COMPLETELY INDEPENDENT SPANNING TREES IN k-TH POWER OF GRAPHS

XiA Hong
Department of mathematics
Luoyang Normal University
Luoyang, 471022, China
e-mail: 05shumenghongxia@163.com

Abstract

Let $T_{1}, T_{2}, \ldots, T_{k}$ be spanning trees of a graph G. For any two vertices u, v of G, if the paths from u to v in these k trees are pairwise openly disjoint, then we say that $T_{1}, T_{2}, \ldots, T_{k}$ are completely independent. Araki showed that the square of a 2 -connected graph G on n vertices with $n \geq 4$ has two completely independent spanning trees. In this paper, we prove that the k-th power of a k-connected graph G on n vertices with $n \geq 2 k$ has k completely independent spanning trees. In fact, we prove a stronger result: if G is a connected graph on n vertices with $\delta(G) \geq k$ and $n \geq 2 k$, then the k-th power G^{k} of G has k completely independent spanning trees.

Keywords: completely independent spanning tree, power of graphs, spanning trees.
2010 Mathematics Subject Classification: 05C05.

1. Introduction

The graphs considered in this paper are finite, undirected, and simple (no loops or multiple edges). The vertex set and the edge set of G are denoted by $V(G)$ and $E(G)$, respectively. For a vertex $v \in V(G)$, the neighbour set $N_{G}(v)$ is the set of vertices adjacent to $v, \operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$ is the degree of v. For a subgraph H of $G, N_{H}(v)$ is the set of the neighbour of v which are in H, and $\operatorname{deg}_{H}(v)=\left|N_{H}(v)\right|$ is the degree of v in H. The set of (close) neighbour of a edge e in G is denoted by $N_{G}(e)\left(N_{G}[e]\right)$. When no confusion can occur, we shall write $N(v), N(e), N[e]$, instead of $N_{G}(v), N_{G}(e), N_{G}[e]$, respectively. We denote by $\delta(G)$ the minimum degree of the vertices of G. For a subset $U \subseteq V(G)$, the subgraph induced by U
is denoted by $G[U]$, which is the graph on U whose edges are precisely the edges of G with both ends in U. We use $G-U$ to denote the subgraph induced by $V(G) \backslash U$, that is, the graph obtained from G by deleting all the vertices of U together with all the edges with at least one end in U. If $U=\{u\}$, then we shall use $G-u$ instead of $G-\{u\}$. For a subset U, V of $V(G)$, we denote $E_{G}(U, V)$ the set of edges of G with one end in U and the other end in V.

For $u \in V(G)$ and $U \subseteq V(G)$, the distance between u and U, denoted by $\operatorname{dist}_{G}(u, U)$, is the length of a shortest path from u to a vertex in U. When U consists of a single vertex, we write $\operatorname{dist}_{G}(u, v)$ instead of $\operatorname{dist}_{G}(u,\{v\})$. For a positive integer k, the k-th power G^{k} of a graph G is the graph G^{k} whose vertex set is $V(G)$, two distinct vertices being adjacent in G^{k} if and only if their distance in G is at most k. If $k=1, G^{1}=G$. In particular, the graph G^{2} is referred to as the square of G, the graph G^{3} as the cube of G. We say G is k-connected if $|V(G)|>k$ and $G-X$ is connected for every set $X \subset V(G)$ with $|X|<k$. For simplicity, we denote $[k]=\{1, \ldots, k\}$.

A tree T of G is a spanning tree of G if $V(T)=V(G)$. A leaf is a vertex of degree 1. An internal vertex is a vertex of degree at least 2 . A rooted tree T is a tree with a specified vertex x, called the root of T. A x-tree T refer to a rooted tree with root x. The level of a vertex v of the x-tree T is the length of the path from the root x to v, the depth of the x-tree T is the maximum level of a vertex in the tree, denoted by $D(T)$. A graph is called homeomorphically irreducible if it contains no vertices of degree 2. A homeomorphically irreducible tree is called a HIT, and a homeomorphically irreducible spanning tree of a graph is called a HIST of the graph. A caterpillar is a tree in which the internal vertices induce a path.

