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Abstract

Ho proved in [A note on the total domination number, Util. Math. 77
(2008) 97–100] that the total domination number of the Cartesian product
of any two graphs without isolated vertices is at least one half of the prod-
uct of their total domination numbers. We extend a result of Lu and Hou
from [Total domination in the Cartesian product of a graph and K2 or Cn,
Util. Math. 83 (2010) 313–322] by characterizing the pairs of graphs G
and H for which γt(G�H) = 1

2
γt(G)γt(H), whenever γt(H) = 2. In addi-

tion, we present an infinite family of graphs Gn with γt(Gn) = 2n, which
asymptotically approximate equality in γt(Gn�Gn) ≥

1

2
γt(Gn)

2.
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1. Introduction

All graphs considered in this paper are finite, simple, and undirected. A domi-

nating set of a graph G is a set D ⊆ V (G) such that every vertex not in D is
adjacent to at least one vertex from D. The domination number of G, denoted by
γ(G), is the minimum cardinality of a dominating set of G. A total dominating

set, abbreviated a TD-set, of a graph G with no isolated vertices, is a set S of
vertices of G such that every vertex in G is adjacent to a vertex from S. The
total domination number of G, denoted by γt(G), is the minimum cardinality of a
TD-set of G. A TD-set of G of cardinality γt(G) will be referred to as a γt(G)-set.
Given graphs G and H, the Cartesian product G�H is the graph with the vertex
set V (G) × V (H) in which two vertices (u1, v1) and (u2, v2) are adjacent if and
only if either u1 = u2 and v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G).

Domination parameters in graph products have been given a lot of attention,
which is largely due to the intriguing, long-lasting Vizing’s conjecture on the
domination number of the Cartesian products of graphs, see a recent survey [1].
A related question on the total domination number of the Cartesian product of
graphs was posed by Henning and Rall in [8], asking whether the product of
the total domination numbers of two graphs without isolated vertices is bounded
above by twice the total domination number of their Cartesian product. The
question was answered in the positive by Ho.

Theorem 1 (Ho [10]). For graphs G and H without isolated vertices,

γt(G)γt(H) ≤ 2γt(G�H).

The bound in Theorem 1 is sharp as may be seen by taking G = K2 and
H = Kn. However, it remains an open problem to characterize pairs of graphs G
and H that achieve equality in the bound of Theorem 1.

Henning and Rall characterized in [8] the trees G such that γt(G)γt(H) =
2γt(G�H) holds for some graph H, while Lu and Hou did the same for the
cycles [11]. In all these cases the other factor H is kK2, i.e., a graph obtained
by taking the disjoint union of k copies of K2. In the same paper Lu and Hou
characterized the class of graphs G with γt(G) = γt(G�K2) [11]. To explain their
result, we need to introduce some more notation. The neighborhood of a vertex
v ∈ V (G) is the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}, while neighborhood of

a set X ⊂ V (G) is defined as NG(X) =
⋃

v∈X NG(v). (Hence, X is a TD-set of
G if and only if NG(X) = V (G).) Given a graph G and a set X ⊆ V (G), the
subgraph of G induced by X is the graph denoted by G[X] with vertex set X and
edge set {uv ∈ E(G) : u, v ∈ X}. Lu and Hou defined the following families of
graphs:

• F1: the graphs G such that γt(G) = 2γ(G),
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• F2: the graphs G that have a γt(G)-set D that can be partitioned into two
nonempty subsets D1 and D2 such that D1 = V (G) \ NG(D2) and D2 =
V (G) \NG(D1), and

• F3: the graphs G whose vertex set V (G) can be partitioned into two non-
empty subsets V1 and V2 such that G1 = G[V1] ∈ F1, G2 = G[V2] ∈ F2, and
γt(G) = γt(G1) + γt(G2).

It is well-known and easy to see that for any graph G with no isolated vertices,
γt(G) ≤ 2γ(G). Therefore, family F1 consists precisely of the graphs attaining
equality in the above inequality. The problem of characterizing the graphs of
family F1 is open in general, see e.g. [7, Problem 4], while a constructive char-
acterization of trees T such that γt(T ) = 2γ(T ) was given in [6], see also [9]. In
Figure 1, three separating examples for these classes are exhibited.

