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Abstract

A subtree S of a tree T is a central subtree of T if S has the minimum
eccentricity in the join-semilattice of all subtrees of T . Among all subtrees
lying in the join-semilattice center, the subtree with minimal size is called
the least central subtree. Hamina and Peltola asked what is the characteri-
zation of trees with unique least central subtree? In general, it is difficult to
characterize completely the trees with unique least central subtree. Niemi-
nen and Peltola [The subtree center of a tree, Networks 34 (1999) 272–278]
characterized the trees with the least central subtree consisting just of a sin-
gle vertex. This paper characterizes the trees having two adjacent vertices
as a unique least central subtree.
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1. Introduction

The “central part” of a graph has many important applications in the facil-
ity location, and it has been well studied in the literature (see, for example,
[2, 4, 5, 7, 11–15]). Applications of the center problem include the location of in-
dustrial plants, warehouses, distribution centers, and public service facilities in
transportation networks, as well as the location of various facilities in telecom-
munication networks.

The concepts of central subtrees and least central subtrees were introduced
in [10]. For every tree T , a join-semilattice L(T ) of subtrees of T is defined in [10]
as follows. The meet S1 ∧ S2 of subtrees S1 and S2 equals the subtree induced
by the intersection of the vertex sets of S1 and S2 whenever the intersection is
nonempty, while the join S1∨S2 is the least subtree of T containing the subtrees
S1 and S2. In other words, S1∨S2 is the subtree induced by the union of vertices
of S1 and S2 whenever the intersection of the vertex sets of S1 and S2 is nonempty.
In the case of nonintersection subtrees, S1∨S2 is the subtree induced by the union
of vertices of S1 and S2 together with the vertices of the path from S1 to S2. A
subtree S of a tree T is a central subtree of T if S has the minimum eccentricity
in the join-semilattice of all subtrees of T . It can be a vertex, or a path, or some
other kind of subtrees such that the subtree is the most central when compared
with all subtrees of the tree. The Hasse diagram graph GL of L(T ) is a median
graph [1, 8, 9]. The graph center of the median graph GL is closely related to
central subtrees. The set of all central subtrees is, in fact, the set of central
vertices of the graph GL. Among all subtrees lying in the join-semilattice center,
the best is the one with minimal size. That is the least central subtree. For paths
and stars, the least central subtree is unique and coincides with the center of the
tree.

Nieminen and Peltola [10] described the general properties of a least central
subtree of a tree, they gave some connections between the least central subtree
and the center/centroid of a tree, and proved that the intersection of two least
central subtrees is nonempty. Hamina and Peltola [6] proved that every least
central subtree of a tree contains the center and at least one vertex of the centroid
of the tree.

Hamina and Peltola posed the following problem in [6].

Problem. What is the characterization of trees with unique least central sub-
tree?

Motivated by this problem, Nieminen and Peltola [10] describes the structure
of the trees with the least central subtree consisting just of a single vertex.

Theorem 1 [10]. The least central subtree of a tree T is a single vertex if and

only if T is either a path of odd order or a star K1,p (p ≥ 2).
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In general, characterizing completely the trees with unique least central sub-
trees seems to be difficult. In this paper we characterize the trees having two
adjacent vertices as a unique least central subtree. Our main result is the follow-
ing.

Theorem 2. The unique least central subtree of a tree T is P2 if and only if T

is one of trees T4, T6, T8, T9, a double star and a path of even order.

The trees T4, T6, T8, T9 in Theorem 2 are defined in Section 3. In the next
section, we give some basic notation and terminology. In Section 3, we give the
proof of Theorem 2.

2. Notation and Preliminaries

The vertex set of a graph G is referred to as V (G), its edge set as E(G). The
number of vertices of G is its order, written as |G|. If U ⊆ V (G), G[U ] is the
subgraph of G induced by U and we write G − U for G[V (G) − U ]. In other
words, G − U is obtained from G by deleting all the vertices in U ∩ V (G) and
their incident edges. If U = {v} is a singleton, we write G − v rather than
G − {v}. As usual, Pn denotes the path of order n and the complete bipartite
graph K1,p (p ≥ 1) is called a star. A double star is the tree obtained from two
vertex disjoint stars by connecting their centers. The subdivision of a star K1,p is
the tree obtained from K1,p by subdividing each edge of K1,p exactly once. The
distance dG(x, y) in G of two vertices x, y is the length of a shortest x− y path in
G; if no such path exists, we set dG(x, y) = ∞. The eccentricity e(v) of a vertex
v in a connected graph G is the distance to a vertex farthest from v, i.e., e(v) =
max{dG(u, v) |u ∈ V (G)}. The number of components of a graph G is denoted
by ω(G). The center C(G) of G consists of vertices with minimum eccentricity,
i.e., C(G) = {v | e(v) = min{e(u) |u ∈ V (G)}} and the radius Rad(G) of G is its
minimum eccentricity.

