{deg}\left(x_{i}\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$ and x_{i} is adjacent to every vertex of $\bar{N}(v)$ for all $i \geq 4$. Also, note that for $i=1,2$,

$$
\operatorname{deg}\left(x_{i}, \bar{N}(v)\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1-3=\left\lceil\frac{n}{2}\right\rceil-3=|\bar{N}(v)|-1 .
$$

Suppose first that $G[\bar{N}(v)]$ contains a path of order 3 , say $y_{1} y_{2} y_{3}$. If $n \geq 11$ so that $|N(v)|=\left\lfloor\frac{n}{2}\right\rfloor+1 \geq 6$, then $x_{4} y_{1} x_{5} y_{3} x_{6}+y_{2}$ is a copy of gem ${ }_{5}$, and we have $\phi\left(G\right.$, gem $\left._{5}\right)<e_{n}$ by Claim 3.4 with $z=x_{5}$. Now let $n=9$, and suppose that $x_{1} y_{1}, x_{1} y_{2} \in E(G)$. Then $x_{1} y_{1} x_{4} y_{3} x_{5}+y_{2}$ is a copy of gem ${ }_{5}$, and we have $\phi\left(G\right.$, gem $\left._{5}\right)<e_{n}$ by Claim 3.4 with $z=x_{4}$. Thus, we may assume that $x_{1} y_{1}, x_{1} y_{3}, x_{2} y_{1}, x_{2} y_{3} \in E(G)$ and $x_{1} y_{2}, x_{2} y_{2} \notin E(G)$. It is easy to check that G is the graph $G_{9}^{\prime \prime}$ with $A_{9}^{\prime \prime}=\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}, B_{9}^{\prime \prime}=\left\{v, x_{3}, y_{1}, y_{3}\right\}$, and y_{2} is the remaining vertex, so that $\phi\left(G\right.$, gem $\left._{5}\right)=e_{9}=\operatorname{ex}\left(9\right.$, gem $\left._{5}\right)$.

Now, suppose that $G[\bar{N}(v)]$ contains an edge, say $y_{1} y_{2}$. If x_{1} is adjacent to every vertex in $\bar{N}(v)$, then we may assume that $x_{2} y_{1} \in E(G)$. Then $x_{3} v x_{2} y_{1} y_{2}+$ x_{1} is a copy of gem $_{5}$, and we have $\phi\left(G\right.$, gem $\left._{5}\right)<e_{n}$ by Claim 3.4 with $z=v$. Thus we may assume that x_{1} and x_{2} are not adjacent to exactly one vertex in $\bar{N}(v)$. Since there are at most $|N(v)|$ edges in $G[N(v)]$ and at most $\left\lfloor\frac{1}{2}|\bar{N}(v)|\right\rfloor$ edges in $G[\bar{N}(v)]$, we have

$$
\begin{aligned}
e(G) & \leq 2|N(v)|+2(|\bar{N}(v)|-1)+(|N(v)|-3)|\bar{N}(v)|+\left\lfloor\frac{1}{2}|\bar{N}(v)|\right\rfloor \\
& =2 n-4+\left(\left\lfloor\frac{n}{2}\right\rfloor-2\right)\left(\left\lceil\frac{n}{2}\right\rceil-2\right)+\left\lfloor\frac{1}{2}\left(\left\lceil\frac{n}{2}\right\rceil-2\right)\right\rfloor \\
& =\left\lfloor\frac{n^{2}}{4}\right\rfloor+\left\lfloor\frac{n+1}{4}\right\rfloor=e_{n},
\end{aligned}
$$

by (5) and since n is odd, which contradicts the assumption $e(G)>e_{n}$. Finally, if $G[N(v)]$ does not contain an edge, then

$$
\begin{aligned}
e(G) & \leq 2|N(v)|+(|N(v)|-1)|\bar{N}(v)| \\
& =2\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)+\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lceil\frac{n}{2}\right\rceil-2\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+2 \leq e_{n}
\end{aligned}
$$

