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Abstract

A 2-distance k-coloring of a graph G is a mapping from V (G) to the
set of colors {1, . . . , k} such that every two vertices at distance at most 2
receive distinct colors. The 2-distance chromatic number χ2(G) of G is then
the smallest k for which G admits a 2-distance k-coloring. For any finite set
of positive integers D = {d1, . . . , dℓ}, the integer distance graph G = G(D)
is the infinite graph defined by V (G) = Z and uv ∈ E(G) if and only if
|v − u| ∈ D. We study the 2-distance chromatic number of integer distance
graphs for several types of sets D. In each case, we provide exact values or
upper bounds on this parameter and characterize those graphs G(D) with
χ2(G(D)) = ∆(G(D)) + 1.
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1. Introduction

All the graphs we consider in this paper are simple and loopless undirected graphs.
We denote by V (G) and E(G) the set of vertices and the set of edges of a graph G,
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respectively. For any two vertices u and v of G, we denote by dG(u, v) (or simply
d(u, v) whenever the graph G is clear from the context) the distance between u
and v, that is the length of a shortest path joining u and v. We denote by ∆(G)
the maximum degree of G.

A (proper) k-coloring of a graph G is a mapping from V (G) to the set of
colors {1, . . . , k} such that every two adjacent vertices receive distinct colors. The
smallest k for which G admits a k-coloring is the chromatic number of G, denoted
χ(G). A 2-distance k-coloring of a graph G is a mapping from V (G) to the set of
colors {1, . . . , k} such that every two vertices at distance at most 2 receive distinct
colors. 2-distance colorings are sometimes called L(1, 1)-labelings (see [5] for a
survey on L(h, k)-labelings) or square colorings in the literature. The smallest
k for which G admits a 2-distance k-coloring is the 2-distance chromatic number
of G, denoted χ2(G).

The square G2 of a graph G is the graph defined by V (G2) = V (G) and
uv ∈ E(G2) if and only if dG(u, v) ≤ 2. Clearly, a 2-distance coloring of a
graph G is nothing but a proper coloring of G2 and, therefore, χ2(G) = χ(G2)
for every graph G.

The study of 2-distance colorings was initiated by Kramer and Kramer [8]
(see also their survey on general distance colorings in [9]). The case of planar
graphs has attracted a lot of attention in the literature (see e.g. [1–4, 6, 10, 14]),
due to the conjecture of Wegner that suggests an upper bound on the 2-distance
chromatic number of planar graphs depending on their maximum degree (see [15]
for more details).

In this paper, we study 2-distance colorings of distance graphs. Although
several coloring problems have been considered for distance graphs (see [11] for
a survey), it seems that 2-distance colorings have not been considered yet. We
present in Section 2 a few basic results on the chromatic number and the 2-
distance chromatic number of distance graphs. We then consider specific sets D,
namely D = {1, a}, a ≥ 3 (in Section 3), D = {1, a, a+ 1}, a ≥ 3 (in Section 4),
and D = {1, . . . ,m, a}, 2 ≤ m < a (in Section 5). We finally propose some open
problems in Section 6.

2. Preliminaries

Let D = {d1, . . . , dℓ} be a finite set of positive integers. The integer distance
graph (simply called distance graph in the following) G = G(D) is the infinite
graph defined by V (G) = Z and uv ∈ E(G) if and only if |v − u| ∈ D. The
following proposition follows immediately.

Proposition 1. For every positive integers d1, . . . , dℓ with gcd({d1, . . . , dℓ}) =
p > 1, the distance graph G(D) has p connected components, each of them being
isomorphic to the distance graph G(D′) with D′ = {d1/p, . . . , dℓ/p}.



2-Distance Colorings of Integer Distance Graphs 591

In this situation, we then have χ2(G(D)) = χ2(G(D′)) so that we can always
assume gcd(D) = 1 in the following.

It is easy to observe that the square of the distance graph G(D) is also a
distance graph, namely the distance graph G(D2) where

D2 = D ∪
{

d+ d′ : d, d′ ∈ D} ∪ {d− d′ : d, d′ ∈ D, d > d′
}

.

