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Abstract

Let P be an arbitrary class of graphs that is closed under taking induced
subgraphs and let C(P) be the family of forbidden subgraphs for P. We
investigate the class P(k) consisting of all the graphsG for which the removal
of no more than k vertices results in graphs that belong to P. This approach
provides an analogy to apex graphs and apex-outerplanar graphs studied
previously. We give a sharp upper bound on the number of vertices of graphs
in C(P(1)) and we give a construction of graphs in C(P(k)) of relatively
large order for k ≥ 2. This construction implies a lower bound on the
maximum order of graphs in C(P(k)). Especially, we investigate C(Wr(1)),
where Wr denotes the class of Pr-free graphs. We determine some forbidden
subgraphs for the class Wr(1) with the minimum and maximum number
of vertices. Moreover, we give sufficient conditions for graphs belonging to
C(P(k)), where P is an additive class, and a characterisation of all forests in
C(P(k)). Particularly we deal with C(P(1)), where P is a class closed under
substitution and obtain a characterisation of all graphs in the corresponding
C(P(1)). In order to obtain desired results we exploit some hypergraph tools
and this technique gives a new result in the hypergraph theory.
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1. Introduction

We only consider finite and simple graphs and follow [1] for graph-theoretical
terminology and notation not defined here. A graph G is an apex graph if it
contains a vertex w such that G − w is planar. Although apex graphs seem to
be close to planar graphs, some of their properties are far from corresponding
properties of planar graphs (for example, see [18]).

A result of Robertson and Seymour (see [19]) says that every proper minor-
closed class of graphs P can be characterized by a finite family of forbidden

minors (minor-minimal graphs not in P). Evidently, the class of apex graphs
is minor-closed but the long-standing problem of finding the complete family of
forbidden minors for this class is still open.

However, Dziobak in [9] introduced an apex-outerplanar graph that is a con-
ceptual analogue to an apex graph. Namely, a graph G is apex-outerplanar if
there exists w ∈ V (G) such that G − w is outerplanar. Moreover, Dziobak pro-
vided the complete list of 57 forbidden minors for this class.

Another attempt to extend the concept of an apex graph is presented in [20]
where an l-apex graph is defined. A graph G is an l-apex graph if it can be made
planar by removing at most l vertices.

This paper concerns classes of graphs that generalize the aforementioned.
Formally, by a class of graphs we mean an arbitrary family of non-isomorphic
graphs. The empty class of graphs and the class of all graphs are called trivial.
A class of graphs P is induced hereditary if it is closed with respect to taking
induced subgraphs. Such a class P can be uniquely characterized by the family
of forbidden subgraphs C(P) that is defined as a set

{G : G /∈ P and H ∈ P for each proper induced subgraph H of G}.

By L≤ we denote the class of all non-trivial induced hereditary classes of graphs.
Each class P ∈ L≤ has a non-empty family of forbidden subgraphs, consisting of
graphs with at least two vertices. Moreover, C(P) contains only connected graphs
when P is additive, i.e., closed under taking the union of disjoint graphs. By La

≤

we denote the family of all non-trivial induced hereditary and additive classes of
graphs.

Let P ∈ L≤ and let k be a non-negative integer. A graph G is a P(k)-apex
graph if there is W ⊆ V (G), |W | ≤ k (W is allowed to be the empty set), such
that G−W belongs to P. We denote the set of all P(k)-apex graphs by P(k) for
short.

We can see immediately that if k is a non-negative integer and P ∈ L≤,
then P(k) ∈ L≤ too. On the other hand, the additivity of P ∈ L≤ implies the
additivity of P(k) if and only if k = 0. Indeed, P(0) = P. Moreover, if P ∈ La

≤,
then C(P) 6= ∅ and assuming that F ∈ C(P) we can easily see that the union of
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k + 1 disjoint copies of F is in C(P(k)). Thus, for k ≥ 1, it yields the existence
of at least one disconnected graph that is forbidden for P(k). Hence, for k ≥ 1,
the class P(k) is not additive.

Lewis and Yannakakis in [17] have shown that for any non-trivial induced
hereditary class P containing infinitely many graphs and for a given positive
integer k, the decision problem: ”does G belong to P(k)?” is NP-complete.

In this paper, we investigate the classes P(k), in particular we focus on
forbidden subgraphs for the classes P(k) (i.e., we study graphs in C(P(k))). Ad-
ditionally, we use hypergraphs as an effective tool in the research on P(k).

Let H be a hypergraph with vertex set V (H) and edge set E(H) and let
W ⊆ V (H). The hypergraph H[W ] induced in H by W has vertex set W and
edge set {E ∈ E(H) : E ⊆ W}. To simplify the notation we write H−W instead
of H[V (H) \W ] and, moreover, H − v instead of H − {v} when v is a vertex of
H. Analogously, we write H− E to denote the hypergraph obtained from H by
the deletion of the edge E from E(H).

By H1 ∪H2 we mean the union of disjoint hypergraphs H1 and H2, i.e., the
hypergraph with vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2). More-
over, notations 2H1, H1 ∪H1, and their generalization are used interchangeably.
The symbol H1 ≤ H2 denotes that the hypergraph H1 is isomorphic to a sub-
hypergraph of H2 induced by some of its vertex subset. Let r be a non-negative
integer. A hypergraph H is r-uniform if each edge in E(H) has exactly r vertices.
A set T ⊆ V (H) is called a transversal of the hypergraph H if T ∩E 6= ∅ for each
E ∈ E(H). By τ(H) we denote the cardinality of the minimum transversal of H,
i.e.,

τ(H) = min{|T | : T is a transversal of H}.

A hypergraph H is τ -vertex critical if for any v ∈ V (H) the inequality τ(H−v) ≤
τ(H) − 1 holds. If a τ -vertex critical hypergraph H satisfies τ(H) = l for some
positive integer l, then we call it τ -vertex l-critical.

Recall that each graph is a hypergraph, which allows us to use these notations
also for graphs. The symbols Kn, Pn, Cn are used only for graphs and denote
the complete graph, the path and the cycle with n vertices, respectively.

This paper is organized as follows. We start with τ -vertex l-critical hyper-
graphs in Section 2. We prove an upper bound on the order of a τ -vertex 2-critical
hypergraph and describe the construction of τ -vertex l-critical hypergraphs with
large number of vertices. Next, in Section 3, we prove some results on relations
between τ -vertex (k+1)-critical hypergraphs and graphs in C(P(k)) for P ∈ L≤.
In Section 4, for P ∈ La

≤ we show some sufficient conditions that have to be
satisfied by a graph to be in C(P(k)) and we characterize all forests in C(P(k)).
Section 5 deals with the class P of graphs that does not contain Pr as an induced
subgraph. We determine some forbidden subgraphs for P(1) with minimum and
maximum order in this case. In Section 6 we characterize all graphs in C(P(1)),



326 M. Borowiecki, E. Drgas-Burchardt and E. Sidorowicz

where P is a class of graphs that is induced hereditary and closed under substi-
tution (for the definition see Section 6).

2. τ -Vertex Critical Hypergraphs

A hypergraph H is τ -edge l-critical if τ(H) = l and the deletion of an edge
decreases the transversal number of the resulting hypergraph. It is clear that the
class of τ -edge l-critical hypergraphs without isolated vertices forms a subclass
of the class of τ -vertex l-critical hypergraphs. On the other hand, it is easy to
prove that the maximum order of hypergraphs in both classes is the same. In
this section we prove that an r-uniform τ -vertex 2-critical hypergraph has at most
⌊

(r+2)2

4

⌋

vertices. Our proof is different than Tuza’s proof in [21] concerning a

corresponding theorem for r-uniform τ -edge 2-critical hypergraphs.

Next, for l ≥ 3 we give the construction of an r-uniform τ -vertex l-critical
hypergraph with a large order. Gyárfás et al. [15] proved that each r-uniform τ -
vertex l-critical hypergraph has order bounded from above by

(

l+r−2
r−2

)

l+lr−1. This
bound is probably far from the exact value of the maximum number of vertices in
a hypergraph that is r-uniform τ -vertex l-critical. Our construction gives a large
lower bound on the maximum order of a hypergraph that is r-uniform τ -vertex
l-critical.

Theorem 1. Let r be an integer, r ≥ 2, and let H be a τ -vertex 2-critical
hypergraph. If for each E ∈ E(H) we have |E| ≤ r, then

|V (H)| ≤

⌊

(r + 2)2

4

⌋

.

Moreover, the bound is sharp.