another contradiction.
Subcase 2.3. $x_{1} x_{4} \in E(G)$ and $x_{1} x_{3}, x_{2} x_{4} \notin E(G)$. For $i=1,2,3,4, x_{i}$ does not have a neighbour in $N(v) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, so that $\operatorname{deg}\left(x_{i}, N(v)\right)=2$. Thus,

$$
\begin{equation*}
\operatorname{deg}\left(x_{i}, \bar{N}(v)\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1-3 \geq\left\lceil\frac{n}{2}\right\rceil-3=|\bar{N}(v)|-1 \tag{10}
\end{equation*}
$$

If $\operatorname{deg}\left(x_{1}, \bar{N}(v)\right)=|\bar{N}(v)|$, then we can find $y_{1}, y_{2} \in \bar{N}(v)$ such that y_{1} is a common neighbour of x_{1}, x_{2}, and y_{2} is a common neighbour of x_{2}, x_{3}. Then $y_{1} x_{1} v x_{3} y_{2}+x_{2}$ is a copy of gem_{5}, and we have $\phi\left(G\right.$, gem $\left._{5}\right)<e_{n}$ by Claim 3.4 with $z=v$. Otherwise, we must have equality in (10) for $i=1,2,3,4$, so that n is odd, and for $i=1,2,3,4$, we have $\operatorname{deg}\left(x_{i}\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$, and x_{i} is not adjacent to exactly one vertex in $\bar{N}(v)$. If $n \geq 11$ so that $|\bar{N}(v)|=\left\lceil\frac{n}{2}\right\rceil-2 \geq 4$, then we can again find the vertices $y_{1}, y_{2} \in \bar{N}(v)$ and we are done as before. Now let $n=9$, so that $|N(v)|=5,|\bar{N}(v)|=3$, and each x_{i} has exactly two neighbours in $\bar{N}(v)$. If x_{1} and x_{2} have two common neighbours in $\bar{N}(v)$, then we can again find $y_{1}, y_{2} \in \bar{N}(v)$ as before and we are done. Otherwise, we may assume that $\bar{N}(v)=\left\{z_{1}, z_{2}, z_{3}\right\}$ with $x_{1} z_{1}, x_{1} z_{2}, x_{2} z_{1}, x_{2} z_{3} \in E(G)$. If $z_{1} z_{2} \in E(G)$, then $x_{4} v x_{2} z_{1} z_{2}+x_{1}$ is a copy of gem $_{5}$, and again $\phi\left(G\right.$, gem $\left._{5}\right)<e_{n}$ by Claim 3.4 with $z=v$. A similar argument holds if $z_{1} z_{3} \in E(G)$. Otherwise, we have at most one edge in $G[\bar{N}(v)]$, and since there are exactly nine edges in $G[N(v) \cup\{v\}]$ and at most $4 \cdot 2+3=11$ edges between $N(v)$ and $\bar{N}(v)$, we have $e(G) \leq 1+9+11=21<22=e_{9}$, which is a contradiction.

Subcase 2.4. $x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4} \notin E(G)$. We first note that x_{2} is the only neighbour of x_{1} in $N(v)$, so that

$$
\operatorname{deg}\left(x_{1}, \bar{N}(v)\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1-2 \geq\left\lceil\frac{n}{2}\right\rceil-2=|\bar{N}(v)|
$$

We must have equality throughout, so that n is odd, $\operatorname{deg}\left(x_{1}\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$, and x_{1} is adjacent to all vertices of $\bar{N}(v)$. The exact same properties hold for x_{4}. Next, suppose that x_{2} has p neighbours in $N(v) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, where $0 \leq p \leq\left\lfloor\frac{n}{2}\right\rfloor-3$. Let S_{2} be the set of these p neighbours. We have

$$
\begin{equation*}
\operatorname{deg}\left(x_{2}, \bar{N}(v)\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1-3-p=\left\lceil\frac{n}{2}\right\rceil-3-p \tag{11}
\end{equation*}
$$