For instance, for D = {1, 2, 5}, we get D2 = {1, 2, 3, 4, 5, 6, 7, 10}. Note that if D
has cardinality ℓ, then D2 has cardinality at most ℓ(ℓ+ 1).

As observed in the previous section, χ2(G) = χ(G2) for every graph G.
Therefore, since (G(D))2 = G(D2), determining the 2-distance chromatic number
of the distance graph G(D) reduces to determining the chromatic number of the
distance graph G(D2). The problem of determining the chromatic number of
distance graphs has been extensively studied in the literature. When |D| ≤ 2,
this question is easily solved, thanks to the following general upper bounds.

Proposition 2. For every finite set of positive integers D = {d1, . . . , dℓ} and
every positive integer p such that di 6≡ 0 (mod p) for every i, 1 ≤ i ≤ ℓ,
χ(G(D)) ≤ p.

Proof. Let λ : V (G(D)) −→ {1, . . . , p} be the mapping defined by

λ(x) = 1 + (x mod p),

for every integer x ∈ Z. Since di 6≡ 0 (mod p) for every i, 1 ≤ i ≤ ℓ, the
mapping λ is clearly a proper coloring of G(D).

Theorem 3 (Walther [13]). For every finite set of positive integers D,

χ(G(D)) ≤ |D|+ 1.

Proof. A (|D|+ 1)-coloring of G(D) can be easily produced using the First-Fit
greedy algorithm, starting from vertex 0, from left to right and then from right
to left, since every vertex has exactly |D| neighbors on its left and |D| neighbors
on its right.

Therefore, when |D| ≤ 2, χ(G(D)) = 2 if |D| = 1 or all elements in D are
odd (since G(D) is then bipartite), and χ(G(D)) = 3 otherwise (since G(D) then
contains cycles of odd length). The case |D| = 3 has been settled by Zhu [16].
Whenever |D| ≥ 4, only partial results have been obtained, namely for sets D
having specific properties.

Another useful result is the following.
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Theorem 4 (Voigt [12], cited in [7]). For every finite set of positive integers
D = {d1, . . . , dℓ},

χ(G(D)) ≤ min
n∈N

n(|Dn|+ 1),

where Dn = {di : n|di, 1 ≤ i ≤ ℓ}.

A coloring λ of a distance graph G(D) is p-periodic, for some integer p ≥ 1,
if λ(x+ p) = λ(x) for every x ∈ Z. Walther also proved the following.

Theorem 5 (Walther [13]). For every finite set of positive integers D, if χ(G(D))
≤ k, then G(D) admits a p-periodic k-coloring for some p.

The sequence λ(x) · · ·λ(x+p−1) of such a p-periodic coloring λ is called the
pattern of λ. In particular, the coloring defined in the proof of Proposition 2 was
p-periodic with pattern 12 · · · p. In the following, we will describe such patterns
using standard notation of Combinatorics on words. For instance, the pattern
121212345 will be denoted (12)3345.

Finally, note that in any 2-distance coloring of a graph G, all vertices in the
closed neighborhood of any vertex must be assigned distinct colors. Therefore,
we have the following.

Observation 6. For every graph G, χ2(G) ≥ ∆(G) + 1.

In particular, this bound is attained by the distance graph G(D) with D =
{1, . . . , k}, k ≥ 2.

Proposition 7. For every k ≥ 2,

χ2(G({1, . . . , k})) = 2k + 1 = ∆(G({1, . . . , k})) + 1.

Proof. This directly follows from Theorem 3, since |{1, . . . , k}2| = 2k.

3. The Case D = {1, a}, a ≥ 3

We study in this section the 2-distance chromatic number of distance graphs
G(D) with D = {1, a}, a ≥ 3 (note that the case a = 2 is already solved by
Proposition 7).

When D = {1, a}, a ≥ 3, we have ∆(G(D)) = 4 and

D2 = {1, 2, a− 1, a, a+ 1, 2a}.

The following theorem gives the 2-distance chromatic number of any such
graph.
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Theorem 8. For every integer a ≥ 3,

χ2(G({1, a})) =

{

5 if a ≡ 2 (mod 5), or a ≡ 3 (mod 5),

6 otherwise.

