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Abstract

We consider γ-graphs, which are reconfiguration graphs of the minimum
dominating sets of a graph G. We answer three open questions about γ-
graphs of trees by providing upper bounds on the maximum degree, the
diameter, and the number of minimum dominating sets. The latter gives an
upper bound on the order of the γ-graph.
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1. Introduction

Recall that a set, D, of vertices of a graph G is called a dominating set if every
vertex in V −D is adjacent to at least one vertex in D. The minimum cardinality
of a dominating set of G is the domination number of G and is denoted by γ(G).
A dominating set of minimum cardinality is sometimes called a γ-set.
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We consider two different reconfiguration graphs of the minimum dominating
sets of a graph G. In both cases the vertex set is the collection of minimum
dominating sets of G. In the single vertex replacement adjacency model, different
minimum dominating sets D1 and D2 are adjacent when there are vertices x ∈ D1

and y ∈ D2 such that D1−x = D2−y. In the slide adjacency model it is required
that, in addition, xy ∈ E(G). The reconfiguration graphs just defined are the
γ-graph in the single vertex replacement adjacency model, and the γ-graph in the

slide adjacency model, respectively. Both are denoted by ΓG, as the model under
consideration is always either clear from the context, or not relevant.

The single vertex replacement adjacency model was introduced by Subra-
manaian and Sridharan [14] in 2008, and the slide adjacency model was intro-
duced independently by Fricke, Hedetniemi, Hedetniemi, and Hutson [4] in 2011.
The single vertex replacement adjacency model was further studied in [9] and
[13] and the slide adjacency model was further studied in [2].

Reconfiguration graphs for dominating sets which are not necessarily mini-
mum have also been considered, see [1, 5, 6, 12]. For pointers to the literature
on various reconfiguration problems and their complexity, see [7, 8].

In this work, we answer the following questions on γ-graphs of trees for both
adjacency models. The questions are posed by Fricke et al. in [4].

1. Is ∆(ΓT ) = O(n) for every tree T of order n?

2. Is diam(ΓT ) = O(n) for every tree T of order n?

3. Is |V (ΓT )| ≤ 2γ(T ) for every tree T?

We answer question 1 affirmatively by showing that n − γ(T ) is a sharp
upper bound for ∆(ΓT ) in both adjacency models; see Corollary 3. We also
answer question 2 affirmatively by providing an upper bound for diam(ΓT ). For
the single vertex replacement adjacency model we show that diam(ΓT ) ≤ 2γ(T ),
and for the slide adjacency model we show that diam(ΓT ) ≤ 2(2γ(T )−s) where s
is the number of vertices of T that are adjacent to a leaf of T (often called support

vertices); see Theorem 11. We show that the inequality in question 3 does not
hold for all trees by describing an infinite family of trees with the property that
|V (ΓT )| > 2γ(T ) for each tree T in the collection; see Section 4. Interestingly,
these trees also have ∆(ΓT ) = n − γ(T ). We also provide an upper bound for
|V (ΓT )|, by showing that |V (ΓT )| ≤ ((1 +

√
13)/2)γ(T ). Almost all of the work

presented here also appears in the PhD thesis of the first author; see [3].

We conclude this section with some definitions.

For a vertex x ∈ V (G), the open neighbourhood of x is the set NG(x) =
{y | xy ∈ E(G)}, and the closed neighbourhood of x is the set NG[x] = NG(x) ∪
{x}. For a set S ⊆ V (G), the open neighbourhood of S is the set NG(S) =
{x |xy ∈ E for some y ∈ S}, and the closed neighbourhood of S is the set
NG[S] = NG(S)∪S. When the graph G is obvious from context, we simply write
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N(x), N [x], N(S), and N [S].
Let D be a dominating set of a graph G. A vertex x ∈ D is said to dominate

every vertex in N [x], and also to dominate any subset of N [x]. Similarly, a subset
X ⊆ V is said to dominate every vertex in N [X], and also to dominate any subset
of N [X].

For a set of vertices D ⊆ V and a vertex x ∈ D, the private neighbourhood

of x with respect to D is the set pn(x,D) = N [x] − N [D − {x}], that is, the
set of vertices that are in the closed neighbourhood of x, but are not in the
closed neighbourhood of any other vertex in D. Likewise, for sets S,D ⊆ V ,
the private neighbourhood of S with respect to D, denoted pn(S,D), is the set
pn(S,D) = N [S] − N [D − S]. A subset D ⊆ V is a minimal dominating set if
and only if pn(x,D) 6= ∅; for all vertices x ∈ D.

