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Abstract

The paper deals with Hamiltonian and pancyclic graphs in the class of
all self-centered graphs of radius 2. For both of the two considered classes
of graphs we have done the following. For a given number n of vertices, we
have found an upper bound of the minimum size of such graphs. For n ≤ 12
we have found the exact values of the minimum size. On the other hand,
the exact value of the maximum size has been found for every n. Moreover,
we have shown that such a graph (of order n and) of size m exists for every
m between the minimum and the maximum size. For n ≤ 10 we have found
all nonisomorphic graphs of the minimum size, and for n = 11 only for
Hamiltonian graphs.
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1. Introduction

In this paper we investigate the possible number of edges of Hamiltonian graphs,
or pancyclic graphs, in the class of all self-centered graphs with n vertices and
radius r = 2. Recall that the problem of the size of self-centered graphs of given
order n and radius r, without restricting to Hamiltonian or pancyclic graphs, has
a long history. Buckley [2] has found all possible sizes of self-centered graphs
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for given n and r. In the present paper we derive analogous results as those of
Buckley, for subclasses of the class of all self-centered graphs with radius r = 2.1

Namely, we will consider the subclass of Hamiltonian graphs and the subclass
of pancyclic graphs. Hamiltonian and pancyclic graphs are a topic of intensive
study, see e.g. [4]. Due to the complexity of the problem, we restrict ourselves
to the radius r = 2.

We consider finite, connected, undirected graphs without loops and multiple
edges. We follow terminology by [3]. Let us only recall some of them. The order

of a graph G is the cardinality of its vertex set and the size of G is the cardinality
of its edge set. For a connected graph G, the distance dG(u, v) between vertices u
and v is the length of a shortest path joining them, degG(u) is the degree of u in
G, δ(G) is the minimal degree of G. The eccentricity eG(u) of a vertex u ∈ V (G)
is max{dG(u, x) : x ∈ V (G)}. The radius r(G) an the diameter d(G) of G are
the minimum and the maximum eccentricity of its vertices, respectively. A graph
is self-centered if its diameter is equal to its radius, and is pancyclic if it contains
cycles of all lengths from 3 up to the order of the graph.

We adopt the following terminology and notations:

• a graph is an Sh-graph if it is Hamiltonian and self-centered with r = 2,

• a graph is an Sp-graph if it is pancyclic and self-centered with r = 2,

• fh(n), for n ≥ 4, is the minimum size of an Sh-graph of order n,

• fp(n), for n ≥ 5, is the minimum size of an Sp-graph of order n,

• F h(n), for n ≥ 4, is the number of mutually nonisomorphic Sh-graphs with
n vertices and fh(n) edges,

• F p(n), for n ≥ 5, is the number of mutually nonisomorphic Sp-graphs with
n vertices and fp(n) edges.

An overview of the main results of the paper for small values of n is given
in Table 1 (see Theorems 3 and 5 below). Table 2 completes the previous one,
by listing nonisomorphic Sh-graphs and Sp-graphs of minimum size (scattered in
the proof of Theorem 5) for n ≤ 12.

In Theorem 8 we show that the sets of all possible sizes m of Sh-graphs and
Sp-graphs are intervals of positive integers. Namely, for Sh-graphs this interval
is

(1.1) fh(n) ≤ m ≤

⌊

n2 − 2n

2

⌋

, n ≥ 4,

and for Sp-graphs

1Nevertheless, the inspiration for the present paper has not come from [2]. In fact, the
authors have received the impetus to explore the described issue in connection with investigation
of eccentric sequences (see e.g. [5, 6, 7]).
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(1.2) fp(n) ≤ m ≤

⌊

n2 − 2n

2

⌋

, n ≥ 5.

We know the exact values of the left ends of these intervals only for small values
of n, see Table 1. In general, by Theorem 6 and Theorem 3(i) it holds:

fh(n) ≤ fp(n) ≤

⌈

7n

3

⌉

− 6, n ≥ 5.

Notice that for small values of n considered in Table 1, only for n = 4 and 6 the
upper bound

⌈

7n
3

⌉

− 6 is best possible for fh(n) and only for n = 5 and 6 it is
best possible for fp(n). However, we conjecture that for all sufficiently large n
we have fh(n) = fp(n) =

⌈

7n
3

⌉

− 6, see Conjecture 14.

n fh(n) fp(n) F h(n) F p(n)

4 4 – 1 0

5 5 6 1 1

6 8 8 3 3

7 10 10 4 3

8 12 12 6 5

9 14 14 4 3

10 16 16 1 1

11 18 19 1 ≥ 8

12 21 21 ≥ 2 ?

