
Discussiones Mathematicae
Graph Theory 38 (2018) 889–898
doi:10.7151/dmgt.2043

GRAPHIC AND COGRAPHIC Γ-EXTENSIONS

OF BINARY MATROIDS

Y.M. Borse

Department of Mathematics

Savitribai Phule Pune University

Pune-411007, India

e-mail: ymborse11@gmail.com

and

Ganesh Mundhe

Army Institute of Technology

Pune-411015, India

e-mail: ganumundhe@gmail.com

Abstract

Slater introduced the point-addition operation on graphs to characterize
4-connected graphs. The Γ-extension operation on binary matroids is a gen-
eralization of the point-addition operation. In general, under the Γ-extension
operation the properties like graphicness and cographicness of matroids are
not preserved. In this paper, we obtain forbidden minor characterizations
for binary matroids whose Γ-extension matroids are graphic (respectively,
cographic).
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1. Introduction

We refer to [5] for standard terminology in graphs and matroids. The ma-
troids considered here are loopless and coloopless. Slater [9] introduced the
point-addition operation on graphs and used it to classify 4-connected graphs.
Azanchiler [1] extended this operation to binary matroids as follows.
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Definition 1 [1]. Let M be a binary matroid with ground set S and standard
matrix representation A over the field GF (2). Let X = {x1, x2, . . . , xm} ⊂ S be
an independent set in M and let Γ = {γ1, γ2, . . . , γm} be a set such that S∩Γ = ∅.
Suppose A′ is the matrix obtained from the matrix A by adjoining m columns
labeled by γ1, γ2, . . . , γm such that the column labeled by γi is same as the column
labeled by xi for i = 1, 2, . . . ,m. Let AX be the matrix obtained by adjoining one
extra row to A′ which has entry 1 in the column labeled by γi for i = 1, 2, . . . ,m
and zero elsewhere. The vector matroid of the matrix AX , denoted by MX , is
called as the Γ-extension of M with respect to X and the transition from M to
MX is called as the Γ-extension operation on M.

Note that the ground set of the matroid MX is S ∪ Γ and MX \ Γ = M.
Therefore MX is an extension of M. Some basic properties of MX are studied in
[1] and [2].

The Γ-extension operation is related to the splitting operation on binary ma-
troids which is defined by Shikare et al. [8] as follows.

Definition 2 [8]. LetM be a binary matroid with standard matrix representation
A over the field GF (2) and let X be a set of elements of M. Let AX be the matrix
obtained by adjoining one extra row to the matrix A whose entries are 1 in the
columns labeled by the elements of the set X and zero otherwise. The vector
matroid of the matrix AX , denoted by MX , is called as the splitting matroid of
M with respect to X, and the transition from M to MX is called as the splitting
operation.

Let M be a binary matroid with ground set S and let X = {x1, x2, . . . , xm}
be an independent set in M. Obtain the extension M ′ of M with ground set S∪Γ,
where Γ = {γ1, γ2, . . . , γm} is disjoint from S, such that {xi, γi} is a 2-circuit in
M ′ for each i. The matroid M ′

Γ
obtained from M ′ by splitting with respect to

the set Γ is the Γ-extension matroid MX .

Earlier, the splitting with respect to a pair of elements, which is a special
case of Definition 2, was defined by Raghunathan et al. [6] for binary matroids
as an extension of the corresponding graph operation due to Fleischner [4].

In general, under the splitting operation the properties like graphicness and
cographicness of matroids are not preserved. Shikare and Waphare [7] obtained
the following characterization for the class of graphic matroids M whose splitting
matroids MX , with |X| = 2, are again graphic.

Theorem 3 [7]. Let M be a graphic matroid. For any X ⊂ S with |X| = 2, the
splitting matroid MX is graphic if and only if M has no minor isomorphic to any

of the circuit matroids M(G1),M(G2),M(G3) and M(G4), where G1, G2, G3 and

G4 are the graphs as shown in Figure 1.
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Figure 1

Borse et al. [3] obtained a similar characterization for the cographic matroids
M whose splitting matroids MX , with |X| = 2, are cographic.

Theorem 4 [3]. Let M be a cographic matroid. For any X ⊂ S with |X| = 2, the
splitting matroid MX is cographic if and only if M has no minor isomorphic to

any of the circuit matroids M(G1) and M(G2), where G1 and G2 are the graphs

as shown in Figure 1.