Now, x_{3} does not have a neighbour in S_{2}, otherwise there would exist a path of order 5 in $G[N(v)]$. Thus, x_{3} has at most $|N(v)|-4-p=\left\lfloor\left.\frac{n}{2} \right\rvert\,-3-p\right.$ neighbours in $N(v) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Let S_{3} be these neighbours of x_{3}, so that $S_{2} \cap S_{3}=\emptyset$. We have

$$
\begin{equation*}
\operatorname{deg}\left(x_{3}, \bar{N}(v)\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1-3-\left(\left\lfloor\frac{n}{2}\right\rfloor-3-p\right)=p+1 \tag{12}
\end{equation*}
$$

Suppose that x_{2}, x_{3} have a common neighbour $y_{1} \in \bar{N}(v)$. Clearly, from (11) and (12), at least one of x_{2}, x_{3} has at least two neighbours in $\bar{N}(v)$. If x_{2} has this property, then x_{1}, x_{2} have a common neighbour $y_{2} \in \bar{N}(v) \backslash\left\{y_{1}\right\}$. Thus, $y_{1} x_{3} v x_{1} y_{2}+x_{2}$ is a copy of gem $_{5}$, and by Claim 3.4 with $z=v$, we have $\phi\left(G, \mathrm{gem}_{5}\right)<e_{n}$. A similar argument holds if x_{3} has at least two neighbours in $\bar{N}(v)$, with x_{4} in place of x_{1}.

Thus, if $T_{2}, T_{3} \subset \bar{N}(v)$ are the sets of neighbours of x_{2}, x_{3} in $\bar{N}(v)$, respectively, then we may assume that $T_{2} \cap T_{3}=\emptyset$. Note that from (11) and (12), we have

$$
\operatorname{deg}\left(x_{2}, \bar{N}(v)\right)+\operatorname{deg}\left(x_{3}, \bar{N}(v)\right) \geq\left\lceil\frac{n}{2}\right\rceil-2=|\bar{N}(v)| .
$$

Thus, we must have equality above, as well as in (11) and (12). This means that $\operatorname{deg}\left(x_{2}\right)=\operatorname{deg}\left(x_{3}\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$, and we have the partitions $N(v) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=$ $S_{2} \dot{\cup} S_{3}$ and $\bar{N}(v)=T_{2} \dot{\cup} T_{3}$. Clearly, there are no edges in $G\left[S_{2} \cup S_{3}\right]$, otherwise there would exist a path of order 5 in $G[N(v)]$. Next, suppose that there is a path of order 3 in $G[\bar{N}(v)]$, say $y_{1} y_{2} y_{3}$. Suppose that $y_{2} \in T_{2}$. Then $x_{2} x_{1} y_{1} x_{4} y_{3}+y_{2}$ is a copy of gem $_{5}$, so that by Claim 3.4 with $z=x_{1}$, we have $\phi\left(G\right.$, gem $\left._{5}\right)<e_{n}$. A similar argument holds if $y_{2} \in T_{3}$. Otherwise, we have $|N(v)|-1$ edges in $G[N(v)],|\bar{N}(v)|$ edges between $\left\{x_{2}, x_{3}\right\}$ and $\bar{N}(v)$, and at most $\left\lfloor\frac{1}{2}|\bar{N}(v)|\right\rfloor$ edges in $G[\bar{N}(v)]$. By (5) and since n is odd,