Proof. Since {1, a}2 = {1, 2, a − 1, a, a + 1, 2a}, we get d 6≡ 0 (mod 5) for ev-
ery d ∈ {1, a}2 if and only if a ≡ 2 (mod 5) or a ≡ 3 (mod 5) and thus, by
Proposition 2 and Observation 6, χ2(G({1, a})) = 5.

Note that for every x ∈ Z, the set of vertices

C(x) = {x− a, x− 1, x, x+ 1, x+ a}

induces a 5-clique in G({1, a}2) (see Figure 1). We now claim that every 2-
distance 5-coloring λ of G({1, a}) is necessarily 5-periodic, that is λ(x+5) = λ(x)
for every x ∈ Z. To show that, it suffices to prove that any five consecutive vertices
x, . . . , x+4 must be assigned distinct colors. Assume to the contrary that this is
not the case and, without loss of generality, let x = 0. Since vertices 0, 1 and 2
necessarily get distinct colors, we only have to consider two cases.

0 1 2 3 4

a 1+a 2+a 3+a 4+a

-a 1-a 2-a 3-a 4-a

. . . . . .

Figure 1. Subgraph of the distance graph G({1, a}), a ≥ 3.

Case 1. λ(0) = λ(3) = 1, λ(1) = 2, λ(2) = 3. Since C(1) induces a 5-clique
in G({1, a}2) (depicted in bold in Figure 1), we have

{λ(1− a), λ(1 + a)} = {4, 5},

which implies

{λ(2− a), λ(2 + a)} = {4, 5}.

(More precisely, λ(2−a) = 9−λ(1−a) and λ(2+a) = 9−λ(1+a)). This implies
λ(3− a) = λ(3 + a) = 2, a contradiction since d(3− a, 3 + a) = 2.
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Case 2. λ(0) = λ(4) = 1, λ(1) = 2, λ(2) = 3, λ(3) = 4. As in the previous
case we have

{λ(1− a), λ(1 + a)} = {4, 5},

which implies
{λ(2− a), λ(2 + a)} = {1, 5}.

We then get λ(3− a) = λ(3 + a) = 2, again a contradiction.

Therefore, χ2(G({1, a})) = 5 if and only if 5 does not divide any element of
{1, a}2 = {1, 2, a − 1, a, a + 1, 2a}. This is clearly the case if and only if a ≡ 2
(mod 5) or a ≡ 3 (mod 5).

We finally prove that there exists a 2-distance 6-coloring of G({1, a}) for any
value of a. We consider three cases, according to the value of a (mod 3).

Case 1. a = 3k, k ≥ 1. Let λ be the (2a − 1)-periodic mapping defined by
the pattern

(123)k(456)k−145.

If λ(x) = λ(y) = c, 1 ≤ c ≤ 5, then

|x− y| ∈ {3q, 0 ≤ q ≤ k − 1} ∪ {(2a− 1)p+ 3q, p ≥ 1, 1− k ≤ q ≤ k − 1}.

If λ(x) = λ(y) = 6 (which occurs if and only if k ≥ 2), then

|x− y| ∈ {3q, 0 ≤ q ≤ k − 2} ∪ {(2a− 1)p+ 3q, p ≥ 1, 2− k ≤ q ≤ k − 2}.

Therefore, in both cases, |x − y| /∈ {1, 2, a − 1, a, a + 1, 2a}, and thus λ is a
2-distance 6-coloring of G({1, a}).

Case 2. a = 3k + 1, k ≥ 1. In that case, the result follows from Theorem 4
(taking n = 3), since the only element divisible by 3 in {1, 2, a− 1, a, a+1, 2a} is
a− 1.

Case 3. a = 3k+2, k ≥ 1. Again, the result follows from Theorem 4 (taking
n = 3), since the only element divisible by 3 in {1, 2, a− 1, a, a+ 1, 2a} is a+ 1.

This concludes the proof.

4. The Case D = {1, a, a+ 1}, a ≥ 3

We study in this section the 2-distance chromatic number of distance graphs
G(D) with D = {1, a, a + 1}, a ≥ 3 (note that the case a = 2 is already solved
by Proposition 7).