A rooted tree is a pair (T, c), where T is a tree and c ∈ V is a special vertex
called the root. Let (T, c) be a rooted tree. A vertex x is called an ancestor of a
vertex y if x belongs to the unique path joining y and c. If, in addition, xy ∈ E,
then x is a parent of y. The terms descendant of x and child of x, respectively,
are used to describe such a vertex y. Note that x is both an ancestor and a
descendant of itself. We use Tx to describe the subtree of T induced by the
descendants of x, and rooted at x.

2. The Maximum Degree of ΓT

In this section we show that question 1 has a positive answer in both adjacency
models.

Proposition 1. If D is a γ-set of a tree T and there exist a vertex x ∈ D and a

vertex y ∈ V such that D′ = (D−{x})∪{y} is also a γ-set of T , then d(x, y) ≤ 2.

Proof. Let D be a γ-set of the tree T . Let x ∈ D and y ∈ V (T ) such that
d(x, y) ≥ 3. Suppose, for contradiction, that D′ = (D − {x}) ∪ {y} is a γ-set
of T . Root T at the vertex y and let z be the parent of x and let w be the
parent of z. (Notice that z and w exist because d(x, y) ≥ 3.) Since D′ is a
dominating set of T , the set D′ ∩ V (Tz) is a dominating set of Tx. Notice that
|D′ ∩ V (Tz)| < |D ∩ V (Tz)|. But then D′′ = (D − V (Tz)) ∪ (D′ ∩ V (Tz)) is a
dominating set of T and |D′′| < |D|, a contradiction. Thus, d(x, y) ≤ 2.

Lemma 2. For any γ-set D of a tree T and vertex z /∈ D, there is at most one

vertex x ∈ D such that (D − {x}) ∪ {z} is also a γ-set of T .

Proof. Let D be a γ-set of the tree T , and consider a vertex z /∈ D. Suppose
there exists a set {x, y} ⊆ D such that (D − {x}) ∪ {z} and (D − {y}) ∪ {z} are
both dominating sets of T . By Proposition 1, d(x, z) ≤ 2 and d(y, z) ≤ 2.
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By minimality of D, the sets pn(x,D) and pn(y,D) are both non-empty.
Since T is a tree and z dominates both pn(x,D) and pn(y,D), the vertices in
pn(x,D) ∪ pn(y,D) ∪ {z} must all be on the unique path between x and y in T .
Also, x and y have at most one common neighbour, and if such a vertex exists,
then it is z. It now follows that z dominates pn(x,D)∪pn(y,D), and any common
neighbours of x and y. Therefore, D′ = (D−{x, y})∪ {z} is a dominating set of
T with |D′| < |D|, a contradiction.

Lemma 2 implies the following result for both adjacency models under con-
sideration.

Corollary 3. If |V (T )| = n, then ∆(ΓT ) ≤ n− γ(T ).

The inequality in Corollary 3 is sharp. Figure 1 shows an infinite family of
trees with ∆(ΓT ) = n− γ(T ). Suppose the central vertex, t, has deg(t) = a ≥ 2,
and that every vertex v ∈ N(t) has deg(v) = b+ 1. Then |V | = n = a+ 2ab+ 1
and γ(T ) = ab + 1. The γ-set D comprised of the central vertex t and all the
support vertices of T has degree a+ ab = n− γ(T ) in ΓT .

t

Figure 1. An infinite family of trees with ∆(ΓT ) = n− γ(T ).

3. The Diameter of ΓT

In this section we give an upper bound for diam(ΓT ) in each adjacency model,
and by doing so show that question 2 has an affirmative answer in each adjacency
model.
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Let D be a minimum dominating set of the rooted tree (T, c). We define the
height of D to be the quantity htT (D) =

∑

x∈D d(x, c). A γ-set D is called a
highest minimum dominating set if htT (D) ≤ htT (F ) for all γ-sets F of T . We
shall show later that every tree T has a unique highest minimum dominating set.

Proposition 4. Let L be the set of leaves in the tree T and let S be the set of

support vertices in T . If D is a highest minimum dominating set, then S ⊆ D
and L ∩D = ∅.

Proof. Let x ∈ L and y ∈ S be such that xy ∈ E(T ). If x ∈ D, then y /∈ D.
Thus, D′ = (D−{x})∪{y} is a γ-set of T with htT (D

′) < htT (D), a contradiction.
Therefore, L ∩D = ∅. Since N(L) ⊆ S, this completes the proof.