D1 D2

Figure 1. A graph in F1\(F2∪F3), a graph in F2\(F1∪F3), and a graph in F3\(F1∪F2),
respectively.

Theorem 2 (Lu and Hou [11]). If G is a graph without isolated vertices, then

γt(G) = γt(G�K2) if and only if G ∈ F1 ∪ F2 ∪ F3.

In this paper we extend this result by showing that if H is a connected graph
with γt(H) = 2 and γt(G�H) = γt(G) for some graph G, then, either H is
isomorphic to K2, and so G is one of the graphs characterized in Theorem 2,
or H is a graph with γ(H) = 1 and G is isomorphic to K2 (see Section 2). In
Section 3 we continue the investigation of the existence of pairs G and H that
achieve equality in the bound from Theorem 1. While we found no other such
pairs, we present a family of graphs Gn with arbitrarily large total domination
numbers for which the ratio γt(Gn�Gn)/(γt(Gn))

2 is as close to 1/2 as desired.
Finally, in Section 4 we give several remarks on the total domination quotient

γt(G�H)/(γt(G)γt(H)) and propose a further study of this notion.
We conclude this section by giving some definitions and notation used in the

rest of the paper. A graph G is nontrivial if it has least two vertices. If X and
Y are subsets of vertices in G, then X totally dominates Y in G if Y ⊆ NG(X).
Similarly, we say that a vertex x totally dominates a vertex y if xy ∈ E(G).
Given a set X ⊆ V (G) and a vertex u ∈ X, we define pnG(u,X) as the set
{w ∈ V (G) : NG(w) ∩X = {u}}. A member of the set pnG(u,X) is said to be
an X-private neighbor of u in G. The indices in the notions defined throughout
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this section will be omitted when the graph to which they refer will be clear
from the context. Given two graphs G and H and a vertex h ∈ V (H), the set
Gh = {(g, h) ∈ V (G�H) : g ∈ V (G)} is called a G-fiber in the Cartesian product
of G and H. For g ∈ V (G), the H-fiber gH is defined as gH = {(g, h) ∈ V (G�H) :
h ∈ V (H)}. We may consider G-fibers and H-fibers as induced subgraphs when
appropriate. The projection to G is the map pG : V (G�H) → V (G) defined by
pG(g, h) = g.

2. Pairs of Graphs with γt(H) = 2 Attaining Equality in Ho’s

Bound

By Theorem 1, any two graphs G and H without isolated vertices satisfy
γt(G)γt(H) ≤ 2γt(G�H). In this section, we characterize pairs of graphs G
and H without isolated vertices and with γt(H) = 2 such that γt(G)γt(H) =
2γt(G�H), or, equivalently, pairs of graphs G and H without isolated vertices
such that γt(H) = 2 and γt(G) = γt(G�H). Note that since for any graph H
without isolated vertices we have γt(H) ≥ 2, inequality γt(G)γt(H) ≤ 2γt(G�H)
implies

(1) γt(G) ≤ γt(G�H)

for any two graphs G and H with no isolated vertices, and equality is possible
only when γt(H) = 2. Thus, we will in fact characterize the pairs of graphs that
achieve equality in (1).

Let G and H be connected graphs such that γt(H) = 2 and γt(G) =
γt(G�H). Let D be a γt(G�H)-set, and let V (H) = {h1, . . . , hn}. The set D can
be partitioned into two (possibly empty) subsets: D′ = {(g, h) ∈ D : ∃ h′ ∈ V (H)
such that h′ 6= h and (g, h′) ∈ D} and D′′ = D \D′. Let D′′

i = {(g, h) ∈ D′′ : h =
hi} for every i ∈ {1, . . . , n}.

On the graph G we define the sets S = pG(D), S′ = pG(D
′), S′′ = pG(D

′′),
P = NG(S) \S, P

′ = NG(S
′) \S′, P ′′ = NG(S

′′) \S′′ and S′′
i = pG(D

′′
i ) for every

i ∈ {1, . . . , n}.

Proposition 3. Let G and H be connected graphs such that γt(H) = 2 and

γt(G) = γt(G�H). Let D,D′, D′′, D′′
i , S, S

′, S′′, P, P ′, P ′′ and S′′
i be the sets as

defined above, where i ∈ {1, . . . , n}. Then the following statements hold for G.

(A) S ∪ P = V (G).