When D = {1, a, a+ 1}, a ≥ 3, we have ∆(G(D)) = 6 and

D2 = {1, 2, a− 1, a, a+ 1, a+ 2, 2a, 2a+ 1, 2a+ 2}.

First we prove the following.
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Theorem 9. For every integer a, a ≥ 3,

χ2(G({1, a, a+ 1})) = 7 = ∆(G({1, a, a+ 1})) + 1

if and only if a ≡ 2 (mod 7) or a ≡ 4 (mod 7).

Proof. Since {1, a, a+1}2 = {1, 2, a− 1, a, a+1, a+2, 2a, 2a+1, 2a+2}, we get
d 6≡ 0 (mod 7) for every d ∈ {1, a, a+ 1}2 if and only if a ≡ 2 (mod 7) or a ≡ 4
(mod 7) and thus, by Proposition 2 and Observation 6, χ2(G({1, a, a+ 1})) = 7.

Note that for every x ∈ Z, the set of vertices

C(x) = {x− a− 1, x− a, x− 1, x, x+ 1, x+ a, x+ a+ 1}

induces a 7-clique in G({1, a, a + 1}2). We now claim that every 2-distance 7-
coloring λ of G({1, a, a+1}) is necessarily 7-periodic, that is λ(x+7) = λ(x) for
every x ∈ Z. To show that, it suffices to prove that any 7 consecutive vertices
x, . . . , x+6 must be assigned distinct colors. Assume to the contrary that this is
not the case and, without loss of generality, let x = 0. Since vertices 0, 1 and 2
necessarily get distinct colors, we only have to consider four cases (see Figure 2).

0 1 2 3 4 5

a 1+a 2+a 3+a 4+a 5+a

-a 1-a 2-a 3-a 4-a 5-a

. . . . . .

Figure 2. Subgraph of the distance graph G({1, a, a+ 1}), a ≥ 3.

Case 1. Vertices 0, 1, 2, 3 are colored with the colors 1, 2, 3 and 1, respectively.
We consider two subcases.

Subcase (a) λ(4) = 2. Since C(1) induces a 7-clique in G({1, a, a + 1}2)
(depicted in bold in Figure 2), we have

{λ(−a), λ(1− a), λ(1 + a), λ(2 + a)} = {4, 5, 6, 7}.

Since C(3) is also a 7-clique, we also have

{λ(2− a), λ(3− a), λ(3 + a), λ(4 + a)} = {4, 5, 6, 7}.

This implies λ(−a) = λ(4 − a) or λ(1 + a) = λ(5 + a). Each of these cases thus
corresponds to Case 2 below.



596 B. Benmedjdoub, I. Bouchemakh and É. Sopena

Subcase (b) λ(4) 6= 2. Note that we necessarily have λ(4) 6= 3 and λ(4) 6= 1,
since vertex 4 is at distance 2 and 1 from vertices 2 and 3, respectively. We can
thus assume λ(4) = 4, without loss of generality. Since d(5, 4) = 1 and d(5, 3)
= 2, we have λ(5) /∈ {1, 4}. Moreover, if λ(5) = 2, we get λ(2) = λ(5), which
corresponds to Case 2 below. We can thus suppose either λ(5) = 3 or λ(5) > 4,
say λ(5) = 5 without loss of generality. We consider these two cases separately.

(i) λ(5) = 3. In that case, we necessarily have

{λ(−a), λ(1 + a)} ⊆ {4, 5, 6, 7}, {λ(1− a), λ(2 + a)} ⊆ {4, 5, 6, 7},

{λ(2− a), λ(3 + a)} ⊆ {5, 6, 7}, {λ(3− a), λ(4 + a)} ⊆ {2, 5, 6, 7},

{λ(4− a), λ(5 + a)} ⊆ {5, 6, 7}.

By setting {x, y, z} = {5, 6, 7}, we get

{λ(−a), λ(1 + a)} = {x, y}, {λ(1− a), λ(2 + a)} = {4, z},

{λ(2− a), λ(3 + a)} = {x, y}, {λ(3− a), λ(4 + a)} = {2, z},

{λ(4− a), λ(5 + a)} = {x, y}.