In a tree T , a vertex of degree one is referred to as a leaf and a vertex
which is adjacent to a leaf is a support vertex. An edge incident to a leaf is
a pendant edge. For subtrees S1 and S2 of a tree T , the distance dT (S1, S2)
between S1 and S2 in T is the length of the shortest path joining two vertices
of S1 and S2 in T . The median graph GL of T is the graph on the set of all
subtrees of T in which two subtrees S1 and S2 are adjacent as vertices of GL

if and only if V (S1) ⊇ V (S2) and |V (S1) − V (S2)| = 1 or V (S2) ⊇ V (S1) and
|V (S2)−V (S1)| = 1. In GL, we simply write dL(S1, S2) for the distance between
two vertices S1 and S2 instead of dGL

(S1, S2). For a subtree S of T , the L-
eccentricity eL(S) of S is the distance from S to a vertex most remote from it
in GL, that is, eL(S) = max{dL(S, S′) |S′ is a subtree of T}. A subtree S is a
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central subtree of T if it has the minimum eccentricity eL(S) in the graph GL. A
tree may contain several central subtrees [10]. A central subtree of T is called a
least central subtree if it has the minimum number of vertices.

The following are some basic results on the least central subtrees of a tree
in [6, 10] that will be useful in the next section.

Lemma 3 [10]. Let GL be the semilattice graph of all subtrees of a tree T , and

S1 and S2 be two subtrees of T . Then, the distance dL(S1, S2) between S1 and S2

in GL is |S1|+ |S2|+ 2(dT (S1, S2)− 1) if dT (S1, S2) ≥ 1, and |S1 ∨S2|− |S1 ∧S2|
if dT (S1, S2) = 0.

Let CL be a least central subtree of a tree T and v a vertex adjacent to CL.
Let SL be the component of T −v containing CL and Cv the subtree of T induced
by V (CL) ∪ {v}. Furthermore, we set Sv = T \ V (SL) and let S∗

v be the subtree
of T satisfying eL(Cv) = dL(Cv, S

∗

v).

Lemma 4 [6]. Let CL be a least central subtree of a tree T and v be a vertex

adjacent to CL. If eL(Cv) = dL(Cv, S
∗

v), then S∗

v 6= T and

(1) if V (CL) ∩ V (S∗

v) 6= ∅, then v 6∈ V (S∗

v),

(2) if V (CL) ∩ V (S∗

v) = ∅, then v does not lie in the CL − S∗

v path in T .

Lemma 5 [6]. |Sv| ≤ dT (Sv, S
∗

v).

Theorem 6 [6]. The center of a tree is a subtree of every least central subtree.

The following theorem reveals a close connection between least central sub-
trees and leaves of a tree.

Theorem 7 [10]. If CL is a least central subtree of a tree T with at least three

vertices, then the subtree CL contains no leaf of T .

3. Proof of Theorem 2

In this section we give the proof of our main result. For this purpose, we first
give some special trees as follows.

T1: the subdivision of K1,3.

T2: the tree obtained from K1,3 by subdividing exactly two edges of K1,3 once.

T3: the tree obtained from K1,3 by subdividing exactly one edge of K1,3 twice.

T4: the tree obtained from K1,p (p ≥ 4) by subdividing exactly one edge of K1,p

twice.

T5: the tree obtained from K1,3 by subdividing each edge of K1,3 twice.
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Figure 1. The trees Ti, i = 4, 5, 6, 7.

T6: the tree obtained from K1,3 by subdividing two edges of K1,3 once and one
edge of K1,3 twice.

T7: the tree obtained from K1,3 by subdividing two edges of K1,3 twice and one
edge of K1,3 three times.

T8: the tree obtained from a path P with Rad(P ) ≥ 3 by attaching two pendant
edges to a support of P .

T ′

8: the tree obtained from a path P2k of even order with Rad(P2k) ≥ 3 by
attaching two pendant edges to a support of P2k.

T ′′

8 : the tree obtained from a path P2k+1 of odd order with Rad(P2k+1) ≥ 3 by
attaching two pendant edges to a support of P2k+1.

T9: the tree obtained from a path P2k of even order with Rad(P2k) ≥ 3 by
attaching one pendant edge to any vertex of degree two of P2k.

For convenience, we identify the notation C(T ) with the subtree induced by
the center C(T ) in a tree T . We obtain our main result by showing Lemmas 8,
9 and 10.

Lemma 8. If T is a tree of order n with Rad(T ) ≤ 2, then the least central

subtree of T is P2 if and only if T is one of trees P2, T1, T4 and a double star.