Let x, y be two vertices of G. An (x, y)-path is a path with the two ends x and y. Two (x, y)-paths P_{1}, P_{2} are openly disjoint if they have no common edge and no common vertex except for the two ends x and y. Let $T_{1}, T_{2}, \ldots, T_{k}$ be spanning trees in a graph H. For any two vertices u, v of H, if the paths from u to v in these k trees are pairwise openly disjoint, then we say that $T_{1}, T_{2}, \ldots, T_{k}$ are completely independent spanning trees(CISTs) in G. The concept of completely independent spanning trees was proposed by Hasunuma [4]. In [4], Hasunuma gave a characterization for CISTs and proved that the underlying graph of a k connected line digraph always contains k CISTs. It is well known [7, 9] that every $2 k$-edge-connected graph has k edge-disjoint spanning trees. Motivated by this, Hasunuma [5] conjectured that every $2 k$-connected graph has k CISTs. However, Péterfalvi [8] disproved the conjecture by constructing a k-connected graph, for each $k \geq 2$, which does not have two CISTs. Recently, Araki [1] provided a new characterization of the existence of k CISTs and showed the following results.

Theorem 1 [1]. Let G be a graph with $n \geq 7$ vertices. If $\delta(G) \geq n / 2$, then G has two completely independent spanning trees.

In [6], Hong et al. give a generalization of Theorem 1.1.
Theorem 2 [1]. If G is a 2-connected graph G on n vertices with $n \geq 4$, then the square G^{2} has two completely independent spanning trees.

It is interesting to note that the above Dirac's conditions and Fleischner's conditions is sufficient for a graph to be Hamiltonian. So, Araki [1] asked that whether other sufficient conditions for a graph to be Hamiltonian also imply the existence of two CISTs. In [3], Fan et al. confirmed that the well-known Ore's condition also implies the existence two CISTs.

In this paper, we generalize Theorem 2. In fact, we prove a stronger result which is Theorem 7.

First, we give the preliminaries of our results as follows.
Let $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ be a partition of the vertex set $V(G)$ and, for $i \neq j$, $B\left(V_{i}, V_{j}, G\right)$ be a bipartite graph with the edge set $\left\{u v \mid u v \in E(G), u \in V_{i}\right.$ and $\left.v \in V_{j}\right\}$. If the graph G is clear from the context, we may use $B\left(V_{1}, V_{2}\right)$ instead of $B\left(V_{1}, V_{2}, G\right)$. A partition $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ is called a CIST-partition of G if it satisfies the following two conditions:
(1) for $i=1,2, \ldots, k$, the induced subgraph $G\left[V_{i}\right]$ is connected, and
(2) for any $i \neq j$, the bipartite graph $B\left(V_{i}, V_{j}\right)$ has no tree components, that is, every connected component H of $B\left(V_{i}, V_{j}\right)$ satisfies $|E(H)| \geq|V(H)|$.

The following result obtained by Araki [1] plays a key role in our proof.
Lemma 3 [1]. A connected graph G has k completely independent spanning trees if and only if there is a CIST-partition $\left(V_{1}, \ldots, V_{k}\right)$ of $V(G)$.

Lemma 4 [2]. Let G be a graph with every edge in at least two triangles. Then G contains a HIST.

Now we give the definition of a good vertex x of H to use in the proof of our result.

Given a graph H and a partition $\left(V_{1}, \ldots, V_{k}\right)$ of its vertex set, let

$$
d_{x_{i}}=d s t_{H}\left(x, V_{i}\right), x \in V(H), i \in[k] .
$$

For every $x \in V(H)$, there exists a corresponding sequence $\left(d_{t_{1}}, d_{t_{2}}, \ldots, d_{t_{k}}\right)$ such that $d_{t_{1}} \geq d_{t_{2}} \geq \cdots \geq d_{t_{k}}$ and $t_{1}, t_{2}, \ldots, t_{k}$ is a permutation of $x_{1}, x_{2}, \ldots, x_{k}$.