Lemma 5. A γ-set D is a highest minimum dominating set of a rooted tree (T, c)
if and only if every vertex in D − {c} has a child as a private neighbour.

Proof. Consider a γ-set D and suppose there is a vertex x ∈ D − {c} such that
y /∈ pn(x,D) for every child y of x. Let z be the parent of x. If z ∈ D, thenD−{x}
is a dominating set of T , a contradiction. If z /∈ D, then D′ = (D−{x})∪ {z} is
a dominating set such that htT (D

′) < htT (D), thus D is not a highest minimum
dominating set.

To show the converse, we proceed by induction on n, where n = |V (T )|. The
base cases for 1 ≤ n ≤ 5 are easy to verify.

Suppose that n ≥ 6. Let D be a γ-set of the rooted tree (T, c) such that
every vertex v ∈ D − {c} has a child as a private neighbour. Notice that the
statement holds for T = K1,n−1 and for any tree T with diam(T ) = 4 where c is
the central vertex of T . Thus, suppose that T is neither K1,n−1 nor a tree with
diam(T ) = 4 where c is the central vertex of T . Let y ∈ D, chosen so that d(y, c)
is maximized. Thus, y is a support vertex, and the only children of y are leaves.
Let x be the parent of y.

Case 1. Suppose that x ∈ pn(y,D). Then x /∈ D. Let z be the parent of x.
(Note that z exists because T is not a graph of diameter 4 with x = c.) Then
z /∈ D since x ∈ pn(y,D).

First we show that N(x) = {y, z}. Suppose x has a child v, v 6= y. Then
either v is a leaf or v has at least one child and all the children of v are leaves. If
v is a leaf, then x ∈ D. If v has a child, then v ∈ D. In both cases we have that
x /∈ pn(y,D), a contradiction.

Let T1 be the tree T1 = Tx, and let T2 be the tree T2 = T − T1. Then
D1 = D ∩ V (T1) is a γ-set of T1 and D2 = D ∩ V (T2) is a γ-set of T2.

Consider T1 to be rooted at x and T2 to be rooted at c. Then by the induction
hypothesis, D1 is a highest minimum dominating set of T1 and D2 is a highest
minimum dominating set of T2. Recall that N(x) = {y, z}. Let S be a highest
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minimum dominating set of T . Then y ∈ S and x /∈ S (otherwise x would
not have a child that is a private neighbour) and S2 = S ∩ V (T2) is a γ-set
of T2. Thus, S2 is a highest minimum dominating set of T2. But this implies
that htT2

(S2) = htT2
(D2). Therefore, htT (S) = htT (D) and so D is a highest

minimum dominating set of T .

Case 2. Suppose that x /∈ pn(y,D). Let T1 be the tree T1 = Ty and let T2 be
the tree T2 = T −T1. Then D1 = D∩V (T1) is a γ-set of T1 and D2 = D∩V (T2)
is a γ-set of T2 (since x is not a private neighbour of y). Consider T1 to be
rooted at y and T2 to be rooted at c. Obviously, D1 = {y} is a highest minimum
dominating set of T1. By the induction hypothesis, D2 is a highest minimum
dominating set of T2.

If x ∈ D, then x has a child that is a leaf. Let S be a highest minimum
dominating set of T . Then x ∈ S and y ∈ S and S2 = S ∩ V (T2) is a γ-set of T2.
Therefore, htT2

(S2) = htT2
(D2) and so htT (S) = htT (D). Thus, D is a highest

minimum dominating set of T .

If x /∈ D, we consider the following two cases.

Case (i). Suppose that x has a child w with w ∈ D. Thus, w is a support
vertex of T and the only children of w are leaves. Let S be a highest minimum
dominating set of T . Then y ∈ S and w ∈ S, thus S2 = S ∩ V (T2) is a γ-set
of T2. Therefore, htT2

(S2) = htT2
(D2) and so htT (S) = htT (D). Hence D is a

highest minimum dominating set of T .

Case (ii). Suppose that x has no child w with w ∈ D. Thus, N(x) = {y, z}.
Hence, z ∈ D and z has a child v, v 6= x, such that v is a private neighbour of
z. We claim that v has no children. Otherwise v is adjacent to either a leaf or
support vertex u where the only children of u are leaves. If v is adjacent to a leaf,
then v ∈ D. If v is adjacent to a support vertex u, then u ∈ D. In both cases,
v /∈ pn(z,D), a contradiction. Thus, N(v) = {z}. Let S be a highest minimum
dominating set of T . Then, y ∈ S and z ∈ S and so S2 = S ∩ V (T2) is a γ-set of
T2. Therefore, htT2

(S2) = htT2
(D2) and so htT (S) = htT (D), which implies D is

a highest minimum dominating set of T .