Proof. Let T be a tree with Rad(T ) ≤ 2. First, suppose that T is one of the
trees P2, a double star, T1 and T4. We show that the least central subtree of T
is P2. Clearly, the least central subtree of P2 is itself. If T is a double star, then
V (T ) − C(T ) are leaves of T since Rad(T ) = 2. Theorems 6 and 7 imply that
the least central subtree of T is P2. If T = T1, then clearly |C(T1)| = 1. By
Theorem 1, the least central subtree of T1 is not a single vertex. Hence the least
central subtree of T1 has at least two vertices and it contains the center C(T1)
by Theorem 6. A direct calculation shows that the least central subtree of T1 is
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P2. If T = T4, then |C(T4)| = 1. Let C(T4) = {u} and v, v′ be two neighbors of
u (see Figure 1). Let S be the component of T4 − u containing v. By Theorem
7, the possible least central subtrees of T4 are T4[{u, v, v

′}] or T4[{u, v}] = P2.
It is easy to verify that eL(T4[{u, v}]) = dL(T4[{u, v}], T4) = n − 2. Note that
eL(T4[{u, v, v

′}]) ≥ dL(S, T4[{u, v, v
′}]) = n − 2, so the least subtree of T4 is a

path P2.
Conversely, suppose that the least central subtree of T is P2. Let CL = uu1

be a least central subtree of T . If Rad(T ) = 1, we see that T is P2 or a star K1,p

(p ≥ 2). By Theorem 1, we see that the central subtree of a star K1,p (p ≥ 2)
consists of a single vertex, so T = P2. Next we may assume that Rad(T ) = 2.

Suppose |C(T )| = 2. Then Theorem 6 and Rad(T ) = 2 imply that V (CL) =
C(T ) = {u, u1}, and V (T ) − {u, u1} are leaves of T . Thus T is a double star.

Suppose |C(T )| = 1. Then Rad(T ) = 2 implies that |T | ≥ 5. Let L be the set
of leaves of T . If |L| = 2 then T = P5. By Theorem 1, the least central subtree of
P5 is a single vertex, a contradiction. If |L| = 3, T is one of the trees T1, T2, T3.
It is easy to see that the least central subtrees of T2 and T3 contain three vertices,
respectively. So T is the tree T1. If |L| ≥ 4, we claim that T is the tree T4. If not,
then either ω(T−u) ≥ 3 or ω(T−u) = 2 and each component of T−u contains at
least two leaves. First note that eL(CL) ≥ dL(CL, T ) = n−2. On the other hand,
we consider eL(T − L). Let S be any subtree of T . If V (S) ∩ (V (T ) − L) = ∅,
then dL(S, T −L) = 1 + n− |L| ≤ n− 3 by Lemma 3. If V (S)∩ (V (T )−L) 6= ∅,
then, by Lemma 3, we have

dL(S, T − L) ≤ |S| + n− |L| − 2|S ∧ (T − L)|

= |S| − 2|S ∧ (T − L)| + n− |L|

≤ (|L| − 3) + n− |L| ≤ n− 3.

Hence eL(T − L) = max{dL(S, T − L)| S is any subtree of T} ≤ n − 3. This
implies that eL(T − L) < eL(CL), contradicting the fact that CL is the least
central subtree of T . So T is the tree T4. The assertion follows.

Lemma 9. Let T be a tree of order n with |C(T )| = 2 and Rad(T ) ≥ 3. The

least central subtree of T is P2 if and only if T is one of trees T6, T
′

8, T9 and a

path of even order with Rad(T ) ≥ 3.

Proof. Suppose that T is one of trees T6, T
′

8, T9 and a path of even order with
Rad(T ) ≥ 3. Clearly, |C(T )| = 2 and Rad(T ) ≥ 3. By Theorem 6, the least
central subtree of T contains the center C(T ). By a direct calculation, one can
verify that the least central subtree of T is P2.

Conversely, let T be a tree with |C(T )| = 2 and Rad(T ) ≥ 3. Suppose that
the least central subtree of T is P2. Let CL = uu1 be a least central subtree of
T . By Theorem 6, C(T ) = {u, u1}. Then there exist two vertices y, y1 of T such
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that dT (u, y) = dT (u1, y1) = Rad(T )−1. Let v be the vertex adjacent to u on the
u− y path and v1 be the vertex adjacent to u1 on the u1 − y1 path, respectively.
Define

K = {x ∈ V (T )| dT (x,CL) = Rad(T ) − 1}.

For any x ∈ K, let w be the vertex adjacent to CL on the x − CL path. As
defined in Section 2, let SL be the component of T − w containing CL, and let
Sw = T \V (SL) and eL(Cw) = dL(Cw, S

∗

w), where Cw is the subtree of T induced
by V (CL) ∪ {w}.

Claim 1. Sw contains at most two vertices besides the vertices on w − x path.

Proof. Since x ∈ K and the w−x path is contained in Sw, |Sw| ≥ Rad(T )−1. By
Lemmas 4 and 5, we have Rad(T ) + 1 ≥ dT (Sw, S

∗

w) ≥ |Sw|. Then Rad(T ) + 1 ≥
dT (Sw, S

∗

w) ≥ |Sw| ≥ Rad(T )−1. Hence Sw contains at most two vertices besides
the vertices on the w − x path, as claimed.

Let r be the number of all vertices of T that do not lie in the path y − y1.
Then

Rad(T ) ≤
n− r

2
.(1)

Claim 2. r ≤ 3.