It remains to find the effect of the splitting operation with respect to X where
|X| ≥ 3, on the properties like graphicness and cographicness of a matroid.

Like splitting operation, the Γ-extension operation also does not preserve
graphicness and cographicness properties of a given matroid, in general. Azan-
chiler [2] obtained few results in this direction.

In this paper, we characterize binary matroidsM whose Γ-extension matroids
MX with |X| ≥ 2 are graphic (respectively, cographic).

The following are the main results of the paper.

Theorem 5. Let M be a binary matroid. Then MX is graphic (respectively,
cographic) for every independent set X in M with |X| = 2 if and only if M does

not contain a minor that is isomorphic to M(K4).

Corollary 6. Let M be a graphic (respectively, cographic) matroid. Then MX is

graphic (respectively, cographic) for every independent set X in M with |X| = 2
if and only if M does not contain a minor that is isomorphic to M(K4).

Theorem 7. Let M be a binary matroid. Then MX is graphic (respectively,
cographic) for every independent set X in M with |X| ≥ 3 if and only if M does

not contain a minor that is isomorphic to a 4-circuit.

Corollary 8. Let M be a graphic (respectively, cographic) matroid. Then MX is

graphic (respectively, cographic) for every independent set X in M with |X| ≥ 3
if and only if M does not contain a minor that is isomorphic to a 4-circuit.
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2. Case |X| = 2

In this section, we prove Theorem 5. First, observe that there should be only
three forbidden minors in Theorem 3. For the graphs G2 and G4 in Figure 1,
M(G2) ∼= M(G4)\{3}/{1, 2}. Therefore M(G2) is a minor of M(G4) and hence
Theorem 3 can be restated as follows.

Theorem 9. Let M be a graphic matroid. For any X ⊂ S with |X| = 2 the

splitting matroid MX is graphic if and only if M has no minor isomorphic to any

of the circuit matroids M(G1),M(G2) and M(G3), where G1, G2 and G3 are the

graphs as shown in Figure 1.

We need the following well-known characterizations.

Theorem 10 (Oxley [5]). A binary matroid M is graphic if and only if no minor

of M is isomorphic to any of the matroids F7, F
∗
7
,M∗(K3,3) and M∗(K5).

Theorem 11 (Oxley [5]). A binary matroid M is cographic if and only if no

minor of M is isomorphic to any of the matroids F7, F
∗
7
,M(K3,3) and M(K5).

Theorem 12 (Oxley [5]). A binary matroid M is regular if and only if no minor

of M is isomorphic to any of the matroids F7, F
∗
7
.

The proof of the following lemma is trivial.

Lemma 13. If {x, y} is a circuit in a matroid M, then M\{x} ∼= M\{y} and

M/{x} ∼= M/{y}.

Lemma 14. Let M be a binary matroid containing a minor isomorphic to M(K4).
Then there is an independent set X in M with |X| = 2 such that the matroid

MX is not regular.

Proof. Suppose M contains a minor N which is isomorphic to M(K4). Then
there are subsets T1 and T2 of the ground set ofM such thatN = M\T1/T2. Label
the edges of the graph K4 by the set {x1, x2, x3, x4, x5, x6} so that x1, x2, x3, x4,
in order, form a 4-cycle and the edges x5, x6 are the chords of this cycle.

Let X = {x1, x3}. Then X is disjoint from T1 ∪ T2 and is independent in N
as well as in M. Further, NX = MX \ T1/T2. Moreover, the edges x1 and x3 are
not adjacent in K4. Let A be the standard matrix representation of M(K4) over
the field GF (2). Then

A =





x1 x2 x3 x4 x5 x6

1 0 0 1 1 0
0 1 0 1 1 1
0 0 1 1 0 1
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and

AX =









x1 x2 x3 x4 x5 x6 γ1 γ3

1 0 0 1 1 0 1 0
0 1 0 1 1 1 0 0
0 0 1 1 0 1 0 1
0 0 0 0 0 0 1 1









.

Therefore

AX/{γ1} =





x1 x2 x3 x4 x5 x6 γ3

1 0 0 1 1 0 1
0 1 0 1 1 1 0
0 0 1 1 0 1 1



.