Since λ(−a), λ(2−a), λ(4−a) ∈ {x, y} and λ(−a) 6= λ(2−a), λ(2−a) 6= λ(4−a),
it follows that λ(−a) = λ(4− a). That case corresponds to Case 2 below.

(ii) λ(5) = 5. In that case, we necessarily have

{λ(−a), λ(1 + a)} ⊆ {4, 5, 6, 7}, {λ(1− a), λ(2 + a)} ⊆ {4, 5, 6, 7},

{λ(2− a), λ(3 + a)} ⊆ {5, 6, 7}, {λ(3− a), λ(4 + a)} ⊆ {2, 6, 7},

{λ(4− a), λ(5 + a)} ⊆ {3, 6, 7}.

By setting {x, y} = {6, 7}, we get

{λ(−a), λ(1 + a)} = {5, x}, {λ(1− a), λ(2 + a)} = {4, y},

{λ(2− a), λ(3 + a)} = {5, x}, {λ(3− a), λ(4 + a)} = {2, y},

{λ(4− a), λ(5 + a)} = {3, x}.

We then necessarily have either λ(1 + a) = λ(5 + a) or λ(−a) = λ(4− a) and, in
both cases, we are in the situation of Case 2 below.

Case 2. Vertices 0, 1, 2, 3, 4 are colored with the colors 1, 2, 3, 4 and 1, respec-
tively. Again considering the 7-cliques C(1), C(2) and C(3) in G({1, a, a+ 1}2),
we get

{λ(1− a), λ(2 + a)} ⊆ {5, 6, 7},

and
{λ(2− a), λ(3 + a)} ⊆ {5, 6, 7},
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a contradiction, since vertices 1 − a, 2 − a, a + 2 and a + 3 induce a 4-clique in
G({1, a, a+ 1}2).

Case 3. Vertices 0, 1, 2, 3, 4, 5 are colored with the colors 1, 2, 3, 4, 5 and 1,
respectively. Considering the 7-cliques C(1), C(2) and C(3) in G({1, a, a+ 1}2),
we get

{λ(−a), λ(1− a), λ(1 + a), λ(2 + a)} = {4, 5, 6, 7},

{λ(2− a), λ(3 + a)} ⊆ {1, λ(−a), λ(1 + a)} \ {4, 5},

{λ(3− a), λ(4 + a)} ⊆ {2, λ(1− a), λ(2 + a)} \ {4, 5},

and thus

{λ(2− a), λ(3 + a)} ⊆ {1, 6, 7} and {λ(3− a), λ(4 + a)} ⊆ {2, 6, 7}.

Assuming that none of Cases 1 or 2 occurs, we have to consider two subcases.

Subcase (a) λ(6) = 2. Considering the 7-clique C(4) in G({1, a, a+ 1}2), we
get

{λ(4− a), λ(5 + a)} ⊆ {3, λ(2− a), λ(3 + a)} \ {1, 2} = {3, 6, 7}.

If {λ(4− a), λ(5 + a)} = {3, 6}, then

{λ(3− a), λ(4 + a)} = {2, 7},

{λ(2− a), λ(3 + a)} = {1, 6},

{λ(1− a), λ(2 + a)} = {5, 7}

and
{λ(−a), λ(1 + a)} = {4, 6}.

If λ(−a) = 6, then λ(2−a) = 1 and thus λ(4−a) = λ(−a) = 6 which corresponds
to Case 2. If λ(1 + a) = 6, then λ(3 + a) = 1 and thus λ(5 + a) = λ(1 + a) = 6
which again corresponds to Case 2.

The case {λ(4 − a), λ(5 + a)} = {3, 7} is similar and leads to the same
conclusion.

Finally, if {λ(4 − a), λ(5 + a)} = {6, 7}, then λ(3 − a) = λ(4 + a) = 2, a
contradiction since d(3− a, 4 + a) = 2.

Subcase (b) λ(6) = 6. Considering the 7-clique C(4) in G({1, a, a+ 1}2), we
get

{λ(4− a), λ(5 + a)} ⊆ {3, λ(2− a), λ(3 + a)} \ {1, 6} = {3, 7}.