Proof. Denote by H′ a hypergraph obtained from H by the optional deletion of
some edges in such a way that τ(H) = τ(H′) = 2 and τ(H′ − E′) ≤ 1 for each
edge E′ of H′. Let E ′ = E(H′) and assume E ′ = {E′

1, . . . , E
′
m}. Observe that

each vertex of H′ is contained in at least one of the edges in E(H′). Otherwise, if
there is x ∈ V (H′) such that x belongs to no edge in E(H′), then τ(H − x) = 2
giving a contradiction to the τ -vertex criticality of H.

Let a bipartite graph B be the incidence graph of the hypergraph H′. Thus
B = (V (H), E ′;E(B)), where vE′ ∈ E(B) if and only if v ∈ E′. The previous
consideration says that dB(v) ≥ 1 for all v ∈ V (H) and dB(E

′
i) ≤ r for all

i ∈ {1, . . . ,m}. The last condition implies |E(B)| ≤ mr.

Claim 2. For every E′
i there is a vertex, say vi ∈ V (H) ⊆ V (B), such that

vi /∈ E′
i but vi ∈ E′

j ∈ E ′ for all j 6= i.
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Proof. Delete a vertex E′
i from the graph B. The graph B −E′

i is an incidence
graph of the hypergraph H′ −E′

i, so τ(H′ −E′
i) = 1, i.e., there is a vertex, say x,

which is adjacent in B to every E′
j , j 6= i. Obviously the vertex x is not adjacent

to E′
i, otherwise in the hypergraph H′ there would be a 1-element transversal

{x}, which is impossible. Thus x can play the role of vi from the statement.

By Claim 2, in the graph B there is a set of m vertices {v1, . . . , vm} with
dB(vi) = m− 1, for i ∈ {1, . . . ,m}. Since dB(v) ≥ 1 for each v ∈ V (H) we have
m(m−1)+(n−m) ≤ |E(B)| ≤ mr, where n = |V (H)|. It leads to the inequality

n ≤ −m2 + (r + 2)m. Thus for fixed r, the maximum n is
⌊

(r+2)2

4

⌋

and it is

achieved at m =
⌊

r
2

⌋

+ 1 or at m =
⌈

r
2

⌉

+ 1.

Finally, we prove that the bound is sharp. All the previous arguments imply
that the structure of the τ -vertex 2-critical hypergraph with maximum number
of vertices must be defined in the following way. For m =

⌊

r
2

⌋

+ 1 or
⌈

r
2

⌉

+ 1
let U = {1, . . . ,m} and let Ai = {ai1, . . . , a

i
r+1−m} with i ∈ U . The r-uniform

hypergraph H such that V (H) = U ∪
⋃m

i=1Ai and E(H) = {E1, . . . , Em} where
Ei = (U \ {i}) ∪ Ai for i ∈ {1, . . . ,m}, confirms the sharpness of the inequality
given in the assertion.

The construction from the proof of Theorem 1 can be generalized in an easy
way resulting in the following r-uniform τ -vertex l-critical hypergraph with a
large number of vertices.

Construction 1. Let k, r, x be integers, k ≥ 1, r ≥ 3 and r ≥ x ≥ 1 and let
U = {1, . . . , k, k+1, . . . , k+ x}. Next let m =

(

k+x
x

)

and let {U1, . . . , Um} be the
family of all x-element subsets of U . Additionally, let Ai = {ai1, . . . , a

i
r−x} with

i ∈ {1, . . . ,m} be m pairwise disjoint sets each of which is also disjoint with U .

We define an r-uniform hypergraph H∗ = H∗(k, r, x) in the following way:

E(H∗) = {E1, . . . , Em}, where Ei = Ui ∪Ai, i ∈ {1, . . . ,m};

V (H∗) =
⋃m

i=1Ei = U ∪A, where A =
⋃m

i=1Ai.

Theorem 3. If k, r, x are integers such that k ≥ 1, r ≥ 3 and r ≥ x ≥ 1, then
H∗(k, r, x) is τ -vertex (k + 1)-critical.

Proof. Let H∗(k, r, x) = H∗. We use the notations connected with H∗ given
in Construction 1. Observe that an arbitrary (k + 1)-element subset of U is a
transversal of H∗. Thus τ(H∗) ≤ k + 1. Suppose, for a contradiction, that T
is a transversal of H∗ and |T | ≤ k. If T ⊆ U , then U \ T contains at least one
x-element subset Ui and consequently Ei is an edge of H∗ − T . Hence T is not
a transversal of H∗, a contradiction. Thus T \ U = S 6= ∅. Denote t = |T ∩ U |
and s = |S|. There are at least

(

k+x−t
x

)

edges of H∗ each of which has nonempty



328 M. Borowiecki, E. Drgas-Burchardt and E. Sidorowicz

intersection with S. It follows
(

k+x−t
x

)

≤ s. Recall that s + t ≤ k. It means
(

k+x−t
x

)

≤ k − t, which is impossible for any x satisfying r ≥ x ≥ 1.
To observe the τ -vertex criticality of H∗ it is enough to show that for each

v ∈ V (H∗) the condition τ(H∗ − v) ≤ k holds. If v ∈ U , then the removal of
any k vertices of U , all different from v, results in a hypergraph without edges.
If v ∈ Ai for some i ∈ {1, . . . ,m}, then the k-element transversal U \ Ui realizes
the inequality τ(H∗ − v) ≤ k.

In the next lemma we find the maximum order of H∗(k, r, x). This result
gives a lover bound on the maximum number of vertices in an r-uniform τ -vertex
(k + 1)-critical hypergraph.

Given k, r we introduce n(x) =
(

k+x
x

)

(r− x) + k + x =
(

k+x
k

)

(r− x) + k + x.

Lemma 4. If k, r are integers such that k ≥ 1, r ≥ 3, then

max
1≤x≤r

|V (H∗(k, r, x))| = max
1≤x≤r

n(x) = n

(⌈

k(r − 1)

k + 1

⌉)

.

Proof. By Construction 1 we have max1≤x≤r |V (H∗(k, r, x))| = max1≤x≤r n(x).

Consider the difference function D(x) = n(x)− n(x+ 1) = −1 +
(

k+x
k

)

[(r − x)−
k+x+1
x+1 ((r−x)− 1)] = −1+

(

k+x
k

) (r−x)(−k)+k+x+1
x+1 = −1+ (k+x)!

k!(x+1)! [(x+1)(k+1)−

kr] = −1 + 1
x+1

∏k
i=1(1 +

x
i
)[(x+ 1)(k + 1)− kr].

Since x, k and r are positive integers, D(x) ≥ 0 if and only if (x+1)(k+1)−
kr ≥ 1 and therefore the maximum n(x) is reached at the smallest x such that

D(x) ≥ 0, i.e., at x =
⌈

k(r−1)
k+1

⌉

.

3. Graph Approach

In this section we formulate some results on relations between τ -vertex (k + 1)-
critical hypergraphs and forbidden subgraphs for P(k). They are preceded by
the helpful lemmas.

Lemma 5. Let k be a non-negative integer and P ∈ L≤. If F ∈ C(P(k)), then
F ∈ P(k + 1) \ P(k).

Proof. By the definition of C(P(k)) it follows that F /∈ P(k). Moreover, for
an arbitrary v ∈ V (F ) we have F − v ∈ P(k). It means that there exists a set
W , contained in V (F − v), such that |W | ≤ k and (F − v) − W ∈ P. Because
|W ∪ {v}| ≤ k + 1 it leads to F ∈ P(k + 1).

Let P ∈ L≤ and G be a graph. By HP(G) we denote a hypergraph whose
vertex set is V (G) and whose edge set is {W ⊆ V (G) : G[W ] ∈ C(P)}. Note the
following facts.
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Remark 1. Let k be a non-negative integer, P ∈ L≤ and G be a graph.

(i) G ∈ P(k) if and only if τ(HP(G)) ≤ k.

(ii) G ∈ P(k + 1) \ P(k) if and only if τ(HP(G)) = k + 1.

Lemma 6. Let k be a non-negative integer and P ∈ L≤. A graph G is a forbidden

subgraph for P(k) if and only if HP(G) is τ -vertex (k + 1)-critical.

Proof. Suppose that G ∈ C(P(k)). By Lemma 5 and Remark 1, τ(HP(G)) =
k + 1. Moreover, for each v ∈ V (G) we have G − v ∈ P(k), which again by
Remark 1 implies τ(HP(G−v)) ≤ k. Since HP(G−v) = HP(G)−v we conclude
that HP(G) is τ -vertex (k + 1)-critical.

Now assume that HP(G) is τ -vertex (k + 1)-critical. Remark 1 and the
equality HP(G − v) = HP(G) − v yield G ∈ P(k + 1) \ P(k) and G − v ∈ P(k)
for each v ∈ V (G). Hence G ∈ C(P(k)).

Lemma 6 and Theorem 3 make it easy to formulate one more observation.