Proposition 6. Let T be a rooted tree at c. If D is not a highest minimum

dominating set then, independently of the adjacency model, in ΓT the vertex D
is adjacent to a vertex D′ with htT (D

′) < htT (D).

Proof. If D is not a highest minimum dominating set, then by Lemma 5, there
is an x ∈ D, x 6= c, such that x has no child y where y ∈ pn(x,D). If the parent
w of x is in D, then D−{x} is a dominating set of T , a contradiction. If w /∈ D,
then D′ = (D − {x}) ∪ {w} is a dominating set of T and htT (D

′) < htT (D).
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Applying Proposition 6 repeatedly, as necessary, gives the following results.
The second of these was also found by Fricke, Hedetniemi, Hedetniemi, and Hut-
son [4]. The first result below transpires to be implicit in their proof using the
correspondence mentioned following Theorem 10.

Corollary 7. Let D′ be a highest minimum dominating set of a tree T . Then,

for any γ-set D 6= D′ of T , there is a path in ΓT from D to D′.

Corollary 8 [4]. For any tree T , the γ-graph ΓT is connected.

It is possible to define a partial order on the collection of minimum dominat-
ing sets of a tree T by D1 � D2 if and only if D1 = D2 or htT (D1) < htT (D2).
In the slide adjacency model, every edge of ΓT corresponds to a reconfiguration
that changes the height of a dominating set. Thus, ΓT is the Hasse diagram of
�. Equivalently, it has a weakly transitive orientation and is the complement of
a cylinder graph; for details and definitions, see [11]. It follows that, in the single
vertex adjacency model, the Hasse diagram of � is a spanning subgraph of ΓT .

Lemma 9. Suppose the rooted tree (T, c) has two highest minimum dominating

sets D1, D2. Then, either c belongs to both of D1 and D2, or c belongs to neither

of them.

Proof. Suppose not, and let D1 and D2 be different highest minimum dominat-
ing sets such that c ∈ D1 and c /∈ D2. Let Xi = {x ∈ V (T ) | d(x, c) = i}.
Let ℓ be the largest distance between c and a leaf of T . Let m be the largest
value such that D1 ∩Xm 6= D2 ∩Xm. Then D1 ∩ (Xm+1 ∪Xm+2 ∪ · · · ∪Xℓ) =
D2∩(Xm+1∪Xm+2∪· · ·∪Xℓ). Notice that by Proposition 4, m ≤ ℓ−2. Consider
x ∈ Xm with x ∈ D1 and x /∈ D2. Since D1 is a highest minimum dominating
set, x has a child y such that y is a private neighbour of x. Thus, y ∈ Xm+1.
Let the children of y (if they exist) be y1, y2, . . . , yr. Since y ∈ pn(x,D1), we
have that {y, y1, y2, . . . , yr} ∩ D1 = ∅. Since D1 ∩ (Xm+1 ∪ Xm+2 ∪ · · · ∪ Xl) =
D2∩(Xm+1∪Xm+2∪· · ·∪Xℓ), we also have that {y, y1, y2, . . . , yr}∩D2 = ∅. But
x /∈ D2. Thus, D2 does not dominate y, a contradiction. Therefore, if c ∈ D1,
then c ∈ D2.

Theorem 10. Let T be a tree rooted at vertex c. Then T has a unique highest

minimum dominating set.

Proof. We proceed by induction on n = |V (T )|. Again, the base cases of 1 ≤
n ≤ 5 are easy to verify. Suppose n ≥ 6 and let D be a highest minimum
dominating set of T on n vertices. Using Lemma 9, either c belongs to all of the
highest minimum dominating sets or it does not belong to any of them. This
leads to the following two cases.
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Suppose c /∈ D. Let the children of c be x1, x2, . . . , xk. Then |D ∩ {x1, x2,
. . . , xk}| ≥ 1. Label x1, x2, . . . , xk so that {x1, x2, . . . , xi} ⊆ D and D ∩ {xi+1,
xi+2, . . . , xk} = ∅. Let Tj be the tree Tj = Txj

and let T ′

j be the tree T ′

j =
〈V (Tj) ∪ {c}〉, j ∈ {1, 2, . . . , k}. Let Dj = D ∩ V (Tj).