This implies
{λ(3− a), λ(4 + a)} = {2, 6},

{λ(2− a), λ(3 + a)} = {1, 7},

{λ(1− a), λ(2 + a)} = {5, 6}
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and
{λ(−a), λ(1 + a)} = {4, 7}.

If λ(−a) = 7, then λ(2−a) = 1 and thus λ(4−a) = λ(−a) = 7 which corresponds
to Case 2. If λ(1 + a) = 7, then λ(3 + a) = 1 and thus λ(5 + a) = λ(1 + a) = 7
which again corresponds to Case 2.

Case 4. Vertices 0, 1, 2, 3, 4, 5, 6 are colored with the colors 1, 2, 3, 4, 5, 6 and
1, respectively. Again considering the 7-cliques C(1), C(2) and C(3) in G({1, a,
a+ 1}2), we get

{λ(−a), λ(1− a), λ(1 + a), λ(2 + a)} = {4, 5, 6, 7},

{λ(2− a), λ(3 + a)} ⊆ {1, λ(−a), λ(1 + a)} \ {4, 5},

and thus

{λ(3− a), λ(4 + a)} ⊆ {2, λ(1− a), λ(2 + a)} \ {4, 5, 6} = {2, 7}.

This implies
{λ(2− a), λ(3 + a)} = {1, 6},

{λ(1− a), λ(2 + a)} = {5, 7}

and
{λ(−a), λ(1 + a)} = {4, 6}.

Therefore,

{λ(4− a), λ(5 + a)} ⊆ {3, λ(2− a), λ(3 + a)} \ {1, 6} = {3},

a contradiction since d(4− a, 5 + a) = 2.

Therefore, every 2-distance 7-coloring λ of G({1, a, a + 1}) is necessarily 7-
periodic, and thus χ2(G({1, a, a + 1})) = 7 if and only if 7 does not divide any
element of {1, 2, a− 1, a, a+ 1, a+ 2, 2a, 2a+ 1, 2a+ 2}. This is clearly the case
if and only if a ≡ 2 (mod 7) or a ≡ 4 (mod 7).

The following result provides an upper bound on χ2(G({1, a, a+1})) for any
value of a.

Theorem 10. For every integer a, a ≥ 3,

χ2(G({1, a, a+ 1})) ≤ 9 = ∆(G({1, a, a+ 1})) + 3.

Proof. First recall that {1, a, a+1}2 = {1, 2, a−1, a, a+1, a+2, 2a, 2a+1, 2a+2}.
We consider three cases, according to the value of a (mod 3).

Case 1. a = 3k, k ≥ 1. Since the only elements divisible by 3 in {1, a, a+1}2

are a and 2a, the result follows by Theorem 4 (taking n = 3).
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Case 2. a = 3k + 1, k ≥ 1. Let λ be the (3a + 2)-periodic mapping defined
by the pattern

(123)k(456)k7123(789)k−14568.

If λ(x) = λ(y) = c, 1 ≤ c ≤ 6, then

|x− y| ∈ {3q, 0 ≤ q ≤ k − 1}
∪ {3q + 2a− 1, 1− k ≤ q ≤ 0}
∪ {(3a+ 2)p+ 2a− 1, p > 0}
∪ {(3a+ 2)p− 2a+ 1, p > 0}
∪ {(3a+ 2)p+ 3q, p > 0, 1− k ≤ q < 0}
∪ {(3a+ 2)p+ 3q + 2a− 1, p > 0, 1− k ≤ q < 0}
∪ {(3a+ 2)p+ 3q, p > 0, 0 < q ≤ k − 1}
∪ {(3a+ 2)p+ 3q − 2a+ 1, p > 0, 0 < q ≤ k − 1}.

If λ(x) = λ(y) = 7 (which occurs if and only if k ≥ 2), then

|x− y| ∈ {3q, 0 ≤ q ≤ k − 2}
∪ {3q + 4, 0 ≤ q ≤ k − 2}
∪ {(3a+ 2)p+ 3q − 4, p > 0, 2− k ≤ q ≤ 0}
∪ {(3a+ 2)p+ 3q + 4, p > 0, 0 ≤ q ≤ k − 2}
∪ {(3a+ 2)p+ 3q, p > 0, 2− k ≤ q ≤ k − 2}.