Proof. We establish the claim by contradiction. Suppose r ≥ 4. Let Cv be the
subtree of T induced by V (CL)∪ {v}. We shall show that eL(Cv) < eL(CL). For
this purpose, we next show that dL(S,Cv) ≤ n− 3 for any subtree S of tree T .

Suppose V (S)∩V (Cv) 6= ∅. Then |V (S)∩V (Cv)| ≤ 3. If |V (S)∩V (Cv)| = 1,
then |S| ≤ |T | − 4 = n− 4 by Rad(T ) ≥ 3, thus dL(S,Cv) = 3 + |S| − 2 ≤ n− 3
by Lemma 3. If |V (S) ∩ V (Cv)| = 2, then |S| ≤ n − 3 by Rad(T ) ≥ 3, thus
dL(S,Cv) = 3 + |S| − 4 ≤ n − 3 by Lemma 3. If |V (S) ∩ V (Cv)| = 3, then
dL(S,Cv) = |S| − 3 ≤ n− 3.

Suppose that V (S) ∩ V (Cv) = ∅ and the subtree S contains at least one
vertex on y − y1 path. By Claim 1,

dT (S,Cv) ≤











Rad(T ) − |S | if |S| ≤ 2;

Rad(T ) − |S| + 1 if |S| = 3;

Rad(T ) − |S| + 2 if |S| ≥ 4.

If |S| ≤ 2, by Lemma 3, we have

dL(S,Cv) = |S| + 3 + 2(dT (S,Cv) − 1)

≤ |S| + 3 + 2(Rad(T ) − |S| − 1)

≤ 1 + 2Rad(T ) − |S|

≤ 1 + (n− r) − |S| (by (1))

≤ n− 3.
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If |S| = 3, by Lemma 3, we have

dL(S,Cv) = |S| + 3 + 2(dT (S,Cv) − 1)

≤ |S| + 3 + 2(Rad(T ) − |S|)

≤ n− r (by (1))

≤ n− 3.

If |S| ≥ 4, by Lemma 3, we have

dL(S,Cv) = |S| + 3 + 2(dT (S,Cv) − 1)

≤ |S| + 3 + 2(Rad(T ) − |S| + 1)

≤ n− r + 5 − |S| (by (1))

≤ n− 3.

Suppose that V (S) ∩ V (Cv) = ∅ and the subtree S contains no vertex on
y − y1 path. Then |S| ≤ r. If |S| = 1, then dT (S,Cv) ≤ Rad(T ) − 1. By Lemma
3, we have

dL(S,Cv) = 1 + 3 + 2(dT (S,Cv) − 1)

≤ 1 + 3 + 2(Rad(T ) − 2)

≤ n− r (by (1))

≤ n− 3.

If |S| ≥ 2, then dT (S,Cv) ≤ Rad(T ) − 2. By Lemma 3, we have

dL(S,Cv) = |S| + 3 + 2(dT (S,Cv) − 1)

≤ |S| + 3 + 2(Rad(T ) − 3)

≤ |S| + (n− r) − 3 (by (1))

≤ n− 3,

where the last inequality follows from |S| ≤ r. Thus

eL(Cv) = max{dL(S,Cv) | S is any subtree of T} ≤ n− 3.

Note that eL(CL) ≥ dL(T,CL) = n− 2. But then eL(CL) > eL(Cv), a contradic-
tion. Consequently, r ≤ 3.

Let K0 = {x ∈ K | the u− x path or u1 − x path pass through neither v nor
v1}.

Claim 3. If K0 6= ∅, then T is the tree T6.

Proof. If K0 6= ∅, Claim 2 implies Rad(T ) = 3 or Rad(T ) = 4. Then T is
isomorphic to the tree T6 or T7. If T is isomorphic to the tree T7, let C(T7) =
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{u, u1} and v, v1, v
′ be neighbors of u or u1, where v′ is adjacent to the vertex

u1 on the u − y′ path (see Figure 1). Set M = {u, u1, v, v1, v
′}. It is easy to

check that eL(T7[M ]) = 8 = |T7| − 3 ≤ n− 3. Note that eL(CL) ≥ dL(T7, CL) =
|T7| − 2 = n − 2. But then eL(CL) > eL(T7[M ]), a contradiction. Thus T is
isomorphic to the tree T6.

Claim 4. If K0 = ∅, then r ≤ 2.

Proof. Suppose not, then r = 3 by Claim 2. Let Cvv1 = T [{u, u1, v, v1}]. We
show that eL(Cvv1) ≤ n−3. For this, it suffices to verify that dL(S,Cvv1) ≤ n−3
for any subtree S of T .

Suppose that V (S)∩V (Cvv1) 6= ∅. As indicated in the beginning of the proof
for Claim 2, one can easily verify that dL(S,Cvv1) ≤ n− 3.