Since AX/{γ1} is a matrix representation of the matroid M(K4)
X/{γ1} ∼=

NX/{γ1}, it follows from the standard matrix representation of the matroid F7

that NX/{γ1} ∼= F7. Therefore MX \ T1/T2/{γ1} ∼= F7. This shows that F7 is a
minor of MX . Hence, by Theorem 12, MX is not regular.

Proposition 15. Let M be a binary matroid such that no minor of M is isomor-

phic to M(K4). Then MX is graphic as well as cographic for any independent set

X in M with |X| = 2.

Proof. Clearly, M(K4) is a minor of each of the six matroids F7, F
∗
7
,M(K5),

M∗(K5),M(K3,3) and M∗(K3,3). Since no minor of M is isomorphic to M(K4),
none of these six matroids can be a minor of M. Hence, by Theorems 10 and
11, M is graphic as well as cographic. Thus M = M(G) for some planar graph
G. Assume that MX is not graphic or not cographic for some independent set
X = {x1, x2} in M. We obtain a contradiction by proving that M contains a
minor isomorphic to M(K4).

Let M ′ be the extension of M obtained by adding two elements {γ1, γ2} to
the ground set S of M such that {x1, γ1} and {x2, γ2} are circuits in M ′. Then
M ′ \ {γ1, γ2} = M. The ground set of M ′ is S ∪ {γ1, γ2}. Since M is graphic
and cographic, so is M ′. Therefore M ′ does not contain a minor isomorphic to
M(K5) = M(G3). By definition of MX , we have MX = M ′

{γ1,γ2}
, where M ′

{γ1,γ2}

is the matroid obtained from M ′ by splitting with respect to the pair {γ1, γ2}.
Therefore M ′

{γ1,γ2}
is not graphic or not cographic.

By Theorems 4 and 9, there is a minor N ′ of M ′ such that N ′ ∼= M(G1) or
N ′ ∼= M(G2), where G1 and G2 are the graphs as shown in Figure 1. Clearly,
M(K4) ∼= M(G1)\{1, 2} ∼= M(G2)\{1}/{2}. Hence M(K4) is isomorphic to a
minor of N ′. If N ′ is a minor of M, then M has a minor isomorphic to M(K4), a
contradiction. Consequently, N ′ is not a minor of M. It implies that N ′ contains
γ1 or γ2 or both. By Lemma 13, we may assume that N ′ contains xi whenever it
contains γi. ThusN

′ contains at least one of the two 2-circuit {x1, γ1} and {x2, γ2}
of M ′. Suppose N ′ contains both γ1 and γ2. Then N ′ contains both the 2-circuits
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{x1, γ1} and {x2, γ2}. Therefore N
′ is isomorphic to M(G1) and the two 2-cycles

present in G1 corresponds to {x1, γ1} and {x2, γ2}. Thus M(K4) ∼= N ′\{γ1, γ2}
is minor of M ′\{γ1, γ2} = M, a contradiction. Hence N ′ contains exactly one of
γ1 and γ2.

We may assume that N ′ contains γ1 but not γ2. Then N ′\γ1 is a minor of
M ′\γ1 and hence is a minor of M. Suppose N ′ is isomorphic to M(G2). Then the
2-cycle present in G2 corresponds to the 2-circuit {x1, γ1} in N ′. Hence M(K4) ∼=
N ′\{γ1}/{2}. But N ′\{γ1}/{2} is minor of N ′\{γ1} and so is a minor of M.
Consequently, M(K4) is isomorphic to a minor of M, a contradiction. Therefore
N ′ ∼= M(G1). We may assume that the 2-circuit {x1, γ1} of N ′ corresponds to
the 2-cycle of G1 containing the edge labeled by 1. Clearly, M(K4) ∼= N ′\{γ1, 2}.
Thus M(K4) is isomorphic to a minor of N ′\{γ1} and so is isomorphic to a minor
of M, a contradiction.

Proof of Theorem 5. Suppose M contains a minor isomorphic to M(K4). By
Lemma 14, MX is not regular for some independent set X in M with |X| = 2.
Therefore, by Theorems 10, 11 and 12, MX is neither graphic nor cographic.
Conversely, if no minor of M is isomorphic to M(K4), then, by Proposition 15,
MX is graphic as well as cographic for any independent set X in M with |X| = 2.

3. Case |X| ≥ 3

In this section, we prove Theorem 7.