(B) γt(G) = 2|S′|+ |S′′|.

(C) S′ is independent and no two vertices from S′ have a common neighbor.

(D) There are no edges between S′ and S′′.
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(E) There exists a nonnegative integer k such that S′′ induces a kK2.

(F) If T ′ is a minimum set of vertices that totally dominates S′, then T ′ ⊆ P ′,

|T ′| = |S′|, and X = S′ ∪ T ′ ∪ S′′ is a γt(G)-set. In addition, for every

vertex g ∈ S′′, the set pnG(g,X) is a subset of S′′ of size 1.

(G) For every i ∈ {1, . . . , n}, there exists a positive integer k such that S′′
i in-

duces a kK2.

(H) For every i ∈ {1, . . . , n}, S′′
i totally dominates P ′′ ∪ S′′

i .

(I) For every i ∈ {1, . . . , n}, no two vertices from S′′
i have a common neighbor.

(J) No vertex from S′ has a common neighbor with a vertex from S′′.

(K) S′, S′′, P ′, and P ′′ are pairwise disjoint sets.

(L) γt(G[S′ ∪ P ′]) = 2γ(G[S′ ∪ P ′]) = 2|S′|.

(M) γt(G[S′′ ∪ P ′′]) = |S′′|.

(N) If H 6= K2, then S′ = ∅.

Proof. To prove statement (A), consider an arbitrary vertex g of G. It suffices
to show that g ∈ P whenever g 6∈ S. So let g ∈ V (G) \ S and fix an arbitrary
vertex h ∈ V (H). Since S = pG(D) and g 6∈ S, we have (g, h) /∈ D. Since
D is a TD-set of G�H, there exists a vertex (g′, h′) ∈ D adjacent to (g, h) in
G�H. Since g′ 6= g, we must have h′ = h and gg′ ∈ E(G). This implies that
pG(g

′, h) ∈ S, hence g ∈ P . Therefore (A) holds.

To prove statement (B), first note that |D′| ≥ 2|S′| and |D′′| = |S′′|. Thus,
γt(G) = γt(G�H) = |D| = |D′| + |D′′| ≥ 2|S′| + |S′′|. It is clear that S totally
dominates P . We claim that S also totally dominates S′′. Indeed, if (g, h) ∈ D′′,
then any (g, h′) ∈ V (G�H), where h′ 6= h, does not belong to D. Since D is
a TD-set of G�H, we infer that there exists (g′, h) ∈ D such that g′g ∈ E(G),
and so g′ ∈ S totally dominates g. Altogether, the fact that S totally dominates
S′′ and using (B), we infer that S totally dominates V (G) \ S′; and to totally
dominate S′ we need to add at most |S′| vertices to the vertices of S. Hence,
γt(G) ≤ |S| + |S′| = 2|S′| + |S′′|, and combining this with the inequality at the
beginning of this paragraph, we get statement (B).

As noted in the previous paragraph, the only vertices that may not be totally
dominated in G by S are the vertices in S′. To satisfy statement (B), adding less
than |S′| vertices to S′ ∪ S′′ does not yield a TD-set of G. Because one needs
to totally dominate |S′| vertices by using at least |S′| vertices, each vertex that
we add to S in order to obtain a TD-set has to totally dominate exactly one
vertex from S′. This readily implies statement (C). Next, if a vertex in S′ has a
neighbor in S′′, then this vertex is already totally dominated by S, which again
yields a TD-set of G with less than 2|S′| + |S′′| vertices, a contradiction. Hence
statements (D) holds.
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To show that statements (E) and (F) hold, consider a minimum set of vertices
T ′ in G that totally dominates S′. Statements (C) and (D) imply that T ′ ⊆ P ′

and |T ′| = |S′|, which in turn, using statement (B), implies that X = S′∪T ′∪S′′

is a γt(G)-set (proving the first assertion of statement (F)). Therefore, every
vertex in X has an X-private neighbor in G. We first show that vertices of
S′′ can have X-private neighbors only in S′′. By statement (D) they have no
neighbors in S′. Suppose for a contradiction that there is a vertex g ∈ S′′