Corollary 1. Let k, r, x be integers such that k ≥ 1, r ≥ 3, r ≥ x ≥ 1 and let

P ∈ L≤. If G is a graph such that HP(G) is isomorphic to H∗(k, r, x) defined in

Construction 1, then G is a forbidden subgraph for P(k).

A graph G is a host-graph of a hypergraph H if V (G) = V (H) and for each
edge e of G there is an edge E of H satisfying e ⊆ E. For an arbitrary family F of
graphs, a graph G is an F-host-graph of a hypergraph H when it is a host-graph
of H such that G[E] ∈ F for each edge E of H.

H {K3}-host-graph of H

Figure 1. The example of a host-graph of a hypergraph.

Observe that for a given family of graphs F and a hypergraph H an F-host-
graph of a hypergraph H does not necessarily exist. However, we can easily find
a family F and a hypergraph H having an F-host-graph. As an example, for a
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fixed positive integer r, take F = {Kr} and any r-uniform hypergraph H (see
Figure 1).

Furthermore, if G is a C(P)-host-graph of a hypergraph H then HP(G) is not
necessarily isomorphic to H (see Figure 1 again). We use C(P)-host-graphs to
describe forbidden subgraphs for P(k) with large number of vertices. In Section
2, we have constructed the family of hypergraphs H∗(k, r, x) that are r-uniform
τ -vertex (k+1)-critical and have large number of vertices. So, a C(P)-host-graph
of a hypergraph H∗(k, r, x) could be potentially a forbidden subgraph for P(k).
First we give some examples of families F of graphs for which an F-host-graph
of H∗ from Construction 1 exists.

Let G be a graph. The symbols ω(G) and α(G) denote the order of the
maximum clique and the cardinality of the maximum independent set of G, re-
spectively.

Lemma 7. Let F be a family of graphs. Next let k, r, x be integers, k ≥ 1, r ≥ 3,
r > x ≥ 1 and H∗ = H∗(k, r, x) be a hypergraph from Construction 1.

(i) If there is F ∈ F such that |V (F )| = r and ω(F ) ≥ x, then there exists an

F-host-graph of the hypergraph H∗.

(ii) If there is F ∈ F such that |V (F )| = r and α(F ) ≥ x, then there exists an

F-host-graph of the hypergraph H∗.

(iii) If there is F ∈ F such that |V (F )| = r and moreover r ≥ x+ k, then there

exists an F-host-graph of the hypergraph H∗.

Proof. Using the notations from Construction 1 we show how to obtain an F-
host-graph G of the hypergraph H∗. First we prove statements (i) and (ii). In
the hypergraph H∗ we add all the edges between vertices in U to obtain Kx+k

for (i) and we leave U independent for (ii). Then we choose F ∈ F such that
|V (F )| = r and ω(F ) ≥ x (for (i)) or α(F ) ≥ x (for (ii)). Now in each set Ai

from Construction 1 we enter a part of F such that each Ei induces F in G.
Observe that the assumption ω(F ) ≥ x or α(F ) ≥ x guarantees that all steps of
this procedure can be done. To construct an F-host-graph G for (iii) we choose
an arbitrary vertex subset W of F of the cardinality k+x. Such a subset always
exists since r ≥ k+ x. Next, we join some of the vertices in U by edges in such a
way that the resulting graph is isomorphic to F [W ]. Then, similarly to above, in
each set Ai from Construction 1 we enter a part of the graph F such that each
Ei induces F in the graph G.

Consider P ∈ L≤ and a hypergraph H∗ = H∗(k, r, x). As we mentioned
before if G is a C(P)-host-graph of a hypergraph H, then HP(G) may be non-
isomorphic to H. Hence we do not know whether a C(P)-host-graph of H∗ is a
forbidden subgraph for P(k) or not. In the next theorem, we solve this problem
positively for some cases, regardless of whether the hypergraphs HP(G) and H∗

are isomorphic.
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A set S is a vertex-cut-set in a connected graph G if G− S has at least two
connected components. For a positive integer x, a connected graph G is x-vertex
connected if it does not contain any vertex-cut-set of the cardinality less than x.
As usual, for a given graph G and v ∈ V (G), we denote by NG(v) the set of
neighbours of v in G.

Theorem 8. Let k, r, x be integers, k ≥ 1, r ≥ 3, r > x ≥ 1, and let H∗ =
H∗(k, r, x) be the hypergraph from Construction 1. If P ∈ L≤ is a class of graphs

such that C(P) consists only of x-vertex connected graphs of order at least r, then
each C(P)-host-graph of the hypergraph H∗ is a forbidden subgraph for P(k).

Proof. In the proof we refer to the notations from Construction 1. Let G be an
arbitrary C(P)-host-graph of the hypergraph H∗. Applying Lemma 6, the aim is
to show that HP(G) is τ -vertex (k + 1)-critical.

First we prove that any (k + 1)-element subset W of U is a transversal of
HP(G), i.e., for any (k + 1)-element subset W of U , the graph G −W does not
contain any induced subgraph F satisfying F ∈ C(P). Suppose that this is not
the case and let F be a subgraph of G − W such that F ∈ C(P). Denote by
U ′
1, . . . , U

′
m the subsets of V (G−W ) that correspond to U1, . . . , Um in G. Thus,

|U ′
i | ≤ x − 1 for each i ∈ {1, . . . ,m}. Furthermore, since r > x, it follows that

V (F ) is not contained in U −W and consequently F must contain at least one
vertex of some Ai with i ∈ {1, . . . ,m}. Because of the symmetry, we may assume
that A′ = A1 ∩ V (F ) 6= ∅. Since |A′ ∪ U ′

1| < r, there is a vertex of F that
does not belong to A′ ∪ U ′

1. Hence, we can divide vertices of F into three parts
V1 = V (F ) ∩ A′, V2 = V (F ) ∩ U ′

1 and V3 = V (F ) \ (V1 ∪ V2). By our earlier
observation V3 6= ∅. Since NG(A1) ⊆ U1, it follows that NF (V1) ⊆ V2. Thus,
V2 is a vertex-cut-set of F . Furthermore, |V2| ≤ |U ′

1| ≤ x − 1, which contradicts
that F is x-vertex connected and proves τ(HP(G)) ≤ k + 1. Recall that, by the
construction of G, each edge of H∗ is an edge of HP(G). It means, by Theorem
3, that τ(HP(G)) ≥ k + 1 and consequently τ(HP(G)) = k + 1.

Now, we prove the τ -vertex criticality of HP(G). By Remark 1 and the fact
that HP(G− v) = HP(G)− v, we have to argue that for any i ∈ {1, . . . ,m} and
for any v ∈ Ai we obtain G− v ∈ P(k). Let W ′ = U −Ui. Observe that |W ′| = k
and Uj ∩W ′ 6= ∅ for j 6= i. We show that (G− v)−W ′ ∈ P or equivalently that
(G−v)−W ′ does not contain an induced subgraph isomorphic to any F ∈ C(P).
Let U ′′

1 , . . . , U
′′
m be subsets of V (G − W ′) that correspond to U1, . . . , Um in G.

Thus, |U ′′
j | ≤ x− 1 for each j 6= i and |U ′′

i | = x. Suppose that there is F ∈ C(P)
such that F ≤ (G− v)−W ′. It is clear that there is j 6= i such that F contains
at least one vertex of Aj . Therefore, similarly as above, we can divide V (F ) into
three parts V1 = V (F ) ∩ Aj , V2 = V (F ) ∩ U ′

j and V3 = V (F ) \ (V1 ∪ V2) with
V3 6= ∅. Since NF (V1) ⊆ V2, the set V2 is a vertex cut-set of F , contrary to the
x-vertex connectivity of F .
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Theorem 8 gives us a very fruitful tool to construct forbidden subgraphs for
P(k).

Corollary 2. Let k, x be positive integers and let P ∈ L≤ be a class of graphs

such that each graph in C(P) is x-vertex connected of order at least r. If r is the

order of some F ∈ C(P) and r ≥ 3, and r ≥ k + x, then there exists G that is a

forbidden subgraph for P(k) and |V (G)| = k + x+
(

k+x
x

)

(r − x).

Theorem 9. Let P ∈ L≤. If r = max{|F | : F ∈ C(P)} and G ∈ C(P(1)), then

|V (G)| ≤
⌊

(r+2)2

4

⌋

. Moreover, this bound is achieved for infinitely many classes

P ∈ L≤.

Proof. By Lemma 6 and Theorem 1 we only need to show the last sentence of
the statement. However, if we put k = 1 and x =

⌈

r−1
2

⌉

in Corollary 2, then for

r ≥ 3 we obtain a forbidden subgraph for P(k) with
⌊

(r+2)2

4

⌋

vertices and hence

the theorem follows.