Lemma 16. Let M be a binary matroid containing a minor isomorphic to a

4-circuit. Then there is an independent set X in M with |X| ≥ 3 such that MX

is not regular.

Proof. SupposeM contains a minorN which is isomorphic to a 4-circuit. Let the
ground set of N be {x1, x2, x3, x4}. Let X = {x1, x2, x3}. Then X is independent
in N and so in M. The following matrix A represents N over the field GF (2).

A =





x1 x2 x3 x4

1 0 0 1
0 1 0 1
0 0 1 1



. Therefore AX =









x1 x2 x3 x4 γ1 γ2 γ3

1 0 0 1 1 0 0
0 1 0 1 0 1 0
0 0 1 1 0 0 1
0 0 0 0 1 1 1









.

In AX , by adding the fourth row to the first row and then interchanging
the fourth and fifth columns, we get the following matrix which is the standard
matrix representation of the matroid F ∗

7
over GF (2):
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x1 x2 x3 γ1 x4 γ2 γ3

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1









.

The vector matroid of the matrix AX is the Γ-extension NX of N. Hence NX

is isomorphic to F ∗
7
. Since N is a minor of M, there are disjoint subsets T1 and

T2 of the ground set of M such that N = M \ T1/T2. Since X ∩ T1 = ∅ and
X ∩ T2 = ∅, it follows that NX = (M \ T1/T2)

X = MX \ T1/T2. Hence NX is
a minor of MX . Therefore MX has a minor isomorphic to F ∗

7
. By Theorem 12,

MX is not regular.

Proposition 17. Let M be a binary matroid such that no minor of M is isomor-

phic to a 4-circuit. Then MX is graphic as well as cographic for any independent

set X in M with |X| ≥ 3.

Proof. Clearly, each of the six matroids F7, F
∗
7
,M(K5),M(K3,3),M

∗(K5) and
M∗(K3,3) contains a 4-circuit. Hence none of these six matroids can be a minor of
M. Therefore, by Theorems 10 and 11, M is graphic as well as cographic. Hence
M = M(G) for some graph G without isolated vertices.

Let X be an independent set in M with |X| ≥ 3. We prove that MX is
graphic as well as cographic. Let D1, D2, . . . , Dm be components of M. Since
M is graphic and cographic, each component Di is also graphic and cographic.
Therefore Di = M(Hi) for some planar graph Hi for i = 1, 2, . . . ,m. If the set
X does not intersect a component Di of M, then Di is a component of MX ,
too. Therefore we may assume that X intersects each Di. Let Xi = X ∩Di for
i = 1, 2, . . . ,m. Then X = X1 ∪ X2 ∪ · · · ∪ Xm. Since X is independent in M,
each Xi is independent in Di and so it does not contain parallel edges. Since
M(Hi) is component of M for all i = 1, 2, . . . ,m, we may assume that graphs
Hi(i = 1, 2, . . . ,m) are vertex-disjoint.

Suppose the rank of Di is at least 3. Then Hi contains at least four vertices.
Since Di is connected, Hi is 2-connected. It follows that Hi contains an r-circuit
and so M contains an r-circuit for some r ≥ 4. This implies that M has a 4-circuit
as a minor, a contradiction. Hence the rank of each Di is one or two. If the rank
of Di is one, then Hi has exactly two vertices. Therefore Hi is K2 or a graph
in which any two edges are parallel. Thus Xi contains exactly one edge of Hi.
Suppose the rank of Di is two. Then Hi has exactly three vertices and further,
Hi is 2-connected and so it contains a triangle, say T. Any edge of Hi which is
not in T is parallel to one of the three edges of T. This implies that any two
edges of Hi are adjacent. Since Xi is independent, it contains one edge or two
non-parallel edges of Hi. Consequently, |Xi| = 1 or 2. Let Xi = {ei} if |Xi| = 1
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and let Xi = {ei, fi} if |Xi| = 2 for i = 1, 2, . . . ,m. Let ei = uivi. Then fi = uiwi

for some wi 6= vi.
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Figure 2

Let H be the graph obtained from H1, H2, . . . , Hm by identifying the vertices
u2, u3, . . . , um to u1 (see Figure 2). ThenM(G) is isomorphic toM(H). Therefore
M(G)X is isomorphic to M(H)X . Let HX be the graph obtained from H by
adding an additional vertex u and edges uvi for i = 1, 2, . . . ,m, and the edge
uwi if fi ∈ X for each i. By Definition 1, M(H)X is isomorphic to the matroid
M(HX). Thus MX = M(G)X is isomorphic to M(HX). Hence MX is graphic.