i (for
some i ∈ {1, . . . , n}) that has an X-private neighbor g′ in G such that g′ ∈ P . Let
j ∈ {1, . . . , n} \ {i}. Since g′ ∈ P , no vertex from the H-fiber g′H is in D. Thus,
since D totally dominates (g′, hj), there is some g′′ ∈ V (G) such that g′g′′ ∈ E(G)
and (g′′, hj) ∈ D. Note that g′′ 6= g since i 6= j and g ∈ S′′

i . Since g′′ ∈ S, we
have g′′ ∈ X and therefore N(g′) ∩ X 6= {g}. This shows that vertices of S′′

can have X-private neighbors only in S′′, as claimed. It follows that for every
vertex g ∈ S′′, the set pnG(g,X) is a non-empty subset of S′′ and every vertex
g′ ∈ pnG(g,X) is of degree 1 in the subgraph of G induced by S′′. Applying
the same argument with g′ in place of g shows that S′′ induces a kK2 for some
integer k, proving statement (E). In particular, every vertex g ∈ S′′ has a unique
X-private neighbor, namely its unique neighbor in the graph G[S′′]. This proves
the second assertion of statement (F).

Since D is a total dominating set in G�H, each vertex (g, hi) of D′′
i has a

neighbor in D, which is not in the same H-fiber as (g, hi) by definition of D′′.
Hence, there is a vertex g′ ∈ V (G) such that (g′, hi) ∈ D is a neighbor of (g, hi),
and so, by statements (D) and (E) we have (g′, hi) ∈ D′′

i . By projecting to G, we
get that for each vertex g in S′′

i , its unique neighbor g′ in S′′ is in S′′
i . We infer

that each S′′
i induces a graph isomorphic to some kK2, i.e., statement (G) holds.

To prove statement (H) first note that by statement (G) the set S′′
i totally

dominates S′′
i for every i ∈ {1, . . . , n}. For the purpose of getting a contradiction,

let us assume that there exists a vertex g ∈ P ′′ that is not totally dominated by
S′′
i for some i ∈ {1, . . . , n}. On the one hand, since g ∈ P ′′, there exists a vertex

a ∈ S′′
j for some j, j 6= i, such that ag ∈ E(G). On the other hand, vertex (g, hi)

must be totally dominated by some vertex in D, which can only be a vertex
from Ghi . Let (b, hi) ∈ D be a vertex that totally dominates (g, hi). Clearly,
by our assumption that g is not totally dominated by S′′

i , we have b ∈ S′. We
may assume without loss of generality that a minimum set of vertices T ′, used in
the definition of X in statement (F), that totally dominates S′ contains vertex g
(which totally dominates vertex b from S′). But then a has two neighbors in X,
namely g, and the unique neighbor a′ in S′′

j . Hence, as the only neighbor of a′

in S is vertex a (by statement (E)), we infer that a′ has no X-private neighbors,
a contradiction with statement (F). This implies that S′′

i totally dominates P ′′,
and so (H) holds.

Let X = S′ ∪ T ′ ∪ S′′, where T ′ is a minimum set of vertices that totally
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dominates S′, be defined as in statement (F), and recall that X is a γt(G)-set.
Suppose now that two distinct vertices u, v ∈ S′′

i , where i ∈ {1, . . . , n}, have a
common neighbor w in G. Statements (D), (E), and (G) imply that w ∈ P ′′.
If u and v are adjacent, then by statements (F) and (G) vertex u is the only
X-private neighbor of v in G and vice versa. We will show that in this case
X ′ = (X−{u, v})∪{w} is also a TD-set of G. Indeed, by statement (H), P ′′∪S′′

j

is totally dominated by S′′
j for each j ∈ {1, . . . , n}\{i}; all vertices x ∈ S′′ \{u, v}

are totally dominated by their unique neighbor in S′′, while u and v are totally
dominated by w. Every vertex in G not in S′′ ∪ P ′′ is totally dominated by a
vertex in X, and every such vertex is also a vertex of X ′. Hence X ′ is a TD-set
of G, which contradicts the minimality of X. If u and v are non-adjacent, then
u has a neighbor u′ ∈ S′′

i with pnG(u
′, X) = {u}, and v has a neighbor v′ ∈ S′′

i

with pnG(v
′, X) = {v}. By a similar reasoning as in the previous case, we infer

that (X − {u′, v′}) ∪ {w} is also a TD-set of G, contradicting the minimality of
X. Statement (I) follows.

