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Abstract

Let T1, T2, . . . , Tk be spanning trees of a graph G. For any two vertices
u, v of G, if the paths from u to v in these k trees are pairwise openly disjoint,
then we say that T1, T2, . . . , Tk are completely independent. Araki showed
that the square of a 2-connected graph G on n vertices with n ≥ 4 has
two completely independent spanning trees. In this paper, we prove that
the k-th power of a k-connected graph G on n vertices with n ≥ 2k has k
completely independent spanning trees. In fact, we prove a stronger result:
if G is a connected graph on n vertices with δ(G) ≥ k and n ≥ 2k, then the
k-th power Gk of G has k completely independent spanning trees.
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ning trees.
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1. Introduction

The graphs considered in this paper are finite, undirected, and simple (no loops
or multiple edges). The vertex set and the edge set of G are denoted by V (G) and
E(G), respectively. For a vertex v ∈ V (G), the neighbour set NG(v) is the set of
vertices adjacent to v, degG(v) = |NG(v)| is the degree of v. For a subgraph H of
G, NH(v) is the set of the neighbour of v which are in H, and degH(v) = |NH(v)|
is the degree of v in H. The set of (close) neighbour of a edge e in G is denoted by
NG(e) (NG[e]). When no confusion can occur, we shall write N(v), N(e), N [e],
instead of NG(v), NG(e), NG[e], respectively. We denote by δ(G) the minimum
degree of the vertices of G. For a subset U ⊆ V (G), the subgraph induced by U
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is denoted by G[U ], which is the graph on U whose edges are precisely the edges
of G with both ends in U . We use G − U to denote the subgraph induced by
V (G) \ U , that is, the graph obtained from G by deleting all the vertices of U
together with all the edges with at least one end in U . If U = {u}, then we shall
use G − u instead of G − {u}. For a subset U, V of V (G), we denote EG(U, V )
the set of edges of G with one end in U and the other end in V .

For u ∈ V (G) and U ⊆ V (G), the distance between u and U , denoted by
distG(u, U), is the length of a shortest path from u to a vertex in U . When U
consists of a single vertex, we write distG(u, v) instead of distG(u, {v}). For a
positive integer k, the k-th power Gk of a graph G is the graph Gk whose vertex
set is V (G), two distinct vertices being adjacent in Gk if and only if their distance
in G is at most k. If k = 1, G1 = G. In particular, the graph G2 is referred to
as the square of G, the graph G3 as the cube of G. We say G is k-connected if
|V (G)| > k and G −X is connected for every set X ⊂ V (G) with |X| < k. For
simplicity, we denote [k] = {1, . . . , k}.

A tree T of G is a spanning tree of G if V (T ) = V (G). A leaf is a vertex of
degree 1. An internal vertex is a vertex of degree at least 2. A rooted tree T is a
tree with a specified vertex x, called the root of T . A x-tree T refer to a rooted
tree with root x. The level of a vertex v of the x-tree T is the length of the path
from the root x to v, the depth of the x-tree T is the maximum level of a vertex
in the tree, denoted by D(T ). A graph is called homeomorphically irreducible if
it contains no vertices of degree 2. A homeomorphically irreducible tree is called
a HIT, and a homeomorphically irreducible spanning tree of a graph is called a
HIST of the graph. A caterpillar is a tree in which the internal vertices induce a
path.

Let x, y be two vertices of G. An (x, y)-path is a path with the two ends x
and y. Two (x, y)-paths P1, P2 are openly disjoint if they have no common edge
and no common vertex except for the two ends x and y. Let T1, T2, . . . , Tk be
spanning trees in a graph H. For any two vertices u, v of H, if the paths from u to
v in these k trees are pairwise openly disjoint, then we say that T1, T2, . . . , Tk are
completely independent spanning trees(CISTs) in G. The concept of completely
independent spanning trees was proposed by Hasunuma [4]. In [4], Hasunuma
gave a characterization for CISTs and proved that the underlying graph of a k-
connected line digraph always contains k CISTs. It is well known [7, 9] that every
2k-edge-connected graph has k edge-disjoint spanning trees. Motivated by this,
Hasunuma [5] conjectured that every 2k-connected graph has k CISTs. However,
Péterfalvi [8] disproved the conjecture by constructing a k-connected graph, for
each k ≥ 2, which does not have two CISTs. Recently, Araki [1] provided a new
characterization of the existence of k CISTs and showed the following results.