The next remark is an immediate consequence of Theorem 9 and the fact
that (P(k))(1) = P(k + 1).

Remark 2. Let k be a non-negative integer and P ∈ L≤. If C(P) is finite, then
the family C(P(k)) is also finite.

4. The Structure of Forbidden Subgraphs

At the beginning of this section we describe connected forbidden subgraphs for
P(k) in terms of connected forbidden subgraphs for P(l), where l < k. To do it
we use the following hypergraph tool.

Remark 3. If H1 ∪H2 is the union of disjoint hypergraphs H1 and H2, then

τ(H1 ∪H2) = τ(H1) + τ(H2).

Note that the definition of the τ -vertex criticality of a hypergraph and Re-
mark 3 imply the following observation.

Remark 4. Let s be an integer, s ≥ 2. The union H1 ∪ · · · ∪ Hs of disjoint
hypergraphs H1, . . . ,Hs is τ -vertex critical if and only if for each i ∈ {1, . . . , s}
the hypergraph Hi is τ -vertex critical.

The next result is the consequence of Remark 4.
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Theorem 10. Let k, s be integers, k ≥ 0, s ≥ 1 and P ∈ La
≤. The union

F1 ∪ · · · ∪ Fs of disjoint connected graphs F1, . . . , Fs is a forbidden subgraph for

P(k) if and only if there exist non-negative integers k1, . . . , ks such that
∑s

i=1 ki =
k+1−s and for each i ∈ {1, . . . , s} the graph Fi is a forbidden subgraph for P(ki).

Proof. From Lemma 6 we have F1∪· · ·∪Fs ∈ C(P(k)) if and only if HP(F1∪· · ·∪
Fs) is τ -vertex (k+1)-critical. Since HP(F1 ∪ · · · ∪Fs) = HP(F1)∪ · · · ∪HP(Fs)
and because of Remarks 3, 4 we know that it is equivalent to the conditions
τ(HP(F1)) + · · · + τ(HP(Fs)) = k + 1 and for each i ∈ {1, . . . , s} the hyper-
graph HP(Fi) is τ -vertex critical. It means that there exist non-negative integers
k1, . . . , ks such that for each i ∈ {1, . . . , s} the hypergraph HP(Fi) is τ -vertex
(ki + 1)-critical and moreover

∑s
i=1(ki + 1) = k + 1. From Lemma 6 these con-

ditions are equivalent to the statement Fi ∈ C(P(ki)) for each i ∈ {1, . . . , s} and
∑s

i=1 ki = k + 1− s.

Corollary 3. Let k be a non-negative integer and P ∈ La
≤. If F is the union of

disjoint connected graphs F1, . . . , Fs and F ∈ C(P(k)), then s ≤ k + 1.

Corollary 4. Let k be a non-negative integer and P ∈ La
≤ and let |C(P)| = p.

The number of forbidden subgraphs for P(k) that have exactly k + 1 connected

components is equal to
(

k+p
k+1

)

.

Proof. From Theorem 10 we know that forbidden subgraphs for P(k) with ex-
actly k + 1 connected components have the form F1 ∪ · · · ∪ Fk+1, where for each
i ∈ {1, . . . , k+1} the condition Fi ∈ C(P) holds. Let C(P) = {H1, . . . , Hp}. Thus,
if mi denotes |{l : Fl = Hi}|, then we actually are interested in the number of
sequences (m1, . . . ,mp) whose elements are non-negative integers and for which
the equality m1 + · · ·+mp = k + 1 holds, which leads to the assertion.

The remaining part of this section is devoted to other constructions of for-
bidden subgraphs for P(k) in terms of forbidden subgraphs for P. In this consid-
eration the structure of HP(G) is unknown. It means that our results are based
only on the analysis of graph structures.

Construction 2. Let s be a positive integer, G1, . . . , Gs be graphs and T be a
forest with the vertex set {x1, . . . , xs}. By T (G1, . . . , Gs) we denote the family
of all graphs obtained from disjoint G1, . . . , Gs by the addition of exactly |E(T )|
new edges, such that a new edge joins an arbitrary vertex of Gi with an arbitrary
vertex of Gj when xixj is an edge of T . Next we use a symbol (G1, . . . , Gs) to
denote the family of all graphs T (G1, . . . , Gs) taken over all s-vertex forests T
and all possible orderings of their vertices.

Theorem 11. If k is a non-negative integer and P ∈ La
≤ and G1, . . . , Gk+1 ∈

C(P), then each graph G in (G1, . . . , Gk+1) is a forbidden subgraph for P(k).
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Proof. Suppose that G ∈ (G1, . . . , Gk+1). It follows that there exists a forest T
with k + 1 vertices x1, . . . , xk+1 such that G ∈ T (G1, . . . , Gk+1). Observe that
G /∈ P(k) since it contains k + 1 disjoint induced subgraphs that are forbidden
subgraphs for P.

Next, let v ∈ V (G). We show that there exist k vertices u2, . . . , uk+1 in
V (G)\{v} such that the graph resulting from G by the removal of v, u2, . . . , uk+1

is in P.
The construction of G implies the existence of the unique index i such that

v ∈ V (Gi). Let xj1 , . . . , xjk+1
be a new ordering of vertices of T such that xj1 = xi

and for l ≥ 2 each vertex xjl has at most one neighbour in {xj1 , . . . , xjl−1
}. Such

an ordering can be done by brute-force search algorithm. Suppose, without loss
of generality, that xjl = xl for each l ∈ {1, . . . , k + 1}. Consequently, Gjl = Gl

for each l ∈ {1, . . . , k + 1} and especially Gi = G1.
Now we describe how to choose vertices u2, . . . , uk+1. For each j ∈ {2, . . . , k+

1} there is at most one edge xlxj with l < j. Thus when such an edge exist we
take as uj the vertex of Gj that is the end of the unique edge joining Gj with Gl

(see the construction of G), otherwise uj is an arbitrary vertex of Gj . Observe
that G−{v, u2, . . . , uk+1} is the union of k+1 disjoint graphs G1−v and Gj−uj
for j ∈ {2, . . . , k+1}. The assertion follows by the additivity of P and properties
of all Gj .

Theorem 12. Let k be a non-negative integer and P ∈ La
≤. A forest G is a for-

bidden subgraph for P(k) if and only if G ∈ (G1, . . . , Gk+1), where G1, . . . , Gk+1

are trees that are forbidden subgraphs for P.

Proof. By Theorem 11, it is enough to prove that if G is simultaneously a forest
and a forbidden subgraph for P(k), then there are graphs G1, . . . , Gk+1 belonging
to C(P) and there exists a (k+1)-vertex forest T such that G ∈ T (G1, . . . , Gk+1).
To do it we use the induction on k.

By the additivity of P, each forest that is a forbidden subgraph for P(0) = P
is a tree. The conclusion follows from the fact that there is only one 1-vertex
forest T = K1 and each graph G can be represented as K1(G), which means as
T (G).

Assume that the implication is true for parameters less than k and k ≥ 1.
First suppose that G has at least two connected components H1, . . . , Hs. Obvi-
ously, each of them is a tree. By Theorem 10, Hi ∈ C(P(ki)), where

∑s
i=1 ki = k+

1−s. Because all ki are non-negative integers and s ≥ 2 we obtain 0 ≤ ki ≤ k−1
for each i ∈ {1, . . . , s}. By the induction hypothesis, Hi ∈ Ti

(

Gi
1, . . . , G

i
ki+1

)

,
which implies

G ∈ T
(

G1
1, . . . , G

i
k1+1, . . . , G

s
1, . . . , G

s
ks+1

)

,

where T is the union of disjoint T1, . . . , Ts and Gl
j ∈ C(P) for each l ∈ {1, . . . , s}

and j ∈ {1, . . . , kl+1}. Since each Ti has exactly ki+1 vertices, the forest T has
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∑s
i=1(ki + 1) vertices, which means T has k + 1 vertices. Thus G has a required

form.

Now suppose that G is connected, which means G is a tree.

Claim 13. There is x ∈ V (G) such that G − x has at least one connected com-

ponent in P and if H1, . . . , Hp are all connected components of G − x belonging

to P, then the graph induced in G by V (H1) ∪ · · · ∪ V (Hp) ∪ {x} is not in P.

Proof. We describe the procedure which finds the required x in a finite number
of steps.

Let v0 be an arbitrary vertex of G that is not a leaf (such a vertex always
exists because k ≥ 1, which implies |V (G)| ≥ 3). Next let G1 be an arbitrary
connected component of G − v0 such that G1 /∈ P (since G is in C(P(k)) and
k ≥ 1 such a connected component exists).