If λ(x) = λ(y) = 8 (which occurs if and only if k ≥ 2), then

|x− y| ∈ {3q, 0 ≤ q ≤ k − 2}
∪ {3q + a− 2, 2− k ≤ q ≤ 0}
∪ {(3a+ 2)p+ a− 2, p > 0}
∪ {(3a+ 2)p− a+ 2, p > 0}
∪ {(3a+ 2)p+ 3q, p > 0, 2− k ≤ q < 0}
∪ {(3a+ 2)p+ 3q + a− 2, p > 0, 2− k ≤ q < 0}
∪ {(3a+ 2)p+ 3q, p > 0, 0 < q ≤ k − 2}
∪ {(3a+ 2)p+ 3q − a+ 2, p > 0, 0 < q ≤ k − 2}.

If λ(x) = λ(y) = 9 (which occurs if and only if k ≥ 2), then

|x− y| ∈ {3q, 0 ≤ q ≤ k − 2} ∪ {(3a+ 2)p+ 3q, p ≥ 1, 2− k ≤ q ≤ k − 2}.

Therefore, in all these cases, |x−y| 6∈ {1, 2, a−1, a, a+1, a+2, 2a, 2a+1, 2a+2},
and thus λ is a 2-distance 9-coloring of G({1, a, a+ 1}).

Case 3. a = 3k + 2, k ≥ 1. Since the only elements divisible by 3 in
{1, a, a+1}2 are a+1 and 2a+2, the result follows by Theorem 4 (taking n = 3).

This concludes the proof.
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From Theorems 9 and 10, we thus get the following.

Corollary 11. For every integer a, a ≥ 3, a 6≡ 2, 4 (mod 7),

8 ≤ χ2(G({1, a, a+ 1})) ≤ 9.

5. The Case D = {1, . . . ,m, a}, 2 ≤ m < a

We study in this section the 2-distance chromatic number of distance graphs
G(D) with D = {1, . . . ,m, a}, 2 ≤ m < a (note that the case a = m + 1 is
already solved by Proposition 7).

When D = {1, . . . ,m, a}, we have ∆(G(D)) = 2m+ 2 and

D2 = {1, 2, . . . , 2m} ∪ {a−m, a−m+ 1, . . . , a+m} ∪ {2a}.

First we prove the following.

Theorem 12. For all integers m and a, 2 ≤ m < a,

χ2(G({1, . . . ,m, a})) = 2m+ 3 = ∆(G({1, . . . ,m, a})) + 1

if and only if a ≡ m+ 1 (mod 2m+ 3) or a ≡ m+ 2 (mod 2m+ 3).

Proof. Since {1, . . . ,m, a}2 = {1, . . . , 2m}∪{a−m, a−m+1, . . . , a+m}∪{2a},
we have d 6≡ 0 (mod 2m+3) for every d ∈ {1, . . . ,m, a}2 if and only if a ≡ m+1
(mod 2m + 3) or a ≡ m + 2 (mod 2m + 3), and thus, by Proposition 2 and
Observation 6, χ2(G({1, . . . ,m, a})) = 2m+ 3.

We now claim that every 2-distance (2m+ 3)-coloring λ of G({1, . . . ,m, a})
is necessarily (2m+3)-periodic, that is λ(x+2m+3) = λ(x) for every x ∈ Z. To
show that, it suffices to prove that any 2m+3 consecutive vertices x, . . . , x+2m+2
must be assigned distinct colors. Assume to the contrary that this is not the case
and, without loss of generality, let x = 0. Since vertices 0, 1, . . . , 2m necessarily
get distinct colors, we only have to consider two cases.

Case 1. Vertices 0, 1, . . . , 2m+ 1 are colored with the colors 1, 2, . . . , 2m+ 1
and 1, respectively. Note that vertices m− a and m+ a are both adjacent to all
vertices 0, 1, . . . , 2m. Hence,

{λ(m− a), λ(m+ a)} = {2m+ 2, 2m+ 3},

which implies

{λ(m+ 1− a), λ(m+ 1 + a)} = {2m+ 2, 2m+ 3}
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(more precisely, λ(m+1− a) = 4m+5− λ(m− a) and λ(m+1+ a) = 4m+5−
λ(m+ a)). This implies λ(m+ 2− a) = λ(m+ 2 + a) = 2, a contradiction since
d(m+ 2− a,m+ 2 + a) = 2.

