\mathcal{P}-APEX GRAPHS

MieczysŁaw Borowiecki, Ewa Drgas-Burchardt
AND
Elżbieta Sidorowicz
Faculty of Mathematics, Computer Science and Econometrics
University of Zielona Góra
Prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland
e-mail: M.Borowiecki@wmie.uz.zgora.pl E.Drgas-Burchardt@wmie.uz.zgora.pl E.Sidorowicz@wmie.uz.zgora.pl
Dedicated to the memory of Professor Horst Sachs (1927-2017)

Abstract

Let \mathcal{P} be an arbitrary class of graphs that is closed under taking induced subgraphs and let $\mathcal{C}(\mathcal{P})$ be the family of forbidden subgraphs for \mathcal{P}. We investigate the class $\mathcal{P}(k)$ consisting of all the graphs G for which the removal of no more than k vertices results in graphs that belong to \mathcal{P}. This approach provides an analogy to apex graphs and apex-outerplanar graphs studied previously. We give a sharp upper bound on the number of vertices of graphs in $\mathcal{C}(\mathcal{P}(1))$ and we give a construction of graphs in $\mathcal{C}(\mathcal{P}(k))$ of relatively large order for $k \geq 2$. This construction implies a lower bound on the maximum order of graphs in $\mathcal{C}(\mathcal{P}(k))$. Especially, we investigate $\mathcal{C}\left(\mathcal{W}_{r}(1)\right)$, where \mathcal{W}_{r} denotes the class of P_{r}-free graphs. We determine some forbidden subgraphs for the class $\mathcal{W}_{r}(1)$ with the minimum and maximum number of vertices. Moreover, we give sufficient conditions for graphs belonging to $\mathcal{C}(\mathcal{P}(k))$, where \mathcal{P} is an additive class, and a characterisation of all forests in $\mathcal{C}(\mathcal{P}(k))$. Particularly we deal with $\mathcal{C}(\mathcal{P}(1))$, where \mathcal{P} is a class closed under substitution and obtain a characterisation of all graphs in the corresponding $\mathcal{C}(\mathcal{P}(1))$. In order to obtain desired results we exploit some hypergraph tools and this technique gives a new result in the hypergraph theory.

Keywords: induced hereditary classes of graphs, forbidden subgraphs, hypergraphs, transversal number.
2010 Mathematics Subject Classification: 05C75, 05C15.

1. Introduction

We only consider finite and simple graphs and follow [1] for graph-theoretical terminology and notation not defined here. A graph G is an apex graph if it contains a vertex w such that $G-w$ is planar. Although apex graphs seem to be close to planar graphs, some of their properties are far from corresponding properties of planar graphs (for example, see [18]).

A result of Robertson and Seymour (see [19]) says that every proper minorclosed class of graphs \mathcal{P} can be characterized by a finite family of forbidden minors (minor-minimal graphs not in \mathcal{P}). Evidently, the class of apex graphs is minor-closed but the long-standing problem of finding the complete family of forbidden minors for this class is still open.

However, Dziobak in [9] introduced an apex-outerplanar graph that is a conceptual analogue to an apex graph. Namely, a graph G is apex-outerplanar if there exists $w \in V(G)$ such that $G-w$ is outerplanar. Moreover, Dziobak provided the complete list of 57 forbidden minors for this class.

Another attempt to extend the concept of an apex graph is presented in [20] where an l-apex graph is defined. A graph G is an l-apex graph if it can be made planar by removing at most l vertices.

This paper concerns classes of graphs that generalize the aforementioned. Formally, by a class of graphs we mean an arbitrary family of non-isomorphic graphs. The empty class of graphs and the class of all graphs are called trivial. A class of graphs \mathcal{P} is induced hereditary if it is closed with respect to taking induced subgraphs. Such a class \mathcal{P} can be uniquely characterized by the family of forbidden subgraphs $\mathcal{C}(\mathcal{P})$ that is defined as a set
$\{G: G \notin \mathcal{P}$ and $H \in \mathcal{P}$ for each proper induced subgraph H of $G\}$.
By \mathbf{L}_{\leq}we denote the class of all non-trivial induced hereditary classes of graphs. Each class $\mathcal{P} \in \mathbf{L}_{\leq}$has a non-empty family of forbidden subgraphs, consisting of graphs with at least two vertices. Moreover, $\mathcal{C}(\mathcal{P})$ contains only connected graphs when \mathcal{P} is additive, i.e., closed under taking the union of disjoint graphs. By $\mathbf{L}_{<}^{a}$ we denote the family of all non-trivial induced hereditary and additive classes of graphs.

Let $\mathcal{P} \in \mathbf{L}_{\leq}$and let k be a non-negative integer. A graph G is a $\mathcal{P}(k)$-apex graph if there is $W \subseteq V(G),|W| \leq k$ (W is allowed to be the empty set), such that $G-W$ belongs to \mathcal{P}. We denote the set of all $\mathcal{P}(k)$-apex graphs by $\mathcal{P}(k)$ for short.

We can see immediately that if k is a non-negative integer and $\mathcal{P} \in \mathbf{L}_{\leq}$, then $\mathcal{P}(k) \in \mathbf{L}_{\leq}$too. On the other hand, the additivity of $\mathcal{P} \in \mathbf{L}_{\leq}$implies the additivity of $\mathcal{P}(k)$ if and only if $k=0$. Indeed, $\mathcal{P}(0)=\mathcal{P}$. Moreover, if $\mathcal{P} \in \mathbf{L}_{\leq}^{a}$, then $\mathcal{C}(\mathcal{P}) \neq \emptyset$ and assuming that $F \in \mathcal{C}(\mathcal{P})$ we can easily see that the union of
$k+1$ disjoint copies of F is in $\mathcal{C}(\mathcal{P}(k))$. Thus, for $k \geq 1$, it yields the existence of at least one disconnected graph that is forbidden for $\mathcal{P}(k)$. Hence, for $k \geq 1$, the class $\mathcal{P}(k)$ is not additive.

Lewis and Yannakakis in [17] have shown that for any non-trivial induced hereditary class \mathcal{P} containing infinitely many graphs and for a given positive integer k, the decision problem: "does G belong to $\mathcal{P}(k)$?" is NP-complete.

In this paper, we investigate the classes $\mathcal{P}(k)$, in particular we focus on forbidden subgraphs for the classes $\mathcal{P}(k)$ (i.e., we study graphs in $\mathcal{C}(\mathcal{P}(k)))$. Additionally, we use hypergraphs as an effective tool in the research on $\mathcal{P}(k)$.

Let \mathcal{H} be a hypergraph with vertex set $V(\mathcal{H})$ and edge set $\mathcal{E}(\mathcal{H})$ and let $W \subseteq V(\mathcal{H})$. The hypergraph $\mathcal{H}[W]$ induced in \mathcal{H} by W has vertex set W and edge set $\{E \in \mathcal{E}(\mathcal{H}): E \subseteq W\}$. To simplify the notation we write $\mathcal{H}-W$ instead of $\mathcal{H}[V(\mathcal{H}) \backslash W]$ and, moreover, $\mathcal{H}-v$ instead of $\mathcal{H}-\{v\}$ when v is a vertex of \mathcal{H}. Analogously, we write $\mathcal{H}-E$ to denote the hypergraph obtained from \mathcal{H} by the deletion of the edge E from $\mathcal{E}(\mathcal{H})$.

By $\mathcal{H}_{1} \cup \mathcal{H}_{2}$ we mean the union of disjoint hypergraphs \mathcal{H}_{1} and \mathcal{H}_{2}, i.e., the hypergraph with vertex set $V\left(\mathcal{H}_{1}\right) \cup V\left(\mathcal{H}_{2}\right)$ and edge set $\mathcal{E}\left(\mathcal{H}_{1}\right) \cup \mathcal{E}\left(\mathcal{H}_{2}\right)$. Moreover, notations $2 \mathcal{H}_{1}, \mathcal{H}_{1} \cup \mathcal{H}_{1}$, and their generalization are used interchangeably. The symbol $\mathcal{H}_{1} \leq \mathcal{H}_{2}$ denotes that the hypergraph \mathcal{H}_{1} is isomorphic to a subhypergraph of \mathcal{H}_{2} induced by some of its vertex subset. Let r be a non-negative integer. A hypergraph \mathcal{H} is r-uniform if each edge in $\mathcal{E}(\mathcal{H})$ has exactly r vertices. A set $T \subseteq V(\mathcal{H})$ is called a transversal of the hypergraph \mathcal{H} if $T \cap E \neq \emptyset$ for each $E \in \mathcal{E}(\mathcal{H})$. By $\tau(\mathcal{H})$ we denote the cardinality of the minimum transversal of \mathcal{H}, i.e.,

$$
\tau(\mathcal{H})=\min \{|T|: T \text { is a transversal of } \mathcal{H}\} .
$$

A hypergraph \mathcal{H} is τ-vertex critical if for any $v \in V(\mathcal{H})$ the inequality $\tau(\mathcal{H}-v) \leq$ $\tau(\mathcal{H})-1$ holds. If a τ-vertex critical hypergraph \mathcal{H} satisfies $\tau(\mathcal{H})=l$ for some positive integer l, then we call it τ-vertex l-critical.

Recall that each graph is a hypergraph, which allows us to use these notations also for graphs. The symbols K_{n}, P_{n}, C_{n} are used only for graphs and denote the complete graph, the path and the cycle with n vertices, respectively.

This paper is organized as follows. We start with τ-vertex l-critical hypergraphs in Section 2. We prove an upper bound on the order of a τ-vertex 2 -critical hypergraph and describe the construction of τ-vertex l-critical hypergraphs with large number of vertices. Next, in Section 3, we prove some results on relations between τ-vertex ($k+1$)-critical hypergraphs and graphs in $\mathcal{C}(\mathcal{P}(k))$ for $\mathcal{P} \in \mathbf{L}_{\leq}$. In Section 4, for $\mathcal{P} \in \mathbf{L}_{\leq}^{a}$ we show some sufficient conditions that have to be satisfied by a graph to be in $\mathcal{C}(\mathcal{P}(k))$ and we characterize all forests in $\mathcal{C}(\mathcal{P}(k))$. Section 5 deals with the class \mathcal{P} of graphs that does not contain P_{r} as an induced subgraph. We determine some forbidden subgraphs for $\mathcal{P}(1)$ with minimum and maximum order in this case. In Section 6 we characterize all graphs in $\mathcal{C}(\mathcal{P}(1))$,
where \mathcal{P} is a class of graphs that is induced hereditary and closed under substitution (for the definition see Section 6).

2. τ-Vertex Critical Hypergraphs

A hypergraph \mathcal{H} is τ-edge l-critical if $\tau(\mathcal{H})=l$ and the deletion of an edge decreases the transversal number of the resulting hypergraph. It is clear that the class of τ-edge l-critical hypergraphs without isolated vertices forms a subclass of the class of τ-vertex l-critical hypergraphs. On the other hand, it is easy to prove that the maximum order of hypergraphs in both classes is the same. In this section we prove that an r-uniform τ-vertex 2 -critical hypergraph has at most $\left\lfloor\frac{(r+2)^{2}}{4}\right\rfloor$ vertices. Our proof is different than Tuza's proof in [21] concerning a corresponding theorem for r-uniform τ-edge 2-critical hypergraphs.

Next, for $l \geq 3$ we give the construction of an r-uniform τ-vertex l-critical hypergraph with a large order. Gyárfás et al. [15] proved that each r-uniform τ vertex l-critical hypergraph has order bounded from above by $\binom{l+r-2}{r-2} l+l^{r-1}$. This bound is probably far from the exact value of the maximum number of vertices in a hypergraph that is r-uniform τ-vertex l-critical. Our construction gives a large lower bound on the maximum order of a hypergraph that is r-uniform τ-vertex l-critical.

Theorem 1. Let r be an integer, $r \geq 2$, and let \mathcal{H} be a τ-vertex 2-critical hypergraph. If for each $E \in \mathcal{E}(\mathcal{H})$ we have $|E| \leq r$, then

$$
|V(\mathcal{H})| \leq\left\lfloor\frac{(r+2)^{2}}{4}\right\rfloor
$$

Moreover, the bound is sharp.
Proof. Denote by \mathcal{H}^{\prime} a hypergraph obtained from \mathcal{H} by the optional deletion of some edges in such a way that $\tau(\mathcal{H})=\tau\left(\mathcal{H}^{\prime}\right)=2$ and $\tau\left(\mathcal{H}^{\prime}-E^{\prime}\right) \leq 1$ for each edge E^{\prime} of \mathcal{H}^{\prime}. Let $\mathcal{E}^{\prime}=\mathcal{E}\left(\mathcal{H}^{\prime}\right)$ and assume $\mathcal{E}^{\prime}=\left\{E_{1}^{\prime}, \ldots, E_{m}^{\prime}\right\}$. Observe that each vertex of \mathcal{H}^{\prime} is contained in at least one of the edges in $\mathcal{E}\left(\mathcal{H}^{\prime}\right)$. Otherwise, if there is $x \in V\left(\mathcal{H}^{\prime}\right)$ such that x belongs to no edge in $\mathcal{E}\left(\mathcal{H}^{\prime}\right)$, then $\tau(\mathcal{H}-x)=2$ giving a contradiction to the τ-vertex criticality of \mathcal{H}.