Suppose that w is a common neighbor of u ∈ S′ and v ∈ S′′. We may assume
without loss of generality that w is in T ′ (because vertices from T ′ were chosen
arbitrarily as neighbors of vertices from S′), and so w ∈ X. Recall that v has
a neighbor v′ ∈ S′′ such that pnG(v

′, X) = {v}, which is a contradiction with
w ∈ X being adjacent to v. Statement (J) follows.

Next we show that S′, S′′, P ′ and P ′′ are pairwise disjoint sets. It is clear
from definitions that S′ ∩ S′′ = S′ ∩ P ′ = S′′ ∩ P ′′ = ∅. As a consequence of
statement (D), S′ ∩ P ′′ = ∅ and S′′ ∩ P ′ = ∅. Now, P ′ ∩ P ′′ = ∅ follows from
statement (J). Hence statement (K) is true.

Note that S′∪T ′ totally dominates S′∪P ′, and S′′ totally dominates S′′∪P ′′.
Since γt(G) = 2|S′|+ |S′′|, we have γt(G[S′ ∪ P ′]) ≥ 2|S′|, and γt(G[S′′ ∪ P ′′]) ≥
|S′′|. On the other hand, S′ is a dominating set of G[S′ ∪P ′], so γt(G[S′ ∪P ′]) ≤
2γ(G[S′ ∪P ′]) ≤ 2|S′|, which implies that γt(G[S′ ∪P ′]) = 2γ(G[S′ ∪P ′]) = 2|S′|
and proves statement (L). Since S′′ is a total dominating set of G[S′′ ∪ P ′′], we
get γt(G[S′′ ∪ P ′′]) ≤ |S′′|, hence γt(G[S′′ ∪ P ′′]) = |S′′|, which proves statement
(M).

From |S′′| = |D′′| and 2|S′|+ |S′′| = γt(G) = γt(G�H) = |D| = |D′|+ |D′′| it
follows that |D′| = 2|S′|. Let (g, h) ∈ D′. By the definition of D′, there is exactly
one h′ ∈ H,h 6= h′, such that (g, h′) ∈ D. So if H is a graph on three or more
vertices, there exists some ĥ ∈ H such that (g, ĥ) /∈ D. Because of statements (C)
and (D) and the fact that X is a γt(G)-set, vertex g has an X-private neighbor
g′ ∈ P ′. But then (g′, ĥ) is not totally dominated by any vertex of D. Hence, if
S′ 6= ∅, then D′ 6= ∅, in which case H = K2. This implies statement (N).

From Proposition 3 one easily deduces Theorem 2. If S′′ = ∅, then G is
isomorphic to G[S′ ∪ P ′], and by statement (L) we have γt(G) = 2γ(G), that is,
G ∈ F1. If, on the other hand, S′ = ∅, then G is isomorphic to G[S′′∪P ′′], which,
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by statements (H) and (M), belongs to F2. In the remaining case, we infer, using
statements (B), (L), and (M), that G ∈ F3.

Now we have everything ready to derive the desired characterization.

Theorem 4. Let G and H be nontrivial connected graphs with γt(H) = 2. Then

γt(G) = γt(G�H) if and only if one of the following conditions holds:

(i) G = K2 and γ(H) = 1;

(ii) H = K2 and G ∈ F1 ∪ F2 ∪ F3.

Proof. Let G and H be connected graphs with γt(G) = γt(G�H), let V (H) =
{h1, . . . , hn} and let D,D′, D′′, D′′

i , S
′, S′′, P, P ′, P ′′ and S′′

i , for i ∈ {1, . . . , n}, be
the sets as defined in the beginning of this section. Suppose first that G = K2.
Then Theorem 2 (alternatively, Proposition 3) implies that H ∈ F1 ∪F2 ∪F3. If
H ∈ F2 ∪ F3, then γt(H) ≥ 4, which contradicts γt(H) = 2. Therefore, H ∈ F1,
that is, γt(H) = 2γ(H). Since γt(H) = 2, we infer that γ(H) = 1 and condition
(i) holds.