Theorem 1 [1]. Let G be a graph with n ≥ 7 vertices. If δ(G) ≥ n/2, then G
has two completely independent spanning trees.
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In [6], Hong et al. give a generalization of Theorem 1.1.

Theorem 2 [1]. If G is a 2-connected graph G on n vertices with n ≥ 4, then
the square G2 has two completely independent spanning trees.

It is interesting to note that the above Dirac’s conditions and Fleischner’s
conditions is sufficient for a graph to be Hamiltonian. So, Araki [1] asked that
whether other sufficient conditions for a graph to be Hamiltonian also imply the
existence of two CISTs. In [3], Fan et al. confirmed that the well-known Ore’s
condition also implies the existence two CISTs.

In this paper, we generalize Theorem 2. In fact, we prove a stronger result
which is Theorem 7.

First, we give the preliminaries of our results as follows.
Let (V1, V2, . . . , Vk) be a partition of the vertex set V (G) and, for i 6= j,

B(Vi, Vj , G) be a bipartite graph with the edge set {uv |uv ∈ E(G), u ∈ Vi and
v ∈ Vj}. If the graph G is clear from the context, we may use B(V1, V2) instead
of B(V1, V2, G). A partition (V1, V2, . . . , Vk) is called a CIST-partition of G if it
satisfies the following two conditions:

(1) for i = 1, 2, . . . , k, the induced subgraph G[Vi] is connected, and
(2) for any i 6= j, the bipartite graph B(Vi, Vj) has no tree components, that

is, every connected component H of B(Vi, Vj) satisfies |E(H)| ≥ |V (H)|.

The following result obtained by Araki [1] plays a key role in our proof.

Lemma 3 [1]. A connected graph G has k completely independent spanning trees

if and only if there is a CIST-partition (V1, . . . , Vk) of V (G).

Lemma 4 [2]. Let G be a graph with every edge in at least two triangles. Then

G contains a HIST.

Now we give the definition of a good vertex x of H to use in the proof of our
result.

Given a graph H and a partition (V1, . . . , Vk) of its vertex set, let

dxi
= dstH(x, Vi), x ∈ V (H), i ∈ [k].

For every x ∈ V (H), there exists a corresponding sequence (dt1 , dt2 , . . . , dtk)
such that dt1 ≥ dt2 ≥ · · · ≥ dtk and t1, t2, . . . , tk is a permutation of x1, x2, . . . , xk.

We say that a vertex x is good with respect to H if dtj ≤ k − j (j ∈ [k]).

Lemma 5. Let G be a connected graph and H ⊆ G. Suppose that there are

q components H1, H2, . . . , Hq in G − H and S is a subset of V (H) with the

following proporty: for every component Hs (s ∈ [q]) of G − H, there exist a

vertex u ∈ V (Hs) and a vertex v ∈ S such that uv ∈ E(G). If Hk has a CIST-

partition (V1, . . . , Vk) and every vertex of S is good with respect to H, then Gk

has k completely independent spanning trees.
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Proof. Let (V1, . . . , Vk) be a CIST-partition of the vertex set V (Hk), we try
to find a CIST-partition of the vertex set V (Gk) by extending the partition
(V1, . . . , Vk).

Let H1, H2, . . . , Hq be q components of G − H. For every component Hs

(s ∈ [q]), we choose a spanning tree Ts and a vertex u ∈ V (Ts) such that uv ∈
E(G), where v ∈ S. We may assume that T

′

s = Ts ∪ {vu} and T
′

s is a v-
tree. Let dxi

= distH(v, Vi), i ∈ [k]. For the vertex v, there exists a sequence
(dt1 , dt2 , . . . , dtk) such that dt1 ≥ dt2 ≥ · · · ≥ dtk and t1, t2, . . . , tk is a permutation
of x1, x2, . . . , xk. Let α be a one-to-one correspondence from [k] to [k] such that
distH(v, Vα(j)) = dtj .

Let Lj be the vertex set of all vertices in j-th level of T
′

s for j ∈ {1, . . . , D(T
′

s)}.
For every w ∈ Lj , we assign it to Vα(j (mod k)). For other components, we repeat

the above operation, and it follows that we obtain a new partition (V
′

1 , V
′

2 , . . . , V
′

k)
of the vertex set V (Gk). It remains to show that (V

′

1 , V
′

2 , . . . , V
′

k) is a CIST-
partition of V (Gk).