Then, D1, D2, . . . , Di are γ-sets of T ′

1, T
′

2, . . . , T
′

i , respectively, and Di+1,
Di+2, . . . , Dk are γ-sets of Ti+1, Ti+2, . . . , Tk, respectively. Consider T

′

1, T
′

2, . . . , T
′

i

all to be rooted at c and Ti+1, Ti+2, . . . , Tk to be rooted at xi+1, xi+2, . . . , xk,
respectively. Then D1, D2, . . . , Dk are all highest minimum dominating sets in
their respective trees. By the induction hypothesis, these highest minimum dom-
inating sets are unique. Therefore, T has only one highest minimum dominating
set D with c /∈ D.

Suppose c ∈ D. Let Tj and T ′

j , j ∈ {1, 2, . . . , k}, be defined as before. Let
Dj = D ∩ V (T ′

j), j ∈ {1, 2, . . . , k}. (Notice that c ∈ Dj for every j ∈ {1, 2,
. . . , k}.) Then D1, D2, . . . , Dk are γ-sets of T ′

1, T
′

2, . . . , T
′

k, respectively. Further-
more, D1, D2, . . . , Dk are all highest minimum dominating sets of T ′

1, T
′

2, . . . , T
′

k.
By the induction hypothesis, these highest minimum dominating sets are unique.
Therefore, T has only one highest minimum dominating set D with c ∈ D.

In the work of Fricke et al. [4], a level vector L(D) = [ℓ(vi)] ∈ R
γ(T ), where

D = {v1, v2, . . . , vγ} and ℓ(vi) ≤ ℓ(vi+1), is associated with each γ-set D. The
height of a dominating set can be computed from its level vector. The minimum
level vector in lexicographic order can be seen to correspond to the unique highest
minimum dominating set used in this work.

Recall that a 2-packing of a graph G is a collection of vertices P ⊆ V (G) such
that for any two vertices x, y ∈ P , d(x, y) > 2. The 2-packing number of G is the
maximum cardinality of a 2-packing of G. Meir and Moon [10] showed that for
a tree T the 2-packing number of T is equal to γ(T ). Furthermore, their proof
shows that any 2-packing of T with maximum cardinality can be transformed
into a γ-set of T .

Theorem 11. For any tree T , diam(ΓT ) ≤ 2γ(T ) in the single vertex replacement

adjacency model, and diam(ΓT ) ≤ 2(2γ(T ) − s) in the slide adjacency model,

where s is the number of support vertices in T .

Proof. Let D be a γ-set of T , and P be a 2-packing such that |P | = |D| (such a
set P exists by [10]). Since D dominates P , for any x ∈ P there exists a vertex
v ∈ D such that x ∈ N [v]. Since, for x, y ∈ P we have N [x] ∩ N [y] = ∅, this
establishes a useful one-to-one correspondence between the vertices in P and the
vertices in D.

Root T at a vertex c and consider two γ-sets, D and D′, of T . Let H be the
highest minimum dominating set of T . By Corollary 8 we know there is a path
from D to H and a path from D′ to H in ΓT . Joining these two paths together
gives an upper bound on dΓT

(D,D′).
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Consider two γ-sets S and S′ of T which are adjacent in ΓT . Then, in either
adjacency model, S′ = (S − {x}) ∪ {y} for some x ∈ S and some y ∈ S′. Since
every vertex v ∈ S is in N [z] for some z ∈ P and every vertex u ∈ S′ is in N [z′]
for some z′ ∈ P and |P | = γ(T ), the closed neighbourhood of any vertex z ∈ P
contains exactly one vertex from S and exactly one vertex from S′. Therefore,
if x ∈ N [z] and y ∈ N [z′], z, z′ ∈ P , z 6= z′, then z is undominated in S′, a
contradiction. Hence, to move from S to S′, where SS′ ∈ E(ΓT ), we remove a
vertex x ∈ S and add a vertex y ∈ S′ where x, y ∈ N [z] for some z ∈ P .

We provide an algorithm that constructs a path from any γ-set D to the
highest minimum dominating set H. This provides an upper bound on dΓT

(D,H)
and in turn gives an upper bound on diam(ΓT ).

The number of vertices in common to D and H is |D ∩H|. We show how to
move from D to a γ-set S with |D ∩H| < |S ∩H|.

Let x ∈ D be such that x /∈ H and d(x, c) is maximized. If x is a leaf then
let y be the parent of x. By Proposition 4, y ∈ H. Then S = (D − {x}) ∪ {y} is
a γ-set of T and |S ∩H| > |D ∩H|. Hence, suppose that x is not a leaf.

