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Abstract

A star edge-coloring of a graph G is a proper edge coloring such that
every 2-colored connected subgraph of G is a path of length at most 3. For
a graph G, let the list star chromatic index of G, ch′

st
(G), be the minimum

k such that for any k-uniform list assignment L for the set of edges, G has
a star edge-coloring from L. Dvořák, Mohar and Šámal asked whether the
list star chromatic index of every subcubic graph is at most 7. We prove
that it is at most 8. We also prove that if the maximum average degree
of a subcubic graph G is less than 7

3

(

respectively, 5

2

)

, then ch′
st
(G) ≤ 5

(respectively, ch′
st
(G) ≤ 6).
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1. Introduction

All the graphs we consider are finite and simple. For a graph G, we denote
by V (G), E(G), δ(G) and ∆(G) its vertex set, edge set, minimum degree and
maximum degree, respectively.

A proper vertex (respectively, edge) coloring of G is an assignment of colors
to the vertices (respectively, edges) of G such that no two adjacent vertices (re-
spectively, edges) receive the same color. A star coloring of G is a proper vertex
coloring of G such that the union of any two color classes induces a star forest in
G, i.e., every component of this union is a star. This notion was first mentioned
by Grünbaum [6] in 1973, but attracted more attention only in 2001 after the
paper [5] by Fertin, Raspaud and Reed. By now, there are more than 30 publi-
cations on this topic. The star coloring even in the class of line graphs seems to
be difficult. A convenient language for discussions of star coloring of line graphs
is the language of star edge-coloring of all graphs.

A star edge-coloring of a graph G is a proper edge-coloring such that every
2-colored connected subgraph of G is a path of length at most 3. In other words,
we forbid bicolored 4-cycles and 4-paths in G (by a k-path we mean a path with
k edges). This notion is intermediate between acyclic edge-coloring, when every
2-colored subgraph must be only acyclic, and strong edge-coloring, when every
2-colored connected subgraph has at most two edges. The star chromatic index of
G, denoted by χ′

st(G), is the minimum number of colors needed for a star edge-
coloring of G. It was first studied by Liu and Deng [9] in 2008. They proved the
following upper bound.

Theorem 1 [9]. For every G with maximum degree ∆≥ 7, χ′
st(G)≤

⌈

16(∆−1)
3

2

⌉

.

In [3] and later [2] it is proved:

Theorem 2 [3, 2]. The star chromatic index of any tree with maximum degree ∆
is at most ∆+

⌈

∆−1
2

⌉

.

In a seminal paper [4], Dvořák, Mohar and Šámal showed that even deter-
mining the star chromatic index of the complete graph Kn with n vertices is a
hard problem. They gave the following bounds:

2n(1 + o(1)) ≤ χ′
st(Kn) ≤ n

22
√
2(1+o(1))

√
log(n)

logn
1

4

.

They also studied the star chromatic index of subcubic graphs, that is, graphs
with maximum degree at most 3. They proved that χ′

st(G) ≤ 7 for every subcubic
graph G, and conjectured that χ′

st(G) ≤ 6 for every such G.
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A natural generalization of star edge-coloring is the list star edge-coloring.
An edge list L for a graph G is a mapping that assigns a finite set of colors to
each edge of G. Given an edge list L for a graph G, we say that G is L-star
edge-colorable if it has a star edge-coloring c such that c(e) ∈ L(e) for every edge
of G. The list star chromatic index, ch′st(G), of a graph G is the minimum k such
that for every edge list L for G with |L(e)| = k for every e ∈ E(G), G is L-star
edge-colorable.

Dvořák, Mohar and Šámal [4, Question 3] asked whether ch′st(G) ≤ 7 for
every subcubic G. We prove the following result toward this question.

Theorem 3. For every subcubic graph G, ch′st(G) ≤ 8.
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Figure 1. Two subcubic graphs with mad=2 and list star chromatic index 5.

We also give sufficient conditions for the list star chromatic index of a subcubic
graph to be at most 5 and 6 in terms of the maximum average degree mad(G) =

max
{

2|E(H)|
|V (H)| , H ⊆ G

}

. Note that the best possible sufficient condition for 4

colors is mad(G) < 2. If mad(G) < 2 then G is acyclic and by Theorem 2 for
∆ = 3, we have χ′

st(G) ≤ 4. The same proof yields also ch′st(G) ≤ 4. On the
other hand, each of the graphs Gi in Figure 1 has mad(Gi) = 2 and ch′st(Gi) ≥
χ′
st(Gi) = 5. Our second result is:

Theorem 4. Let G be a subcubic graph.