If 1 ≤ j ≤ k, since every vertex of S is good with respect to H and Lj ⊂ V
′

α(j)
for any w ∈ Lj , we have

distG(w, Vα(j)) ≤ distG(v, Vα(j)) + distG(v, w) ≤ k − j + j = k.

Thus,
EGk({w}, Vα(j)) 6= ∅.

If k + 1 ≤ j ≤ D(T
′

s), for any w1 ∈ Lj , w2 ∈ Lj−k, then

Lj , Lj−k ⊂ V
′

α(j (mod k)), distG(w1, w2) ≤ k.

Thus,
w1w2 ∈ E(Gk).

It is easy to see that the induced graph Gk[V
′

i ] is connected for i ∈ [k].
Note that deg

B(V
′

i ,V
′

j )
(w) ≥ 1 for every vertex w ∈ V

′

i \ Vi, j
′

6= i
′

. Since

B(Vi, Vj) has no tree components and the vertex w is adjacent to Vj in Gk by
alternative path between V

′

i and V
′

j , we get that B(V
′

i , V
′

j ) has no tree component.

Hence, (V
′

1 , V
′

2 , . . . , V
′

k) is a CIST-partition of V (Gk). By Lemma 3, Gk has
k completely independent spanning trees.

Lemma 6. For a homeomorphically irreducible tree (HIT ) T with |V (T )| ≥ 2k,
the k-th power T k of T has k completely independent spanning trees.

Proof. We first consider the longest path P = x0x1 · · ·x|P | of T .

Case 1. |P | < k. If |P | < k, then T k is a complete graph. Also, |V (T )| ≥ 2k
and any partition (V1, V2, . . . , Vk) of V (T ) with |Vi| ≥ 2 is a CIST-partition of
V (T k). Hence, by Lemma 3, T k has k completely independent spanning trees.
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Case 2. |P | ≥ k. Denote P0 = x0x1 · · ·xk. Since T is a homeomorphically
irreducible tree (HIT), we choose a caterpillar T0 such that its internal vertices are
V (P0−{x0, xk}) and its leaf vertices are N(x1)∪· · ·∪N(xk−1)\V (P0−{x0, xk}).
We regard T0 as a rooted tree which is rooted at x0 in the following proof.

Let Li be the set of all vertices with the same level of xi in T0, where i ∈
{0, 1, . . . , k}. Note that

L0 = {x0}, L1 = {x1}, |Li| ≥ 2, i ∈ {2, . . . , k}.

We have |T0| ≥ 2k and the distance between x and y is at most k for every pair
x, y ∈ V (T0). Thus, T

k[T0] is a complete graph and any partition (V1, V2, . . . , Vk)
of the vertex set V (T k[T0]) with |Vi| ≥ 2 is a CIST-partition. Specially, we choose
a partition of V (T k[T0]) as (L0 ∪ L1, L2, . . . , Lk).

Since P is a longest path in T and T0 is a caterpillar, ET (L0 ∪ L1 ∪ L2 ∪
V (P0 − xk), T − T0) is empty. Let S = V (T0 − (L0 ∪ L1 ∪ L2 ∪ V (P0 − xk))), it
follows that xxi−1 ∈ E(T ) for any x ∈ S ∩ Li (i ≥ 3) and

distT (x, Li) = 0,

distT (x, Lj) = i− j, 1 ≤ j < i,

distT (x, Lj) = j − i+ 2, i+ 1 ≤ j ≤ k.

In addition, there exists a corresponding sequence (dt1 , dt2 , . . . , dtk) such that
dt1 ≥ dt2 ≥ · · · ≥ dtk and t1, t2, . . . , tk is a permutation of distT (x, L0 ∪ L1),
distT (x, L2), . . . , distT (x, Lk). So, dtj ≤ k − j (j ∈ [k]). Hence, every vertex of
S is good with respect to T0. By Lemma 5, T k has k completely independent
spanning trees.

Theorem 7. If G is a connected graph on n vertices with n ≥ 2k and δ(G) ≥ k,
then the k-th power Gk of G has k completely independent spanning trees.

Proof. If k = 1, then the theorem holds trivially. Therefore, we may assume
that k ≥ 2. Now, suppose that k = 2. Since δ(G) ≥ 2, we have that G has a
cycle Cm.