Table 1. Results for small values of n.

We have already mentioned that Buckley [2] has found all possible sizes of
self-centered graphs for given n and r. However, he overlooked that for r = 2
his method did not work. In fact, he erroneously obtained that in this case the
maximum size of self-centered graphs of order n is (n2−3n+4)/2. For every n ≥ 6
this number is strictly less than the maximum sizes

⌊

(n2 − 2n)/2
⌋

of Sh-graphs
and Sp-graphs of order n from (1.1) and (1.2). It is also worth mentioning that
the maximum sizes of Sh-graphs and Sp-graphs are the same as the maximum
size of all self-centered graphs with radius r = 2 (see Remark 9).

The paper is organized as follows. Section 2 contains just two lemmas. In
Section 3 we prove Theorems 3 and 5 covering the results displayed in Tables 1
and 2. In Section 4 we prove Theorem 6 giving an upper bound for fh(n) and
fp(n), and Theorem 8 showing that the sets of all possible sizes of Sh-graphs and
Sp-graphs are intervals, both with the right end-point

⌊

(n2 − 2n)/2
⌋

. Finally,
in Section 5 we present several open problems, including the already mentioned
conjecture.
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n
Sh-graphs of order n and
of minimum size fh(n)

(graphs with
size fp(n) > fh(n))

(non-pancyclic graphs)
Sp-graphs of order n and
of minimum size fp(n)

4

5

6

7

8

9

10

11 ∗

12 ∗ ∗

∗ - and possible others

Table 2. Sh-graphs of order n and of minimum size fh(n), and Sp-graphs of order n and
of minimum size fp(n)
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2. Preliminaries

When we study how a graphG satisfying some assumptions looks, and we discover
that G cannot contain a graphH as a subgraph, we often say thatH is a forbidden
subgraph for G or just that H is forbidden for G. If G necessarily contains H
then we also say that H is a forced subgraph for G or just that H is forced for G.

We show that an Sh-graph with at least 7 vertices may contain at most two
vertices of degree 2 (and obviously their distance is at most 2). For an Sh-graph
G with δ(G) = 2 we give lower bounds for the number of its edges. These bounds
are interesting only for small values of n (see Theorems 3, 5).

Lemma 1. Let G be an Sh-graph. If G has at least 7 vertices, then G has at

most two vertices of degree 2.

Proof. Let C be a Hamiltonian cycle in G and let u, v be vertices of degree 2.
Since dG(u, v) ≤ 2, we have dC(u, v) = dG(u, v). Now it is easy to see that the
statement is true.

Lemma 2. Let G be an Sh-graph with n vertices and δ(G) = 2.

(i) If G contains exactly one vertex of degree 2, then
|E(G)| ≥ 2n− 4 for n ∈ {6, 7, 8, 9},
|E(G)| ≥ 2n− 3 for n ≥ 10.

(ii) If G contains two vertices of degree 2 and their distance is 2, then
|E(G)| ≥ 2n− 4 for n ∈ {7, 8, 9},
|E(G)| ≥ 2n− 3 for n ≥ 10.

(iii) If G contains two adjacent vertices of degree 2, then
|E(G)| ≥ 3n− 10 for n ≥ 6.

Proof. Let V (G) = {v1, v2, . . . , vn} and v1v2 · · · vnv1 be a Hamiltonian cycle
in G.

(i) Let v1 be the unique vertex of degree 2 in G and let n ≥ 6. Then for any
vertex vi, 4 ≤ i ≤ n − 2, G contains at least one of the edges viv2, vivn. Since
v3 and vn−1 are vertices of degree at least 3, G contains at least one other edge.
It follows |E(G)| ≥ n + (n − 5) + 1 = 2n − 4. Moreover, if G contains exactly
2n− 4 edges, then G necessarily contains also the edge v3vn−1 and degG(vi) = 3,
3 ≤ i ≤ n − 1. Obviously, if n ≥ 10, then either dG(v6, v3) > 2 (if v6vn ∈ E(G))
or dG(v6, vn−1) > 2 (if v6v2 ∈ E(G)). It follows |E(G)| ≥ 2n− 3 for n ≥ 10.