Now, we prove that M(HX) is cographic, that is, HX is planar. Assume
that M(HX) is not cographic. Then, by Theorem 11, it has M(K5) or M(K3,3)
as a minor. Each of K5 and K3,3 are simple graphs. Also, addition or deletion
of parallel edges to a graph does not change its planarity. Further, X does not
contain parallel edges. Therefore we may assume that each graph Hi is simple.
Hence each Hi is a K2 or a triangle. Clearly, the graph H is planar. All vertices of
HX other than u1 and u have degree two or three. However, K5 has five vertices
with degree four. Contractions and deletions in HX does not increase degree
of any vertex in HX other than u and u1. Hence M(K5) cannot be a minor of
M(HX).

Thus M(HX) contains M(K3,3) as a minor. If H does not contain a triangle,
then it is the star K1,m and hence HX is K2,m. Therefore M(HX) does not have
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M(K3,3) as a minor, a contradiction. Suppose H contains a triangle. The vertices
of a triangle in H are u1 and vi, wi for some i ≥ 1. Hence u is adjacent to vi or wi

or both in HX . The graph M(K3,3) does not contain a triangle and also has all
vertices of degree three. Suppose u is not adjacent to wi in HX . Then the degree
of wi in HX is two. In order to get K3,3 as a minor of HX , we need to delete or
contract one edge incident to wi and then delete the other edge incident to wi.
This also can be done by just deleting both edges incident to wi. But then the
degree of vi becomes two. Suppose u is adjacent to both vi and wi. Then u, vi, wi

induces a triangle in HX . Since M(K3,3) does not contain a triangle, we need
to delete or contract one of the edges in this triangle. The contraction creates
a parallel edge which is to be deleted later on. Thus, at least one edge of the
triangle with vertices u, vi, wi is deleted. Hence the degree of vi or wi or both
becomes two. It follows that in order to remove triangles from HX we are left
with a subgraph isomorphic to K2,r for some r ≥ 1. However M(K2,r) does not
contain M(K3,3) as a minor and hence M(HX) does not contain M(K3,3) as a
minor, a contradiction. Thus M(HX) is cographic.

Proof of Theorem 7. If M contains a minor isomorphic to a 4-circuit, then,
by Lemma 16, MX is not regular and hence, by Theorems 10, 11 and 12, MX is
neither graphic nor cographic for every independent set X in M with |X| ≥ 3.
Conversely, if no minor of M is isomorphic to a 4-circuit, then, by Proposition 17,
MX is graphic as well as cographic for any independent set X with |X| ≥ 3.

Remark 18. As pointed out by one of the referees, Theorem 5 can be proved
using graph-theoretic approach, as a binary matroid without M(K4)-minor is the
cycle matroid of some series-parallel graph. There is no change in the proof of
the “only if” part of Theorem 5. The referee outlined the proof of the “if” part
as follows.

Suppose M = M(G) for some series-parallel graph G. To show that M(G)X

is graphic and cographic, it suffices to show that M(G)X is graphic and planar.
To show that M(G)X is graphic, it suffices to show that, for any pair of edges
e and f of G, there exists a graph G′ that is 2-isomorphic to G in which e and
f are adjacent. (Showing e and f are adjacent in G′ implies that every matroid
splitting operation in M(G) can be realized as a graphic splitting operation in
G′.) Showing that such a G′ exists is easily done by induction: first reduce to the
2-connected case, which is trivial, and then take a 2-sum {G1, G2} of G. (Such a
2-sum always exists in series-parallel graphs having at least four edges.) If e and
f are in G1 (say), then just apply induction. If e is in G1 and f in G2, then apply
induction to e and q in G1, and f and q in G2, where q is the edge common to
G1 and G2. Now, given that e and f are adjacent in G′, and G′ is series-parallel,
it is easy to verify that the graph splitting operation of e and f in G′ produces a
planar graph, which proves Theorem 5.
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Theorem 7 can be handled in a similar fashion. In particular, binary matroids
with no 4-circuit minor are graphic, and can be constructed from 1-sums of “fat”
triangles (a triangle plus parallel edges) and “fat” edges (an edge plus parallel
edges).
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