Case 2. Vertices 0, 1, . . . , 2m+ 2 are colored with the colors 1, 2, . . . , 2m+ 2
and 1, respectively. As in the previous case we have

{λ(m− a), λ(m+ a)} = {2m+ 2, 2m+ 3},

which implies

{λ(m+ 1− a), λ(m+ 1 + a)} = {1, 2m+ 3}.

We thus get λ(m+ 2− a) = λ(m+ 2 + a) = 2, again a contradiction.

Therefore, every 2-distance (2m+ 3)-coloring λ of G({1, . . . ,m, a}) is neces-
sarily (2m + 3)-periodic, and thus χ2(G({1, . . . ,m, a})) = 2m + 3 if and only if
2m+3 does not divide any element of {1, 2, . . . , 2m} ∪ {a−m, a−m+1, . . . , a+
m} ∪ {2a}. This is clearly the case if and only if a ≡ m + 1 (mod 2m + 3) or
a ≡ m+ 2 (mod 2m+ 3).

For other values of a, we propose the following general upper bound.

Theorem 13. For all integers m and a, 2 ≤ m < a,

χ2(G({1, . . . ,m, a})) ≤ 4m+ 2 = 2∆(G({1, . . . ,m, a}))− 2.

Proof. First note that {1, . . . ,m, a}2 = {1, . . . , 2m}∪{a−m, . . . , a+m}∪{2a}.
Therefore, if 2m+ 1 does not divide a, then the set {1, . . . ,m, a}2 contains only
one element e divisible by 2m + 1 (with e ∈ {a −m, . . . , a +m}). In that case,
the result follows by Theorem 4 (taking n = 2m+ 1).

Suppose now that a = k(2m+1), with k ≥ 1. Let λ be the (2a−m)-periodic
mapping defined by the pattern

[12 · · · (2m+1)]k[(2m+2)(2m+3) · · · (4m+2)]k−1(2m+2)(2m+3) · · · (3m+2).

If λ(x) = λ(y) = c, 1 ≤ c ≤ 3m+ 2, then

|x− y| ∈ {q(2m+ 1), 0 ≤ q ≤ k − 1}

∪ {p(2a−m) + q(2m+ 1), p ≥ 1, 1− k ≤ q ≤ k − 1}.

If λ(x) = λ(y) = c, 3m+3 ≤ c ≤ 4m+2 (which occurs if and only if k ≥ 2), then

|x− y| ∈ {q(2m+ 1), 0 ≤ q ≤ k − 2}

∪ {p(2a−m) + q(2m+ 1), p ≥ 1, 2− k ≤ q ≤ k − 2}.

Therefore, in both cases, |x − y| 6∈ {1, . . . ,m, a}2, and thus λ is a 2-distance
(4m+ 2)-coloring of G({1, . . . ,m, a}). This concludes the proof.
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From Theorems 12 and 13, we thus get the following.

Corollary 14. For all integers m and a, 2 ≤ m < a, a 6≡ m+1,m+2 (mod 2m
+3),

2m+ 4 ≤ χ2(G({1, . . . ,m, a})) ≤ 4m+ 2.

6. Discussion

In this paper, we studied 2-distance colorings of several types of distance graphs.
In each case, we characterized those distance graphs that admit an optimal 2-
distance coloring, that is distance graphs G(D) with χ2(G(D)) = ∆(G(D)) + 1.
We also provided general upper bounds for the 2-distance chromatic number of
the considered graphs. Note here that all our results can be extended to a larger
class of integer distance graphs, thanks to Proposition 1, by multiplying all the
elements of the set D by the same constant k > 1.

We leave as open problems the question of completely determining the 2-
distance chromatic number of distance graphs G(D) when D = {1, a, a + 1},
a ≥ 3, or D = {1, . . . ,m, a}, 2 ≤ m < a.

Considering other types of sets D would certainly be also an interesting
direction for future research.
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