Suppose now that G 6= K2. If H = K2, then the result follows from Theo-
rem 2 (alternatively, from Proposition 3). Otherwise, H is a graph on n vertices
for some n ≥ 3, and we will show that this will lead to a contradiction. By
statement (N) in Proposition 3, S′ = ∅. Hence, P ′ = ∅ and V (G) = S′′ ∪ P ′′. By
statement (M) we get γt(G) = |S′′|, and Proposition 3 also shows that S′′ parti-
tions into the sets S′′

i = pG(D
′′
i ), which are all non-empty. In addition, each S′′

i

induces kK2 for some k ≥ 1, and totally dominates S′′
i ∪P ′′. Now, by statements

(E) and (G), there are no edges between vertices of S′′
i and S′′

j , for i 6= j. Since
G is connected and n > 1, set P ′′ is nonempty, so let x ∈ P ′′. By statements
(H) and (I), for every i ∈ {1, . . . , n}, vertex x has a unique neighbor in S′′

i . For
i ∈ {1, 2}, let xi be the unique neighbor of x in S′′

i and let yi be the unique neigh-
bor of xi in S′′

i . Let T = (S′′ \ {y1, y2})∪{x}. We claim that T is a TD-set of G,
which will imply that γt(G) ≤ |T | < |S′′|, contrary to the optimality of S′′. First
of all, set P ′′ is totally dominated by T , since S′′

3
⊆ T . For every i ≥ 3, set S′′

i is
totally dominated by itself (and therefore by T , since S′′

i ⊆ T ). Vertices x1 and
x2 are totally dominated by x (and therefore by T , since x ∈ T ). Vertices y1 and
y2 are totally dominated by x1 and x2, respectively (and therefore by T , since
{x1, x2} ⊆ T ). Any other vertex in S′′

i , where i ∈ {1, 2}, has a unique neighbor in
S′′
i , which belongs to T , and is therefore totally dominated by T . This completes

the proof.
The converse follows from Theorems 1 and 2. For the sake of completeness,

we briefly describe the construction. First note that condition (i) is a special
case of condition (ii) with roles of G and H interchanged (indeed, γ(H) = 1 and
γt(H) = 2 imply H ∈ F1). Hence, let us assume that condition (ii) holds, that is,
let G and H be graphs such that H = K2 and G ∈ F1 ∪F2 ∪F3. By Theorem 1,
we have γt(G�H) ≥ γt(G). If G ∈ F1, then γt(G) = 2γ(G) and a TD-set of G�H
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of size γt(G) can be obtained by taking a copy of a fixed minimum dominating
set of G in each of the two G-fibers in G�H. Suppose now that G ∈ F2. Then,
G has a γt(G)-set D that can be partitioned into two nonempty subsets D1 and
D2 such that D1 = V (G)\NG(D2) and D2 = V (G)\NG(D1). A TD-set of G�H
of size γt(G) can be obtained by taking a copy of D1 in one of the two G-fibers
in G�H and D2 in the other G-fiber. Finally, suppose that G ∈ F3. Then, the
vertex set of G can be partitioned into two nonempty subsets V1 and V2 such that
G1 = G[V1] ∈ F1, G2 = G[V2] ∈ F2, and γt(G) = γt(G1)+γt(G2). Since G2 ∈ F2,
graph G2 has a γt(G2)-set D

′′ that can be partitioned into two nonempty subsets
D′′

1
and D′′

2
such that D′′

1
= V (G2) \ NG2

(D′′
2
) and D′′

2
= V (G2) \ NG2

(D′′
1
).

Moreover, let D′ be a minimum dominating set of G1. Then, a TD-set of G�H
of size γt(G) can be obtained by taking a copy of D′ ∪ D′′

1
in one of the two

G-fibers in G�H and D′ ∪D′′
2
in the other G-fiber.

Note that since the class of graphs F1∪F2∪F3 is closed under disjoint union
and under taking components, the connectedness assumption on G in Theorem 4
could be replaced with the more general condition asserting that G has no isolated
vertices.

3. Approximating Equality in γt(G)γt(H) ≤ 2γt(G�H)

For two nontrivial connected graphs G and H, let us consider the quotient of
the total domination number of their Cartesian product and the product of their
total domination numbers,

qt(G,H) =
γt(G�H)

γt(G)γt(H)
.