We say that a vertex x is good with respect to H if $d_{t_{j}} \leq k-j(j \in[k])$.
Lemma 5. Let G be a connected graph and $H \subseteq G$. Suppose that there are q components $H_{1}, H_{2}, \ldots, H_{q}$ in $G-H$ and S is a subset of $V(H)$ with the following proporty: for every component $H_{s}(s \in[q])$ of $G-H$, there exist a vertex $u \in V\left(H_{s}\right)$ and a vertex $v \in S$ such that $u v \in E(G)$. If H^{k} has a CISTpartition $\left(V_{1}, \ldots, V_{k}\right)$ and every vertex of S is good with respect to H, then G^{k} has k completely independent spanning trees.

Proof. Let $\left(V_{1}, \ldots, V_{k}\right)$ be a CIST-partition of the vertex set $V\left(H^{k}\right)$, we try to find a CIST-partition of the vertex set $V\left(G^{k}\right)$ by extending the partition $\left(V_{1}, \ldots, V_{k}\right)$.

Let $H_{1}, H_{2}, \ldots, H_{q}$ be q components of $G-H$. For every component H_{s} $(s \in[q])$, we choose a spanning tree T_{s} and a vertex $u \in V\left(T_{s}\right)$ such that $u v \in$ $E(G)$, where $v \in S$. We may assume that $T_{s}^{\prime}=T_{s} \cup\{v u\}$ and T_{s}^{\prime} is a v tree. Let $d_{x_{i}}=\operatorname{dist}_{H}\left(v, V_{i}\right), i \in[k]$. For the vertex v, there exists a sequence $\left(d_{t_{1}}, d_{t_{2}}, \ldots, d_{t_{k}}\right)$ such that $d_{t_{1}} \geq d_{t_{2}} \geq \cdots \geq d_{t_{k}}$ and $t_{1}, t_{2}, \ldots, t_{k}$ is a permutation of $x_{1}, x_{2}, \ldots, x_{k}$. Let α be a one-to-one correspondence from $[k]$ to $[k]$ such that $\operatorname{dist}_{H}\left(v, V_{\alpha(j)}\right)=d_{t_{j}}$.

Let L_{j} be the vertex set of all vertices in j-th level of T_{s}^{\prime} for $j \in\left\{1, \ldots, D\left(T_{s}^{\prime}\right)\right\}$. For every $w \in L_{j}$, we assign it to $V_{\alpha(j(\bmod k))}$. For other components, we repeat the above operation, and it follows that we obtain a new partition $\left(V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{k}^{\prime}\right)$ of the vertex set $V\left(G^{k}\right)$. It remains to show that $\left(V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{k}^{\prime}\right)$ is a CISTpartition of $V\left(G^{k}\right)$.

If $1 \leq j \leq k$, since every vertex of S is good with respect to H and $L_{j} \subset V_{\alpha(j)}^{\prime}$ for any $w \in L_{j}$, we have

$$
\operatorname{dist}_{G}\left(w, V_{\alpha(j)}\right) \leq \operatorname{dist}_{G}\left(v, V_{\alpha(j)}\right)+\operatorname{dist}_{G}(v, w) \leq k-j+j=k
$$

Thus,

$$
E_{G^{k}}\left(\{w\}, V_{\alpha(j)}\right) \neq \emptyset
$$

If $k+1 \leq j \leq D\left(T_{s}^{\prime}\right)$, for any $w_{1} \in L_{j}, w_{2} \in L_{j-k}$, then

$$
L_{j}, L_{j-k} \subset V_{\alpha(j(\bmod k))}^{\prime}, \operatorname{dist}_{G}\left(w_{1}, w_{2}\right) \leq k
$$