Let v1 be the unique neighbour of v0 in G1. If G1 − v1 ∈ P, then x = v1.
Otherwise, let G2 be an arbitrary connected component of G1 − v1 such that
G2 /∈ P and let v2 be the unique neighbour of v1 in G2. If G2 − v2 ∈ P, then
x = v2. Otherwise, since G is finite, we find the finite sequence of vertices
v0, . . . , vq and the sequence of graphs G = G0, G1, . . . , Gq such that Gi − vi /∈ P
for i ∈ {0, . . . , q − 1}, Gq /∈ P and Gq − vq ∈ P. Moreover for i ∈ {1, . . . , q} the
graph Gi is a connected component of Gi−1−vi−1 and vi is the unique neighbour
of vi−1 in Gi.

Observe that vq can play the role of x. Indeed, the procedure implies that the
connected components of Gq − vq are simultaneously the connected components
of G− vq.

Let x be a vertex that satisfies the assumptions of Claim 13. Recall that G
is a tree, which means that G − x is a forest. Since G is a forbidden subgraph
for P(k) we obtain G− x /∈ P(k − 1). It follows that G− x contains an induced
subgraph G′ ∈ C(P(k−1)) that is a forest. By the induction hypothesis V (G′) can
be partitioned into k sets V1, . . . , Vk such that for each i ∈ {1, . . . , k} the graph
G′

i induced by Vi in G − x is forbidden for P. Because P is additive, all of the
graphs G′

i are connected and as subgraphs of G− x they are trees. Additionally,
(V (G′

1) ∪ · · · ∪ V (G′
k) ∪ {x}) ∩ V (Hi) = ∅ for i ∈ {1, . . . , p} (keep in mind that

H1, . . . , Hp ∈ P, see Claim 13).

Recall that, by Claim 13, V (H1) ∪ · · · ∪ V (Hp) ∪ {x} contains at least one
subset that induces a graph, say G′

k+1, forbidden for P. Hence G′
1, . . . , G

′
k+1

are disjoint induced subgraphs of G, each of which is in C(P). Suppose, for a
contradiction, that there is a vertex u ∈ V (G) \

⋃k+1
i=1 V (G′

i). Since G ∈ C(P(k))
we can find at most k different vertices ofG−u such that the removal of all of them
from G−u results in a graph in P. Because G contains disjoint induced subgraphs
G′

1, . . . , G
′
k+1 that are forbidden for P, it is impossible, giving a contradiction.
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It means V (G) =
⋃k+1

i=1 V (G′
i) and, since G is a tree, there is a tree T with k + 1

vertices such that G ∈ T
(

G′
1, . . . , G

′
k+1

)

.

Below we present one more construction of graphs that are forbidden for
P(k).

Construction 3. Let G1, . . . , Gs be rooted graphs, which means that for each
i ∈ {1, . . . , s} the graph Gi has a marked vertex vi, called its root. Next let H be
a graph with V (H) = {x1, . . . , xs}. We take disjoint H,G1, . . . , Gs and identify
vertices vi with xi for all i ∈ {1, . . . , s}. By H|G1, . . . , Gs| we denote the family
of all graphs of this type taken over all possible choices of roots v1, . . . , vs. More
precisely, for each graph G in H|G1, . . . , Gs| we have V (G) =

⋃s
i=1 V (Gi) and

E(G) =
⋃s

i=1E(Gi)∪{vivj : xixj ∈ E(H)} with a choice of roots v1, . . . , vs. Now
we use a symbol |G1, . . . , Gs| to denote the union of sets H|G1, . . . , Gs| taken
over all s-vertex graphs H.

Theorem 14. If k is a non-negative integer and P ∈ La
≤ and G1, . . . , Gk+1 ∈

C(P), then each graph G in |G1, . . . , Gk+1| is a forbidden subgraph for P(k).

Proof. By the assumption G ∈ |G1, . . . , Gk+1|, we have that G ∈ H|G1, . . . ,
Gk+1| for some (k + 1)-vertex graph H. Let xi = vi be a common vertex of H
and Gi, described in Construction 3.

Because G contains disjoint induced subgraphs G1, . . . , Gk+1 it follows that
G /∈ P(k). If v ∈ V (G), then v ∈ V (Gj) for exactly one index j ∈ {1, . . . , k + 1}.
The graph obtained from G − v by the removal of the vertex set S, where S =
{xl : l 6= j}, has at least k + 1 connected components each of which is in P. The
additivity of P implies G− v ∈ P(k).

5. Pr-Free Graphs

In this section we focus our attention on the class Wr of graphs not containing Pr

as an induced subgraph. We determine the minimum and maximum number of
vertices of a graph in C(Wr(1)). First we consider C(W3(1)). Because of Theorem
9, each graph that is forbidden for W3(1) has at most six vertices. Searching all
non-isomorphic graphs of this type we can derive that C(W3(1)) has 14 elements:
C4, C5, C6, P6, 2P3, F1, . . . , F9, where the graphs Fi for i ∈ {1, . . . , 9} are depicted
in Figure 2. Similar arguments we apply to the classes O of edgeless graphs and
K of complete graphs. In this case, the facts C(O) = {K2} and C(K) = {K2}
yield C(O(1)) = {K3, P4, C4, 2K2} and C(K(1)) = {K3, P4, C4, 2K2}.

Of course the brute searching method is not too effective if forbidden sub-
graphs have big orders. Thus for r ≥ 4 we start with determining forbidden
subgraphs for Wr(1) with the minimum number of vertices. If G ∈ C(Wr(1)),
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F1 F2 F3 F4 F5

F9F8F7F6

Figure 2. All the graphs in C(W3(1)) \ {C4, C5, C6, P6, 2P3}.

then G must contain an induced subgraph Pr after deletion of any vertex. Thus
r + 1 is the lower bound on the number of vertices of a graph in C(Wr(1)). We
conclude the following fact.

Proposition 1. If r is an integer, r ≥ 3, then Cr+1 is a forbidden subgraph for

Wr(1) with the minimum number of vertices.

By Theorem 9 we have that the upper bound on the number of vertices of a

graph in C(Wr(1)) is
⌊

(r+2)2

4

⌋

. However, for r = 4 we find no graph that realizes

this bound. For any r ≥ 5 there exists a graph in C(Wr(1)) of order
⌊

(r+2)2

4

⌋

.

To prove this fact we use the class of graphs that contains all the complements
of graphs in Wr.

For a given class of graphs P ∈ L≤ let us define P = {G : G ∈ P}. It is a
known fact that if P ∈ L≤, then P is also in L≤. Moreover, there is a coincidence
between forbidden subgraphs for P and P given by the equality C(P) = {F :
F ∈ C(P)} [2]. Let P1, P2 be classes of graphs. By P1 ◦ P2 we denote the
class of all graphs G whose vertex set can be partitioned into two parts V1, V2

(possible empty) such that, for all i ∈ {1, 2}, if Vi is non-empty, then G[Vi] ∈ Pi.
In that case P1 ◦ P2 is called a product of P1 and P2. In [4] it is proved that
F ∈ C(P1 ◦ P2) if and only if F ∈ C(P1 ◦ P2). It is easy to observe that for each
class of graphs P and a positive integer k, the class P(k) is identical with P ◦Q,
where Q consists of all the graphs of order at most k. Moreover, for such Q we
have Q = Q. Hence, taking into account the previous consideration, we have the
following observation.

Proposition 2. If P ∈ L≤, then

(i) G ∈ P(k) if and only if G ∈ P(k), and

(ii) F ∈ C(P(k)) if and only if F ∈ C(P(k)), and
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(iii) G ∈ P(k) if and only if G ∈ P(k).

Let us consider Wr. Thus, C(Wr) = {Pr} and, by Proposition 2, it follows
that G ∈ C(Wr(1)) if and only if G ∈ C(Wr(1)). As a consequence, the comple-
ment of a forbidden subgraph for Wr(1) with the maximum number of vertices
is a forbidden subgraph for Wr(1) with the maximum number of vertices. Since
the vertex connectivity of Pr is relatively big we will be able to apply Theorem
8. First we give the supporting observation.

Lemma 15. If r is an integer, r ≥ 5, then Pr is
⌈

r−1
2

⌉

-connected.