$$
\begin{aligned}
e(G) & \leq 2|N(v)|-1+|\bar{N}(v)|+(|N(v)|-2)|\bar{N}(v)|+\left\lfloor\frac{1}{2}|\bar{N}(v)|\right\rfloor \\
& =2\left\lfloor\frac{n}{2}\right\rfloor+\left\lceil\frac{n}{2}\right\rceil-1+\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)\left(\left\lceil\frac{n}{2}\right\rceil-2\right)+\left\lfloor\frac{1}{2}\left(\left\lceil\frac{n}{2}\right\rceil-2\right)\right\rfloor \\
& =\left\lfloor\frac{n^{2}}{4}\right\rfloor+\left\lfloor\frac{n+1}{4}\right\rfloor=e_{n},
\end{aligned}
$$

which contradicts the assumption $e(G)>e_{n}$.
Case 3. The order of the longest path in $G[N(v)]$ is 3 . Let $x_{1} x x_{2}$ be such a path in $G[N(v)]$. We consider the following subcases.

Subcase 3.1. $x_{1} x_{2} \in E(G)$. We have $\operatorname{deg}(x, N(v))=2$, for otherwise $G[N(v)]$ would contain a P_{4}. Thus

$$
\operatorname{deg}(x, \bar{N}(v)) \geq\left\lfloor\frac{n}{2}\right\rfloor+1-3 \geq\left\lceil\frac{n}{2}\right\rceil-3=|\bar{N}(v)|-1
$$

Similar inequalities hold for x_{1}, x_{2}. If $\operatorname{deg}(x, \bar{N}(v))=|\bar{N}(v)|$, then there exist $y_{1}, y_{2} \in \bar{N}(v)$ such that y_{i} is a common neighbour of x, x_{i} for $i=1,2$. Then $y_{1} x_{1} v x_{2} y_{2}+x$ is a copy of gem $_{5}$, and by Claim 3.4 with $z=v$, we have $\phi\left(G, \operatorname{gem}_{5}\right)<e_{n}$. Otherwise, we have $\operatorname{deg}(x, \bar{N}(v))=|\bar{N}(v)|-1$, whence n is odd and $\operatorname{deg}(x)=\left\lfloor\frac{n}{2}\right\rfloor+1$. We may assume that x, x_{1} have a common neighbour $y \in \bar{N}(v)$. Now, $v x_{2} x_{1} y$ is a path of order 4 in $G[N(x)]$, and we are done by applying Case 1 or Case 2 with x in place of v.

Subcase 3.2. $x_{1} x_{2} \notin E(G)$. Let $N(v)=\left\{x, x_{1}, x_{2}, \ldots, x_{\lfloor n / 2\rfloor}\right\}$. For $i=1,2$, we have

$$
\begin{equation*}
\operatorname{deg}\left(x_{i}, \bar{N}(v)\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1-2 \geq\left\lceil\frac{n}{2}\right\rceil-2=|\bar{N}(v)| . \tag{13}
\end{equation*}
$$

We must have equality to hold throughout, whence n is odd, $\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=$ $\left\lfloor\frac{n}{2}\right\rfloor+1$, and both x_{1}, x_{2} are adjacent to all vertices of $\bar{N}(v)$. If x has neighbours $y_{1}, y_{2} \in \bar{N}(v)$, then we are done as in Subcase 3.1. If x has exactly one neighbour $y \in \bar{N}(v)$, then we have

$$
\operatorname{deg}\left(x, N(v) \backslash\left\{x, x_{1}, x_{2}\right\}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1-4 \geq 1
$$

and we may assume that $x x_{3} \in E(G)$. Then $x_{1} y x_{2} v x_{3}+x$ is a copy of gem ${ }_{5}$, and we have $\phi\left(G\right.$, gem $\left._{5}\right)<e_{n}$ by Claim 3.4 with $z=v$. Otherwise, suppose that x does not have a neighbour in $\bar{N}(v)$. We may apply the exact same argument as in Subcase 2.2 of Theorem 3.1 to deduce that x_{i} is adjacent to all vertices of $\bar{N}(v)$ for all $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$, and $G[\bar{N}(v)]$ must contain a path of order 3 , say $y_{1} y_{2} y_{3}$. Then $x_{1} y_{1} x_{2} y_{3} x_{3}+y_{2}$ is a copy of gem_{5}, and by Claim 3.4 with $z=x_{2}$, we have $\phi\left(G\right.$, gem $\left._{5}\right)<e_{n}$.