(ii) Let v1, v3 be the vertices of degree 2 in G. Since all other vertices
have degree at least 3 (see Lemma 1), for n = 7 we trivially get |E(G)| ≥ 10.
Now let n ≥ 8. Since eG(v1) = eG(v3) = 2, each of the vertices v6, v7, . . . , vn−2

is adjacent to at least one of the vertices v2, v4, vn. Moreover, each of the
vertices v4, v5 is clearly adjacent to at least one of the vertices v2, vn and each



666 P. Hrnčiar and G. Monoszová

of the vertices vn, vn−1 is adjacent to at least one of the vertices v2, v4. Hence
|E(G)| ≥ n+(n−7)+3 = 2n−4. The equality may occur only ifG contains, except
the edges of the Hamiltonian cycle, only the following edges: v2vi, 6 ≤ i ≤ n− 2
(if n ≥ 8), v4vn, exactly one of the edges v5v2, v5vn and exactly one of the edges
vn−1v2, vn−1v4. However, if n ≥ 10, then dG(v4, v7) > 2, a contradiction. It
follows |E(G)| ≥ 2n− 3 for n ≥ 10.

(iii) Let the vertices v1 and v2 have degree 2 in G. Obviously, vn−1v3, v4vn ∈
E(G) and if n > 6, then viv3, vivn ∈ E(G) for 5 ≤ i ≤ n − 2. We get |E(G)| ≥
n+ 2 + 2(n− 6) = 3n− 10.

3. Exact Values of fh, fp, F h and F p for Small Numbers of

Vertices

This section deals with Sh-graphs and Sp-graphs of order at most 12. Note that
the minimum order of an Sh-graph or an Sp-graph is 4 or 5, respectively.

Theorem 3. The values fh(n), 4 ≤ n ≤ 12, and fp(n), 5 ≤ n ≤ 12, are the

following:

(i) fh(4) = 4, fh(5) = 5, fp(5) = 6,

(ii) fh(n) = fp(n) = 2n− 4 for 6 ≤ n ≤ 10,

(iii) fh(11) = 18, fp(11) = 19,

(iv) fh(12) = fp(12) = 21.

Proof. (i) The assertions are obvious (see Figure 3.6).
(ii) When n = 6 adding a new edge to C6 does not give an Sh-graph, but two

new edges are enough, see Figure 3.7(a). Hence, we get fh(6) = 8 and fp(6) = 8.
Now let n ∈ {7, 8, 9}. A graph of order n and size less than 2n − 4 has to

contain a vertex of degree 2. By Lemmas 1 and 2, an Sh-graph with n vertices
and with a vertex of degree 2 has to contain at least 2n − 4 edges. Considering
the graphs in Figures 3.8(a), 3.10(a), 3.17(a) we get fh(n) = fp(n) = 2n− 4.

Finally, let n = 10. Let G be an Sh-graph with |V (G)| = 10 and |E(G)| ≤ 15.
According to Lemmas 1 and 2, G contains no vertex of degree 2 and we get
2|E(G)| ≥ 10 · 3 = 30. It follows that the degree of each vertex of G is 3 and
|E(G)| = 15. It is easy to check that the cycles C3 and C4 are forbidden subgraphs
for G, since otherwise the eccentricity, in G, of each vertex of C3 or C4 would be
greater than 2. Since the degree of any vertex of G is 3, G contains K1,3 and it
follows that the graph in Figure 3.1 is forced for G (eG(u) = 2). Hence, since C3

and C4 are forbidden subgraphs for G, one can easily check that G is isomorphic
to the Petersen graph. However, the Petersen graph is not Hamiltonian, thus
fh(10) ≥ 16. Considering the pancyclic graph in Figure 3.25(b) we get fh(10) =
fp(10) = 16.
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Figure 3.1. Figure 3.2.

(iii) Let G be an Sh-graph with 11 vertices and at most 18 edges. The graph
in Figure 3.2, where the number at each vertex represents its degree in G, is
obviously forbidden for G, since otherwise eG(x) > 2.

By Lemmas 1 and 2 (2 ·11−3 = 19), G contains no vertex of degree 2. Hence
|E(G)| ≥ 17. Let |E(G)| = 17. Then G has exactly one vertex of degree 4 and
ten vertices of degree 3. So G contains the graph in Figure 3.2, but this graph
is forbidden for G, a contradiction. Considering the graph in Figure 3.28 (this
graph is not pancyclic), we get fh(11) = 18 and fp(11) ≥ 18.

We claim that in fact fp(11) > 18.

Suppose, on the contrary, that there is an Sp-graph G with |V (G)| = 11 and
|E(G)| = 18.