Proof. Let G = Pr. Observe that the vertices of G can be divided into two sets
W1, W2 such that subgraphs induced by Wi for i ∈ {1, 2} are complete graphs
and |W1| =

⌈

r
2

⌉

, |W2| =
⌊

r
2

⌋

=
⌈

r−1
2

⌉

. Suppose that there is a vertex-cut-set S of
G such that |S| <

⌊

r
2

⌋

. Thus G− S has two disjoint subgraphs G1 and G2 such
that there is no edge joining a vertex of G1 with a vertex of G2. Furthermore,
observe that V (G1) = W1 \ S and V (G2) = W2 \ S and moreover, V (G1) 6= ∅
and V (G2) 6= ∅. Let us denote W ′

1 = W1 \ S and W ′
2 = W2 \ S. So, by our

assumptions, there is no edge joining a vertex of W ′
1 with a vertex of W ′

2 in G.
This implies that in G each vertex of W ′

1 is adjacent to each vertex of W ′
2. If

|W ′
1| ≥ 2 and |W ′

2| ≥ 2, then G contains C4, which contradicts that G = Pr. If
one of the sets W ′

1, W
′
2 contains exactly one vertex, then since |S| <

⌊

r
2

⌋

, there
are at least three vertices in the second set. Thus G has a vertex of degree three,
which again gives a contradiction with the assumption that G is a path.

By Lemma 7 we have the additional fact.

Lemma 16. Let r be an integer, r ≥ 5. There exists a {Pr}-host-graph of a

hypergraph H∗
(

1, r,
⌈

r−1
2

⌉)

given in Construction 1.

Finally, by Theorem 8, Lemma 16 and Proposition 2, we obtain the conclu-
sion.

Theorem 17. Let r be an integer, r ≥ 5. The complement of a {Pr}-host-
graph of the hypergraph H∗

(

1, r,
⌈

r−1
2

⌉)

, given in Construction 1, is a forbidden

subgraph for Wr(1) with the maximum number of vertices.

In Figure 3 we present the complement of a forbidden subgraph for W5(1).
Theorem 17 says that this graph has the maximum number of vertices among all
the graphs in C(W5(1)). Moreover, by Proposition 2, the graph in Figure 3 is in
C
(

W5(1)
)

and also in C
(

W5(1)
)

and realizes the maximum order among all the
graphs in both these families.
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bc bc

bc

Figure 3. The complement of the graph in C(W5(1)) with the maximum order.

6. Classes of Graphs That Are Closed Under Substitution

Let H, G1, . . . , Gn be graphs and v1, . . . , vn be an arbitrary ordering of the set
V (H). By H[G1, . . . , Gn] we denote the graph resulting from H by the simulta-
neous substitution of each vertex vi with the graph Gi. Here the substitution of

the vertex v with the graph G in the graph H means the removal of v and joining
all the vertices of G with all the neighbours of v in H. A class P of graphs is
closed under substitution if for any graphs H,G1, . . . , Gn ∈ P and every ordering
of V (H), the graph H[G1, . . . , Gn], called a substitution graph, is also in P. By
L∗
≤ we denote the class of all non-trivial induced hereditary classes of graphs

that are closed under substitution. The smallest of such ones (in the sense of the
number of elements) is {K1}, among most notable we should list the classes O of
edgeless graphs, K of complete graphs, the class of perfect graphs and the classes
Wr, where r = 2 or r ≥ 4. Observe that P4-free graphs are just cographs. In this
section we characterize all forbidden subgraphs for P(1) where P ∈ L∗

≤.
A set W ⊆ V (G) is a module in a graph G if for each two vertices x, y ∈ W ,

NG(x) \W = NG(y) \W . The trivial modules in G are V (G), ∅ and singletons.
A graph having only trivial modules is called prime. By PRIME we denote the
class of all prime graphs that have at least two vertices.

In 1997 Giakoumakis [14] proved that for each class of graphs P ∈ L≤ its
closure under substitution P∗ consisting of all the graphs in P and all their
substitution graphs can be characterized by C(P∗) that consists of all minimal
prime extensions of all the graphs in C(P). It has to be said that G′ is a minimal

prime extension of G if it is a prime induced supergraph of G and it does not
contain as a proper induced subgraph any other prime induced supergraph of G.

Since for each class P ∈ L∗
≤ we have P = P∗ (by the definition of L∗

≤), the
Giakoumakis consideration leads to the following conclusion.

Remark 5. If P ∈ L≤, then P ∈ L∗
≤ if and only if C(P) ⊆ PRIME.
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In [4] the following two theorems concerning C(P1 ◦ P2) when both P1, P2

are in L∗
≤ have been proven.

Theorem 18 [4]. Let P1, P2 ∈ L∗
≤ and let H ∈ PRIME with V (H) = {v1, . . . ,

vn}. If G = H[G1, . . . , Gn] and G ∈ C(P1 ◦ P2), then H /∈ P1 or H /∈ P2 and

there exists a partition (A,B,C,D) of {1, . . . , n} (empty parts are allowed), such
that

(i) Gi = K1 for i ∈ A, and

(ii) Gi ∈ C(P2) ∩ P1 for i ∈ B, and

(iii) Gi ∈ C(P1) ∩ P2 for i ∈ C, and

(iv) Gi ∈ C(P1 ∪ P2) for i ∈ D.

A graph G, different from K1, is strongly decomposable if in its description
G = H[G1, . . . , Gn] with H ∈ PRIME, all the graphs Gi satisfy |V (Gi)| ≥ 2.
In the next theorem we will restrict our attention to graphs that are strongly
decomposable and are forbidden subgraphs for a product of classes of graphs.

Theorem 19 [4]. Let P ∈ L∗
≤ \{O,K, {K1}}. A graph G is a forbidden subgraph

for P1 ◦ P2 and it is strongly decomposable if and only if there exists a represen-

tation H[G1, . . . , Gn] of G, with H ∈ PRIME, V (H) = {v1, . . . , vn}, such that

either for j = 1 and l = 2 or for j = 2 and l = 1 the following three conditions

hold:

(i) H ∈ C(Pj), and

(ii) for each i ∈ {1, . . . , n}, Gi ∈ C(Pl), and

(iii) for M = {i ∈ {1, . . . , n} : Gi /∈ Pj} and for each s ∈ {1, . . . , n} \ M
the subgraph of H induced by {vi : i ∈ M ∪ {s}} is in Pl; moreover, if

M = {1, . . . , n}, then H ∈ Pl.

Observe that PRIME includes only two graphs, K2, K2, with two ver-
tices, no graph on three vertices and only one graph, P4, with four vertices.
Next C(O) = {K2}, C(K) = {K2}, C({K1}) = {K2,K2}. Thus if P ∈ L∗

≤ \
{O,K, {K1}}, then the family C(P) has to contain at least one graph in PRIME\
{K2,K2}. Since each graph on at least 4 vertices contains as an induced sub-
graph K2 or K2 and graphs in C(P) are not comparable with respect to induced
subgraph relation, we conclude that C(P) ∩ {K2,K2} = ∅. Hence we have the
following fact.

Remark 6. If P ∈ L∗
≤ \ {O,K, {K1}}, then {K2,K2} ⊆ P.

Recall that P(1) = P ◦ {K1} and {K1} ∈ L∗
≤. Hence, from Theorem 19, we

obtain the following immediate consequence.
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Corollary 5. If P ∈ L∗
≤ \{O,K, {K1}}, then G is a forbidden subgraph for P(1)

that is strongly decomposable if and only if G = K2[H1, H2] or G = K2[H1, H2] =
H1∪H2 or G = H1[G1, . . . , Gn], where H1, H2 ∈ C(P) and G1, . . . , Gn ∈ {K2,K2}.

Proof. We apply Theorem 19 together with the notations. If P = Pj and
{K1} = Pl, then, by Remark 6, M = ∅ and the graph induced in H by {vi :
i ∈ M ∪{s}} is K1. Consequently we obtain that H1[G1, . . . , Gn] is forbidden for
P ◦{K1} = P(1). If P = Pl and {K1} = Pj , then H is one of the graphs K2,K2.
By Remark 6 we have M = {1, 2} and we obtain that K2[H1, H2] and H1 ∪H2

are graphs in C(P(1)). Theorem 19 guarantees no other strongly decomposable
graphs in C(P(1)).

In [5] the author explained that an arbitrary graph can be obtained from a
prime graph by the iterative substitution of some of its vertices by prime graphs.
This procedure corresponds to the well-known construction (which has been dis-
covered many times and is based on the Gallai Theorem [13]) called a tree de-

composition of a graph. For a given graph G, all prime graphs applied in this
tree-like iterative procedure and all their prime induced subgraphs create the
unique family denoted by Z∗(G). In the next investigation we use the following
fact from this field.

Lemma 20 [5]. Let G, G′ be graphs. If G′ ∈ PRIME, then G′ ≤ G if and only

if G′ ∈ Z∗(G).

Consequently we have the following observation.

Lemma 21. If P ∈ L∗
≤ and G is a graph, then G ∈ P if and only if Z∗(G) ⊆ P.

Proof. If G ∈ P, then all induced subgraphs of G are in P, which means Z∗(G)
⊆ P.