Let a bipartite graph B be the incidence graph of the hypergraph \mathcal{H}^{\prime}. Thus $B=\left(V(\mathcal{H}), \mathcal{E}^{\prime} ; E(B)\right)$, where $v E^{\prime} \in E(B)$ if and only if $v \in E^{\prime}$. The previous consideration says that $d_{B}(v) \geq 1$ for all $v \in V(\mathcal{H})$ and $d_{B}\left(E_{i}^{\prime}\right) \leq r$ for all $i \in\{1, \ldots, m\}$. The last condition implies $|E(B)| \leq m r$.
Claim 2. For every E_{i}^{\prime} there is a vertex, say $v_{i} \in V(\mathcal{H}) \subseteq V(B)$, such that $v_{i} \notin E_{i}^{\prime}$ but $v_{i} \in E_{j}^{\prime} \in \mathcal{E}^{\prime}$ for all $j \neq i$.

Proof. Delete a vertex E_{i}^{\prime} from the graph B. The graph $B-E_{i}^{\prime}$ is an incidence graph of the hypergraph $\mathcal{H}^{\prime}-E_{i}^{\prime}$, so $\tau\left(\mathcal{H}^{\prime}-E_{i}^{\prime}\right)=1$, i.e., there is a vertex, say x, which is adjacent in B to every $E_{j}^{\prime}, j \neq i$. Obviously the vertex x is not adjacent to E_{i}^{\prime}, otherwise in the hypergraph \mathcal{H}^{\prime} there would be a 1-element transversal $\{x\}$, which is impossible. Thus x can play the role of v_{i} from the statement.

By Claim 2, in the graph B there is a set of m vertices $\left\{v_{1}, \ldots, v_{m}\right\}$ with $d_{B}\left(v_{i}\right)=m-1$, for $i \in\{1, \ldots, m\}$. Since $d_{B}(v) \geq 1$ for each $v \in V(\mathcal{H})$ we have $m(m-1)+(n-m) \leq|E(B)| \leq m r$, where $n=|V(\mathcal{H})|$. It leads to the inequality $n \leq-m^{2}+(r+2) m$. Thus for fixed r, the maximum n is $\left\lfloor\frac{(r+2)^{2}}{4}\right\rfloor$ and it is achieved at $m=\left\lfloor\frac{r}{2}\right\rfloor+1$ or at $m=\left\lceil\frac{r}{2}\right\rceil+1$.

Finally, we prove that the bound is sharp. All the previous arguments imply that the structure of the τ-vertex 2 -critical hypergraph with maximum number of vertices must be defined in the following way. For $m=\left\lfloor\frac{r}{2}\right\rfloor+1$ or $\left\lceil\frac{r}{2}\right\rceil+1$ let $U=\{1, \ldots, m\}$ and let $A_{i}=\left\{a_{1}^{i}, \ldots, a_{r+1-m}^{i}\right\}$ with $i \in U$. The r-uniform hypergraph \mathcal{H} such that $V(\mathcal{H})=U \cup \bigcup_{i=1}^{m} A_{i}$ and $E(\mathcal{H})=\left\{E_{1}, \ldots, E_{m}\right\}$ where $E_{i}=(U \backslash\{i\}) \cup A_{i}$ for $i \in\{1, \ldots, m\}$, confirms the sharpness of the inequality given in the assertion.

The construction from the proof of Theorem 1 can be generalized in an easy way resulting in the following r-uniform τ-vertex l-critical hypergraph with a large number of vertices.

Construction 1. Let k, r, x be integers, $k \geq 1, r \geq 3$ and $r \geq x \geq 1$ and let $U=\{1, \ldots, k, k+1, \ldots, k+x\}$. Next let $m=\binom{k+x}{x}$ and let $\left\{U_{1}, \ldots, U_{m}\right\}$ be the family of all x-element subsets of U. Additionally, let $A_{i}=\left\{a_{1}^{i}, \ldots, a_{r-x}^{i}\right\}$ with $i \in\{1, \ldots, m\}$ be m pairwise disjoint sets each of which is also disjoint with U.

We define an r-uniform hypergraph $\mathcal{H}^{*}=\mathcal{H}^{*}(k, r, x)$ in the following way: $E\left(\mathcal{H}^{*}\right)=\left\{E_{1}, \ldots, E_{m}\right\}$, where $E_{i}=U_{i} \cup A_{i}, i \in\{1, \ldots, m\} ;$ $V\left(\mathcal{H}^{*}\right)=\bigcup_{i=1}^{m} E_{i}=U \cup A$, where $A=\bigcup_{i=1}^{m} A_{i}$.

Theorem 3. If k, r, x are integers such that $k \geq 1, r \geq 3$ and $r \geq x \geq 1$, then $\mathcal{H}^{*}(k, r, x)$ is τ-vertex $(k+1)$-critical.

Proof. Let $\mathcal{H}^{*}(k, r, x)=\mathcal{H}^{*}$. We use the notations connected with \mathcal{H}^{*} given in Construction 1. Observe that an arbitrary $(k+1)$-element subset of U is a transversal of \mathcal{H}^{*}. Thus $\tau\left(\mathcal{H}^{*}\right) \leq k+1$. Suppose, for a contradiction, that T is a transversal of \mathcal{H}^{*} and $|T| \leq k$. If $T \subseteq U$, then $U \backslash T$ contains at least one x-element subset U_{i} and consequently E_{i} is an edge of $\mathcal{H}^{*}-T$. Hence T is not a transversal of \mathcal{H}^{*}, a contradiction. Thus $T \backslash U=S \neq \emptyset$. Denote $t=|T \cap U|$ and $s=|S|$. There are at least $\binom{k+x-t}{x}$ edges of \mathcal{H}^{*} each of which has nonempty
intersection with S. It follows $\binom{k+x-t}{x} \leq s$. Recall that $s+t \leq k$. It means $\binom{k+x-t}{x} \leq k-t$, which is impossible for any x satisfying $r \geq x \geq 1$.

To observe the τ-vertex criticality of \mathcal{H}^{*} it is enough to show that for each $v \in V\left(\mathcal{H}^{*}\right)$ the condition $\tau\left(\mathcal{H}^{*}-v\right) \leq k$ holds. If $v \in U$, then the removal of any k vertices of U, all different from v, results in a hypergraph without edges. If $v \in A_{i}$ for some $i \in\{1, \ldots, m\}$, then the k-element transversal $U \backslash U_{i}$ realizes the inequality $\tau\left(\mathcal{H}^{*}-v\right) \leq k$.

In the next lemma we find the maximum order of $\mathcal{H}^{*}(k, r, x)$. This result gives a lover bound on the maximum number of vertices in an r-uniform τ-vertex ($k+1$)-critical hypergraph.

Given k, r we introduce $n(x)=\binom{k+x}{x}(r-x)+k+x=\binom{k+x}{k}(r-x)+k+x$. Lemma 4. If k, r are integers such that $k \geq 1, r \geq 3$, then

$$
\max _{1 \leq x \leq r}\left|V\left(\mathcal{H}^{*}(k, r, x)\right)\right|=\max _{1 \leq x \leq r} n(x)=n\left(\left\lceil\frac{k(r-1)}{k+1}\right\rceil\right) .
$$

Proof. By Construction 1 we have $\max _{1 \leq x \leq r}\left|V\left(\mathcal{H}^{*}(k, r, x)\right)\right|=\max _{1 \leq x \leq r} n(x)$. Consider the difference function $D(x)=n(x)-n(x+1)=-1+\binom{k+x}{k}[(r-x)-$ $\left.\frac{k+x+1}{x+1}((r-x)-1)\right]=-1+\binom{k+x}{k} \frac{(r-x)(-k)+k+x+1}{x+1}=-1+\frac{(k+x)!}{k!(x+1)!}[(x+1)(k+1)-$ $k r]=-1+\frac{1}{x+1} \prod_{i=1}^{k}\left(1+\frac{x}{i}\right)[(x+1)(k+1)-k r]$.

Since x, k and r are positive integers, $D(x) \geq 0$ if and only if $(x+1)(k+1)-$ $k r \geq 1$ and therefore the maximum $n(x)$ is reached at the smallest x such that $D(x) \geq 0$, i.e., at $x=\left\lceil\frac{k(r-1)}{k+1}\right\rceil$.

3. Graph Approach

In this section we formulate some results on relations between τ-vertex $(k+1)$ critical hypergraphs and forbidden subgraphs for $\mathcal{P}(k)$. They are preceded by the helpful lemmas.
Lemma 5. Let k be a non-negative integer and $\mathcal{P} \in \mathbf{L}_{\leq}$. If $F \in \mathcal{C}(\mathcal{P}(k))$, then $F \in \mathcal{P}(k+1) \backslash \mathcal{P}(k)$.
Proof. By the definition of $\mathcal{C}(\mathcal{P}(k))$ it follows that $F \notin \mathcal{P}(k)$. Moreover, for an arbitrary $v \in V(F)$ we have $F-v \in \mathcal{P}(k)$. It means that there exists a set W, contained in $V(F-v)$, such that $|W| \leq k$ and $(F-v)-W \in \mathcal{P}$. Because $|W \cup\{v\}| \leq k+1$ it leads to $F \in \mathcal{P}(k+1)$.

Let $\mathcal{P} \in \mathbf{L}_{\leq}$and G be a graph. By $\mathcal{H}_{\mathcal{P}}(G)$ we denote a hypergraph whose vertex set is $V \overline{(} G)$ and whose edge set is $\{W \subseteq V(G): G[W] \in \mathcal{C}(\mathcal{P})\}$. Note the following facts.

Remark 1. Let k be a non-negative integer, $\mathcal{P} \in \mathbf{L}_{\leq}$and G be a graph.
(i) $G \in \mathcal{P}(k)$ if and only if $\tau\left(\mathcal{H}_{\mathcal{P}}(G)\right) \leq k$.
(ii) $G \in \mathcal{P}(k+1) \backslash \mathcal{P}(k)$ if and only if $\tau\left(\mathcal{H}_{\mathcal{P}}(G)\right)=k+1$.

Lemma 6. Let k be a non-negative integer and $\mathcal{P} \in \mathbf{L}_{\leq}$. A graph G is a forbidden subgraph for $\mathcal{P}(k)$ if and only if $\mathcal{H}_{\mathcal{P}}(G)$ is τ-vertex $(k+1)$-critical.

Proof. Suppose that $G \in \mathcal{C}(\mathcal{P}(k))$. By Lemma 5 and Remark 1, $\tau\left(\mathcal{H}_{\mathcal{P}}(G)\right)=$ $k+1$. Moreover, for each $v \in V(G)$ we have $G-v \in \mathcal{P}(k)$, which again by Remark 1 implies $\tau\left(\mathcal{H}_{\mathcal{P}}(G-v)\right) \leq k$. Since $\mathcal{H}_{\mathcal{P}}(G-v)=\mathcal{H}_{\mathcal{P}}(G)-v$ we conclude that $\mathcal{H}_{\mathcal{P}}(G)$ is τ-vertex $(k+1)$-critical.

Now assume that $\mathcal{H}_{\mathcal{P}}(G)$ is τ-vertex $(k+1)$-critical. Remark 1 and the equality $\mathcal{H}_{\mathcal{P}}(G-v)=\mathcal{H}_{\mathcal{P}}(G)-v$ yield $G \in \mathcal{P}(k+1) \backslash \mathcal{P}(k)$ and $G-v \in \mathcal{P}(k)$ for each $v \in V(G)$. Hence $G \in \mathcal{C}(\mathcal{P}(k))$.

Lemma 6 and Theorem 3 make it easy to formulate one more observation.
Corollary 1. Let k, r, x be integers such that $k \geq 1, r \geq 3, r \geq x \geq 1$ and let $\mathcal{P} \in \mathbf{L}_{\leq}$. If G is a graph such that $\mathcal{H}_{\mathcal{P}}(G)$ is isomorphic to $\mathcal{H}^{*}(k, r, x)$ defined in Construction 1, then G is a forbidden subgraph for $\mathcal{P}(k)$.

A graph G is a host-graph of a hypergraph \mathcal{H} if $V(G)=V(\mathcal{H})$ and for each edge e of G there is an edge E of \mathcal{H} satisfying $e \subseteq E$. For an arbitrary family \mathcal{F} of graphs, a graph G is an \mathcal{F}-host-graph of a hypergraph \mathcal{H} when it is a host-graph of \mathcal{H} such that $G[E] \in \mathcal{F}$ for each edge E of \mathcal{H}.

Figure 1. The example of a host-graph of a hypergraph.
Observe that for a given family of graphs \mathcal{F} and a hypergraph \mathcal{H} an \mathcal{F}-hostgraph of a hypergraph \mathcal{H} does not necessarily exist. However, we can easily find a family \mathcal{F} and a hypergraph \mathcal{H} having an \mathcal{F}-host-graph. As an example, for a
fixed positive integer r, take $\mathcal{F}=\left\{K_{r}\right\}$ and any r-uniform hypergraph \mathcal{H} (see Figure 1).