Since the graph in Figure 3.2 (the number at each vertex represents its degree
in G) is a forbidden subgraph for G and d(G) = 2, it is easy to verify that G has
exactly three vertices of degree 4 and eight vertices of degree 3.

The graph in Figure 3.3(a) is forbidden for G, otherwise G has to contain
at least two vertices of degree 3 which are not adjacent to a vertex of degree 4.
Since the graph in Figure 3.2 is forbidden for G, we have a contradiction.

Obviously, the graphs in Figures 3.3(b), (c) are also forbidden for G, other-
wise it would be eG(x) > 2. Since G contains C3 and the graphs in Figures 3.3(a),
(b), (c) are forbidden for G, the graph in Figure 3.4(a) is forced for G. It follows
(since eG(u) = 2), the graph in Figure 3.4(b) is forced for G, too.

Since the graph in Figure 3.3(b) is forbidden for G and the graph in Fig-
ure 3.4(b) is forced for G, G has to contain the graph in Figure 3.3(d). It is easy
to see that the graph in Figure 3.3(d) is forbidden for G, a contradiction.

Once we know that fp(11) > 18, any of the graphs in Figure 3.29 gives
fp(11) = 19.

(iv) Let G be an Sh-graph of order 12 and |E(G)| ≤ 20. By Lemmas 1, 2,
δ(G) ≥ 3 and it is easy to check that G contains at least eight vertices of degree
3 (2|E(G)| ≤ 2 · 20 = 8× 3 + 4× 4).

If G contains at least ten vertices of degree 3, then G has to contain the
graph in Figure 3.2 (note that d(G) = 2). This graph is forbidden for G, a
contradiction.
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Figure 3.3. Figure 3.4.

If G contains exactly nine vertices of degree 3, then 2|E(G)| ≥ 9 · 3 + 2 · 4+
1 · 5 = 40 and we get |E(G)| = 20. If G contains neither the graph in Figure 3.2
nor the graph in Figure 3.5(a), then each of nine vertices of degree 3 has to be
adjacent to at least two vertices of degree greather than 3 and this is impossible
(2|E(G)| = 40 = 9 · 3+2 · 4+1 · 5 and 9 · 2 > 2 · 4+5). It follows that G contains
at least one of the graphs in Figures 3.2, 3.5(a). These graphs are forbidden for
G, a contradiction.

Figure 3.5.

Finally it remains to consider the case when G contains eight vertices of degree 3
and four vertices of degree 4. Since the graphs in Figures 3.2, 3.5(a) are forbidden
subgraphs forG, every vertex of degree 3 has to be adjacent to at least two vertices
of degree 4. It is only possible when every vertex of degree 3 is adjacent exactly to
two vertices of degree 4. Since G contains eight vertices of degree 3 and

(

4

2

)

= 6,
G has to contain the graph in Figure 3.5(b). This graph is forbidden for G, a
contradiction.

Finally, considering the second graph in Figure 3.30, we get fh(12) = fp(12)
= 21.

Remark 4. The fact that the Petersen graph is the only self-centered graph with
10 vertices and radius 2 of minimum size and not containing a vertex of degree 2
has been known for a long time (see [1, 8]).

Theorem 5. For the values F h(n), 4 ≤ n ≤ 12, and F p(n), 5 ≤ n ≤ 12, we have

the following.
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(i) F h(4) = 1, F h(5) = F p(5) = 1, F h(6) = F p(6) = 3,

(ii) F h(7) = F h(9) = 4, F h(8) = 6,
F p(7) = F p(9) = 3, F p(8) = 5,

(iii) F h(10) = F p(10) = 1,

(iv) F h(11) = 1, F p(11) ≥ 8,

(v) F h(12) ≥ 2, F p(12) ≥ 1.

Proof. We will use the values fh(n) and fp(n) from Theorem 3.
(i) The assertions for n ∈ {4, 5} are obvious, see Figure 3.6. If n = 6, then

fh(6) = fp(6) = 8 and it is easy to verify that F h(6) = F p(6) = 3, see Figure 3.7.

Figure 3.6.

Figure 3.7.

In what follows we suppose that G is an Sh-graph with n vertices and fh(n)
edges. Obviously, the degree of each vertex of G is at least 2.

(ii) (n = 7) We have fh(7) = 10 and so |E(G)| = 10. Hence G contains
at least one vertex of degree 2. By Lemmas 1, 2, it is sufficient to consider two
cases.