Case 1. x ∈ P . Let y be the parent of x. Since every vertex z ∈ D such that
d(z, c) > d(x, c) is in H and x /∈ H, it follows that y ∈ H and S = (D−{x})∪{y}
is a γ-set of T . Notice that |S ∩H| > |D ∩H|.

Case 2. x 6∈ P . Let y be the parent of x. We claim that y ∈ P . We know
that there is a unique element p ∈ P ∩ N [x], and that p is not dominated by
D − {x}. Thus, there is an element of H in N [p], say x′. By definition of H
and definition of x, d(x′, c) < d(x, c). Therefore, p cannot be a child of x. Since
x 6∈ P , it follows that y ∈ P . This proves the claim.

Suppose y ∈ H. Since every vertex z ∈ D such that d(z, c) > d(x, c) is in
H and x /∈ H, we have that S = (D − {x}) ∪ {y} is a γ-set of T . Notice that
|S ∩H| > |D ∩H|.

Suppose that y /∈ H. Let v be the parent of y. Then v ∈ H. Since every
vertex z ∈ D such that d(z, c) > d(x, c) is in H, the set S′ = (D − {x}) ∪ {y} is
a γ-set of T and so is S = (D − {x}) ∪ {v}. Notice that DS′ ∈ E(ΓT ) and that
S′S ∈ E(ΓT ). Also notice that |S ∩H| > |D ∩H| and that in the single vertex
replacement adjacency model DS ∈ E(ΓT ).

The above argument shows that there is a path from a γ-set D to a γ-set S
with |S ∩ H| > |D ∩ H|. In the single vertex replacement adjacency model D
and S are adjacent, so that there is a path in ΓT from D to H where each edge
corresponds to a replacement that increases the number of vertices in common
with H. Thus, any γ-set D is joined to the highest minimum dominating set H
by a path of length at most γ(T ). Hence diam(ΓT ) ≤ 2γ(T ).

We now consider the slide adjacency model. Let s be the number of support
vertices in T . Then at most s leaves of T could belong to D. In a path from



712 M. Edwards, G. MacGillivray and S. Nasserasr

a γ-set D to H, these would be replaced by the s support vertices (that are in
H). As outlined in Case 2 above, for each internal vertex of T that belongs to
D, there may be two replacements needed to change D into a γ-set S such that
|S∩H| > |D∩H|. Thus, a path from D to H has length at most 2(γ(T )−s)+s =
2γ(T )− s. Hence diam(ΓT ) ≤ 2(2γ(T )− s).

Let T be a tree on n vertices, and let T ′ be the corona of T with respect to

K1, that is, the tree on 2n vertices obtained from T by attaching a new leaf to
every vertex of T . Then T ′ has n support vertices and γ(T ′) = n. For every leaf
ℓ of T ′, either ℓ or its support vertex must be in any dominating set. It is then
easy to see that diam(ΓT ′) = n = γ(T ′) in either adjacency model. In either
case, the bound in Theorem 11 is 2γ(T ′) = 2n. We know of no example where
the diameter of ΓT ′ is greater than half of the bound given in the theorem.

4. The Order of ΓT

In this section we show that question 3 has a negative answer, and then provide
an upper bound on the number of vertices of the γ-graph of a tree.

Let T be a tree belonging to the infinite family depicted in Figure 1. The
number of γ-sets can be derived by counting based on which leaves are in the γ-set,
or counting based on which vertex dominates t in the γ-set. A brief calculation
shows that T has

(a+1)

(

a

0

)

(

2b − 1
)a

+2

(

a

1

)

(

2b − 1
)a−1

+

(

a

2

)

(

2b − 1
)a−2

+· · ·+
(

a

a

)

(

2b − 1
)0

γ-sets. This quantity equals a2b
(

2b − 1
)a−1

+ 2ab.

Now 2γ(T ) = 2ab+1 = 2ab +2ab, so if a2b
(

2b − 1
)a−1

> 2ab, a negative answer
to question 3 posed by Fricke et al. [4] can be given. Thus, consider the inequality

log2

[

a2b
(

2b − 1
)a−1

]

> log2

[

2ab
]

.

This can equivalently be expressed as

log2[a] + (a− 1) log2

[

2b − 1
]

+ b > ab,

which in turn can be written as

log2[a] + (a− 1) log2

[

2b − 1
]

> (a− 1)b.

Dividing by (a− 1) and rearranging gives

log2[a]

a− 1
> b− log2

[

2b − 1
]
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or
log2[a]

a− 1
> log2

[

1 +
1

2b − 1

]

.