Thus,

$$
w_{1} w_{2} \in E\left(G^{k}\right)
$$

It is easy to see that the induced graph $G^{k}\left[V_{i}^{\prime}\right]$ is connected for $i \in[k]$.
Note that $\operatorname{deg}_{B\left(V_{i}^{\prime}, V_{j}^{\prime}\right)}(w) \geq 1$ for every vertex $w \in V_{i}^{\prime} \backslash V_{i}, j^{\prime} \neq i^{\prime}$. Since $B\left(V_{i}, V_{j}\right)$ has no tree components and the vertex w is adjacent to V_{j} in G^{k} by alternative path between V_{i}^{\prime} and V_{j}^{\prime}, we get that $B\left(V_{i}^{\prime}, V_{j}^{\prime}\right)$ has no tree component.

Hence, $\left(V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{k}^{\prime}\right)$ is a CIST-partition of $V\left(G^{k}\right)$. By Lemma $3, G^{k}$ has k completely independent spanning trees.

Lemma 6. For a homeomorphically irreducible tree (HIT) T with $|V(T)| \geq 2 k$, the k-th power T^{k} of T has k completely independent spanning trees.

Proof. We first consider the longest path $P=x_{0} x_{1} \cdots x_{|P|}$ of T.
Case 1. $|P|<k$. If $|P|<k$, then T^{k} is a complete graph. Also, $|V(T)| \geq 2 k$ and any partition $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ of $V(T)$ with $\left|V_{i}\right| \geq 2$ is a CIST-partition of $V\left(T^{k}\right)$. Hence, by Lemma $3, T^{k}$ has k completely independent spanning trees.

Case 2. $|P| \geq k$. Denote $P_{0}=x_{0} x_{1} \cdots x_{k}$. Since T is a homeomorphically irreducible tree (HIT), we choose a caterpillar T_{0} such that its internal vertices are $V\left(P_{0}-\left\{x_{0}, x_{k}\right\}\right)$ and its leaf vertices are $N\left(x_{1}\right) \cup \cdots \cup N\left(x_{k-1}\right) \backslash V\left(P_{0}-\left\{x_{0}, x_{k}\right\}\right)$. We regard T_{0} as a rooted tree which is rooted at x_{0} in the following proof.

Let L_{i} be the set of all vertices with the same level of x_{i} in T_{0}, where $i \in$ $\{0,1, \ldots, k\}$. Note that

$$
L_{0}=\left\{x_{0}\right\}, L_{1}=\left\{x_{1}\right\},\left|L_{i}\right| \geq 2, i \in\{2, \ldots, k\}
$$

We have $\left|T_{0}\right| \geq 2 k$ and the distance between x and y is at most k for every pair $x, y \in V\left(T_{0}\right)$. Thus, $T^{k}\left[T_{0}\right]$ is a complete graph and any partition $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ of the vertex set $V\left(T^{k}\left[T_{0}\right]\right)$ with $\left|V_{i}\right| \geq 2$ is a CIST-partition. Specially, we choose a partition of $V\left(T^{k}\left[T_{0}\right]\right)$ as $\left(L_{0} \cup L_{1}, L_{2}, \ldots, L_{k}\right)$.

Since P is a longest path in T and T_{0} is a caterpillar, $E_{T}\left(L_{0} \cup L_{1} \cup L_{2} \cup\right.$ $\left.V\left(P_{0}-x_{k}\right), T-T_{0}\right)$ is empty. Let $S=V\left(T_{0}-\left(L_{0} \cup L_{1} \cup L_{2} \cup V\left(P_{0}-x_{k}\right)\right)\right)$, it follows that $x x_{i-1} \in E(T)$ for any $x \in S \cap L_{i}(i \geq 3)$ and

$$
\begin{aligned}
\operatorname{dist}_{T}\left(x, L_{i}\right) & =0 \\
\operatorname{dist}_{T}\left(x, L_{j}\right) & =i-j, 1 \leq j<i \\
\operatorname{dist}_{T}\left(x, L_{j}\right) & =j-i+2, i+1 \leq j \leq k
\end{aligned}
$$