Case 4. The longest path in $G[N(v)]$ has order 2. Note that this is indeed the remaining case, since $\operatorname{deg}(x, N(v)) \geq 2 m-1=1$ for all $x \in N(v)$. Moreover, $N(v)$ induces a perfect matching in G. By a similar argument as in (13), we must have n odd, and for every $x \in N(v)$, we have $\operatorname{deg}(x)=\left\lfloor\frac{n}{2}\right\rfloor+1$ and x is adjacent to all vertices of $\bar{N}(v)$. Thus, we can find an edge $x_{1} x_{2}$ in $G[N(v)]$ and a common neighbour $y \in \bar{N}(v)$ of x_{1}, x_{2}. Now, since $v x_{2} y$ is a path of order 3 in $G\left[N\left(x_{1}\right)\right]$, we are done by applying Case 1, Case 2 or Case 3 with x_{1} in place of v.

The induction step is complete, and this completes the proof of Theorem 3.3.

Acknowledgements

Henry Liu was supported by the International Interchange Plan of CSU, and the China Postdoctoral Science Foundation (Nos. 2015M580695 and 2016T90756). Teresa Sousa was partially supported by FCT - Fundação para a Ciência e a Tecnologia (Portuguese Science Foundation, Portugal), through the project UID/MAT/00297/2013 (Centro de Matemática e Aplicações). The authors thank the anonymous referee for the careful reading of the manuscript.

Turán Function and H-Decomposition Problem for Gem Graphs 741

References

[1] P. Allen, J. Böttcher and Y. Person, An improved error term for minimum Hdecompositions of graphs, J. Combin. Theory Ser. B 108 (2014) 92-101. doi:10.1016/j.jctb.2014.03.001
[2] B. Bollobás, On complete subgraphs of different orders, Math. Proc. Cambridge Philos. Soc. 79 (1976) 19-24. doi:10.1017/S0305004100052063
[3] D. Dor and M. Tarsi, Graph decomposition is NP-complete: a complete proof of Holyer's conjecture, SIAM J. Comput. 26 (1997) 1166-1187. doi:10.1137/S0097539792229507
[4] P. Erdős, A.W. Goodman and L. Pósa, The representation of a graph by set intersections, Canad. J. Math. 18 (1966) 106-112. doi:10.4153/CJM-1966-014-3
[5] R. Faudree and R. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975) 150-160. doi:10.1016/0095-8956(75)90080-5
[6] H. Liu and T. Sousa, Decompositions of graphs into fans and single edges, J. Graph Theory 85 (2017) 400-411. doi:/10.1002/jgt. 22069
[7] L. Özkahya and Y. Person, Minimum H-decompositions of graphs: edge-critical case, J. Combin. Theory Ser. B 102 (2012) 715-725. doi:10.1016/j.jctb.2011.10.004
[8] O. Pikhurko, A note on the Turán function of even cycles, Proc. Amer. Math. Soc. 140 (2012) 3687-3692. doi:10.1090/S0002-9939-2012-11274-2
[9] O. Pikhurko and T. Sousa, Minimum H-decompositions of graphs, J. Combin. Theory Ser. B 97 (2007) 1041-1055. doi:10.1016/j.jctb.2007.03.002
[10] T. Sousa, Decompositions of graphs into 5-cycles and other small graphs, Electron. J. Combin. 12 (2005) \#R49.
[11] T. Sousa, Decompositions of graphs into a given clique-extension, Ars Combin. 100 (2011) 465-472.
[12] T. Sousa, Decompositions of graphs into cycles of length seven and single edges, Ars Combin. 119 (2015) 321-329.
[13] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452.