Since the value of b can be chosen so that log2

[

1 + 1
2b−1

]

is arbitrarily close to

zero, for any fixed value of a there exists a value of b for which this inequality
holds. Thus, there are infinitely many trees T which have more than 2γ(T ) min-
imum dominating sets. On the other hand, a similar calculation shows that, for
any fixed value of a, the number of minimum dominating sets of a tree in this
family is asymptotic to 2γ .

For any tree T , not necessarily in this infinite family, a straightforward proof
by induction on γ(T ) shows that T has at most 3γ(T ) γ-sets. This bound can
be improved, as we now show. The mysterious quantity

((

1 +
√
13
)

/2
)

which
appears in the improved bound is the solution to a recursively defined inequality
that appears near the end of the proof.

Theorem 12. Any forest F has at most
((

1 +
√
13
)

/2
)γ(F )

γ-sets.

Proof. For ease of notation, say that b =
((

1 +
√
13
)

/2
)

. Let T1, T2, . . . , Tk be
the components of F . Notice that γ(F ) = γ(T1) + γ(T2) + · · ·+ γ(Tk). Let T be
a component of F with maximum order. Consider T to be rooted at the vertex c
and let ℓ be a leaf at maximum distance from c and let x be the parent of ℓ. Let
y be the parent of x.

Let P be a maximum 2-packing of T . By Meir and Moon [10], we know that
|P | = γ(T ) and that this 2-packing can be transformed into a γ-set of T .

Notice that, for each vertex v ∈ P , x ∈ N [v] for some v ∈ P , otherwise this
implies that {x, ℓ} ∩ P = ∅. But then P ∪ {ℓ} would be a 2-packing with greater
cardinality, a contradiction. We proceed by strong induction on γ(F ). It is easy
to check that the result holds for γ(F ) = 1 and γ(F ) = 2.

Suppose x is adjacent to at least two leaves. Then x is in every γ-set of F .
Consider a γ-set D of F . If y ∈ pn(x,D) then D−{x} is a minimum dominating
set of F ′ = F − (Tx ∪ {y}). In this case γ(F ′) = γ(F ) − 1, so by the induction
hypothesis F ′ has at most bγ(F )−1 minimum dominating sets. Thus, F has at
most bγ(F )−1 γ-sets D where y ∈ pn(x,D). If y /∈ pn(x,D) then D − {x} is a
minimum dominating set of F ′ = F −Tx. In this case γ(F ′) = γ(F )−1, so by the
induction hypothesis F ′ has at most bγ(F )−1 minimum dominating sets. Thus, F
has at most bγ(F )−1 γ-sets D where y /∈ pn(x,D). In total then, F has at most
bγ(F )−1 + bγ(F )−1 = 2bγ(F )−1 < bγ(F ) γ-sets.

Thus, suppose that x is adjacent to only one leaf, ℓ. That is, suppose that
deg(x) = 2.

Consider any γ-set D of F and any maximum 2-packing P of T . Notice that
for each v ∈ P , the set N [v] contains exactly one vertex of D (otherwise v is not
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dominated or P is not a 2-packing). We consider the following three cases for P :
y ∈ P , x ∈ P , or ℓ ∈ P . Recall that deg(x) = 2.

Case 1. y ∈ P . Then for any γ-set D of F , x ∈ N [y] ∩ D because ℓ must
be dominated. This implies that deg(y) = 2, for otherwise the other children of
y are not dominated. Consider the forest F ′ = F − (N [y] ∪ {l}). Notice that
γ(F ′) = γ(F )−1. By the induction hypothesis, F ′ has at most bγ(F )−1 minimum
dominating sets. Hence F has at most bγ(F )−1 γ-sets.

Case 2. x ∈ P . Notice that for any γ-set D of F , either x or ℓ is in D. As
above, y has no children other than x; in particular, it is not adjacent to any
leaves.

First suppose that ℓ ∈ D. Consider the forest F ′ = F − Tx. Notice that
γ(F ′) = γ(F )− 1 and that D − {ℓ} is a minimum dominating set of F ′. By the
induction hypothesis, F ′ has at most bγ(F )−1 minimum dominating sets. There-
fore there are at most bγ(F )−1 γ-sets D of F with ℓ ∈ D.