In addition, there exists a corresponding sequence $\left(d_{t_{1}}, d_{t_{2}}, \ldots, d_{t_{k}}\right)$ such that $d_{t_{1}} \geq d_{t_{2}} \geq \cdots \geq d_{t_{k}}$ and $t_{1}, t_{2}, \ldots, t_{k}$ is a permutation of $\operatorname{dist}_{T}\left(x, L_{0} \cup L_{1}\right)$, $\operatorname{dist}_{T}\left(x, L_{2}\right), \ldots, \operatorname{dist}_{T}\left(x, L_{k}\right)$. So, $d_{t_{j}} \leq k-j(j \in[k])$. Hence, every vertex of S is good with respect to T_{0}. By Lemma $5, T^{k}$ has k completely independent spanning trees.

Theorem 7. If G is a connected graph on n vertices with $n \geq 2 k$ and $\delta(G) \geq k$, then the k-th power G^{k} of G has k completely independent spanning trees.

Proof. If $k=1$, then the theorem holds trivially. Therefore, we may assume that $k \geq 2$. Now, suppose that $k=2$. Since $\delta(G) \geq 2$, we have that G has a cycle C_{m}.

If $\left|V\left(C_{m}\right)\right| \geq 2 k=4$, then let $C_{m}=x_{1} x_{2} \cdots x_{m}$ and let a partition of the vertex set $V\left(C_{m}\right)$ be as follows:

$$
V_{i}=\left\{x_{j} \mid j \equiv i(\bmod 2), 1 \leq j \leq m\right\}, i \in[2]
$$

Since $m \geq 4$, we have $\left|V_{i}\right| \geq 2$. It is easy to see that the induced graph $G_{m}^{2}\left[V_{i}\right]$ is connected for $i \in[2]$. Actually, $G_{m}^{2}\left[V_{i}\right]$ is either a path or a cycle. If $x_{j} \in V_{i}$, then $\left|V_{3-i} \cap\left\{v \mid \operatorname{dist}_{C_{m}}\left(x_{j}, v\right) \leq 2\right\}\right| \geq 2$. Thus, $\operatorname{deg}_{B\left(V_{i}, V_{3-i}\right)}\left(x_{j}\right) \geq 2$ and $B\left(V_{i}, V_{3-i}\right)$ has no tree component. Hence, $\left(V_{1}, V_{2}\right)$ is a CIST-partition of C_{m}^{2}.

Let $H_{i}(i \in[q])$ be the connected components of graphs $G-C_{m}$. Since G is connected, we have that there exists an edge which connects H_{i} to C_{m} for every
$i \in[q]$. Also, we have $\operatorname{dist}_{G}\left(x, V_{i}\right)=0$ for every vertex $x \in V_{i}(i \in[2])$ and $\operatorname{dist}_{G}\left(x, V_{3-i}\right)=1$. Hence, for the set $S=V\left(C_{m}\right)$, every vertex of S is good with respect to C_{m}. By Lemma $5, G^{2}$ has 2 completely independent spanning trees.

Now we assume that $|C|<4$ for any cycle C of G.
We choose a cycle $C=x_{1} x_{2} x_{3}$. Note that $n \geq 4$, therefore there exists a vertex $y \in V(G-C)$ such that $y x_{i} \in E(G)$. Without loss of generality, we assume that $y x_{1} \in E(G)$. Let $H=C \cup\left\{y x_{1}\right\}$ and let a partition of the vertex set $V\left(H^{2}\right)$ be as follows:

$$
V_{1}=\left\{x_{1}, x_{2}\right\}, V_{2}=\left\{x_{3}, y\right\}
$$

Since $n \geq 4$, we have $\left|V_{i}\right| \geq 2$. It is easy to see that $\left(V_{1}, V_{2}\right)$ is a CISTpartition of the vertex set $V\left(H^{2}\right)$. As we have stated in the previous case, for the set $S=V(H)$, every vertex of S is good with respect to H. By Lemma 5 , G^{2} has 2 completely independent spanning trees.