Furthermore, if G is a $\mathcal{C}(\mathcal{P})$-host-graph of a hypergraph \mathcal{H} then $\mathcal{H}_{\mathcal{P}}(G)$ is not necessarily isomorphic to \mathcal{H} (see Figure 1 again). We use $\mathcal{C}(\mathcal{P})$-host-graphs to describe forbidden subgraphs for $\mathcal{P}(k)$ with large number of vertices. In Section 2 , we have constructed the family of hypergraphs $\mathcal{H}^{*}(k, r, x)$ that are r-uniform τ-vertex $(k+1)$-critical and have large number of vertices. So, a $\mathcal{C}(\mathcal{P})$-host-graph of a hypergraph $\mathcal{H}^{*}(k, r, x)$ could be potentially a forbidden subgraph for $\mathcal{P}(k)$. First we give some examples of families \mathcal{F} of graphs for which an \mathcal{F}-host-graph of \mathcal{H}^{*} from Construction 1 exists.

Let G be a graph. The symbols $\omega(G)$ and $\alpha(G)$ denote the order of the maximum clique and the cardinality of the maximum independent set of G, respectively.
Lemma 7. Let \mathcal{F} be a family of graphs. Next let k, r, x be integers, $k \geq 1, r \geq 3$, $r>x \geq 1$ and $\mathcal{H}^{*}=\mathcal{H}^{*}(k, r, x)$ be a hypergraph from Construction 1 .
(i) If there is $F \in \mathcal{F}$ such that $|V(F)|=r$ and $\omega(F) \geq x$, then there exists an \mathcal{F}-host-graph of the hypergraph \mathcal{H}^{*}.
(ii) If there is $F \in \mathcal{F}$ such that $|V(F)|=r$ and $\alpha(F) \geq x$, then there exists an \mathcal{F}-host-graph of the hypergraph \mathcal{H}^{*}.
(iii) If there is $F \in \mathcal{F}$ such that $|V(F)|=r$ and moreover $r \geq x+k$, then there exists an \mathcal{F}-host-graph of the hypergraph \mathcal{H}^{*}.
Proof. Using the notations from Construction 1 we show how to obtain an \mathcal{F} -host-graph G of the hypergraph \mathcal{H}^{*}. First we prove statements (i) and (ii). In the hypergraph \mathcal{H}^{*} we add all the edges between vertices in U to obtain K_{x+k} for (i) and we leave U independent for (ii). Then we choose $F \in \mathcal{F}$ such that $|V(F)|=r$ and $\omega(F) \geq x$ (for (i)) or $\alpha(F) \geq x$ (for (ii)). Now in each set A_{i} from Construction 1 we enter a part of F such that each E_{i} induces F in G. Observe that the assumption $\omega(F) \geq x$ or $\alpha(F) \geq x$ guarantees that all steps of this procedure can be done. To construct an \mathcal{F}-host-graph G for (iii) we choose an arbitrary vertex subset W of F of the cardinality $k+x$. Such a subset always exists since $r \geq k+x$. Next, we join some of the vertices in U by edges in such a way that the resulting graph is isomorphic to $F[W]$. Then, similarly to above, in each set A_{i} from Construction 1 we enter a part of the graph F such that each E_{i} induces F in the graph G.

Consider $\mathcal{P} \in \mathbf{L}_{\leq}$and a hypergraph $\mathcal{H}^{*}=\mathcal{H}^{*}(k, r, x)$. As we mentioned before if G is a $\mathcal{C}(\mathcal{P})$-host-graph of a hypergraph \mathcal{H}, then $\mathcal{H}_{\mathcal{P}}(G)$ may be nonisomorphic to \mathcal{H}. Hence we do not know whether a $\mathcal{C}(\mathcal{P})$-host-graph of \mathcal{H}^{*} is a forbidden subgraph for $\mathcal{P}(k)$ or not. In the next theorem, we solve this problem positively for some cases, regardless of whether the hypergraphs $\mathcal{H}_{\mathcal{P}}(G)$ and \mathcal{H}^{*} are isomorphic.

A set S is a vertex-cut-set in a connected graph G if $G-S$ has at least two connected components. For a positive integer x, a connected graph G is x-vertex connected if it does not contain any vertex-cut-set of the cardinality less than x. As usual, for a given graph G and $v \in V(G)$, we denote by $N_{G}(v)$ the set of neighbours of v in G.

Theorem 8. Let k, r, x be integers, $k \geq 1, r \geq 3, r>x \geq 1$, and let $\mathcal{H}^{*}=$ $\mathcal{H}^{*}(k, r, x)$ be the hypergraph from Construction 1. If $\mathcal{P} \in \mathbf{L}_{\leq}$is a class of graphs such that $\mathcal{C}(\mathcal{P})$ consists only of x-vertex connected graphs of order at least r, then each $\mathcal{C}(\mathcal{P})$-host-graph of the hypergraph \mathcal{H}^{*} is a forbidden subgraph for $\mathcal{P}(k)$.

Proof. In the proof we refer to the notations from Construction 1. Let G be an arbitrary $\mathcal{C}(\mathcal{P})$-host-graph of the hypergraph \mathcal{H}^{*}. Applying Lemma 6, the aim is to show that $\mathcal{H}_{\mathcal{P}}(G)$ is τ-vertex $(k+1)$-critical.

First we prove that any $(k+1)$-element subset W of U is a transversal of $\mathcal{H}_{\mathcal{P}}(G)$, i.e., for any $(k+1)$-element subset W of U, the graph $G-W$ does not contain any induced subgraph F satisfying $F \in \mathcal{C}(\mathcal{P})$. Suppose that this is not the case and let F be a subgraph of $G-W$ such that $F \in \mathcal{C}(\mathcal{P})$. Denote by $U_{1}^{\prime}, \ldots, U_{m}^{\prime}$ the subsets of $V(G-W)$ that correspond to U_{1}, \ldots, U_{m} in G. Thus, $\left|U_{i}^{\prime}\right| \leq x-1$ for each $i \in\{1, \ldots, m\}$. Furthermore, since $r>x$, it follows that $V(F)$ is not contained in $U-W$ and consequently F must contain at least one vertex of some A_{i} with $i \in\{1, \ldots, m\}$. Because of the symmetry, we may assume that $A^{\prime}=A_{1} \cap V(F) \neq \emptyset$. Since $\left|A^{\prime} \cup U_{1}^{\prime}\right|<r$, there is a vertex of F that does not belong to $A^{\prime} \cup U_{1}^{\prime}$. Hence, we can divide vertices of F into three parts $V_{1}=V(F) \cap A^{\prime}, V_{2}=V(F) \cap U_{1}^{\prime}$ and $V_{3}=V(F) \backslash\left(V_{1} \cup V_{2}\right)$. By our earlier observation $V_{3} \neq \emptyset$. Since $N_{G}\left(A_{1}\right) \subseteq U_{1}$, it follows that $N_{F}\left(V_{1}\right) \subseteq V_{2}$. Thus, V_{2} is a vertex-cut-set of F. Furthermore, $\left|V_{2}\right| \leq\left|U_{1}^{\prime}\right| \leq x-1$, which contradicts that F is x-vertex connected and proves $\tau\left(\mathcal{H}_{\mathcal{P}}(G)\right) \leq k+1$. Recall that, by the construction of G, each edge of \mathcal{H}^{*} is an edge of $\mathcal{H}_{\mathcal{P}}(G)$. It means, by Theorem 3 , that $\tau\left(\mathcal{H}_{\mathcal{P}}(G)\right) \geq k+1$ and consequently $\tau\left(\mathcal{H}_{\mathcal{P}}(G)\right)=k+1$.

Now, we prove the τ-vertex criticality of $\mathcal{H}_{\mathcal{P}}(G)$. By Remark 1 and the fact that $\mathcal{H}_{\mathcal{P}}(G-v)=\mathcal{H}_{\mathcal{P}}(G)-v$, we have to argue that for any $i \in\{1, \ldots, m\}$ and for any $v \in A_{i}$ we obtain $G-v \in \mathcal{P}(k)$. Let $W^{\prime}=U-U_{i}$. Observe that $\left|W^{\prime}\right|=k$ and $U_{j} \cap W^{\prime} \neq \emptyset$ for $j \neq i$. We show that $(G-v)-W^{\prime} \in \mathcal{P}$ or equivalently that $(G-v)-W^{\prime}$ does not contain an induced subgraph isomorphic to any $F \in \mathcal{C}(\mathcal{P})$. Let $U_{1}^{\prime \prime}, \ldots, U_{m}^{\prime \prime}$ be subsets of $V\left(G-W^{\prime}\right)$ that correspond to U_{1}, \ldots, U_{m} in G. Thus, $\left|U_{j}^{\prime \prime}\right| \leq x-1$ for each $j \neq i$ and $\left|U_{i}^{\prime \prime}\right|=x$. Suppose that there is $F \in \mathcal{C}(\mathcal{P})$ such that $F \leq(G-v)-W^{\prime}$. It is clear that there is $j \neq i$ such that F contains at least one vertex of A_{j}. Therefore, similarly as above, we can divide $V(F)$ into three parts $V_{1}=V(F) \cap A_{j}, V_{2}=V(F) \cap U_{j}^{\prime}$ and $V_{3}=V(F) \backslash\left(V_{1} \cup V_{2}\right)$ with $V_{3} \neq \emptyset$. Since $N_{F}\left(V_{1}\right) \subseteq V_{2}$, the set V_{2} is a vertex cut-set of F, contrary to the x-vertex connectivity of F.

Theorem 8 gives us a very fruitful tool to construct forbidden subgraphs for $\mathcal{P}(k)$.

Corollary 2. Let k, x be positive integers and let $\mathcal{P} \in \mathbf{L} \leq$ be a class of graphs such that each graph in $\mathcal{C}(\mathcal{P})$ is x-vertex connected of order at least r. If r is the order of some $F \in \mathcal{C}(\mathcal{P})$ and $r \geq 3$, and $r \geq k+x$, then there exists G that is a forbidden subgraph for $\mathcal{P}(k)$ and $|V(G)|=\bar{k}+x+\binom{k+x}{x}(r-x)$.

Theorem 9. Let $\mathcal{P} \in \mathbf{L}_{\leq}$. If $r=\max \{|F|: F \in \mathcal{C}(\mathcal{P})\}$ and $G \in \mathcal{C}(\mathcal{P}(1))$, then $|V(G)| \leq\left\lfloor\frac{(r+2)^{2}}{4}\right\rfloor$. Moreover, this bound is achieved for infinitely many classes $\mathcal{P} \in \mathbf{L}_{\leq}$.

Proof. By Lemma 6 and Theorem 1 we only need to show the last sentence of the statement. However, if we put $k=1$ and $x=\left\lceil\frac{r-1}{2}\right\rceil$ in Corollary 2, then for $r \geq 3$ we obtain a forbidden subgraph for $\mathcal{P}(k)$ with $\left\lfloor\frac{(r+2)^{2}}{4}\right\rfloor$ vertices and hence the theorem follows.

The next remark is an immediate consequence of Theorem 9 and the fact that $(\mathcal{P}(k))(1)=\mathcal{P}(k+1)$.

Remark 2. Let k be a non-negative integer and $\mathcal{P} \in \mathbf{L}_{\leq}$. If $\mathcal{C}(\mathcal{P})$ is finite, then the family $\mathcal{C}(\mathcal{P}(k))$ is also finite.

4. The Structure of Forbidden Subgraphs

At the beginning of this section we describe connected forbidden subgraphs for $\mathcal{P}(k)$ in terms of connected forbidden subgraphs for $\mathcal{P}(l)$, where $l<k$. To do it we use the following hypergraph tool.

Remark 3. If $\mathcal{H}_{1} \cup \mathcal{H}_{2}$ is the union of disjoint hypergraphs \mathcal{H}_{1} and \mathcal{H}_{2}, then

$$
\tau\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}\right)=\tau\left(\mathcal{H}_{1}\right)+\tau\left(\mathcal{H}_{2}\right)
$$

Note that the definition of the τ-vertex criticality of a hypergraph and Remark 3 imply the following observation.

Remark 4. Let s be an integer, $s \geq 2$. The union $\mathcal{H}_{1} \cup \cdots \cup \mathcal{H}_{s}$ of disjoint hypergraphs $\mathcal{H}_{1}, \ldots, \mathcal{H}_{s}$ is τ-vertex critical if and only if for each $i \in\{1, \ldots, s\}$ the hypergraph \mathcal{H}_{i} is τ-vertex critical.

The next result is the consequence of Remark 4.

Theorem 10. Let k, s be integers, $k \geq 0, s \geq 1$ and $\mathcal{P} \in \mathbf{L}_{\leq}^{a}$. The union $F_{1} \cup \cdots \cup F_{s}$ of disjoint connected graphs F_{1}, \ldots, F_{s} is a forbidden subgraph for $\mathcal{P}(k)$ if and only if there exist non-negative integers k_{1}, \ldots, k_{s} such that $\sum_{i=1}^{s} k_{i}=$ $k+1-s$ and for each $i \in\{1, \ldots, s\}$ the graph F_{i} is a forbidden subgraph for $\mathcal{P}\left(k_{i}\right)$.