We call it the total domination quotient of graphs G and H. By Theorem 1, we
infer that

(2) qt(G,H) ≥ 1/2

for every nontrivial connected graphsG andH. For all known pairs of graphs with
qt(G,H) = 1/2, one of G and H is isomorphic to K2 (see Theorem 4). We in fact
suspect that there are no other such pairs. On a related note, one may wonder
whether there exists some ǫ > 0 such that for all connected graphs G and H
having sufficiently large total domination numbers, we have qt(G,H) ≥ 1/2 + ǫ.
As we show next, this is not the case: we exhibit an infinite family of graphs
{Gn}n≥2 such that γt(Gn) = 2n and limn→∞ qt(Gn, Gn) = 1/2. However, for
each n ≥ 1 we have qt(Gn, Gn) > 1/2.

For n ≥ 1, let Gn denote the graph obtained from Kn by attaching an end-
vertex of a P3 to each vertex of the n-clique. Formally, this is a graph with vertex
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set {a1, . . . , an} ∪ {b1, . . . , bn} ∪ {c1, . . . , cn}, where the set {a1, . . . , an} forms a
clique, every bi is adjacent to every ai and every ci, and there are no other edges.
Note that G2

∼= P6; see Figure 2 for the next two examples.

G4G3

Figure 2. The graphs G3 and G4.

Proposition 5. For all integers 2 ≤ k ≤ n we have

2kn+ k ≤ γt(Gk�Gn) ≤ 2kn+ 2k.

Proof. Let us denote the vertices of the first factor, isomorphic to Gk, as
a1, . . . , ak, b1, . . . , bk, c1, . . . , ck, where A = {a1, . . . , ak} is the k-clique, B =
{b1, . . . , bk}, C = {c1, . . . , ck} is the set of vertices of degree 1, and bi is the
unique neighbor of ci, for each i. For the other factor, isomorphic to Gn, we will
denote its vertices with x1, . . . , xn, y1, . . . , yn, z1, . . . , zn, where X = {x1, . . . , xn}
is the n-clique, Y = {y1, . . . , yn}, Z = {z1, . . . , zn} is the set of vertices of degree
1, and yi is the unique neighbor of zi, for each i.

To show that γt(Gk�Gn) ≤ 2kn+ 2k, we will show that Gk�Gn has a total
dominating set D with |D| = 2kn+ 2k. Set

D = (A× {x1, z1}) ∪
(

B ×
(

(Y \ {y1}) ∪ (Z \ {z1})
))

∪ (C × {x1, y1}),

see Figure 3.

Clearly, |D| = 2kn+ 2k. To see that D is a total dominating set of Gk�Gn,
note that:

• A×X is totally dominated by A× {x1},

• B × {x1} is totally dominated by A × {x1} and B × (X \ {x1}) is totally
dominated by B × (Y \ {y1}),

• C × {x1} is totally dominated by C × {y1} and C × (X \ {x1}) is totally
dominated by C × {x1},
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A B C

X

Y

Z

A×X B ×X C ×X

A× Y C × Y

A× Z C × Z

B × Y

B × Z

Figure 3. The shaded area depicts the total dominating set D of Gk�Gn.

• A × {y1} is totally dominated by A × {x1} and A × (Y \ {y1}) is totally
dominated by B × (Y \ {y1}),

• B × {y1} is totally dominated by C × {y1} and B × (Y \ {y1}) is totally
dominated by B × (Z \ {z1}),

• C × {y1} is totally dominated by C × {x1} and C × (Y \ {y1}) is totally
dominated by B × (Y \ {y1}),

• A × {z1} is totally dominated by A × {z1} and A × (Z \ {z1}) is totally
dominated by B × (Z \ {z1}),

• B × {z1} is totally dominated by A × {z1} and B × (Z \ {z1}) is totally
dominated by B × (Y \ {y1}),

• C × {z1} is totally dominated by C × {y1} and C × (Z \ {z1}) is totally
dominated by B × (Z \ {z1}).

It remains to show that γt(Gk�Gn) ≥ 2kn + k. Let D be a minimum total
dominating set of Gk�Gn. Note that vertices of C × Z are totally dominated
only by vertices in (B × Z) ∪ (C × Y ) and no two vertices of C × Z have a
common neighbor. Hence, at least |C| · |Z| = kn vertices from D are needed to
totally dominate C × Z. Similarly, vertices in B × Z are totally dominated only
by vertices in (A × Z) ∪ (B × Y ) ∪ (C × Z) and no two vertices of B × Z have
a common neighbor. Consequently, additional |B| · |Z| = kn vertices from D are



974 B. Brešar, T.R. Hartinger, T. Kos and M. Milanič

needed to totally dominate B×Z. Finally, vertices in A×X are totally dominated
only by vertices in (A × X) ∪ (A × Y ) ∪ (B × X), and thus one can easily see
that at least k additional vertices from D are needed to totally dominate A×X.
Altogether, the above arguments imply the claimed inequality, as γt(Gk�Gn) =
|D| ≥ 2kn+ k.