Thus, we only consider the case $k \geq 3$.
Case 1. There exists an edge $x y$ such that $|N(x)-N[y]| \geq k-1$ and $|N(y)-N[x]| \geq k-1$.

Let

$$
\begin{aligned}
& x y=x_{1} y_{1}, H=G\left[N\left[x_{1}\right] \cup N\left[y_{1}\right]\right]-N\left(x_{1}\right) \cap N\left(y_{1}\right), \\
& N\left(x_{1}\right)=\left\{y_{1}, x_{2}, x_{3}, \ldots, x_{\operatorname{deg}_{G}\left(x_{1}\right)}\right\}, \\
& N\left(y_{1}\right)=\left\{x_{1}, y_{2}, y_{3}, \ldots, y_{\operatorname{deg}_{G}\left(y_{1}\right)}\right\} .
\end{aligned}
$$

Since $\delta(G) \geq k \geq 3$ and $\operatorname{dist}(u, v) \leq 3$ for any two vertices u, v, combine with $|V(H)| \geq 2 k, H^{k}$ is a complete graph. Thus, any partition $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ of the vertex set $V\left(H^{k}\right)$ with $\left|V_{i}\right| \geq 2$ is a CIST-partition. Specially, we choose a partition of the vertex set $V\left(H^{k}\right)$ as follows:

$$
\begin{aligned}
V_{1} & =\left\{x_{1}, y_{1}\right\} \\
V_{i} & =\left\{x_{j} \mid j \equiv i(\bmod (k-1)), 2 \leq j \leq \operatorname{deg}_{G}\left(x_{1}\right)\right\} \\
& \cup\left\{y_{j} \mid j \equiv i(\bmod (k-1)), 2 \leq j \leq \operatorname{deg}_{G}\left(y_{1}\right)\right\}, i \in\{2, \ldots, k\} .
\end{aligned}
$$

For every $x \in V_{i}(i \geq 2)$, we have

$$
\operatorname{dist}_{G}\left(x, V_{i}\right)=0, \operatorname{dist}_{G}\left(x, V_{1}\right)=1, \operatorname{dist}_{G}\left(x, V_{j}\right)=2, j \neq i
$$

Hence, for the set $S=V(H)$, every vertex of S is good with respect to H. By Lemma $5, G^{k}$ has k completely independent spanning trees.

Case 2. There exists an edge $x y$ such that $|N(x)-N[y]| \geq k-2$ and $|N(x)-N[y]| \geq k-2$ and which does not satisfy Case 1.

Let

$$
H=G[N[x y]]
$$

Since $\delta(G) \geq k,|V(H)| \geq 2 k-1$.
Case 2.1. If $d(x)>k$ or $d(y)>k$, then $x y$ satisfies the Case 1 which is a contradiction.

Case 2.2. If $d(x)=k, d(y)=k$, then $|V(H)|=2 k-1$. Since $n \geq 2 k$, there exists a vertex $w \in V(G-H)$ such that w is adjacent to a vertex h of $H \backslash\{x, y\}$. In other words, $h \in N(x) \backslash\{y\}$ or $N(y) \backslash\{x\}$. We suppose that $H_{0}=G[V(H) \cup w]$.

Figure 1.
(1) We first consider the case $k \geq 4$. If $h \in N(x) \backslash\{y\}$ (or $h \in N(y) \backslash\{x\}$), then we label H_{0} as in Figure 1. Let

$$
\begin{aligned}
& x=x_{3}, y=x_{2}\left(\text { or } x=x_{2}, y=x_{3}\right), \\
& N(x) \cap N(y)=\left\{x_{1}\right\}, w=y_{2}, \\
& N\left(x_{3}\right)=\left\{x_{2}, x_{1}, y_{1}, x_{4}, x_{5}, \ldots, x_{k}\right\}, \\
& N\left(x_{2}\right)=\left\{x_{3}, x_{1}, y_{3}, y_{4}, y_{5}, \ldots, y_{k}\right\} .
\end{aligned}
$$