Proof. From Lemma 6 we have $F_{1} \cup \cdots \cup F_{s} \in \mathcal{C}(\mathcal{P}(k))$ if and only if $\mathcal{H}_{\mathcal{P}}\left(F_{1} \cup \cdots \cup\right.$ $\left.F_{s}\right)$ is τ-vertex $(k+1)$-critical. Since $\mathcal{H}_{\mathcal{P}}\left(F_{1} \cup \cdots \cup F_{s}\right)=\mathcal{H}_{\mathcal{P}}\left(F_{1}\right) \cup \cdots \cup \mathcal{H}_{\mathcal{P}}\left(F_{s}\right)$ and because of Remarks 3,4 we know that it is equivalent to the conditions $\tau\left(\mathcal{H}_{\mathcal{P}}\left(F_{1}\right)\right)+\cdots+\tau\left(\mathcal{H}_{\mathcal{P}}\left(F_{s}\right)\right)=k+1$ and for each $i \in\{1, \ldots, s\}$ the hypergraph $\mathcal{H}_{\mathcal{P}}\left(F_{i}\right)$ is τ-vertex critical. It means that there exist non-negative integers k_{1}, \ldots, k_{s} such that for each $i \in\{1, \ldots, s\}$ the hypergraph $\mathcal{H}_{\mathcal{P}}\left(F_{i}\right)$ is τ-vertex $\left(k_{i}+1\right)$-critical and moreover $\sum_{i=1}^{s}\left(k_{i}+1\right)=k+1$. From Lemma 6 these conditions are equivalent to the statement $F_{i} \in \mathcal{C}\left(\mathcal{P}\left(k_{i}\right)\right)$ for each $i \in\{1, \ldots, s\}$ and $\sum_{i=1}^{s} k_{i}=k+1-s$.

Corollary 3. Let k be a non-negative integer and $\mathcal{P} \in \mathbf{L}_{\leq}^{a}$. If F is the union of disjoint connected graphs F_{1}, \ldots, F_{s} and $F \in \mathcal{C}(\mathcal{P}(k))$, then $s \leq k+1$.

Corollary 4. Let k be a non-negative integer and $\mathcal{P} \in \mathbf{L}_{\leq}^{a}$ and let $|\mathcal{C}(\mathcal{P})|=p$. The number of forbidden subgraphs for $\mathcal{P}(k)$ that have exactly $k+1$ connected components is equal to $\binom{k+p}{k+1}$.

Proof. From Theorem 10 we know that forbidden subgraphs for $\mathcal{P}(k)$ with exactly $k+1$ connected components have the form $F_{1} \cup \cdots \cup F_{k+1}$, where for each $i \in\{1, \ldots, k+1\}$ the condition $F_{i} \in \mathcal{C}(\mathcal{P})$ holds. Let $\mathcal{C}(\mathcal{P})=\left\{H_{1}, \ldots, H_{p}\right\}$. Thus, if m_{i} denotes $\left|\left\{l: F_{l}=H_{i}\right\}\right|$, then we actually are interested in the number of sequences $\left(m_{1}, \ldots, m_{p}\right)$ whose elements are non-negative integers and for which the equality $m_{1}+\cdots+m_{p}=k+1$ holds, which leads to the assertion.

The remaining part of this section is devoted to other constructions of forbidden subgraphs for $\mathcal{P}(k)$ in terms of forbidden subgraphs for \mathcal{P}. In this consideration the structure of $\mathcal{H}_{\mathcal{P}}(G)$ is unknown. It means that our results are based only on the analysis of graph structures.

Construction 2. Let s be a positive integer, G_{1}, \ldots, G_{s} be graphs and T be a forest with the vertex set $\left\{x_{1}, \ldots, x_{s}\right\}$. By $T\left(G_{1}, \ldots, G_{s}\right)$ we denote the family of all graphs obtained from disjoint G_{1}, \ldots, G_{s} by the addition of exactly $|E(T)|$ new edges, such that a new edge joins an arbitrary vertex of G_{i} with an arbitrary vertex of G_{j} when $x_{i} x_{j}$ is an edge of T. Next we use a symbol $\left(G_{1}, \ldots, G_{s}\right)$ to denote the family of all graphs $T\left(G_{1}, \ldots, G_{s}\right)$ taken over all s-vertex forests T and all possible orderings of their vertices.

Theorem 11. If k is a non-negative integer and $\mathcal{P} \in \mathbf{L}_{\leq}^{a}$ and $G_{1}, \ldots, G_{k+1} \in$ $\mathcal{C}(\mathcal{P})$, then each graph G in $\left(G_{1}, \ldots, G_{k+1}\right)$ is a forbidden subgraph for $\mathcal{P}(k)$.

Proof. Suppose that $G \in\left(G_{1}, \ldots, G_{k+1}\right)$. It follows that there exists a forest T with $k+1$ vertices x_{1}, \ldots, x_{k+1} such that $G \in T\left(G_{1}, \ldots, G_{k+1}\right)$. Observe that $G \notin \mathcal{P}(k)$ since it contains $k+1$ disjoint induced subgraphs that are forbidden subgraphs for \mathcal{P}.

Next, let $v \in V(G)$. We show that there exist k vertices u_{2}, \ldots, u_{k+1} in $V(G) \backslash\{v\}$ such that the graph resulting from G by the removal of $v, u_{2}, \ldots, u_{k+1}$ is in \mathcal{P}.

The construction of G implies the existence of the unique index i such that $v \in V\left(G_{i}\right)$. Let $x_{j_{1}}, \ldots, x_{j_{k+1}}$ be a new ordering of vertices of T such that $x_{j_{1}}=x_{i}$ and for $l \geq 2$ each vertex $x_{j_{l}}$ has at most one neighbour in $\left\{x_{j_{1}}, \ldots, x_{j_{l-1}}\right\}$. Such an ordering can be done by brute-force search algorithm. Suppose, without loss of generality, that $x_{j_{l}}=x_{l}$ for each $l \in\{1, \ldots, k+1\}$. Consequently, $G_{j_{l}}=G_{l}$ for each $l \in\{1, \ldots, k+1\}$ and especially $G_{i}=G_{1}$.

Now we describe how to choose vertices u_{2}, \ldots, u_{k+1}. For each $j \in\{2, \ldots, k+$ $1\}$ there is at most one edge $x_{l} x_{j}$ with $l<j$. Thus when such an edge exist we take as u_{j} the vertex of G_{j} that is the end of the unique edge joining G_{j} with G_{l} (see the construction of G), otherwise u_{j} is an arbitrary vertex of G_{j}. Observe that $G-\left\{v, u_{2}, \ldots, u_{k+1}\right\}$ is the union of $k+1$ disjoint graphs $G_{1}-v$ and $G_{j}-u_{j}$ for $j \in\{2, \ldots, k+1\}$. The assertion follows by the additivity of \mathcal{P} and properties of all G_{j}.

Theorem 12. Let k be a non-negative integer and $\mathcal{P} \in \mathbf{L}_{\leq}^{a}$. A forest G is a forbidden subgraph for $\mathcal{P}(k)$ if and only if $G \in\left(G_{1}, \ldots, G_{k+1}\right)$, where G_{1}, \ldots, G_{k+1} are trees that are forbidden subgraphs for \mathcal{P}.

Proof. By Theorem 11, it is enough to prove that if G is simultaneously a forest and a forbidden subgraph for $\mathcal{P}(k)$, then there are graphs G_{1}, \ldots, G_{k+1} belonging to $\mathcal{C}(\mathcal{P})$ and there exists a $(k+1)$-vertex forest T such that $G \in T\left(G_{1}, \ldots, G_{k+1}\right)$. To do it we use the induction on k.

By the additivity of \mathcal{P}, each forest that is a forbidden subgraph for $\mathcal{P}(0)=\mathcal{P}$ is a tree. The conclusion follows from the fact that there is only one 1 -vertex forest $T=K_{1}$ and each graph G can be represented as $K_{1}(G)$, which means as $T(G)$.

Assume that the implication is true for parameters less than k and $k \geq 1$. First suppose that G has at least two connected components H_{1}, \ldots, H_{s}. Obviously, each of them is a tree. By Theorem $10, H_{i} \in \mathcal{C}\left(\mathcal{P}\left(k_{i}\right)\right)$, where $\sum_{i=1}^{s} k_{i}=k+$ $1-s$. Because all k_{i} are non-negative integers and $s \geq 2$ we obtain $0 \leq k_{i} \leq k-1$ for each $i \in\{1, \ldots, s\}$. By the induction hypothesis, $H_{i} \in T_{i}\left(G_{1}^{i}, \ldots, G_{k_{i}+1}^{i}\right)$, which implies

$$
G \in T\left(G_{1}^{1}, \ldots, G_{k_{1}+1}^{i}, \ldots, G_{1}^{s}, \ldots, G_{k_{s}+1}^{s}\right)
$$

where T is the union of disjoint T_{1}, \ldots, T_{s} and $G_{j}^{l} \in \mathcal{C}(\mathcal{P})$ for each $l \in\{1, \ldots, s\}$ and $j \in\left\{1, \ldots, k_{l}+1\right\}$. Since each T_{i} has exactly $k_{i}+1$ vertices, the forest T has
$\sum_{i=1}^{s}\left(k_{i}+1\right)$ vertices, which means T has $k+1$ vertices. Thus G has a required form.

Now suppose that G is connected, which means G is a tree.
Claim 13. There is $x \in V(G)$ such that $G-x$ has at least one connected component in \mathcal{P} and if H_{1}, \ldots, H_{p} are all connected components of $G-x$ belonging to \mathcal{P}, then the graph induced in G by $V\left(H_{1}\right) \cup \cdots \cup V\left(H_{p}\right) \cup\{x\}$ is not in \mathcal{P}.

Proof. We describe the procedure which finds the required x in a finite number of steps.

Let v_{0} be an arbitrary vertex of G that is not a leaf (such a vertex always exists because $k \geq 1$, which implies $|V(G)| \geq 3$). Next let G_{1} be an arbitrary connected component of $G-v_{0}$ such that $G_{1} \notin \mathcal{P}$ (since G is in $\mathcal{C}(\mathcal{P}(k))$ and $k \geq 1$ such a connected component exists).

Let v_{1} be the unique neighbour of v_{0} in G_{1}. If $G_{1}-v_{1} \in \mathcal{P}$, then $x=v_{1}$. Otherwise, let G_{2} be an arbitrary connected component of $G_{1}-v_{1}$ such that $G_{2} \notin \mathcal{P}$ and let v_{2} be the unique neighbour of v_{1} in G_{2}. If $G_{2}-v_{2} \in \mathcal{P}$, then $x=v_{2}$. Otherwise, since G is finite, we find the finite sequence of vertices v_{0}, \ldots, v_{q} and the sequence of graphs $G=G_{0}, G_{1}, \ldots, G_{q}$ such that $G_{i}-v_{i} \notin \mathcal{P}$ for $i \in\{0, \ldots, q-1\}, G_{q} \notin \mathcal{P}$ and $G_{q}-v_{q} \in \mathcal{P}$. Moreover for $i \in\{1, \ldots, q\}$ the graph G_{i} is a connected component of $G_{i-1}-v_{i-1}$ and v_{i} is the unique neighbour of v_{i-1} in G_{i}.

Observe that v_{q} can play the role of x. Indeed, the procedure implies that the connected components of $G_{q}-v_{q}$ are simultaneously the connected components of $G-v_{q}$.

Let x be a vertex that satisfies the assumptions of Claim 13. Recall that G is a tree, which means that $G-x$ is a forest. Since G is a forbidden subgraph for $\mathcal{P}(k)$ we obtain $G-x \notin \mathcal{P}(k-1)$. It follows that $G-x$ contains an induced subgraph $G^{\prime} \in \mathcal{C}(\mathcal{P}(k-1))$ that is a forest. By the induction hypothesis $V\left(G^{\prime}\right)$ can be partitioned into k sets V_{1}, \ldots, V_{k} such that for each $i \in\{1, \ldots, k\}$ the graph G_{i}^{\prime} induced by V_{i} in $G-x$ is forbidden for \mathcal{P}. Because \mathcal{P} is additive, all of the graphs G_{i}^{\prime} are connected and as subgraphs of $G-x$ they are trees. Additionally, $\left(V\left(G_{1}^{\prime}\right) \cup \cdots \cup V\left(G_{k}^{\prime}\right) \cup\{x\}\right) \cap V\left(H_{i}\right)=\emptyset$ for $i \in\{1, \ldots, p\}$ (keep in mind that $H_{1}, \ldots, H_{p} \in \mathcal{P}$, see Claim 13).