Suppose that V (S) ∩ V (Cvv1) = ∅. Hence, by Claim 1,

dT (S,Cvv1) ≤











Rad(T ) − |S| − 1 if |S| ≤ 2;

Rad(T ) − |S| if |S| = 3;

Rad(T ) − |S| + 1 if |S| ≥ 4.

If |S| ≤ 2, by Lemma 3, we have

dL(S,Cvv1) = |S| + 4 + 2(dT (S,Cvv1) − 1)

≤ |S| + 4 + 2(Rad(T ) − |S| − 2)

≤ 2Rad(T ) − |S|

≤ n− r − |S| (by (1))

≤ n− 3.

If |S| = 3, by Lemma 3, we have

dL(S,Cvv1) = |S| + 4 + 2(dT (S,Cvv1) − 1)

≤ |S| + 4 + 2(Rad(T ) − |S| − 1)

≤ n− r − 1 (by (1))

≤ n− 3.

If |S| ≥ 4, by Lemma 3, we have

dL(S,Cvv1) = |S| + 4 + 2(dT (S,Cvv1) − 1)

≤ |S| + 4 + 2(Rad(T ) − |S|)

≤ n− r + 4 − |S| (by (1))

≤ n− 3.

So eL(Cvv1) ≤ n − 3. But then eL(CL) ≥ dL(T,CL) = n − 2 > eL(Cvv1), a
contradiction. Thus r ≤ 2.
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We discuss the case K0 = ∅. For r = 0, clearly T is a path of even order with
Rad(T ) ≥ 3. For r = 1, it is easy to see that T is the tree T9. We next consider
the case r = 2, i.e., T has precisely two vertices that do not lie in the y−y1 path.
We shall show that the two vertices of T must be adjacent to a support vertex of
y − y1 path, i.e., T is the tree T ′

8.
Suppose not, that is, T is not the tree T ′

8. We shall obtain a contradiction
by showing eL(CL) > eL(Cvv1). Note that eL(CL) ≥ dL(T,CL) = n− 2. We next
show that eL(Cvv1) ≤ n− 3. It suffices to show that dL(S,Cvv1) ≤ n− 3 for any
subtree S of T . If V (S)∩V (Cvv1) 6= ∅, then, as before, one can easily verify that
dL(S,Cvv1) ≤ n− 3. Suppose that V (S) ∩ V (Cvv1) = ∅. Then

dT (S,Cvv1) ≤

{

Rad(T ) − |S| − 1 if |S| ≤ 2;

Rad(T ) − |S| if |S| ≥ 3.

So if |S| ≤ 2, by Lemma 3, we have

dL(S,Cvv1) = |S| + 4 + 2(dT (S,Cvv1) − 1)

≤ |S| + 4 + 2(Rad(T ) − 2 − |S|)

≤ (n− r) − |S| (by (1))

≤ n− 3.

If |S| ≥ 3, by Lemma 3, we have

dL(S,Cvv1) = |S| + 4 + 2(dT (S,Cvv1) − 1)

≤ |S| + 4 + 2(Rad(T ) − 1 − |S|)

≤ 2 + (n− r) − |S| (by (1))

≤ n− 3.

So eL(Cvv1) = max{dL(S,Cvv1)| S is any subtree of T} ≤ n − 3. But then
eL(CL) > eL(Cvv1), a contradiction. Consequently, T is the tree T ′

8.

Lemma 10. Let T be a tree of order n with |C(T )| = 1 and Rad(T ) ≥ 3. The

least central subtree of T is P2 if and only if T is the tree T ′′

8 .

Proof. Suppose that T = T ′′

8 . By Theorem 1, the least central subtree of T ′′

8 is
not a single vertex. Note that |C(T ′′

8 )| = 1, so the least central subtree of T ′′

8 has
at least two vertices and it contains the center C(T ′′

8 ) by Theorem 6. By a direct
calculation, one may easily verify that the least central subtree of T ′′

8 is P2.
Conversely, let T be a tree of order n with |C(T )| = 1 and Rad(T ) ≥ 3. Let

CL = uu1 be a least central subtree of T . Since |C(T )| = 1, we may assume that
u ∈ C(T ) and u1 6∈ C(T ) by Theorem 6. Then there exist vertices y, y1 such that
dT (u, y) = dT (u, y1) = Rad(T ). Let v, v1 be the vertices adjacent to u on the
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u−y path and u−y1 path, respectively. Let K = {x ∈ V (T )| dT (u, x) = Rad(T )}
and let r be the number of all vertices of T that do not lie in the y − y1 path.
Then

Rad(T ) ≤
n− r − 1

2
.(2)

Claim 1. There exists a vertex y′ ∈ K such that u1 is on the u− y′ path.

Proof. Suppose not, then u1 6= v1. Let the subtrees Sv, Sv1 and S∗

v of T be
defined as in Lemma 4. We have the following fact.

Fact 1. Sv and Sv1 contain at most one vertex besides the vertices on v− y path
and v1 − y1 path, respectively.