If |V (Cm)| ≥ 2k = 4, then let Cm = x1x2 · · ·xm and let a partition of the
vertex set V (Cm) be as follows:

Vi = {xj | j ≡ i (mod 2), 1 ≤ j ≤ m}, i ∈ [2].

Since m ≥ 4, we have |Vi| ≥ 2. It is easy to see that the induced graph
G2

m[Vi] is connected for i ∈ [2]. Actually, G2
m[Vi] is either a path or a cycle. If

xj ∈ Vi, then |V3−i ∩{v | distCm(xj , v) ≤ 2}| ≥ 2. Thus, degB(Vi,V3−i)(xj) ≥ 2 and

B(Vi, V3−i) has no tree component. Hence, (V1, V2) is a CIST-partition of C2
m.

Let Hi (i ∈ [q]) be the connected components of graphs G− Cm. Since G is
connected, we have that there exists an edge which connects Hi to Cm for every
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i ∈ [q]. Also, we have distG(x, Vi) = 0 for every vertex x ∈ Vi (i ∈ [2]) and
distG(x, V3−i) = 1. Hence, for the set S = V (Cm), every vertex of S is good with
respect to Cm. By Lemma 5, G2 has 2 completely independent spanning trees.

Now we assume that |C| < 4 for any cycle C of G.
We choose a cycle C = x1x2x3. Note that n ≥ 4, therefore there exists a

vertex y ∈ V (G−C) such that yxi ∈ E(G). Without loss of generality, we assume
that yx1 ∈ E(G). Let H = C ∪{yx1} and let a partition of the vertex set V (H2)
be as follows:

V1 = {x1, x2}, V2 = {x3, y}.

Since n ≥ 4, we have |Vi| ≥ 2. It is easy to see that (V1, V2) is a CIST-
partition of the vertex set V (H2). As we have stated in the previous case, for
the set S = V (H), every vertex of S is good with respect to H. By Lemma 5,
G2 has 2 completely independent spanning trees.

Thus, we only consider the case k ≥ 3.

Case 1. There exists an edge xy such that |N(x) − N [y]| ≥ k − 1 and
|N(y)−N [x]| ≥ k − 1.

Let
xy = x1y1, H = G[N [x1] ∪N [y1]]−N(x1) ∩N(y1),

N(x1) =
{

y1, x2, x3, . . . , xdegG(x1)

}

,

N(y1) =
{

x1, y2, y3, . . . , ydegG(y1)

}

.

Since δ(G) ≥ k ≥ 3 and dist(u, v) ≤ 3 for any two vertices u, v, combine
with |V (H)| ≥ 2k, Hk is a complete graph. Thus, any partition (V1, V2, . . . , Vk)
of the vertex set V (Hk) with |Vi| ≥ 2 is a CIST-partition. Specially, we choose a
partition of the vertex set V (Hk) as follows:

V1 = {x1, y1},

Vi = {xj | j ≡ i (mod (k − 1)), 2 ≤ j ≤ degG(x1)}

∪ {yj | j ≡ i (mod (k − 1)), 2 ≤ j ≤ degG(y1)} , i ∈ {2, . . . , k}.

For every x ∈ Vi (i ≥ 2), we have

distG(x, Vi) = 0, distG(x, V1) = 1, distG(x, Vj) = 2, j 6= i.

Hence, for the set S = V (H), every vertex of S is good with respect to H. By
Lemma 5, Gk has k completely independent spanning trees.

Case 2. There exists an edge xy such that |N(x) − N [y]| ≥ k − 2 and
|N(x)−N [y]| ≥ k − 2 and which does not satisfy Case 1.

Let
H = G[N [xy]].
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Since δ(G) ≥ k, |V (H)| ≥ 2k − 1.

Case 2.1. If d(x) > k or d(y) > k, then xy satisfies the Case 1 which is a
contradiction.

Case 2.2. If d(x) = k, d(y) = k, then |V (H)| = 2k − 1. Since n ≥ 2k, there
exists a vertex w ∈ V (G−H) such that w is adjacent to a vertex h of H\{x, y}.
In other words, h ∈ N(x)\{y} or N(y)\{x}. We suppose that H0 = G[V (H)∪ w].

Figure 1.