Recall that, by Claim $13, V\left(H_{1}\right) \cup \cdots \cup V\left(H_{p}\right) \cup\{x\}$ contains at least one subset that induces a graph, say G_{k+1}^{\prime}, forbidden for \mathcal{P}. Hence $G_{1}^{\prime}, \ldots, G_{k+1}^{\prime}$ are disjoint induced subgraphs of G, each of which is in $\mathcal{C}(\mathcal{P})$. Suppose, for a contradiction, that there is a vertex $u \in V(G) \backslash \bigcup_{i=1}^{k+1} V\left(G_{i}^{\prime}\right)$. Since $G \in \mathcal{C}(\mathcal{P}(k))$ we can find at most k different vertices of $G-u$ such that the removal of all of them from $G-u$ results in a graph in \mathcal{P}. Because G contains disjoint induced subgraphs $G_{1}^{\prime}, \ldots, G_{k+1}^{\prime}$ that are forbidden for \mathcal{P}, it is impossible, giving a contradiction.

It means $V(G)=\bigcup_{i=1}^{k+1} V\left(G_{i}^{\prime}\right)$ and, since G is a tree, there is a tree T with $k+1$ vertices such that $G \in T\left(G_{1}^{\prime}, \ldots, G_{k+1}^{\prime}\right)$.

Below we present one more construction of graphs that are forbidden for $\mathcal{P}(k)$.

Construction 3. Let G_{1}, \ldots, G_{s} be rooted graphs, which means that for each $i \in\{1, \ldots, s\}$ the graph G_{i} has a marked vertex v_{i}, called its root. Next let H be a graph with $V(H)=\left\{x_{1}, \ldots, x_{s}\right\}$. We take disjoint H, G_{1}, \ldots, G_{s} and identify vertices v_{i} with x_{i} for all $i \in\{1, \ldots, s\}$. By $H\left|G_{1}, \ldots, G_{s}\right|$ we denote the family of all graphs of this type taken over all possible choices of roots v_{1}, \ldots, v_{s}. More precisely, for each graph G in $H\left|G_{1}, \ldots, G_{s}\right|$ we have $V(G)=\bigcup_{i=1}^{s} V\left(G_{i}\right)$ and $E(G)=\bigcup_{i=1}^{s} E\left(G_{i}\right) \cup\left\{v_{i} v_{j}: x_{i} x_{j} \in E(H)\right\}$ with a choice of roots v_{1}, \ldots, v_{s}. Now we use a symbol $\left|G_{1}, \ldots, G_{s}\right|$ to denote the union of sets $H\left|G_{1}, \ldots, G_{s}\right|$ taken over all s-vertex graphs H.

Theorem 14. If k is a non-negative integer and $\mathcal{P} \in \mathbf{L}_{\leq}^{a}$ and $G_{1}, \ldots, G_{k+1} \in$ $\mathcal{C}(\mathcal{P})$, then each graph G in $\left|G_{1}, \ldots, G_{k+1}\right|$ is a forbidden subgraph for $\mathcal{P}(k)$.

Proof. By the assumption $G \in\left|G_{1}, \ldots, G_{k+1}\right|$, we have that $G \in H \mid G_{1}, \ldots$, $G_{k+1} \mid$ for some $(k+1)$-vertex graph H. Let $x_{i}=v_{i}$ be a common vertex of H and G_{i}, described in Construction 3.

Because G contains disjoint induced subgraphs G_{1}, \ldots, G_{k+1} it follows that $G \notin \mathcal{P}(k)$. If $v \in V(G)$, then $v \in V\left(G_{j}\right)$ for exactly one index $j \in\{1, \ldots, k+1\}$. The graph obtained from $G-v$ by the removal of the vertex set S, where $S=$ $\left\{x_{l}: l \neq j\right\}$, has at least $k+1$ connected components each of which is in \mathcal{P}. The additivity of \mathcal{P} implies $G-v \in \mathcal{P}(k)$.

5. $\quad P_{r}$-Free Graphs

In this section we focus our attention on the class \mathcal{W}_{r} of graphs not containing P_{r} as an induced subgraph. We determine the minimum and maximum number of vertices of a graph in $\mathcal{C}\left(\mathcal{W}_{r}(1)\right)$. First we consider $\mathcal{C}\left(\mathcal{W}_{3}(1)\right)$. Because of Theorem 9 , each graph that is forbidden for $\mathcal{W}_{3}(1)$ has at most six vertices. Searching all non-isomorphic graphs of this type we can derive that $\mathcal{C}\left(\mathcal{W}_{3}(1)\right)$ has 14 elements: $C_{4}, C_{5}, C_{6}, P_{6}, 2 P_{3}, F_{1}, \ldots, F_{9}$, where the graphs F_{i} for $i \in\{1, \ldots, 9\}$ are depicted in Figure 2. Similar arguments we apply to the classes \mathcal{O} of edgeless graphs and \mathcal{K} of complete graphs. In this case, the facts $\mathcal{C}(\mathcal{O})=\left\{K_{2}\right\}$ and $\mathcal{C}(\mathcal{K})=\left\{\overline{K_{2}}\right\}$ yield $\mathcal{C}(\mathcal{O}(1))=\left\{K_{3}, P_{4}, C_{4}, 2 K_{2}\right\}$ and $\mathcal{C}(\mathcal{K}(1))=\left\{\overline{K_{3}}, P_{4}, C_{4}, 2 K_{2}\right\}$.

Of course the brute searching method is not too effective if forbidden subgraphs have big orders. Thus for $r \geq 4$ we start with determining forbidden subgraphs for $\mathcal{W}_{r}(1)$ with the minimum number of vertices. If $G \in \mathcal{C}\left(\mathcal{W}_{r}(1)\right)$,

Figure 2. All the graphs in $\mathcal{C}\left(\mathcal{W}_{3}(1)\right) \backslash\left\{C_{4}, C_{5}, C_{6}, P_{6}, 2 P_{3}\right\}$.
then G must contain an induced subgraph P_{r} after deletion of any vertex. Thus $r+1$ is the lower bound on the number of vertices of a graph in $\mathcal{C}\left(\mathcal{W}_{r}(1)\right)$. We conclude the following fact.

Proposition 1. If r is an integer, $r \geq 3$, then C_{r+1} is a forbidden subgraph for $\mathcal{W}_{r}(1)$ with the minimum number of vertices.

By Theorem 9 we have that the upper bound on the number of vertices of a graph in $\mathcal{C}\left(\mathcal{W}_{r}(1)\right)$ is $\left\lfloor\frac{(r+2)^{2}}{4}\right\rfloor$. However, for $r=4$ we find no graph that realizes this bound. For any $r \geq 5$ there exists a graph in $\mathcal{C}\left(\mathcal{W}_{r}(1)\right)$ of order $\left\lfloor\frac{(r+2)^{2}}{4}\right\rfloor$. To prove this fact we use the class of graphs that contains all the complements of graphs in \mathcal{W}_{r}.

For a given class of graphs $\mathcal{P} \in \mathbf{L}_{\leq}$let us define $\overline{\mathcal{P}}=\{\bar{G}: G \in \mathcal{P}\}$. It is a known fact that if $\mathcal{P} \in \mathbf{L}_{\leq}$, then $\overline{\mathcal{P}}$ is also in \mathbf{L}_{\leq}. Moreover, there is a coincidence between forbidden subgraphs for \mathcal{P} and $\overline{\mathcal{P}}$ given by the equality $\mathcal{C}(\overline{\mathcal{P}})=\{\bar{F}$: $F \in \mathcal{C}(\mathcal{P})\}[2]$. Let $\mathcal{P}_{1}, \mathcal{P}_{2}$ be classes of graphs. By $\mathcal{P}_{1} \circ \mathcal{P}_{2}$ we denote the class of all graphs G whose vertex set can be partitioned into two parts V_{1}, V_{2} (possible empty) such that, for all $i \in\{1,2\}$, if V_{i} is non-empty, then $G\left[V_{i}\right] \in \mathcal{P}_{i}$. In that case $\mathcal{P}_{1} \circ \mathcal{P}_{2}$ is called a product of \mathcal{P}_{1} and \mathcal{P}_{2}. In [4] it is proved that $F \in \mathcal{C}\left(\mathcal{P}_{1} \circ \mathcal{P}_{2}\right)$ if and only if $\bar{F} \in \mathcal{C}\left(\overline{\mathcal{P}}_{1} \circ \overline{\mathcal{P}}_{2}\right)$. It is easy to observe that for each class of graphs \mathcal{P} and a positive integer k, the class $\mathcal{P}(k)$ is identical with $\mathcal{P} \circ \mathcal{Q}$, where Q consists of all the graphs of order at most k. Moreover, for such \mathcal{Q} we have $\overline{\mathcal{Q}}=\mathcal{Q}$. Hence, taking into account the previous consideration, we have the following observation.

Proposition 2. If $\mathcal{P} \in \mathbf{L}_{\leq}$, then
(i) $G \in \mathcal{P}(k)$ if and only if $\bar{G} \in \overline{\mathcal{P}}(k)$, and
(ii) $F \in \mathcal{C}(\mathcal{P}(k))$ if and only if $\bar{F} \in \mathcal{C}(\overline{\mathcal{P}}(k))$, and
(iii) $\bar{G} \in \overline{\mathcal{P}}(k)$ if and only if $\bar{G} \in \overline{\mathcal{P}(k)}$.

Let us consider $\overline{\mathcal{W}_{r}}$. Thus, $\mathcal{C}\left(\overline{\mathcal{W}_{r}}\right)=\left\{\overline{P_{r}}\right\}$ and, by Proposition 2, it follows that $G \in \mathcal{C}\left(\overline{\mathcal{W}}_{r}(1)\right)$ if and only if $\bar{G} \in \mathcal{C}\left(\mathcal{W}_{r}(1)\right)$. As a consequence, the complement of a forbidden subgraph for $\overline{\mathcal{W}_{r}}(1)$ with the maximum number of vertices is a forbidden subgraph for $\mathcal{W}_{r}(1)$ with the maximum number of vertices. Since the vertex connectivity of $\overline{P_{r}}$ is relatively big we will be able to apply Theorem 8. First we give the supporting observation.

Lemma 15. If r is an integer, $r \geq 5$, then $\overline{P_{r}}$ is $\left\lceil\frac{r-1}{2}\right\rceil$-connected.
Proof. Let $G=\overline{P_{r}}$. Observe that the vertices of G can be divided into two sets W_{1}, W_{2} such that subgraphs induced by W_{i} for $i \in\{1,2\}$ are complete graphs and $\left|W_{1}\right|=\left\lceil\frac{r}{2}\right\rceil,\left|W_{2}\right|=\left\lfloor\frac{r}{2}\right\rfloor=\left\lceil\frac{r-1}{2}\right\rceil$. Suppose that there is a vertex-cut-set S of G such that $|S|<\left\lfloor\frac{r}{2}\right\rfloor$. Thus $G-S$ has two disjoint subgraphs G_{1} and G_{2} such that there is no edge joining a vertex of G_{1} with a vertex of G_{2}. Furthermore, observe that $V\left(G_{1}\right)=W_{1} \backslash S$ and $V\left(G_{2}\right)=W_{2} \backslash S$ and moreover, $V\left(G_{1}\right) \neq \emptyset$ and $V\left(G_{2}\right) \neq \emptyset$. Let us denote $W_{1}^{\prime}=W_{1} \backslash S$ and $W_{2}^{\prime}=W_{2} \backslash S$. So, by our assumptions, there is no edge joining a vertex of W_{1}^{\prime} with a vertex of W_{2}^{\prime} in G. This implies that in \bar{G} each vertex of W_{1}^{\prime} is adjacent to each vertex of W_{2}^{\prime}. If $\left|W_{1}^{\prime}\right| \geq 2$ and $\left|W_{2}^{\prime}\right| \geq 2$, then \bar{G} contains C_{4}, which contradicts that $\bar{G}=P_{r}$. If one of the sets $W_{1}^{\prime}, W_{2}^{\prime}$ contains exactly one vertex, then since $|S|<\left\lfloor\frac{r}{2}\right\rfloor$, there are at least three vertices in the second set. Thus \bar{G} has a vertex of degree three, which again gives a contradiction with the assumption that \bar{G} is a path.

By Lemma 7 we have the additional fact.
Lemma 16. Let r be an integer, $r \geq 5$. There exists a $\left\{\overline{P_{r}}\right\}$-host-graph of a hypergraph $\mathcal{H}^{*}\left(1, r,\left\lceil\frac{r-1}{2}\right\rceil\right)$ given in Construction 1.

Finally, by Theorem 8, Lemma 16 and Proposition 2, we obtain the conclusion.

Theorem 17. Let r be an integer, $r \geq 5$. The complement of a $\left\{\overline{P_{r}}\right\}$-hostgraph of the hypergraph $\mathcal{H}^{*}\left(1, r,\left\lceil\frac{r-1}{2}\right\rceil\right)$, given in Construction 1, is a forbidden subgraph for $\mathcal{W}_{r}(1)$ with the maximum number of vertices.

In Figure 3 we present the complement of a forbidden subgraph for $\mathcal{W}_{5}(1)$. Theorem 17 says that this graph has the maximum number of vertices among all the graphs in $\mathcal{C}\left(\mathcal{W}_{5}(1)\right)$. Moreover, by Proposition 2, the graph in Figure 3 is in $\mathcal{C}\left(\overline{\mathcal{W}_{5}(1)}\right)$ and also in $\mathcal{C}\left(\overline{\mathcal{W}_{5}}(1)\right)$ and realizes the maximum order among all the graphs in both these families.