Proof. Since dT (u, y) = Rad(T ), |Sv| ≥ Rad(T ). By Lemmas 4 and 5, we have

Rad(T ) + 1 ≥ dT (Sv, S
∗

v) ≥ |Sv| ≥ Rad(T ).

So |Sv| = Rad(T ) or |Sv| = Rad(T ) + 1. Thus Sv contains at most one vertex
besides the vertices of v − y path. Similarly, Sv1 contains at most one vertex
besides the vertices of v1 − y1 path.

Let Cvv1 = T [{u, v, v1}]. We shall show that eL(Cvv1) ≤ n − 3. For this, it
suffices to show that dL(S,Cvv1) ≤ n − 3 for any subtree S of T . Suppose that
V (S) ∩ V (Cvv1) 6= ∅. Then, as before, one can easily verify that dL(S,Cvv1) ≤
n− 3. Now we may assume that V (S) ∩ V (Cvv1) = ∅.

Suppose that the subtree S contains at least one vertex on y−y1 path. Then
V (S) ⊆ V (Sv) or V (S) ⊆ V (Sv1). By Fact 1, we have

dT (S,Cvv1) ≤

{

Rad(T ) − |S | if |S| ≤ 2;

Rad(T ) − |S| + 1 if |S| ≥ 3.
(3)

Note that u1 is not on y − y1 path, so r ≥ 2 by Theorem 7. Hence, if |S| ≤ 2, by
Lemma 3, we have

dL(S,Cvv1) = |S| + 3 + 2(dT (S,Cvv1) − 1)

≤ |S| + 3 + 2(Rad(T ) − |S| − 1)

≤ 1 + 2Rad(T ) − |S|

≤ n− r − 1 (by (2))

≤ n− 3.

If |S| ≥ 3, by Lemma 3, we have

dL(S,Cvv1) = |S| + 3 + 2(dT (S,Cvv1) − 1)
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≤ |S| + 3 + 2(Rad(T ) − |S|)

≤ 3 + 2Rad(T ) − |S|

≤ n− r − |S| + 2 (by (2))

≤ n− 3.

Suppose that the subtree S contains no vertex on y − y1 path. Let

K0 = {x ∈ K | the x− u path pass through neither v nor v1}.

If K0 6= ∅, note that u1 is not on y−y1 path, so r ≥ 4 by Theorem 7. Furthermore,
K0 6= ∅ implies that |S| ≤ r − 1. It is easily seen that

dT (S,Cvv1) ≤

{

Rad(T ) if |S| = 1;

Rad(T ) − 1 if |S| ≥ 2.

So if |S| = 1, by Lemma 3, we have

dL(S,Cvv1) = 1 + 3 + 2(dT (S,Cvv1) − 1)

≤ 1 + 3 + 2(Rad(T ) − 1)

≤ n− r + 1 (by (2))

≤ n− 3.

If |S| ≥ 2, by Lemma 3, we have

dL(S,Cvv1) = |S| + 3 + 2(dT (S,Cvv1) − 1)

≤ |S| + 3 + 2(Rad(T ) − 2)

≤ |S| − 1 + (n− r − 1) (by (2))

≤ n− 3,

where the last inequality follows from |S| ≤ r − 1. If K0 = ∅, we can see that

dT (S,Cvv1) ≤

{

Rad(T ) − 1 if |S| = 1;

Rad(T ) − 2 if |S| ≥ 2.

So if |S| = 1, by Lemma 3, we have

dL(S,Cvv1) = 1 + 3 + 2(dT (S,Cvv1) − 1)

≤ 1 + 3 + 2(Rad(T ) − 2)

≤ n− r − 1 (by (2))

≤ n− 3.



Trees with Unique Least Central Subtrees 823

If |S| ≥ 2, by Lemma 3, we have

dL(S,Cvv1) = |S| + 3 + 2(dT (S,Cvv1) − 1)

≤ |S| + 3 + 2(Rad(T ) − 3)

≤ |S| − 3 + (n− r − 1) (by (2))

≤ n− 3,

where the last inequality follows from |S| ≤ r.
Therefore, we obtain eL(Cvv1) ≤ n − 3. But then eL(CL) ≥ dL(T,CL) =

n− 2 > eL(Cvv1), a contradiction. The claim follows.

By Claim 1, we may assume that u1 = v1. Let K1 = {x ∈ K | the u − x

path does not pass through vertex u1}, K2 = {x ∈ K |u− x path passes through
the vertex u1}. For any x ∈ K1, let w be the vertex adjacent to u on the u − x

path. For any x ∈ K2, let w1 be the vertex adjacent to u1 on the u1 − x path.
Let Sw, S

∗

w, Sw1
and S∗

w1
be defined as in Lemma 4. Then we have the following

claims.

Claim 2. Sw contains at most one vertex besides the vertices on the w− x path.