Since $\delta(G) \geq k \geq 4, H_{0}^{k}$ is a complete graph. Thus, any partition $\left(V_{1}, V_{2}, \ldots\right.$, $\left.V_{k}\right)$ of the vertex set $V\left(H_{0}^{k}\right)$ with $\left|V_{i}\right| \geq 2$ is a CIST-partition. Specially, we choose a partition of the vertex set $V\left(H_{0}^{k}\right)$ as follows:

$$
V_{i}=\left\{x_{i}, y_{i}\right\}, i \in[k] .
$$

If $h=x_{\ell}(\ell=1,4,5, \ldots, k)$ or $h=y_{\ell}(\ell=1)$, then for $j \in[k]$ we have

$$
\begin{aligned}
& \operatorname{dist}_{G}\left(x_{1}, V_{1}\right)=0, \operatorname{dist}_{G}\left(x_{1}, V_{2}\right)=1, \operatorname{dist}_{G}\left(x_{1}, V_{j}\right) \leq 2(j \neq 1,2), \\
& \operatorname{dist}_{G}\left(y_{1}, V_{1}\right)=0, \operatorname{dist}_{G}\left(y_{1}, V_{3}\right)=1, \operatorname{dist}_{G}\left(y_{1}, V_{j}\right) \leq 2(j \neq 1,3),
\end{aligned}
$$

$\operatorname{dist}_{G}\left(y_{2}, V_{2}\right)=0, \operatorname{dist}_{G}\left(y_{2}, V_{\ell}\right)=1, \operatorname{dist}_{G}\left(y_{2}, V_{3}\right) \leq 2$,
$\operatorname{dist}_{G}\left(y_{2}, V_{j}\right) \leq 3(j \neq 2,3, \ell)$,
$\operatorname{dist}_{G}\left(y_{i}, V_{i}\right)=0, \operatorname{dist}_{G}\left(y_{i}, V_{2}\right)=1, \operatorname{dist}_{G}\left(y_{i}, V_{j}\right) \leq 2,3 \leq i \leq k(j \neq 2, i)$,
$\operatorname{dist}_{G}\left(x_{i}, V_{i}\right)=0, \operatorname{dist}_{G}\left(x_{i}, V_{3}\right)=1, \operatorname{dist}_{G}\left(x_{i}, V_{j}\right) \leq 2,4 \leq i \leq k(j \neq 3, i)$.
Again, for the set $S=V\left(H-\left\{x_{2}, x_{3}\right\}\right)$, every vertex of S is good with respect to H. By Lemma $5, G^{k}$ has k completely independent spanning trees.
(2) Now suppose that $k=3$.

Figure 2.
Claim 8. If a connected graph G contains a subgraph which is isomorphic to one of the H_{1}, H_{2}, H_{3} in Figure $2\left(\right.$ where $H_{3}=H_{3}^{\prime} \cup e$ and e has exactly one end in $V\left(H_{3}^{\prime}\right)$), then G^{3} has 3 completely independent spanning trees.

Proof. If $H_{1} \subseteq G$, then the proof follows by Case 1. If $H_{2} \subseteq G$, then H_{2} is isomorphic to $H_{0}=G\left[V(H) \cup y_{2}\right]$ in Case 2.2(1), where $H=G[W], W=$ $\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{3}\right\}$ and y_{2} is adjacent to a vertex x_{1} of H. The proof follows by Case 2.2(1). Suppose $H_{3} \subseteq G$, if e is adjacent to x, then there exists a subgraph of H_{3} which is isomorphic to H_{2}. Otherwise, e is adjacent to $V\left(H_{3}^{\prime}\right) \backslash x$, then we obtain a subgraph of H_{3} which is isomorphic to H_{1}. The claim is true for H_{1}, H_{2}, H_{3}.

Now we begin to prove the case $k=3$ and we relabel H as in left of Figure 3.