Figure 3. The complement of the graph in $\mathcal{C}\left(\mathcal{W}_{5}(1)\right)$ with the maximum order.

6. Classes of Graphs That Are Closed Under Substitution

Let H, G_{1}, \ldots, G_{n} be graphs and v_{1}, \ldots, v_{n} be an arbitrary ordering of the set $V(H)$. By $H\left[G_{1}, \ldots, G_{n}\right]$ we denote the graph resulting from H by the simultaneous substitution of each vertex v_{i} with the graph G_{i}. Here the substitution of the vertex v with the graph G in the graph H means the removal of v and joining all the vertices of G with all the neighbours of v in H. A class \mathcal{P} of graphs is closed under substitution if for any graphs $H, G_{1}, \ldots, G_{n} \in \mathcal{P}$ and every ordering of $V(H)$, the graph $H\left[G_{1}, \ldots, G_{n}\right]$, called a substitution graph, is also in \mathcal{P}. By $\mathbf{L}_{<}^{*}$ we denote the class of all non-trivial induced hereditary classes of graphs that are closed under substitution. The smallest of such ones (in the sense of the number of elements) is $\left\{K_{1}\right\}$, among most notable we should list the classes \mathcal{O} of edgeless graphs, \mathcal{K} of complete graphs, the class of perfect graphs and the classes \mathcal{W}_{r}, where $r=2$ or $r \geq 4$. Observe that P_{4}-free graphs are just cographs. In this section we characterize all forbidden subgraphs for $\mathcal{P}(1)$ where $\mathcal{P} \in \mathbf{L}_{\leq}^{*}$.

A set $W \subseteq V(G)$ is a module in a graph G if for each two vertices $x, y \in W$, $N_{G}(x) \backslash W=N_{G}(y) \backslash W$. The trivial modules in G are $V(G), \emptyset$ and singletons. A graph having only trivial modules is called prime. By PRIME we denote the class of all prime graphs that have at least two vertices.

In 1997 Giakoumakis [14] proved that for each class of graphs $\mathcal{P} \in \mathbf{L}_{\leq}$its closure under substitution \mathcal{P}^{*} consisting of all the graphs in \mathcal{P} and all their substitution graphs can be characterized by $\mathcal{C}\left(\mathcal{P}^{*}\right)$ that consists of all minimal prime extensions of all the graphs in $\mathcal{C}(\mathcal{P})$. It has to be said that G^{\prime} is a minimal prime extension of G if it is a prime induced supergraph of G and it does not contain as a proper induced subgraph any other prime induced supergraph of G.

Since for each class $\mathcal{P} \in \mathbf{L}_{\leq}^{*}$ we have $\mathcal{P}=\mathcal{P}^{*}$ (by the definition of \mathbf{L}_{\leq}^{*}), the Giakoumakis consideration leads to the following conclusion.

Remark 5. If $\mathcal{P} \in \mathbf{L}_{\leq}$, then $\mathcal{P} \in \mathbf{L}_{\leq}^{*}$ if and only if $\mathcal{C}(\mathcal{P}) \subseteq$ PRIME.

In [4] the following two theorems concerning $\mathcal{C}\left(\mathcal{P}_{1} \circ \mathcal{P}_{2}\right)$ when both $\mathcal{P}_{1}, \mathcal{P}_{2}$ are in \mathbf{L}_{\leq}^{*} have been proven.

Theorem 18 [4]. Let $\mathcal{P}_{1}, \mathcal{P}_{2} \in \mathbf{L}_{\leq}^{*}$ and let $H \in$ PRIME with $V(H)=\left\{v_{1}, \ldots\right.$, $\left.v_{n}\right\}$. If $G=H\left[G_{1}, \ldots, G_{n}\right]$ and $\bar{G} \in \mathcal{C}\left(\mathcal{P}_{1} \circ \mathcal{P}_{2}\right)$, then $H \notin \mathcal{P}_{1}$ or $H \notin \mathcal{P}_{2}$ and there exists a partition (A, B, C, D) of $\{1, \ldots, n\}$ (empty parts are allowed), such that
(i) $G_{i}=K_{1}$ for $i \in A$, and
(ii) $G_{i} \in \mathcal{C}\left(\mathcal{P}_{2}\right) \cap \mathcal{P}_{1}$ for $i \in B$, and
(iii) $G_{i} \in \mathcal{C}\left(\mathcal{P}_{1}\right) \cap \mathcal{P}_{2}$ for $i \in C$, and
(iv) $G_{i} \in \mathcal{C}\left(\mathcal{P}_{1} \cup \mathcal{P}_{2}\right)$ for $i \in D$.

A graph G, different from K_{1}, is strongly decomposable if in its description $G=H\left[G_{1}, \ldots, G_{n}\right]$ with $H \in$ PRIME, all the graphs G_{i} satisfy $\left|V\left(G_{i}\right)\right| \geq 2$. In the next theorem we will restrict our attention to graphs that are strongly decomposable and are forbidden subgraphs for a product of classes of graphs.

Theorem 19 [4]. Let $\mathcal{P} \in \mathbf{L}_{\leq}^{*} \backslash\left\{\mathcal{O}, \mathcal{K},\left\{K_{1}\right\}\right\}$. A graph G is a forbidden subgraph for $\mathcal{P}_{1} \circ \mathcal{P}_{2}$ and it is strongly decomposable if and only if there exists a representation $H\left[G_{1}, \ldots, G_{n}\right]$ of G, with $H \in$ PRIME, $V(H)=\left\{v_{1}, \ldots, v_{n}\right\}$, such that either for $j=1$ and $l=2$ or for $j=2$ and $l=1$ the following three conditions hold:
(i) $H \in \mathcal{C}\left(\mathcal{P}_{j}\right)$, and
(ii) for each $i \in\{1, \ldots, n\}, G_{i} \in \mathcal{C}\left(\mathcal{P}_{l}\right)$, and
(iii) for $M=\left\{i \in\{1, \ldots, n\}: G_{i} \notin \mathcal{P}_{j}\right\}$ and for each $s \in\{1, \ldots, n\} \backslash M$ the subgraph of H induced by $\left\{v_{i}: i \in M \cup\{s\}\right\}$ is in \mathcal{P}_{l}; moreover, if $M=\{1, \ldots, n\}$, then $H \in \mathcal{P}_{l}$.

Observe that PRIME includes only two graphs, $K_{2}, \overline{K_{2}}$, with two vertices, no graph on three vertices and only one graph, P_{4}, with four vertices. Next $\mathcal{C}(\mathcal{O})=\left\{K_{2}\right\}, \mathcal{C}(\mathcal{K})=\left\{\overline{K_{2}}\right\}, \mathcal{C}\left(\left\{K_{1}\right\}\right)=\left\{K_{2}, \overline{K_{2}}\right\}$. Thus if $\mathcal{P} \in \mathbf{L}_{\leq}^{*} \backslash$ $\left\{\mathcal{O}, \mathcal{K},\left\{K_{1}\right\}\right\}$, then the family $\mathcal{C}(\mathcal{P})$ has to contain at least one graph in PRIME \backslash $\left\{K_{2}, \overline{K_{2}}\right\}$. Since each graph on at least 4 vertices contains as an induced subgraph K_{2} or $\overline{K_{2}}$ and graphs in $\mathcal{C}(\mathcal{P})$ are not comparable with respect to induced subgraph relation, we conclude that $\mathcal{C}(\mathcal{P}) \cap\left\{K_{2}, \overline{K_{2}}\right\}=\emptyset$. Hence we have the following fact.

Remark 6. If $\mathcal{P} \in \mathbf{L}_{\leq}^{*} \backslash\left\{\mathcal{O}, \mathcal{K},\left\{K_{1}\right\}\right\}$, then $\left\{K_{2}, \overline{K_{2}}\right\} \subseteq \mathcal{P}$.
Recall that $\mathcal{P}(1)=\mathcal{P} \circ\left\{K_{1}\right\}$ and $\left\{K_{1}\right\} \in \mathbf{L}_{\leq}^{*}$. Hence, from Theorem 19, we obtain the following immediate consequence.

Corollary 5. If $\mathcal{P} \in \mathbf{L}_{\leq}^{*} \backslash\left\{\mathcal{O}, \mathcal{K},\left\{K_{1}\right\}\right\}$, then G is a forbidden subgraph for $\mathcal{P}(1)$ that is strongly decomposable if and only if $G=K_{2}\left[H_{1}, H_{2}\right]$ or $G=\overline{K_{2}}\left[H_{1}, H_{2}\right]=$ $H_{1} \cup H_{2}$ or $G=H_{1}\left[G_{1}, \ldots, G_{n}\right]$, where $H_{1}, H_{2} \in \mathcal{C}(\mathcal{P})$ and $G_{1}, \ldots, G_{n} \in\left\{K_{2}, \overline{K_{2}}\right\}$.

Proof. We apply Theorem 19 together with the notations. If $\mathcal{P}=\mathcal{P}_{j}$ and $\left\{K_{1}\right\}=\mathcal{P}_{l}$, then, by Remark $6, M=\emptyset$ and the graph induced in H by $\left\{v_{i}\right.$: $i \in M \cup\{s\}\}$ is K_{1}. Consequently we obtain that $H_{1}\left[G_{1}, \ldots, G_{n}\right]$ is forbidden for $\mathcal{P} \circ\left\{K_{1}\right\}=\mathcal{P}(1)$. If $\mathcal{P}=\mathcal{P}_{l}$ and $\left\{K_{1}\right\}=\mathcal{P}_{j}$, then H is one of the graphs $K_{2}, \overline{K_{2}}$. By Remark 6 we have $M=\{1,2\}$ and we obtain that $K_{2}\left[H_{1}, H_{2}\right]$ and $H_{1} \cup H_{2}$ are graphs in $\mathcal{C}(\mathcal{P}(1))$. Theorem 19 guarantees no other strongly decomposable graphs in $\mathcal{C}(\mathcal{P}(1))$.

In [5] the author explained that an arbitrary graph can be obtained from a prime graph by the iterative substitution of some of its vertices by prime graphs. This procedure corresponds to the well-known construction (which has been discovered many times and is based on the Gallai Theorem [13]) called a tree decomposition of a graph. For a given graph G, all prime graphs applied in this tree-like iterative procedure and all their prime induced subgraphs create the unique family denoted by $Z^{*}(G)$. In the next investigation we use the following fact from this field.

Lemma 20 [5]. Let G, G^{\prime} be graphs. If $G^{\prime} \in$ PRIME, then $G^{\prime} \leq G$ if and only if $G^{\prime} \in Z^{*}(G)$.

Consequently we have the following observation.
Lemma 21. If $\mathcal{P} \in \mathbf{L}_{\leq}^{*}$ and G is a graph, then $G \in \mathcal{P}$ if and only if $Z^{*}(G) \subseteq \mathcal{P}$.
Proof. If $G \in \mathcal{P}$, then all induced subgraphs of G are in \mathcal{P}, which means $Z^{*}(G)$ $\subseteq \mathcal{P}$.

Suppose that $Z^{*}(G) \subseteq \mathcal{P}$ and, for a contradiction, $G \notin \mathcal{P}$. Hence there is an induced subgraph of G, say F, such that $F \in \mathcal{C}(\mathcal{P})$ (obviously $F \notin \mathcal{P}$). Remark 5 implies that F is prime, which by Lemma 20 leads to $F \in Z^{*}(G)$, and gives a contradiction.

We use Lemma 21 in proofs of forthcoming results.
Lemma 22. Let $\mathcal{P} \in \mathbf{L}_{\leq}^{*}$ and $H_{1}, H_{2} \in \mathcal{C}(\mathcal{P})$. If v_{1}, \ldots, v_{n} is an arbitrary ordering of the set $V\left(H_{1}\right)$, then $H_{1}\left[H_{2}, K_{1}, \ldots, K_{1}\right]$ is a forbidden subgraph for $\mathcal{P}(1)$.

Proof. Let $G=H_{1}\left[H_{2}, K_{1}, \ldots, K_{1}\right]$ and let $V(G)=\left\{u_{1}, \ldots, u_{l}, v_{2}, \ldots, v_{n}\right\}$, where v_{1} is substituted with vertices u_{1}, \ldots, u_{l} of H_{2}. Hence for each $i \in\{1, \ldots, l\}$ the vertices $u_{i}, v_{2}, \ldots, v_{n}$ induce H_{1} in G.

First we observe that $G-v \notin \mathcal{P}$ for any vertex $v \in V(G)$. Indeed, if $v=v_{i}$ for some $i \in\{2, \ldots, n\}$, then H_{2} is an induced subgraph of $G-v$. If $v=u_{i}$ for some $i \in\{1, \ldots, l\}$, then H_{1} is an induced subgraph of $G-v$.

Now we argue that for each $v \in V(G)$ there is $x \in V(G) \backslash\{v\}$ such that $G-\{v, x\} \in \mathcal{P}$. If $v \in\left\{v_{2}, \ldots, v_{n}\right\}$, then we choose as x one of the vertices u_{1}, \ldots, u_{l}. If $v \in\left\{u_{1}, \ldots, u_{l}\right\}$, then we choose as x one of the vertices v_{2}, \ldots, v_{n}. In both cases $Z^{*}(G-\{v, x\})$ contains only proper prime induced subgraphs of H_{1} and H_{2}, which means $Z^{*}(G-\{v, x\}) \subseteq \mathcal{P}$ and, by Lemma 21, implies G $\{v, x\} \in \mathcal{P}$.