Proof. By definition, w lies in the x− u path. Since dT (x, u) = Rad(T ) and the
vertices on w−x path are contained in Sw, |Sw| ≥ Rad(T ). By Lemmas 4 and 5,

Rad(T ) + 1 ≥ d(Sw, S
∗

w) ≥ |Sw| ≥ Rad(T )

So |Sw| = Rad(T ) or |Sw| = Rad(T ) + 1. Thus Sw contains at most one vertex
besides the vertices on the w − x path.

Claim 3. Sw1
contains at most three vertices besides the vertices on the w1 − y1

path.

Proof. By definition, w1 lies in the x − u1 path. Since dT (x, u1) = Rad(T ) − 1
and the vertices on the x − w1 path are contained in Sw1

, |Sw1
| ≥ Rad(T ) − 1.

By Lemmas 4 and 5, Rad(T ) + 2 ≥ dT (Sw1
, S∗

w1
) ≥ |Sw1

| ≥ Rad(T ) − 1. Hence
Sw1

contains at most three vertices besides the vertices on the w1 − y1 path.

Claim 4. 2 ≤ r ≤ 3.

Proof. If r = 1, we observe that eL(CL) ≥ dL(y, CL) = 1 + 2 + 2(Rad(T )− 1) =
n− 1 by Lemma 3. On the other hand, it is easy to verify that eL(Cvv1) ≤ n− 2
by Lemma 3. Then eL(CL) > eL(Cvv1), a contradiction. Thus r ≥ 2. We claim
that r ≤ 3. Suppose to the contrary that r ≥ 4. As before, let Cv be the subtree
of T induced by V (CL) ∪ {v}. We shall prove that eL(Cv) ≤ n− 3. It suffices to
show that dL(S,Cv) ≤ n− 3 for any subtree S of T .

Suppose that V (S) ∩ V (Cv) 6= ∅. By Lemma 3, one can easily verify that
dL(S,Cv) ≤ n− 3 for any subtree S of T .
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Suppose that V (S) ∩ V (Cv) = ∅ and the subtree S contains at least one
vertex on y− y1 path. Then either V (S) ⊆ V (Sv) or there exists a vertex x ∈ K2

such that V (S) ⊆ V (Sw1
) ∪ {u1}. By Claims 2 and 3,

dT (S,Cv) ≤











Rad(T ) − |S | if |S| ≤ 2;

Rad(T ) − |S| + 2 if 3 ≤ |S| ≤ 4;

Rad(T ) − |S| + 3 if |S| ≥ 5.

Then if |S| ≤ 2, by Lemma 3, we have

dL(S,Cv) = |S| + 3 + 2(dT (S,Cv) − 1)

≤ |S| + 3 + 2(Rad(T ) − |S| − 1)

≤ 1 + 2Rad(T ) − |S|

≤ n− r − 1 (by (2))

≤ n− 3.

If 3 ≤ |S| ≤ 4, by Lemma 3, we have

dL(S,Cv) = |S| + 3 + 2(dT (S,Cv) − 1)

≤ |S| + 3 + 2(Rad(T ) − |S| + 1)

≤ 5 + 2Rad(T ) − |S|

≤ n− r − |S| + 4 (by (2))

≤ n− 3.

If |S| ≥ 5, by Lemma 3, we have

dL(S,Cv) = |S| + 3 + 2(dT (S,Cv) − 1)

≤ |S| + 3 + 2(Rad(T ) − |S| + 2)

≤ 7 + 2Rad(T ) − |S|

≤ n− r − |S| + 6 (by (2))

≤ n− 3.

Suppose that V (S) ∩ V (Cv) = ∅ and the subtree S contains no vertex on
y − y1 path. Then by Claim 2,

dT (S,Cv) ≤











Rad(T ) if |S| = 1;

Rad(T ) − 1 if 2 ≤ |S| ≤ 3;

Rad(T ) − 2 if |S| ≥ 4.
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So if |S| = 1, by Lemma 3, we have

dL(S,Cv) = 1 + 3 + 2(dT (S,Cv))

≤ 1 + 3 + 2(Rad(T ) − 1)

≤ n− r + 1 (by (2))

≤ n− 3.

If 2 ≤ |S| ≤ 3, by Lemma 3, we have

dL(S,Cv) = |S| + 3 + 2(dT (S,Cv) − 1)

≤ |S| + 3 + 2(Rad(T ) − 2)

≤ |S| − 1 + (n− r − 1) (by (2))

≤ n− 3,

If |S| ≥ 4, by Lemma 3, we have

dL(S,Cv) = |S| + 3 + 2(dT (S,Cv) − 1)

≤ |S| + 3 + 2(Rad(T ) − 3)

≤ |S| − 3 + (n− r − 1) (by (2))

≤ n− 3,

where the last inequality follows from |S| ≤ r. Thus eL(Cv) ≤ n − 3. But
then eL(CL) ≥ dL(T,CL) = n − 2 > eL(Cv), a contradiction. Consequently,
2 ≤ r ≤ 3.

Let K ′ = {x ∈ K |x− u path pass through neither v nor v1}.

Claim 5. K ′ = ∅.