If G contains exactly one vertex of degree 2, then it is easy to see that G is
isomorphic either to the graph in Figure 3.8(a) or to the graph in Figure 3.8(b).
Only the first of them is pancyclic.

If G contains exactly two vertices of degree 2 and their distance is 2, then it
is easy to check that G is isomorphic either to the graph in Figure 3.9(a) or to
the graph in Figure 3.9(b). Both are pancyclic.
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Figure 3.8. Figure 3.9.

We get F h(7) = 4 and F p(7) = 3.

(ii) (n = 8) We have fh(8) = 12 and so |E(G)| = 12. According to Lemmas
1, 2, it is sufficient to consider three cases.

If G contains exactly one vertex of degree 2, then it is easy to verify that we
get two graphs depicted in Figure 3.10(a), (b). These graphs are pancyclic, but
they are isomorphic.

If G contains exactly two vertices of degree 2 and their distance is 2 then, ob-
viously, the graph in Figure 3.11 is a subgraph of G with degG(v1) = degG(v3) = 2
(see the proof of Lemma 2(ii)). Now it is easy to check that G is isomorphic to
one of the graphs in Figure 3.12. They all are pancyclic.

Figure 3.10. Figure 3.11.

Figure 3.12.
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Finally it remains to consider the case when δ(G) > 2. Since |E(G)| = 12,
the degree of every vertex of G is 3. We distinguish two subcases according to
whether G contains a cycle C3 or not.

First suppose that G contains C3. The graph in Figure 3.13(a) is forbidden
for G because otherwise it would be eG(x) > 2. Using this, one can see that
the graph in Figure 3.13(b) is forced for G. Since eG(xi) = 2 for i ∈ {1, 2, 3},
G contains all edges ziyj , i ∈ {1, 2}, j ∈ {1, 2, 3}. Hence G is isomorphic to the
graph in Figure 3.14. This graph is pancyclic.

Figure 3.13. Figure 3.14.

Now suppose that G does not contain C3. Then K2,3 is a forbidden subgraph
for G. Since K1,3 is a subgraph of G and |V (G)| < 10, C4 is forced for G.
Therefore, the graph in Figure 3.15 is also forced for G. Since dG(y1, x3) ≤ 2, we
have y1y3 ∈ E(G). Analogously, y2y4 ∈ E(G). We get that G is isomorphic to
the graph in Figure 3.16 and this graph is not pancyclic.

Figure 3.15. Figure 3.16.

We have thus proved that F h(8) = 6 and F p(8) = 5.

(ii) (n = 9) We have |E(G)| = 14. Similarly as for n = 8, there are three
cases to consider.

If G contains exactly one vertex of degree 2, call it v1, let v1v2 · · · v9v1 be
a Hamiltonian cycle in G. By the proof of Lemma 2(i), G contains the edge
v3v8. Without loss of generality we may assume that degG(v9) ≤ degG(v2) and
then degG(v9) ∈ {3, 4}. We show that the assumption degG(v9) = 4 leads to a
contradiction. In fact, since dG(v4, v7) ≤ 2, either v4v9, v9v7 ∈ E(G) (and then
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v2v5, v2v6 ∈ E(G)) or v4v2, v2v7 ∈ E(G) (and then v9v5, v9v6 ∈ E(G)). In the
former case dG(v5, v8) > 2 and in the latter case dG(v3, v6) > 2, a contradiction.
Thus we have proved that necessarily degG(v9) = 3. Then, since dG(v9, vi) ≤ 2
for i ∈ {4, 5, 6}, we get that v9v5 ∈ E(G). Obviously, G is isomorphic to the
graph in Figure 3.17(a) and this graph is pancyclic.

Figure 3.17.

If G contains exactly two vertices of degree 2 and their distance is 2, let
v1v2 · · · v9v1 be a Hamiltonian cycle of G with degG(v1) = degG(v3) = 2. By the
proof of Lemma 2(ii), G contains the edges v2v6, v2v7 and v4v9. Since |E(G)| =
14, G has to contain the edges v5v9 (dG(v5, v1) = dG(v5, v8) = 2) and v8v4
(dG(v8, v3) = dG(v8, v5) = 2). We get the pancyclic graph in Figure 3.17(b).

It remains to consider the case when δ(G) > 2. Clearly, the degree of one
vertex of G is 4 and the degrees of all other vertices are 3. We distinguish two
subcases.