Corollary 6. For all integers 2 ≤ k ≤ n, we have

1

2
+

1

4n
≤ qt(Gk, Gn) ≤

1

2
+

1

2n
.

In particular, for every k ≥ 2 we have

lim
n→∞

qt(Gk, Gn) =
1

2
.

4. Discussion on the Total Domination Quotient

We propose a further study of the quotient qt(G,H) for arbitrary graphs G and
H. In particular, it would be interesting to answer the question about whether
the quotient qt(G,H) equals 1/2 only if one of the graphs is isomorphic to K2.
Note that the quotient can be arbitrarily large, as shown by G and H being
complete graphs (in this case, qt(Kn,Km) = min{m,n}/4). Moreover, recall
the general bound γt(G�H) ≥ ρ2(G)γt(H), cf. [2], where ρ2(G) denotes the 2 -
packing number of a graph G, that is, the maximum number of pairwise disjoint
closed neighborhoods of vertices in G. By this bound, we have that qt(G,H) ≥ 1
whenever γt(G) = ρ2(G). Such graphs have been studied under the name (ρ, γt)-
graphs and were characterized by Dorfling et al. [4].

Next, we propose the following definition, in which G denotes the family of
all nontrivial connected graph. Given a graph G ∈ G, let

qinft (G) = inf
H∈G

{qt(G,H)}.

That is, we want to express by this notion how close a graph G ∈ G can get to
the bound from Theorem 1 when the other factor varies over all graphs in G.
For instance, by the above discussion, if G is a (ρ, γt)-graph, then qinft (G) ≥ 1.
Clearly, if G is one of the graphs from F1 ∪ F2 ∪ F3, then qinft (G) = 1/2 and the
infimum is attained (hence, it is actually a minimum) when K2 is chosen for H.
Several questions naturally appear. For instance, is it true that for any graph
G there always exists a graph H such that qinft (G) = qt(G,H)? Note that the
graphs Gn, for which we clearly have qinft (Gn) = 1/2, all belong to the family F1,
hence qinft (Gn) = qt(Gn,K2).
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We pose another question, which, if proven to have the positive answer,
would considerably reduce the set of candidates G and H for which the equality
γt(G)γt(H) = 2γt(G�H) can hold.

Question 7. Is it true that for any nontrivial connected graph G we have

qt(G,H) ≥ qt(G,K2),

where H is an arbitrary nontrivial connected graph? In other words, is it true

that
γt(G�H)

γt(H)
≥

γt(G�K2)

2
,

for any graphs G and H in G?

Note that the equality γt(G)γt(H) = 2γt(G�H) holds if and only if qt(G,H)
= 1/2, that is, if the total domination quotient of G and H attains the lower
bound given by (2). Hence, if the above question has affirmative answer, then the
equality γt(G)γt(H) = 2γt(G�H) implies qt(G,H) = qt(G,K2) = qt(H,K2) =
1/2. This in turn implies (by Theorem 2) that both G and H belong to the
family of graphs F1 ∪ F2 ∪ F3. This would bring us closer to our suspicion that
the pairs of graphs G and H from G such that γt(G)γt(H) = 2γt(G�H) can only
be found among the graphs from Theorem 4 (in which case one of the factors is
always K2).

Furthermore, a positive answer to Question 7 would strengthen the bound
of Ho from Theorem 1, because reorganizing the inequality in Question 7 to
2γt(G�H) ≥ γt(G�K2)γt(H) and using γt(G�K2)γt(H) ≥ γt(G)γt(H), the
truth of the first inequality implies 2γt(G�H) ≥ γt(G)γt(H). While we could
not prove the inequality in Question 7, we verified its truth by computer for all
pairs of nontrivial connected graphs G and H, where G has at most 8 vertices
and H has at most 7 vertices.
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