Since $k=3$, we have $h \neq y, z$. If $h=x$, then $H \cup\{w h\}$ contains a subgraph which is isomorphic to H_{2}, it is true by Claim 8. Thus, $h=u$ or $h=v$. By symmetry, we may assume that $h=u$ and $H_{0}=G[V(H) \cup w]$, as in right of Figure 3.

If $\operatorname{deg}_{G-H_{0}}(u) \geq 1$, then G contains a subgraph which is isomorphic to H_{1}, it is true by Claim 8. Thus, $N(u) \subseteq V\left(H_{0}\right)$.

Figure 3.

If $u v \in E(G)$, then there exists a subgraph of G which is isomorphic to H_{3}, it is true by Claim 8. Otherwise, $u v \notin E(G)$ and $u x \in E(G)$.

If $x v \in E(G)$, then we obtain a subgraph of G which is isomorphic to H_{1}, it is true by Claim 8. Otherwise, $x v \notin E(G)$. Since $\delta \geq 3$, we have $\operatorname{deg}_{G-\{x, y, u\}}(v) \geq$ 2. Thus, we also can obtain a subgraph of G which is isomorphic to H_{1}, it is true by Claim 8.

Hence, G^{3} has 3 completely independent spanning trees.
Case 3. Every edge e of G is contained in at least two triangles. By Lemma 4, G contains a HIST T. Also, by Lemma 6 , the k-th power T^{k} of T has k completely independent spanning trees.

Hence, the k-th power G^{k} has k completely independent spanning trees. The proof of Theorem 7 is completed.

An immediate consequence of Theorem 7 is the following corollary.
Corollary 9. If G is a k-connected graph on n vertices with $n \geq 2 k$, then the k-th power G^{k} of G has k completely independent spanning trees.

Acknowledgements

This research was supported by National Natural Science Foundation of China (No. 11701257 and No. 11301254) and the Key Project in Universities of Henan Province (No. 18A110025 and No. 16B110009) and Natural Science Foundation of Henan Province under(Grant No. 172102410069). This work was supported by the Youth Backbone Teacher Foundation of Henan's University (Grant No. 2015GGJS-115) and Innovation Scientists Technicians Troop Construction Projects of Henan Province (Grant No. C20150027). The author would like to express thanks to the referee for his valuable corrections and suggestions of the manuscript that greatly improve the format and correctness and the quality of our paper.

References

[1] T. Araki, Dirac's condition for completely independent spanning trees, J. Graph Theory 77 (2014) 171-179.
doi:10.1002/jgt. 21780
[2] G. Chen and S. Shan, Homeomorphically irreducible spanning trees, J. Combin. Theory Ser. B 103 (2013) 409-414.
doi:10.1016/j.jctb.2013.04.001
[3] G. Fan, Y. Hong and Q. Liu, Ore's condition for completely independent spanning trees, Discrete Appl. Math. 177 (2014) 95-100. doi:10.1016/j.dam.2014.06.002
[4] T. Hasunuma, Completely independent spanning trees in the underlying graph of a line digraph, Discrete Math. 234 (2001) 149-157. doi:10.1016/S0012-365X(00)00377-0
[5] T. Hasunuma, Completely independent spanning trees in maximal planar graphs, in: Proceedings of the 28th Graph-Theoretic Concepts Computer Science (WG 2002), Lecture Notes in Comput. Sci. 2573 (2002) 235-245. doi:10.1007/3-540-36379-3_21
[6] X. Hong and Q. Liu, Degree condition for completely independent spanning trees, Inform. Process. Lett. 116 (2016) 644-648. doi:10.1016/j.ipl.2016.05.004
[7] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc. 36 (1961) 445-450. doi:10.1112/jlms/s1-36.1.445
[8] F. Péterfalvi, Two counterexamples on completely independent spanning trees, Discrete Math. 312 (2012) 808-810. doi:10.1016/j.disc.2011.11.015
[9] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. Lond. Math. Soc. 36 (1961) 221-230.
doi:10.1112/jlms/s1-36.1.221
Received 28 April 2016
Revised 30 January 2017
Accepted 7 February 2017