Now suppose that x ∈ D. Consider the forest F ′ = F − N [x]. Suppose
deg(y) = t + 2. Since y is not adjacent to any leaves, F ′ is comprised of a
forest F ′′ and t copies of K2. Notice that γ(F ′) = γ(F ) − 1 and that γ(F ′′) =
γ(F ) − (t + 1) and that D − {x} is a minimum dominating set of F ′. By the
induction hypothesis, F ′′ has at most bγ(F )−t−1 minimum dominating sets and
the t copies of K2 together have 2t minimum dominating sets. Thus, F ′ has at
most 2tbγ(F )−t−1 < bγ(F )−1 minimum dominating sets. Therefore there are at
most bγ(F )−1 + bγ(F )−1 = 2bγ(F )−1 < bγ(F ) γ-sets of F .

Case 3. ℓ ∈ P . Consider D, a γ-set of F . If y is adjacent to a leaf, v, then
either y ∈ D or v ∈ D. In either case, D−{x, ℓ} is a minimum dominating set of
F ′ = F − {x, ℓ}. By the induction hypothesis, F ′ has at most bγ(F )−1 minimum
dominating sets and so F has at most 2bγ(F )−1 < bγ(F ) γ-sets. Suppose, then,
that y is not adjacent to any leaves. Let deg(y) = t+ 1 (t ≥ 1).

There are three possibilities: (i) y ∈ D; (ii) y /∈ D and at least one child of y
is in D; and (iii) y /∈ D and no children of y are in D. We consider these in turn.

Case (i). y ∈ D. Consider the forest F ′ = F − N [y]. Notice that γ(F ′) =
γ(F )− 1 and that D−{y} is a minimum dominating set of F ′. By the induction
hypothesis, F ′ has at most 2tbγ(F )−t−1 minimum dominating sets. Thus, F has
at most 2tbγ(F )−t−1 γ-sets D with y ∈ D.

Case (ii). y /∈ D and at least one child of y is in D. Consider the forest
F ′ = F − Ty. Notice that γ(F ′) = γ(F )− t, that D− (D ∩ V (Ty)) is a minimum
dominating set of F ′, and that D ∩ V (Ty) is a minimum dominating set of Ty.
By the induction hypothesis, F ′ has at most bγ(F )−t minimum dominating sets.
Now Ty has 2t − 1 minimum dominating sets that do not contain y. Thus, F has
at most (2t − 1)bγ(F )−t minimum dominating sets D with y /∈ D and at least one
child of y in D.
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Case (iii). y /∈ D and no children of y are in D. Then there is a vertex
w ∈ D which dominates y. Consider the forest F ′ = F − (N [w]∪Ty). Notice that
γ(F ′) = γ(F )−t−1 and thatD−V (N [w]∪Ty) is a minimum dominating set of F ′.
Also notice that D ∩ V (N [w] ∪ Ty) is a minimum dominating set of the induced
subgraph 〈N [w] ∪ Ty〉. By the induction hypothesis F ′ has at most bγ(F )−t−1

minimum dominating sets. Now 〈N [w] ∪ Ty〉 has one minimum dominating set
that contains w and no children of y. Thus, F has at most bγ(F )−t−1 γ-sets D
with y /∈ D, w ∈ D, and no children of y in D.

Considering these three cases together, we see that F has at most
2tbγ(F )−t−1+(2t−1)bγ(F )−t+bγ(F )−t−1 γ-sets. Now 2tbγ(F )−t−1+(2t−1)bγ(F )−t+
bγ(F )−t−1 = bγ(F )−t−1[2t + 1+ b(2t − 1)]. Thus, if this value is at most bγ(F ), the
proof is complete.

From the desired inequality 2t+1+ b(2t− 1) ≤ bt+1 we obtain the inequality

1

b

(

2

b

)t

+
1

bt+1
+

2t − 1

bt
≤ 1.

Notice that since b =
((

1 +
√
13
)

/2
)

> 2, the function

f(t) =
1

b

(

2

b

)t

+
1

bt+1
+

2t − 1

bt

is a decreasing function. That is, f(t) > f(t + 1) for t ≥ 1. Therefore f(t) is
maximized for t = 1. By evaluating 2t+1+ b(2t− 1) ≤ bt+1 at t = 1, we see that
0 ≤ b2− b−3 and that any b ≥

((

1 +
√
13
)

/2
)

satisfies this inequality. Hence for

b =
((

1 +
√
13
)

/2
)

, we have that 2tbγ(F )−t−1+(2t−1)bγ(F )−t+bγ(F )−t−1 ≤ bγ(F ).
This completes the proof.

Corollary 13. Any tree T has at most
((

1 +
√
13
)

/2
)γ(T )

γ-sets.

Corollary 14. For any tree T , |V (ΓT )| ≤
((

1 +
√
13
)

/2
)γ(T )

.
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