If G contains C3 then the graphs in Figure 3.18 are forbidden for G, otherwise
it would be eG(x) > 2. Hence, the degree of one vertex of C3 is 4. Therefore, since
eG(w1) = 2, the graph in Figure 3.19(a) is a subgraph of G. Since eG(w2) = 2, we
get yy1, yy2 ∈ E(G). Now it is easy to check that G is isomorphic to the graph
in Figure 3.17(c). This graph is pancyclic.

Now suppose G does not contain C3. The graph in Figure 3.2 is obviously a
subgraph of G. Hence, since eG(u) = 2, G contains the graph in Figure 3.19(b).
As eG(y) = 2 and G does not contain C3, we get yy1, yy2 ∈ E(G). Now it is easy
to verify that G is isomorphic to the graph in Figure 3.20. This graph is not
pancyclic.

We have finished the proof that F h(9) = 4 and F p(9) = 3.

(iii) (n = 10) We have fh(10) = 16 and so |E(G)| = 16. According to
Lemmas 1, 2, we get that δ(G) > 2. Clearly, G contains at least eight vertices
of degree 3. It is easy to see that the graph in Figure 3.2 is forced for G. Then,
since eG(u) = 2, also the graph in Figure 3.21 is forced for G. The graph in
Figure 3.22(a) is forbidden for G, otherwise eG(x) > 2. It follows that G does
not contain a vertex of degree 5. We conclude that G contains eight vertices of
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Figure 3.18. Figure 3.19.

Figure 3.20.

degree 3 and two vertices of degree 4. Since the graph in Figure 3.21 is forced
for G and the graphs in Figure 3.22(a), (b) are forbidden for G, G contains C3

(it is interesting to notice that the graph in Figure 3.22(c) contains the graphs
in Figures 3.21, 3.22(b) and it contains neither the graph in Figure 3.22(a) nor
C3). The graphs in Figure 3.23(a), (b) are forbidden for G, otherwise eG(x) > 2.
Hence, the graph in Figure 3.23(c) is also forbidden for G. According to the above
considerations, the cycle C3 contains two vertices of degree 4. It follows, since
eG(w) = 2, that the graph in Figure 3.24 is forced for G. Taking into account
that the graphs in Figures 3.22(a), 3.23(c) are forbidden for G, we get that G
is isomorphic to the graph in Figure 3.25(a) which in turn is isomorphic to the
graph in Figure 3.25(b). It is easy to check that G is pancyclic.

The proof that F h(10) = F p(10) = 1 is finished.

(iv) (n = 11) By Theorem 3, fh(11) = 18 and by Lemmas 1, 2, we have
δ(G) > 2. Let G be an Sh-graph of order 11 and size 18. If G contains at
least nine vertices of degree 3, then it is easy to see that at least one of them is
adjacent only to vertices of degree 3 (note that d(G) = 2). Thus G contains the
graph in Figure 3.2. Since the graph in Figure 3.2 is forbidden for G, we have a
contradiction. Hence G contains eight vertices of degree 3 and three vertices of
degree 4 (2|E(G)| = 36 = 8 · 3 + 3 · 4). Since G contains exactly three vertices of
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Figure 3.21. Figure 3.22.

Figure 3.23. Figure 3.24.

Figure 3.25.

degree 4, it is easy to verify that the graph in Figure 3.26(a) is forbidden for G
(eG(x) > 2 or eG(x

′) > 2). Obviously, the graph in Figure 3.26(b) is forbidden
for G.

Now we show that the graph in Figure 3.26(c) is forbidden for G, too. If G
contains this graph, then G would contain the graph in Figure 3.26(d) (eG(u) = 2
and the graph in Figure 3.26(a) is forbidden for G). If G contains the graph in
Figure 3.26(d), then G would contain the graph in Figure 3.26(e) (eG(u) = 2
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Figure 3.26.

Figure 3.27.

and the graph in Figure 3.2 is forbidden for G). If G contains the graph in
Figure 3.26(e), we have eG(v) > 2 (since the graph in Figure 3.26(b) is forbidden
for G), a contradiction.

If every vertex of degree 3 in G is adjacent to exactly one vertex of degree 4,
G would contain the graph in Figure 3.27(a). Since the graphs in Figure 3.26(b),
a) are forbidden for G, we get a contradiction.