Suppose that Z∗(G) ⊆ P and, for a contradiction, G /∈ P. Hence there is an
induced subgraph of G, say F , such that F ∈ C(P) (obviously F /∈ P). Remark
5 implies that F is prime, which by Lemma 20 leads to F ∈ Z∗(G), and gives a
contradiction.

We use Lemma 21 in proofs of forthcoming results.

Lemma 22. Let P ∈ L∗
≤ and H1, H2 ∈ C(P). If v1, . . . , vn is an arbitrary

ordering of the set V (H1), then H1[H2,K1, . . . ,K1] is a forbidden subgraph for

P(1).

Proof. Let G = H1[H2,K1, . . . ,K1] and let V (G) = {u1, . . . , ul, v2, . . . , vn},
where v1 is substituted with vertices u1, . . . , ul ofH2. Hence for each i ∈ {1, . . . , l}
the vertices ui, v2, . . . , vn induce H1 in G.
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First we observe that G− v /∈ P for any vertex v ∈ V (G). Indeed, if v = vi
for some i ∈ {2, . . . , n}, then H2 is an induced subgraph of G − v. If v = ui for
some i ∈ {1, . . . , l}, then H1 is an induced subgraph of G− v.

Now we argue that for each v ∈ V (G) there is x ∈ V (G) \ {v} such that
G − {v, x} ∈ P. If v ∈ {v2, . . . , vn}, then we choose as x one of the vertices
u1, . . . , ul. If v ∈ {u1, . . . , ul}, then we choose as x one of the vertices v2, . . . , vn.
In both cases Z∗(G − {v, x}) contains only proper prime induced subgraphs of
H1 and H2, which means Z∗(G − {v, x}) ⊆ P and, by Lemma 21, implies G−
{v, x} ∈ P.

Lemma 23. Let P ∈ L∗
≤, H1, H2 ∈ C(P) and X ∈ PRIME. If v1, . . . , vn is an

ordering of the set V (X) such that X[{v2, . . . , vn}] = H1 and X−vi ∈ P for each

i ∈ {2, . . . , n}, then X[H2,K1, . . . ,K1] is a forbidden subgraph for P(1).

Proof. Let G = X[H2,K1, . . . ,K1] and let V (G) = {u1, . . . , ul, v2, . . . , vn},
where v1 is substituted with vertices u1, . . . , ul of H2. Thus G contains two dis-
joint subgraphs H1, H2 induced by vertices v2, . . . , vn and u1, . . . , ul, respectively.
Hence G /∈ P(1).

Now we argue that each pair of vertices ui, vj , with i ∈ {1, . . . , l} and j ∈
{2, . . . , n} satisfies the condition G − {ui, vj} ∈ P. Indeed, Z∗(G − {ui, vj})
contains only prime graphs that are induced subgraphs of H2 − ui and X − vj .
Both these graphs are in P, which implies Z∗(G − {ui, vj}) ⊆ P. Lemma 21
yields G− {ui, vj} ∈ P, as we desired.

Now we are ready to prove that G−v ∈ P(1) for each v ∈ V (G), which means
that for each vertex v ∈ V (G) there is x ∈ V (G)\{v} such that G−{x, v} ∈ P. If
v = ui for some i ∈ {1, . . . , l}, then we put x = vj for an arbitrary j ∈ {2, . . . , n},
and if v = vj for some j ∈ {2, . . . , n}, then we put x = ui for an arbitrary
i ∈ {1, . . . , l}. The earlier consideration confirms that G − {x, v} ∈ P in both
cases.

Theorem 24. Let P ∈ L∗
≤ \ {O,K, {K1}}. A graph G is a forbidden subgraph

for P(1) if and only if G has one of the following forms:

(i) G = G1[H1, H2], or

(ii) G = H1

[

G1, . . . , G|V (H1)|

]

, or

(iii) G = H1[H2,K1, . . . ,K1], or

(iv) G = X[H2,K1, . . . ,K1], or

(v) G = Y [G1, . . . , Gs,K1, . . . ,K1],

where H1, H2 ∈ C(P) and Gi ∈ {K2,K2} for all permissible i; further X,Y ∈
PRIME and, assuming that V (X) = {v1, . . . , vn1

} and V (Y ) = {u1, . . . , un2
},

the following conditions are fulfilled:

• X[{v2, . . . , vn1
}] ∈ C(P), and
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• for each i ∈ {2, . . . , n1}, X − vi ∈ P, and

• n2 ≥ s+ 2, and

• for each i ∈ {1, . . . , s}, Y − ui ∈ P, and

• for each i ∈ {s+1, . . . , n2}, Y −ui /∈ P and there exists j ∈ {s+1, . . . , n2}\{i}
satisfying Y − {ui, uj} ∈ P.

Proof. Lemmas 22, 23 and Corollary 5 show that graphs having forms (i), (ii),
(iii) or (iv) are forbidden subgraphs for P(1). Recall that a graph G belongs to
C(P(1)) if the graph resulting by the removal of any vertex of G does not belong
to P and for each vertex v ∈ V (G) there exists another vertex x ∈ V (G) such
that G − {v, x} ∈ P. Observe that if a graph has the form (v), then it satisfies
these conditions. Namely, if v is one of the vertices of Gi with i ∈ {1, . . . , s}, then
we choose another vertex of Gi as x. If v is one of the vertices ui with i ≥ s+ 1,
then the role of x is played by uj given by the assumptions of the theorem. In
both cases the conclusion follows by the construction of G.

Corollary 5 characterizes all strongly decomposable graphs in C(P(1)). It
means that to finish the proof it is enough to show that if G is not strongly
decomposable and forbidden for P(1), then G has either the form (iii) or (iv)
or (v). The mentioned earlier observation that graphs in C(P(1)) are pairwise
incomparable with respect to the induced subgraph relation allows us to to sim-
plify analysis. Namely, it is enough to show that such G contains as an induced
subgraph a graph of one of the forms (i), (ii), (iii), (iv), (v). As a consequence,
we observe that G has to be of the corresponding form.

Assume that G is not strongly decomposable. By Theorem 18, Remark 5
and the iterative construction of graphs via prime graphs, we can assume that
G has a form W [U1, . . . , Ul,K1, . . . ,K1], where W,U1, . . . , Ul ∈ PRIME and
V (W ) = {w1, . . . , wl, wl+1, . . . , wn} with n ≥ l+1 (we adopt the convention that
l = 0 is equivalent to G = W [K1, . . . ,K1] = W ). Moreover, graphs U1, . . . , Ul

are forbidden subgraphs for P or are elements of the set {K2,K2}.

Suppose that two of the graphs U1, . . . , Ul, say Ui, Uj , are forbidden subgraphs
for P. Hence K2[Ui, Uj ] or K2[Ui, Uj ] is an induced subgraph of G depending on
whether or not wi, wj are adjacent in W . In both cases it leads to the conclusion
that G contains an induced subgraph of the form (i).

In the next part of the proof we assume that at most one among graphs
U1, . . . , Ul is in C(P) and, without loss of generality, only U1 can be such a graph.
Following this assumption W /∈ P. If not, then Z∗(G − v) ⊆ P, where v is an
arbitrary vertex of U1 and next, by Remark 6, G− v ∈ P giving G ∈ P(1), which
is impossible. Thus W /∈ P.

Now we consider the case U1 ∈ C(P). It means that if l ≥ 2, then U2, . . . , Ul ∈
{K2,K2}. If there is W ′ ≤ W such that W ′ ∈ C(P) with w1 ∈ V (W ′), then
G contains an induced subgraph of the form (iii). Otherwise, since W /∈ P



344 M. Borowiecki, E. Drgas-Burchardt and E. Sidorowicz

there is W ′ ≤ W such that W ′ ∈ C(P) but w1 /∈ V (W ′) and moreover, for
W ′′ = W [{w1} ∪ V (W ′)] we have W ′′ − x ∈ P for each x ∈ V (W ′). Observe
that W ′′[U1,K1, . . . ,K1] ≤ G and W ′′[U1,K1, . . . ,K1] is of the form (iv), which
completes the proof in this case.