Lemma 23. Let $\mathcal{P} \in \mathbf{L}_{\leq}^{*}, H_{1}, H_{2} \in \mathcal{C}(\mathcal{P})$ and $X \in$ PRIME. If v_{1}, \ldots, v_{n} is an ordering of the set $V(X)$ such that $X\left[\left\{v_{2}, \ldots, v_{n}\right\}\right]=H_{1}$ and $X-v_{i} \in \mathcal{P}$ for each $i \in\{2, \ldots, n\}$, then $X\left[H_{2}, K_{1}, \ldots, K_{1}\right]$ is a forbidden subgraph for $\mathcal{P}(1)$.

Proof. Let $G=X\left[H_{2}, K_{1}, \ldots, K_{1}\right]$ and let $V(G)=\left\{u_{1}, \ldots, u_{l}, v_{2}, \ldots, v_{n}\right\}$, where v_{1} is substituted with vertices u_{1}, \ldots, u_{l} of H_{2}. Thus G contains two disjoint subgraphs H_{1}, H_{2} induced by vertices v_{2}, \ldots, v_{n} and u_{1}, \ldots, u_{l}, respectively. Hence $G \notin \mathcal{P}(1)$.

Now we argue that each pair of vertices u_{i}, v_{j}, with $i \in\{1, \ldots, l\}$ and $j \in$ $\{2, \ldots, n\}$ satisfies the condition $G-\left\{u_{i}, v_{j}\right\} \in \mathcal{P}$. Indeed, $Z^{*}\left(G-\left\{u_{i}, v_{j}\right\}\right)$ contains only prime graphs that are induced subgraphs of $H_{2}-u_{i}$ and $X-v_{j}$. Both these graphs are in \mathcal{P}, which implies $Z^{*}\left(G-\left\{u_{i}, v_{j}\right\}\right) \subseteq \mathcal{P}$. Lemma 21 yields $G-\left\{u_{i}, v_{j}\right\} \in \mathcal{P}$, as we desired.

Now we are ready to prove that $G-v \in \mathcal{P}(1)$ for each $v \in V(G)$, which means that for each vertex $v \in V(G)$ there is $x \in V(G) \backslash\{v\}$ such that $G-\{x, v\} \in \mathcal{P}$. If $v=u_{i}$ for some $i \in\{1, \ldots, l\}$, then we put $x=v_{j}$ for an arbitrary $j \in\{2, \ldots, n\}$, and if $v=v_{j}$ for some $j \in\{2, \ldots, n\}$, then we put $x=u_{i}$ for an arbitrary $i \in\{1, \ldots, l\}$. The earlier consideration confirms that $G-\{x, v\} \in \mathcal{P}$ in both cases.

Theorem 24. Let $\mathcal{P} \in \mathbf{L}_{\leq}^{*} \backslash\left\{\mathcal{O}, \mathcal{K},\left\{K_{1}\right\}\right\}$. A graph G is a forbidden subgraph for $\mathcal{P}(1)$ if and only if G has one of the following forms:
(i) $G=G_{1}\left[H_{1}, H_{2}\right]$, or
(ii) $G=H_{1}\left[G_{1}, \ldots, G_{\left.\mid V\left(H_{1}\right)\right]}\right.$, or
(iii) $G=H_{1}\left[H_{2}, K_{1}, \ldots, K_{1}\right]$, or
(iv) $G=X\left[H_{2}, K_{1}, \ldots, K_{1}\right]$, or
(v) $G=Y\left[G_{1}, \ldots, G_{s}, K_{1}, \ldots, K_{1}\right]$,
where $H_{1}, H_{2} \in \mathcal{C}(\mathcal{P})$ and $G_{i} \in\left\{K_{2}, \overline{K_{2}}\right\}$ for all permissible i; further $X, Y \in$ PRIME and, assuming that $V(X)=\left\{v_{1}, \ldots, v_{n_{1}}\right\}$ and $V(Y)=\left\{u_{1}, \ldots, u_{n_{2}}\right\}$, the following conditions are fulfilled:

- $X\left[\left\{v_{2}, \ldots, v_{n_{1}}\right\}\right] \in \mathcal{C}(\mathcal{P})$, and
- for each $i \in\left\{2, \ldots, n_{1}\right\}, X-v_{i} \in \mathcal{P}$, and
- $n_{2} \geq s+2$, and
- for each $i \in\{1, \ldots, s\}, Y-u_{i} \in \mathcal{P}$, and
- for each $i \in\left\{s+1, \ldots, n_{2}\right\}, Y-u_{i} \notin \mathcal{P}$ and there exists $j \in\left\{s+1, \ldots, n_{2}\right\} \backslash\{i\}$ satisfying $Y-\left\{u_{i}, u_{j}\right\} \in \mathcal{P}$.

Proof. Lemmas 22, 23 and Corollary 5 show that graphs having forms (i), (ii), (iii) or (iv) are forbidden subgraphs for $\mathcal{P}(1)$. Recall that a graph G belongs to $\mathcal{C}(\mathcal{P}(1))$ if the graph resulting by the removal of any vertex of G does not belong to \mathcal{P} and for each vertex $v \in V(G)$ there exists another vertex $x \in V(G)$ such that $G-\{v, x\} \in \mathcal{P}$. Observe that if a graph has the form (v), then it satisfies these conditions. Namely, if v is one of the vertices of G_{i} with $i \in\{1, \ldots, s\}$, then we choose another vertex of G_{i} as x. If v is one of the vertices u_{i} with $i \geq s+1$, then the role of x is played by u_{j} given by the assumptions of the theorem. In both cases the conclusion follows by the construction of G.

Corollary 5 characterizes all strongly decomposable graphs in $\mathcal{C}(\mathcal{P}(1))$. It means that to finish the proof it is enough to show that if G is not strongly decomposable and forbidden for $\mathcal{P}(1)$, then G has either the form (iii) or (iv) or (v). The mentioned earlier observation that graphs in $\mathcal{C}(\mathcal{P}(1))$ are pairwise incomparable with respect to the induced subgraph relation allows us to to simplify analysis. Namely, it is enough to show that such G contains as an induced subgraph a graph of one of the forms (i), (ii), (iii), (iv), (v). As a consequence, we observe that G has to be of the corresponding form.

Assume that G is not strongly decomposable. By Theorem 18, Remark 5 and the iterative construction of graphs via prime graphs, we can assume that G has a form $W\left[U_{1}, \ldots, U_{l}, K_{1}, \ldots, K_{1}\right]$, where $W, U_{1}, \ldots, U_{l} \in$ PRIME and $V(W)=\left\{w_{1}, \ldots, w_{l}, w_{l+1}, \ldots, w_{n}\right\}$ with $n \geq l+1$ (we adopt the convention that $l=0$ is equivalent to $\left.G=W\left[K_{1}, \ldots, K_{1}\right]=W\right)$. Moreover, graphs U_{1}, \ldots, U_{l} are forbidden subgraphs for \mathcal{P} or are elements of the set $\left\{K_{2}, \overline{K_{2}}\right\}$.

Suppose that two of the graphs U_{1}, \ldots, U_{l}, say U_{i}, U_{j}, are forbidden subgraphs for \mathcal{P}. Hence $K_{2}\left[U_{i}, U_{j}\right]$ or $\overline{K_{2}}\left[U_{i}, U_{j}\right]$ is an induced subgraph of G depending on whether or not w_{i}, w_{j} are adjacent in W. In both cases it leads to the conclusion that G contains an induced subgraph of the form (i).

In the next part of the proof we assume that at most one among graphs U_{1}, \ldots, U_{l} is in $\mathcal{C}(\mathcal{P})$ and, without loss of generality, only U_{1} can be such a graph. Following this assumption $W \notin \mathcal{P}$. If not, then $Z^{*}(G-v) \subseteq \mathcal{P}$, where v is an arbitrary vertex of U_{1} and next, by Remark $6, G-v \in \mathcal{P}$ giving $G \in \mathcal{P}(1)$, which is impossible. Thus $W \notin \mathcal{P}$.

Now we consider the case $U_{1} \in \mathcal{C}(\mathcal{P})$. It means that if $l \geq 2$, then $U_{2}, \ldots, U_{l} \in$ $\left\{K_{2}, \overline{K_{2}}\right\}$. If there is $W^{\prime} \leq W$ such that $W^{\prime} \in \mathcal{C}(\mathcal{P})$ with $w_{1} \in V\left(W^{\prime}\right)$, then G contains an induced subgraph of the form (iii). Otherwise, since $W \notin \mathcal{P}$
there is $W^{\prime} \leq W$ such that $W^{\prime} \in \mathcal{C}(\mathcal{P})$ but $w_{1} \notin V\left(W^{\prime}\right)$ and moreover, for $W^{\prime \prime}=W\left[\left\{w_{1}\right\} \cup V\left(W^{\prime}\right)\right]$ we have $W^{\prime \prime}-x \in \mathcal{P}$ for each $x \in V\left(W^{\prime}\right)$. Observe that $W^{\prime \prime}\left[U_{1}, K_{1}, \ldots, K_{1}\right] \leq G$ and $W^{\prime \prime}\left[U_{1}, K_{1}, \ldots, K_{1}\right]$ is of the form (iv), which completes the proof in this case.

Suppose that $U_{1} \notin \mathcal{C}(\mathcal{P})$. Hence $G=W\left[U_{1}, \ldots, U_{l}, K_{1}, \ldots, K_{1}\right]$, where U_{1}, $\ldots, U_{l} \in\left\{K_{2}, \overline{K_{2}}\right\}$. Assume that $V(G)=\left\{w_{1}^{1}, w_{1}^{2}, \ldots, w_{l}^{1}, w_{l}^{2}, w_{l+1}, \ldots, w_{n}\right\}$, where for $i \in\{1, \ldots, l\} w_{i}$ is substituted with vertices w_{i}^{1}, w_{i}^{2} of either K_{2} or $\overline{K_{2}}$. Next we show that $W-w_{i} \notin \mathcal{P}$ for $i \in\{l+1, \ldots, n\}$. For a contradiction, let $W-w_{i} \in \mathcal{P}$ for some i from the range. Hence, because $K_{2}, \overline{K_{2}} \in \mathcal{P}$, by Remark 6 , we have $Z^{*}\left(G-w_{i}\right) \subseteq \mathcal{P}$. It implies, by Lemma 21, that $G \in \mathcal{P}(1)$ and gives a contradiction. Therefore $W-w_{i} \notin \mathcal{P}$ for $i \in\{l+1, \ldots, n\}$. By the definition of $\mathcal{C}(\mathcal{P}(1))$ we know that there exists a vertex $v \in V(G) \backslash\left\{w_{i}\right\}$ such that $G-\left\{w_{i}, v\right\} \in \mathcal{P}$. We ask whether or not v could be w_{t}^{j} for some $t \in\{1, \ldots, l\}$ and $j \in\{1,2\}$. Without loss of generality, let $v=w_{t}^{2}$ for some t from the range. Thus $G\left[\left\{w_{1}^{1}, \ldots, w_{l}^{1}, w_{l+1}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{n}\right\}\right]=W-w_{i}$. We observed previously that $W-w_{i} \notin \mathcal{P}$, which means that $G-\left\{w_{i}, w_{t}^{2}\right\} \notin \mathcal{P}$ and excludes this possibility. Thus v must be w_{j} for some $j \in\{l+1, \ldots, n\} \backslash\{i\}$ and moreover, it implies $n \geq l+2$. Finally, we show that if $l \geq 1$, then $W-w_{i} \in \mathcal{P}$ for each $i \in\{1, \ldots, l\}$. If not, then $W-w_{i} \notin \mathcal{P}$ for some $i \in\{1, \ldots, l\}$. It implies $G-\left\{w_{i}^{1}, w_{i}^{2}\right\} \notin \mathcal{P}$. By the definition of graphs in $\mathcal{C}(\mathcal{P}(1))$ we know that there exists $v \in V(G) \backslash\left\{w_{i}^{2}\right\}$ such that $G-\left\{v, w_{i}^{2}\right\} \in \mathcal{P}$. Obviously $v \neq w_{i}^{1}$. Moreover, $W-w_{t} \leq G-\left\{w_{t}, w_{i}^{2}\right\}$ for each $t \in\{l+1, \ldots, n\}$ and $W \leq G-\left\{w_{t}^{j}, w_{i}^{2}\right\}$ for each $t \in\{1, \ldots, l\} \backslash\{i\}$ and $j \in\{1,2\}$. Because $W-w_{t} \notin \mathcal{P}$ for $t \in\{l+1, \ldots, n\}$ and $W \notin \mathcal{P}$, we obtain a contradiction. Hence we conclude that $W-w_{i} \in \mathcal{P}$ for each $i \in\{1, \ldots, l\}$. Thus, adopting $l=s$ and $n=n_{2}, G$ satisfies all the conditions that define the form (v) in this case.