Proof. If K ′ 6= ∅, then there exists a vertex x ∈ K ′ such that the x − u

path pass through neither v nor v1. Claim 4 implies that Rad(T ) = 3 and T

is the tree T5. Let C(T5) = {u} and v, v1, v
′ be neighbors of u, where v′ is

adjacent to u on the u − x path (see Figure 1). Set M = {u, v, u1, v
′} (where

u1 = v1). One may verify that eL(T5[M ]) ≤ n − 3 by Lemma 3. But then
eL(CL) ≥ dL(T5, CL) = n− 2 > eL(T5[M ]), a contradiction.

Let Cvv′ = T [{u, u1, v, v
′}], where v′ is the vertex adjacent to u1 on the u1−y1

path.

Claim 6. r = 2.

Proof. Suppose not, then Claim 4 implies that r = 3. Note the fact that
eL(CL) ≥ dL(T,CL) = n − 2. If we can show eL(Cvv′) ≤ n − 3, we will derive
a contradiction. It is sufficient to show that dL(Cvv′) ≤ n − 3 for any subtree S

of T .
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Suppose that V (S)∩V (Cvv′) 6= ∅. Then one can easily check that dL(S,Cvv′)
≤ n− 3 by Lemma 3.

Suppose that V (S) ∩ V (Cvv′) = ∅. By Claims 2, 3, we have

dT (S,Cvv′) ≤











Rad(T ) − |S | if |S| ≤ 2;

Rad(T ) − |S| + 1 if 3 ≤ |S| ≤ 4;

Rad(T ) − |S| + 2 if |S| ≥ 5.

So if |S| ≤ 2, by Lemma 3, we have

dL(S,Cvv′) = |S| + 4 + 2(dT (S,Cvv′) − 1)

≤ |S| + 4 + 2(Rad(T ) − |S| − 1)

≤ n− r (by (2))

≤ n− 3.

If 3 ≤ |S| ≤ 4, by Lemma 3, we have

dL(S,Cvv′) = |S| + 4 + 2(dT (S,Cvv′) − 1)

≤ |S| + 4 + 2(Rad(T ) − |S|)

≤ (n− r) − |S| + 3 (by (2))

≤ n− 3.

If |S| ≥ 5, by Lemma 3, we have

dL(S,Cvv′) = |S| + 4 + 2(dT (S,Cvv′) − 1)

≤ |S| + 4 + 2(Rad(T ) − |S| + 1)

≤ (n− r) − |S| + 5 (by (2))

≤ n− 3.

So eL(Cvv′) < eL(CL), a contradiction. Thus r = 2.

Claim 6 implies that T has precisely two vertices that do not lie in the y−y1
path.

Claim 7. The two vertices of T that do not lie in the y − y1 path are adjacent

to a support vertex on the y − y1 path, i.e., T is the tree T ′′

8 .

Proof. Otherwise, we shall derive a contradiction by showing that eL(CL) >

eL(Cvu1
) where Cvu1

= T [{v, u, u1}]. It is sufficient to show that dL(S,Cvu1
) ≤

n − 3 for any subtree S of T since eL(CL) ≥ dL(T,CL) = n − 2. Suppose that
V (S)∩V (Cvu1

) 6= ∅. One may directly verify that dL(S,Cvu1
) ≤ n−3 by Lemma

3. Suppose that V (S) ∩ V (Cvu1
) = ∅. Then by Claims 2, 3 and 5, we have

dT (S,Cvu1
) ≤

{

Rad(T ) − |S | if |S| ≤ 2;

Rad(T ) − |S| + 1 if |S| ≥ 3.
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So if |S| ≤ 2, by Lemma 3, we have

dL(S,Cvu1
) = |S| + 3 + 2(dT (S,Cvu1

) − 1)

≤ |S| + 3 + 2(Rad(T ) − |S| − 1)

≤ (n− r) − 1 (by (2))

≤ n− 3.

If |S| ≥ 3, by Lemma 3, we have

dL(S,Cvu1
) = |S| + 3 + 2(dT (S,Cvu1

) − 1)

≤ |S| + 3 + 2(Rad(T ) − |S|)

≤ (n− r) − |S| + 2 (by (2))

≤ n− 3.

So eL(Cvu1
) < eL(CL). This contradiction implies that T is the tree T ′′

8 , as
desired.

Proof of Theorem 2. Note that T8 = T ′

8 or T ′′

8 . By Lemmas 8, 9 and 10, we
conclude that the least central subtree of a tree T is P2 if and only if T is one of
the trees T1, T4, T6, T8, T9, a double star and a path of even order. Furthermore,
we observe that the tree T1 has three least central subtrees, while each one of
the trees T4, T6, T8, T9, a double star and a path of even order has a unique least
central subtree P2. This completes the proof of Theorem 2.

4. Conclusion

In this paper we give a complete characterization of trees with the unique least
central subtree consisting of two adjacent vertices. In light of the idea in the
proof of Theorem 2, it is possible to characterize the trees having the unique
least central subtree with small order.
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