According to the above considerations, the graph in Figure 3.27(b) is forced
for G. Moreover, the graph in Figure 3.27(c) is forced for G, too. In fact, if
G does not contain the graph in Figure 3.27(c), G would contain the graph in
Figure 3.27(d). This is impossible, since the graphs in Figure 3.26(b), (a) are
forbidden for G. Obviously, G− w is a self-centered graph with radius r = 2, so
it is isomorphic to the Petersen graph (see proof (ii) of Theorem 3). Hence, G is
isomorphic to the graph in Figure 3.28 and this graph is not pancyclic.

Figure 3.28.
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We have finished the proof that F h(11) = 1.

According to the Figure 3.29 we have F p(11) ≥ 8.

Figure 3.29.

(v) According to the Figure 3.30 we have F h(12) ≥ 2 and F p(12) ≥ 1.

Figure 3.30.

4. Estimates for fh and fp. Sizes of Sh and Sp-Graphs

In this section we find the maximum size of Sh-graphs and Sp-graphs of order
n. For the minimum size of such graphs we find an upper bound. We conjecture
that this upper bound is in fact the exact value of fh(n) and fp(n) for almost all
values of n.

Theorem 6. For n ≥ 6 we have

fh(n) ≤ fp(n) ≤

⌈

7n

3

⌉

− 6.
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Proof. It is obvious that fh(n) ≤ fp(n). To prove the other inequality, consider
a graph G such that V (G) = {v1, v2, . . . , vn}, v1v2 · · · vnv1 is a Hamiltonian cycle
of G and, except for the n edges from this cycle, G contains the following ones
(the cases n = 12 and n = 14 can be seen in Figure 4.1):

• the edge v1v3 and all edges v1vi with 5 ≤ i ≤ n− 1,

• the edge v4vn if 3 ∤ n,

• the edges v4v3i+5 with 1 ≤ i ≤
⌊

n−6

3

⌋

, if n ≥ 9.

Since clearly no edge of G is listed twice here, we can easily count them. In
fact, if 3|n, then we obtain

|E(G)| = n+ 1 + (n− 5) +

⌊

n− 6

3

⌋

=
7n

3
− 6 =

⌈

7n

3

⌉

− 6,

and if 3 ∤ n, then again

|E(G)| = n+1+(n− 5)+1+

⌊

n− 6

3

⌋

= 2n− 5+
⌊n

3

⌋

=

⌊

7n

3

⌋

− 5 =

⌈

7n

3

⌉

− 6.

Figure 4.1.

Since G is obviously an Sp-graph, the proof is finished.

Remark 7. Comparing the exact values of fh(n) and fp(n) for small n from
Theorem 3 or Table 1, with the upper bound from the previous theorem, we get

fh(6) = fp(6) =

⌈

7 · 6

3

⌉

− 6,

fh(n) = fp(n) <

⌈

7n

3

⌉

− 6 for n ∈ {7, 8, 9, 10, 12},

fh(11) = 18 < fp(11) = 19 <

⌈

7 · 11

3

⌉

− 6.
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Theorem 8. (a) Let n ≥ 4. Then there exists an Sh-graph of order n and size

m if and only if

fh(n) ≤ m ≤

⌊

n2 − 2n

2

⌋

.

(b) Let n ≥ 5. Then there exists an Sp-graph of order n and size m if and only if

fp(n) ≤ m ≤

⌊

n2 − 2n

2

⌋

.

Proof. The assertions are obvious for n ∈ {4, 5}. Assume that n ≥ 6. Let G∗

be the graph described in the proof of Theorem 6. Recall that G∗ is an Sp-graph
with n vertices and

⌈

7n
3

⌉

− 6 edges. Clearly, by adding any new edges to G∗ such
that the degree of each vertex of G∗ is at most n− 2, we again get an Sp-graph.

First we are going to construct an Sp-graph of order n and size m with
⌈

7n
3

⌉

−6 ≤ m ≤
⌊

n2
−2n
2

⌋

. Let us start with G∗ and denote by G∗ the complement

of G∗. It is easy to see that if n is even, then there exists a perfect matching
E′ in G∗ (see dashed edges in Figure 4.2(a) added to the graph G∗ of order
14; obviously, the edge v1v4 must be in E′), and if n is odd, then there exists
a perfect matching E′′ in the graph G∗ − {v2, v3, vk} with k =

⌈

n
2

⌉

+ 2. Let
E′ = E′′ ∪{v2vk, v3vk} (see dashed edges in Figure 4.2(b) added to the graph G∗

of order 13). Now let us consider a graph G such that

V (G) = V (G∗), E(G∗) j E(G), |E(G)| = m, E(G) ∩ E′ = ∅ .