In Figures $4,5(\mathrm{~d}), 5(\mathrm{e})$, and 6 we present all possible graphs in $\mathcal{C}\left(\mathcal{W}_{4}(1)\right)$ that have forms pointed out in Theorem 24(i), 24(iii) and Theorem 24(iv). Some examples of graphs in $\mathcal{C}\left(\mathcal{W}_{4}(1)\right)$ having the construction given by Theorem 24(ii) are shown in Figures 5(a), 5(b), 5(c). Figure 7 illustrates Theorem 24(v). It refers to cases $s=0, s=1, s=2$, represented by Y being $C_{5}, \overline{P_{5}}, P_{6}$, respectively. It should be mentioned here that the graph in Figure 3 has the form given by Theorem 24(v) with $s=0$.

Figure 4. All the graphs in $\mathcal{C}\left(\mathcal{W}_{4}(1)\right)$ of the form given in Theorem 24(i).

(a)

(b)

$$
P_{4}\left[\bar{K}_{2}, \bar{K}_{2}, \bar{K}_{2}, \bar{K}_{2}\right]
$$

(c)

$$
P_{4}\left[\bar{K}_{2}, K_{2}, \bar{K}_{2}, \bar{K}_{2}\right]
$$

$$
P_{4}\left[K_{2}, K_{2}, \bar{K}_{2}, K_{2}\right]
$$

(d)

$$
P_{4}\left[K_{1}, P_{4}, K_{1}, K_{1}\right]
$$

$$
P_{4}\left[P_{4}, K_{1}, K_{1}, K_{1}\right]
$$

Figure 5 . Some examples of graphs in $\mathcal{C}\left(\mathcal{W}_{4}(1)\right)$ of the form given in Theorem 24(ii) ((a), (b), (c)) and all the graphs in $\mathcal{C}\left(\mathcal{W}_{4}(1)\right)$ of the form given in Theorem 24(iii)) ((d), (e)).

Figure 6. The unique graph in $\mathcal{C}\left(\mathcal{W}_{4}(1)\right)$ of the form given in Theorem 24(iv).

7. Concluding Remarks

In this final section we would like to present relations between the concept of a $\mathcal{P}(k)$-apex graph and a concept of an (H, k)-stable graph. According to [12, 16], let H be a fixed graph, a graph G is (H, k)-stable whenever the deletion of any set of k edges of G results in a graph that still contains a subgraph isomorphic to H.

An (H, k)-stable graph G is minimal if for every $A \subseteq E(G),|A|=k$, there is $e \in E(G) \backslash A$ such that $(G-A)-e$ does not contain a subgraph isomorphic to H. Let us denote by $\operatorname{Stab}(H, k)$ the set of all minimal (H, k)-stable graphs.

Proposition 3. Let k be an integer and H be a graph such that $|V(H)| \geq 4$. Next let \mathcal{Q} be the class of all graphs that do not contain $L(H)$ (the line graph of $H)$ as an induced subgraph. If $G \in \operatorname{Stab}(H, k)$, then $L(G) \in \mathcal{C}(\mathcal{Q}(k))$.

Proof. On the contrary, suppose that $L(G) \notin \mathcal{C}(\mathcal{Q}(k))$. Consider now two cases.
(a) $Y=C_{5} ; s=0$:

(b) $Y=P_{6} ; s=2$:

$$
G_{1}=P_{6}\left[\bar{K}_{2}, \bar{K}_{2}, K_{1}, K_{1}, K_{1}, K_{1}\right]
$$

$$
G_{2}=P_{6}\left[K_{2}, K_{2}, K_{1}, K_{1}, K_{1}, K_{1}\right]
$$

$$
G_{3}=P_{6}\left[K_{2}, \bar{K}_{2}, K_{1}, K_{1}, K_{1}, K_{1}\right]
$$

(c) $Y=\overline{P_{5}} ; s=3$:

$$
G_{1}=\overline{P_{5}}\left[\bar{K}_{2}, K_{2}, K_{2}, K_{1}, K_{1}\right]
$$

$G_{2}=\overline{P_{5}}\left[K_{2}, \bar{K}_{2}, \bar{K}_{2}, K_{1}, K_{1}\right]$

Figure 7. Some examples of graphs in $\mathcal{C}\left(\mathcal{W}_{4}(1)\right)$ of the form given in Theorem 24(v).

Case 1. $L(G) \in \mathcal{Q}(k)$. It follows that there is a set $B \subseteq V(L(G)),|B| \leq k$ such that $L(G)-B \in \mathcal{Q}$. The graph $L(G)-B$ is a line graph of some graph G^{\prime}. Thus $L(G)-B=L\left(G^{\prime}\right) \nsupseteq L(H)$. From Whitney’s Theorem [22] and assumptions it follows that $G^{\prime} \nsupseteq H$. The graph G^{\prime} is obtained by removing at most k edges from the graph G which correspond in a unique way to the vertices of the set B. This contradicts our assumption that $G \in \operatorname{Stab}(H, k)$.

Case 2. $L(G) \geq F \in \mathcal{C}(\mathcal{Q}(k))$. If $L(G)=F$, then the conclusion is obvious. Suppose that $L(G) \neq F$. Thus F is a line graph of some graph G^{\prime} which is a proper spanning subgraph of G. Let $e \in E(G) \backslash E\left(G^{\prime}\right)$. From the assumption $G \in \operatorname{Stab}(H, k)$ it follows that for the edge e there is a set $B^{\prime} \subseteq E(G) \backslash\{e\}$, $\left|B^{\prime}\right|=k$ such that $(G-e)-B^{\prime}$ has no subgraph H. Obviously, $\left|B^{\prime} \cap E\left(G^{\prime}\right)\right| \leq k$. Since $G^{\prime} \subseteq G-e$, then $G^{\prime}-B^{\prime}$ has no subgraph H. This fact implies that there is
a set $A^{\prime} \subseteq V(F),\left|A^{\prime}\right|=k$ such that $F-A^{\prime} \in \mathcal{Q}$. This contradicts our assumption that $F \in \mathcal{C}(\mathcal{Q}(k))$ and the proof is complete.

In [16] the minimum size of $\left(P_{4}, k\right)$-stable graphs was determined. In Section 5 of this paper we deal with the minimum and maximum order of graphs in $\mathcal{C}\left(\mathcal{W}_{r}(k)\right)$. Since $L\left(P_{r+1}\right)=P_{r}$ we have the following observation.

Corollary 6. Let k, r be integers, $r \geq 3$. If $G \in \operatorname{Stab}\left(P_{r+1}, k\right)$, then $L(G) \in$ $\mathcal{C}\left(\mathcal{W}_{r}(k)\right)$.

Let us define a vertex version of the H-stability. Let H be a graph and k be a positive integer. A graph G of order at least k is said to be (H, k)-vertex stable if for any set S of k vertices the subgraph $G-S$ contains an induced subgraph isomorphic to H. An (H, k)-vertex stable graph G is minimal if for every $W \subseteq V(G),|W|=k$, there is $v \in V(G) \backslash W$ such that $(G-W)-v$ does not contain H. Let us denote by $\operatorname{Stab}_{V}(H, k)$ the set of all minimal (H, k)-vertex stable graphs. Observe the following fact.

Proposition 4. If k is an integer and H is a connected graph, then $\operatorname{Stab}_{V}(H, k)=$ $\mathcal{C}(\mathcal{P}(k))$, where \mathcal{P} is the class of all graphs that do not contain H as an induced subgraph.

Proof. If $G \in \mathcal{C}(\mathcal{P}(k))$, then $G-v \in \mathcal{P}(k)$ and $G-v \notin \mathcal{P}(k-1)$ for every $v \in V(G)$. In the case when $G-v \in \mathcal{P}(k-1)$ for an vertex v, then there is a set $A \subseteq V(G),|A|=k-1$ such that $(G-v)-A \in \mathcal{P}$. This contradicts our assumption that $G \in \mathcal{C}(\mathcal{P}(k))$. It implies that for every set $A \subseteq V(G),|A|=k$ we have $G-A \geq H$, i.e., $G \in \operatorname{Stab}_{V}(H, k)$. Thus, $\mathcal{C}(\mathcal{P}(k)) \subseteq \operatorname{Stab}_{V}(H, k)$.

Now let $G \in \operatorname{Stab}_{V}(H, k)$. Then for every $A \subseteq V(G),|A|=k$, there is $v \in V(G) \backslash A$ such that $(G-A)-v$ does not contain H as an induced subgraph. It follows that for every $v \in V(G)$ there is a set $A \subseteq V(G),|A|=k$ such that $(G-v)-A \in \mathcal{P}$, i.e., $G \in \mathcal{C}(\mathcal{P}(k))$. Hence $\operatorname{Stab}_{V}(H, k) \subseteq \mathcal{C}(\mathcal{P}(k))$.

Yet another version of an (H, k)-stable graph was studied in a series of papers $[3,6-8,10,11]$ where the (H, k)-vertex stability was considered taking into account, instead of induced subgraphs, subgraphs of G isomorphic to H. In case of $H=$ K_{q}, both concepts coincide.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[2] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, Ed., Advances in Graph Theory (Vishawa International Publication Gulbarga, 1991).
[3] S. Cichacz, A. Görlich, M. Zwonek and A. Żak, On $\left(C_{n} ; k\right)$ stable graphs, Electron J. Combin. 18 (2011) \#P205.
[4] E. Drgas-Burchardt, Forbidden graphs for classes of split-like graphs, European J. Combin. 39 (2014) 68-79.
doi:10.1016/j.ejc.2013.12.004
[5] E. Drgas-Burchardt, On prime inductive classes of graphs, European J. Combin. 32 (2011) 1317-1328. doi:10.1016/j.ejc.2011.05.001
[6] A. Dudek, A. Szymański and M. Zwonek, (H, k) stable graphs with minimum size, Discuss. Math. Graph Theory 28 (2008) 137-149. doi:10.7151/dmgt. 1397
[7] A. Dudek and M. Zwonek, (H, k) stable bipartite graphs with minimum size, Discuss. Math. Graph Theory 29 (2009) 573-581. doi:10.7151/dmgt. 1465
[8] A. Dudek and A. Żak, On vertex stability with regard to complete bipartite subgraphs, Discuss. Math. Graph Theory 30 (2010) 663-669. doi:10.7151/dmgt. 1521
[9] S. Dziobak, Excluded-minor characterization of apex-outerplanar graphs, PhD Thesis (Louisiana State Univ., 2011).
[10] J.-L. Fouquet, H. Thuillier, J.-M. Vanherpe and A.P. Wojda, On $\left(K_{q} ; k\right)$ vertex stable graphs with minimum size, Discrete Math. 312 (2012) 2109-2118. doi:10.1016/j.disc.2011.04.017
[11] J.-L. Fouquet, H. Thuillier, J.-M. Vanherpe and A.P. Wojda, On ($\left.K_{q} ; k\right)$ stable graphs with small k, Electron. J. Combin. 19 (2012) \#P50.
[12] P. Frankl and G.Y. Katona, Extremal k-edge-Hamiltonian hypergraphs, Discrete Math. 308 (2008) 1415-1424. doi:10.1016/j.disc.2007.07.074
[13] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Academiae Scientiarum Hungaricae 18 (1967) 25-66. doi:10.1007/BF02020961
[14] V. Giakoumakis, On the closure of graphs under substitution, Discrete Math. 177 (1997) 83-97. doi:10.1016/S0012-365X(96)00358-5
[15] A. Gyárfás, J. Lehel and Zs. Tuza, Upper bound on the order of τ-critical hypergraphs, J. Combin. Theory Ser. B 33 (1982) 161-165. doi:10.1016/0095-8956(82)90065-X
[16] I. Horváth and G.Y. Katona, Extremal P_{4}-stable graphs, Discrete Appl. Math. 159 (2011) 1786-1792. doi:10.1016/j.dam.2010.11.016
[17] J.M. Lewis and M. Yannakakis, The node-deletion problem for hereditary properties is NP-complete, J. Comput. System Sci. 20 (1980) 219-230.
doi:10.1016/0022-0000(80)90060-4
[18] B. Mohar, Face covers and the genus problem for apex graphs, J. Combin. Theory Ser. B 82 (2001) 102-117. doi:10.1006/jctb.2000.2026
[19] N. Robertson and P. Seymour, Graph minors XX. Wagner's conjecture, J. Combin. Theory Ser. B 92 (2004) 325-357.
doi:10.1016/j.jctb.2004.08.001
[20] D.M. Thilikos and H.L. Bodlaender, Fast partitioning l-apex graphs with applications to approximating maximum induced-subgraph problems, Inform. Process. Lett. 61 (1997) 227-232. doi:10.1016/S0020-0190(97)00024-0
[21] Zs. Tuza, Critical hypergraphs and intersecting set-pair systems, J. Combin. Theory, Ser. B 39 (1985) 134-145. doi:10.1016/0095-8956(85)90043-7
[22] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168.
doi:10.2307/2371086
[23] A. Żak, On (Kq;k)-stable graphs, J. Graph Theory 74 (2013) 216-221. doi:10.1002/jgt. 21705