(1) We first consider the case k ≥ 4. If h ∈ N(x)\{y} (or h ∈ N(y)\{x}),
then we label H0 as in Figure 1. Let

x = x3, y = x2 (or x = x2, y = x3),

N(x) ∩N(y) = {x1}, w = y2,

N(x3) = {x2, x1, y1, x4, x5, . . . , xk},

N(x2) = {x3, x1, y3, y4, y5, . . . , yk}.

Since δ(G) ≥ k ≥ 4, Hk
0 is a complete graph. Thus, any partition (V1, V2, . . . ,

Vk) of the vertex set V (Hk
0 ) with |Vi| ≥ 2 is a CIST-partition. Specially, we choose

a partition of the vertex set V (Hk
0 ) as follows:

Vi = {xi, yi}, i ∈ [k].

If h = xℓ (ℓ = 1, 4, 5, . . . , k) or h = yℓ (ℓ = 1), then for j ∈ [k] we have

distG(x1, V1) = 0, distG(x1, V2) = 1, distG(x1, Vj) ≤ 2 (j 6= 1, 2),

distG(y1, V1) = 0, distG(y1, V3) = 1, distG(y1, Vj) ≤ 2 (j 6= 1, 3),



808 X. Hong

distG(y2, V2) = 0, distG(y2, Vℓ) = 1, distG(y2, V3) ≤ 2,

distG(y2, Vj) ≤ 3 (j 6= 2, 3, ℓ),

distG(yi, Vi) = 0, distG(yi, V2) = 1, distG(yi, Vj) ≤ 2, 3 ≤ i ≤ k (j 6= 2, i),

distG(xi, Vi) = 0, distG(xi, V3) = 1, distG(xi, Vj) ≤ 2, 4 ≤ i ≤ k (j 6= 3, i).

Again, for the set S = V (H−{x2, x3}), every vertex of S is good with respect
to H. By Lemma 5, Gk has k completely independent spanning trees.

(2) Now suppose that k = 3.

Figure 2.

Claim 8. If a connected graph G contains a subgraph which is isomorphic to one

of the H1,H2, H3 in Figure 2 (where H3 = H
′

3 ∪ e and e has exactly one end in

V (H
′

3)), then G3 has 3 completely independent spanning trees.

Proof. If H1 ⊆ G, then the proof follows by Case 1. If H2 ⊆ G, then H2

is isomorphic to H0 = G[V (H) ∪ y2] in Case 2.2(1), where H = G[W ], W =
{x1, x2, x3, y1, y3} and y2 is adjacent to a vertex x1 of H. The proof follows by
Case 2.2(1). Suppose H3 ⊆ G, if e is adjacent to x, then there exists a subgraph
of H3 which is isomorphic to H2. Otherwise, e is adjacent to V (H

′

3) \ x, then
we obtain a subgraph of H3 which is isomorphic to H1. The claim is true for
H1, H2, H3.

Now we begin to prove the case k = 3 and we relabel H as in left of Figure
3.

Since k = 3, we have h 6= y, z. If h = x, then H ∪ {wh} contains a subgraph
which is isomorphic to H2, it is true by Claim 8. Thus, h = u or h = v. By
symmetry, we may assume that h = u and H0 = G[V (H) ∪ w], as in right of
Figure 3.

If degG−H0
(u) ≥ 1, then G contains a subgraph which is isomorphic to H1,

it is true by Claim 8. Thus, N(u) ⊆ V (H0).
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Figure 3.

If uv ∈ E(G), then there exists a subgraph of G which is isomorphic to H3,
it is true by Claim 8. Otherwise, uv /∈ E(G) and ux ∈ E(G).

If xv ∈ E(G), then we obtain a subgraph of G which is isomorphic to H1, it is
true by Claim 8. Otherwise, xv /∈ E(G). Since δ ≥ 3, we have degG−{x,y,u}(v) ≥
2. Thus, we also can obtain a subgraph of G which is isomorphic to H1, it is true
by Claim 8.

Hence, G3 has 3 completely independent spanning trees.

Case 3. Every edge e of G is contained in at least two triangles. By Lemma
4, G contains a HIST T . Also, by Lemma 6, the k-th power T k of T has k
completely independent spanning trees.

Hence, the k-th power Gk has k completely independent spanning trees. The
proof of Theorem 7 is completed.

An immediate consequence of Theorem 7 is the following corollary.

Corollary 9. If G is a k-connected graph on n vertices with n ≥ 2k, then the

k-th power Gk of G has k completely independent spanning trees.
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