Figure 4.2.

Then G is an Sp-graph (hence also an Sh-graph) of order n and size m and

|E(G∗)| =

⌈

7n

3

⌉

− 6 ≤ m ≤

(

n

2

)

−
⌈n

2

⌉

=

⌊

n2 − 2n

2

⌋

.
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Clearly, this upper bound for m is tight. Evidently, if G has more than
⌊

n2
−2n
2

⌋

edges, then r(G) = 1.

Further, for Sh-graphs (respectively, Sp-graphs) it is sufficient to consider the
case fh(n) ≤

⌈

7n
3

⌉

− 7 (respectively, fp(n) ≤
⌈

7n
3

⌉

− 7). According to Theorem 3
we assume n ≥ 10.

We are going to construct an Sh-graph G of order n and size m with fh(n) ≤
m ≤

⌈

7n
3

⌉

− 7. By definition, there exists an Sh-graph H∗ of order n and size
fh(n). H∗ has at most two vertices of degree 2 (see Lemma 1). Hence |E(H∗)| ≥
n +

⌈

n−2

2

⌉

. Let u and v be vertices of the minimum and maximum degrees
in H∗, respectively. Obviously, degG(u) ≤ 4, since otherwise we would obtain
5n ≤ 2

(⌈

7n
3

⌉

− 8
)

, a contradiction. The vertex v is the only possible vertex of
degree n − 2 in H∗, otherwise we would obtain |E(H∗)| ≥ n + (n − 4) + (n −
5) = 3n − 9, a contradiction. Hence, every vertex in H∗ different from v has
degree at most n − 3. Adding to H∗ at most n − 6 new edges incident with
the vertex u (and different from uv), we obviously obtain an Sh-graph. Since
n+

⌈

n−2

2

⌉

+ n− 6 >
⌈

7n
3

⌉

− 7 for n ≥ 10, there exists an Sh-graph with m edges
for each m with fh(n) ≤ m ≤

⌈

7n
3

⌉

− 7. The proof for Sh-graphs is finished.

For every m, fp(n) ≤ m ≤
⌈

7n
3

⌉

− 7, an Sp-graph with n vertices and m
edges can be obtained in an analogous way. It is sufficient to assume that H∗ is
an Sp-graph of order n and size fp(n).

Remark 9. The upper bound for the size of a self-centered graph of order n with
radius r = 2 is found in [2] (see [3, 4], too). According to Theorem 8, this upper

bound n2
−3n+4

2
is incorrect. Obviously, for n > 5 we have n2

−3n+4

2
<

⌊

n2
−2n
2

⌋

.

The correct upper bound for self-centered graphs with radius r = 2 is
⌊

n2
−2n
2

⌋

.

Clearly, if a graph G of order n has more than
(

n
2

)

−
⌈

n
2

⌉

=
⌊

n2
−2n
2

⌋

edges, then

r(G) = 1.

5. Open Problems

We state several open problems and one conjecture.

By Theorem 3, fh(11) = 18 and fp(11) = 19, and by Theorem 5, F h(11) = 1,
F p(11) ≥ 8.

Problem 10. Find the value F p(11).

By Theorem 3, fh(12) = fp(12) = 21, and by Theorem 5, F h(12) ≥ 2.

Problem 11. Find the values F h(12) and F p(12).
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By Theorem 3, fh(n) = fp(n) for n ∈ {6, 7, 8, 9, 10, 12}, and fp(n) = fh(n) + 1
for n ∈ {5, 11}.

Problem 12. Does there exist n such that fp(n)− fh(n) > 1?

By Theorem 3, we have

fp(n) =
⌈

7n
3

⌉

− 6 for n ∈ {5, 6},

fp(n) =
(⌈

7n
3

⌉

− 6
)

− 1 for n ∈ {7, 8, 9, 11, 12},

fp(n) =
(⌈

7n
3

⌉

− 6
)

− 2 for n = 10.

Problem 13. Is the inequality (⌈(7n)/3⌉ − 6)−fp(n) ≥ 2 true for some n 6= 10?

By Theorem 3, fh(n) 6= fp(n) for n ∈ {5, 11}, and by Theorem 5, F h(n) 6= F p(n)
for n ∈ {7, 8, 9, 11, 12}. We conjecture that such cases are exceptional.

Conjecture 14. If n ≥ 30, then fh(n) = fp(n) = ⌈(7n)/3⌉ − 6 and F h(n) =
F p(n).
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