Suppose that U1 /∈ C(P). Hence G = W [U1, . . . , Ul,K1, . . . ,K1], where U1,
. . . , Ul ∈ {K2,K2}. Assume that V (G) = {w1

1, w
2
1, . . . , w

1
l , w

2
l , wl+1, . . . , wn},

where for i ∈ {1, . . . , l} wi is substituted with vertices w1
i , w

2
i of either K2 or

K2. Next we show that W − wi /∈ P for i ∈ {l + 1, . . . , n}. For a contradiction,
let W − wi ∈ P for some i from the range. Hence, because K2,K2 ∈ P, by
Remark 6, we have Z∗(G − wi) ⊆ P. It implies, by Lemma 21, that G ∈ P(1)
and gives a contradiction. Therefore W − wi /∈ P for i ∈ {l + 1, . . . , n}. By
the definition of C(P(1)) we know that there exists a vertex v ∈ V (G) \ {wi}
such that G − {wi, v} ∈ P. We ask whether or not v could be wj

t for some
t ∈ {1, . . . , l} and j ∈ {1, 2}. Without loss of generality, let v = w2

t for some t
from the range. Thus G

[{

w1
1, . . . , w

1
l , wl+1, . . . , wi−1, wi+1, . . . , wn

}]

= W − wi.
We observed previously that W−wi /∈ P, which means that G−{wi, w

2
t } /∈ P and

excludes this possibility. Thus v must be wj for some j ∈ {l+1, . . . , n} \ {i} and
moreover, it implies n ≥ l + 2. Finally, we show that if l ≥ 1, then W − wi ∈ P
for each i ∈ {1, . . . , l}. If not, then W −wi /∈ P for some i ∈ {1, . . . , l}. It implies
G − {w1

i , w
2
i } /∈ P. By the definition of graphs in C(P(1)) we know that there

exists v ∈ V (G) \ {w2
i } such that G−{v, w2

i } ∈ P. Obviously v 6= w1
i . Moreover,

W −wt ≤ G−{wt, w
2
i } for each t ∈ {l+1, . . . , n} and W ≤ G−{wj

t , w
2
i } for each

t ∈ {1, . . . , l} \ {i} and j ∈ {1, 2}. Because W −wt /∈ P for t ∈ {l+1, . . . , n} and
W /∈ P, we obtain a contradiction. Hence we conclude that W −wi ∈ P for each
i ∈ {1, . . . , l}. Thus, adopting l = s and n = n2, G satisfies all the conditions
that define the form (v) in this case.

In Figures 4, 5(d), 5(e), and 6 we present all possible graphs in C(W4(1))
that have forms pointed out in Theorem 24(i), 24(iii) and Theorem 24(iv). Some
examples of graphs in C(W4(1)) having the construction given by Theorem 24(ii)
are shown in Figures 5(a), 5(b), 5(c). Figure 7 illustrates Theorem 24(v). It refers
to cases s = 0, s = 1, s = 2, represented by Y being C5, P5, P6, respectively.
It should be mentioned here that the graph in Figure 3 has the form given by
Theorem 24(v) with s = 0.

K2[P4, P4] = 2P4 K2[P4, P4]

Figure 4. All the graphs in C(W4(1)) of the form given in Theorem 24(i).
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P4[K2,K2,K2,K2]

v1 v2 v3 v4

P4[K2,K2,K2,K2]P4[K2,K2,K2,K2]

P4[K1, P4,K1,K1] P4[P4,K1,K1,K1]

(a) (b) (c)

(e)(d)

P4

Figure 5. Some examples of graphs in C(W4(1)) of the form given in Theorem 24(ii) ((a),
(b), (c)) and all the graphs in C(W4(1)) of the form given in Theorem 24(iii)) ((d), (e)).

X = B (Bull):

v2 v3 v4 v5

v1

B[P4,K1,K1,K1,K1]

Figure 6. The unique graph in C(W4(1)) of the form given in Theorem 24(iv).

7. Concluding Remarks

In this final section we would like to present relations between the concept of a
P(k)-apex graph and a concept of an (H, k)-stable graph. According to [12, 16],
let H be a fixed graph, a graph G is (H, k)-stable whenever the deletion of any
set of k edges of G results in a graph that still contains a subgraph isomorphic
to H.

An (H, k)-stable graph G is minimal if for every A ⊆ E(G), |A| = k, there is
e ∈ E(G) \ A such that (G − A) − e does not contain a subgraph isomorphic to
H. Let us denote by Stab(H, k) the set of all minimal (H, k)-stable graphs.

Proposition 3. Let k be an integer and H be a graph such that |V (H)| ≥ 4.
Next let Q be the class of all graphs that do not contain L(H) (the line graph of

H) as an induced subgraph. If G ∈ Stab(H, k), then L(G) ∈ C(Q(k)).

Proof. On the contrary, suppose that L(G) /∈ C(Q(k)). Consider now two cases.
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(a) Y = C5; s = 0 : C5[K1,K1,K1,K1,K1] = C5

v1

v2

v5

v3

v4
(c) Y = P5; s = 3 :

G1 = P5[K2,K2,K2,K1,K1] G2 = P5[K2,K2,K2,K1,K1]

v4 v3 v1 v2 v5 v6
(b) Y = P6; s = 2 :

G1 = P6[K2,K2,K1,K1,K1,K1]

G2 = P6[K2,K2,K1,K1,K1,K1]

G3 = P6[K2,K2,K1,K1,K1,K1]

Figure 7. Some examples of graphs in C(W4(1)) of the form given in Theorem 24(v).

Case 1. L(G) ∈ Q(k). It follows that there is a set B ⊆ V (L(G)), |B| ≤ k
such that L(G)−B ∈ Q. The graph L(G)−B is a line graph of some graph G′.
Thus L(G)−B = L(G′) 6≥ L(H). From Whitney’s Theorem [22] and assumptions
it follows that G′ 6≥ H. The graph G′ is obtained by removing at most k edges
from the graph G which correspond in a unique way to the vertices of the set B.
This contradicts our assumption that G ∈ Stab(H, k).

Case 2. L(G) ≥ F ∈ C(Q(k)). If L(G) = F , then the conclusion is obvious.
Suppose that L(G) 6= F . Thus F is a line graph of some graph G′ which is a
proper spanning subgraph of G. Let e ∈ E(G) \ E(G′). From the assumption
G ∈ Stab(H, k) it follows that for the edge e there is a set B′ ⊆ E(G) \ {e},
|B′| = k such that (G− e)−B′ has no subgraph H. Obviously, |B′ ∩E(G′)| ≤ k.
Since G′ ⊆ G−e, then G′−B′ has no subgraph H. This fact implies that there is
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a set A′ ⊆ V (F ), |A′| = k such that F −A′ ∈ Q. This contradicts our assumption
that F ∈ C(Q(k)) and the proof is complete.

In [16] the minimum size of (P4, k)-stable graphs was determined. In Section
5 of this paper we deal with the minimum and maximum order of graphs in
C(Wr(k)). Since L(Pr+1) = Pr we have the following observation.

Corollary 6. Let k, r be integers, r ≥ 3. If G ∈ Stab(Pr+1, k), then L(G) ∈
C(Wr(k)).

Let us define a vertex version of the H-stability. Let H be a graph and k
be a positive integer. A graph G of order at least k is said to be (H, k)-vertex
stable if for any set S of k vertices the subgraph G − S contains an induced
subgraph isomorphic to H. An (H, k)-vertex stable graph G is minimal if for
every W ⊆ V (G), |W | = k, there is v ∈ V (G) \W such that (G −W ) − v does
not contain H. Let us denote by StabV (H, k) the set of all minimal (H, k)-vertex
stable graphs. Observe the following fact.

Proposition 4. If k is an integer and H is a connected graph, then StabV (H, k) =
C(P(k)), where P is the class of all graphs that do not contain H as an induced

subgraph.

Proof. If G ∈ C(P(k)), then G − v ∈ P(k) and G − v /∈ P(k − 1) for every
v ∈ V (G). In the case when G − v ∈ P(k − 1) for an vertex v, then there is a
set A ⊆ V (G), |A| = k − 1 such that (G − v) − A ∈ P. This contradicts our
assumption that G ∈ C(P(k)). It implies that for every set A ⊆ V (G), |A| = k
we have G−A ≥ H, i.e., G ∈ StabV (H, k). Thus, C(P(k)) ⊆ StabV (H, k).

Now let G ∈ StabV (H, k). Then for every A ⊆ V (G), |A| = k, there is
v ∈ V (G) \A such that (G−A)− v does not contain H as an induced subgraph.
It follows that for every v ∈ V (G) there is a set A ⊆ V (G), |A| = k such that
(G− v)−A ∈ P, i.e., G ∈ C(P(k)). Hence StabV (H, k) ⊆ C(P(k)).

Yet another version of an (H, k)-stable graph was studied in a series of papers
[3,6–8,10,11] where the (H, k)-vertex stability was considered taking into account,
instead of induced subgraphs, subgraphs of G isomorphic to H. In case of H =
Kq, both concepts coincide.
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[15] A. Gyárfás, J. Lehel and Zs. Tuza, Upper bound on the order of τ -critical hyper-
graphs , J. Combin. Theory Ser. B 33 (1982) 161–165.
doi:10.1016/0095-8956(82)90065-X
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