1. If mad(G) < 7
3 , then ch′st(G) ≤ 5.

2. If mad(G) < 5
2 , then ch′st(G) ≤ 6.

As every planar graph with girth g satisfies mad(G) < 2g
g−2 , Theorem 4 yields

the following.

Corollary 1. Let G be a planar subcubic graph with girth g.

1. If g ≥ 14, then ch′st(G) ≤ 5.

2. If g ≥ 10, then ch′st(G) ≤ 6.
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Analogous to Theorem 4 bounds were earlier proved in [7] for the strong

chromatic index, χ′
s(G) — the minimum k such that G has a strong edge-coloring

with k colors. Recall that a strong edge-coloring of a graph G is a proper edge-
coloring such that any two edges adjacent to a common edge receive different
colors. Since every strong edge-coloring is also a star edge-coloring, the following
results give bounds for the star chromatic index. Note that the restrictions on
mad in the first two statements of Theorem 5 below are the same as in Theorem
4, but the bounds are different.

Theorem 5 [7]. Let G be a subcubic graph.

1. If mad(G) < 7
3 , then χ′

s(G) ≤ 6.

2. If mad(G) < 5
2 , then χ′

s(G) ≤ 7.

3. If mad(G) < 8
3 , then χ′

s(G) ≤ 8.

4. If mad(G) < 20
7 , then χ′

s(G) ≤ 9.

List versions of two results of the previous theorem (for mad(G) < 5
2 and

mad(G) < 8
3) are proved in [10].

The structure of the paper is as follows. In the next section we introduce
some notation and prove an analog of Lemma 5.2 in [4] on extensions of partial
star edge-colorings. In Section 3 we prove Theorem 3, and in the two last sections
we prove parts 1 and 2 of Theorem 4.

2. Preliminaries

For a graph G, let dG(v) denote the degree of a vertex v in G and NG(v) denote
the set of neighbors of v in G. If G is clear from the content, we may omit the
subscript. A vertex of degree k is called a k-vertex, and a k-neighbor of a vertex
v is a k-vertex adjacent to v. An edge xy is weak if at least one of x and y is a
leaf. A vertex x is weak if at least one of the edges incident with x is weak. For
brevity, we often will write "k-se-coloring" instead of "star edge k-coloring" and
"se-coloring" instead of "star edge-coloring". A partial edge-coloring of a graph
G is an edge-coloring of a subgraph G′ of G (where G′ can equal G).

For a partial edge-coloring φ of a graph G and a vertex v ∈ V (G), φ(v)
denotes the set of colors used on the edges incident with v.

We will heavily use the following lemma.

Lemma 6. Let φ be a partial se-coloring of a graph G and uv be an uncolored

edge. If α is a color satisfying at least one of the two properties below, then the

coloring φ′ obtained from φ by coloring uv with α also is a partial se-coloring

of G.
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(a) For every x ∈ N [v] ∪N [u], α /∈ φ(x);

(b) φ(u) ∩ φ(v) = ∅, α /∈ φ(u) ∪ φ(v), and among the edges incident with the

neighbors of v or u, only weak edges may have color α.

Proof. Suppose (a) or (b) holds, but φ′ is not a partial se-coloring of G. Then
there is a color β and either a path z1z2z3z4z5 or a cycle z1z2z3z4z1 containing
edge uv whose edges are colored with α and β. By symmetry, we may assume
that u = zi and v = zi+1 for i ∈ {1, 2}. Then φ(zi+2zi+3) = α. So, (a) cannot
hold. Thus (b) holds. If i = 2, then we have a contradiction to φ(u) ∩ φ(v) = ∅.
So i = 1. But z3z4 is not weak, which violates (b).

3. Proof of Theorem 3

Let G be a subcubic graph with the minimum total number of edges and vertices
such that there exists a list L for the set of the edges of G with |L(e)| = 8 for
every e ∈ E(G) for which G has no L-star-edge-coloring.

Clearly, G is connected.

Lemma 7. G is 3-regular.

Proof. If G has a 1-vertex u adjacent to some v, then by the minimality of G,
graph G − u has an se-coloring φ from L. We view it as a partial se-coloring of
G. Let W be the set of neighbors of v distinct from u. We extend φ by coloring
uv with any color α ∈ L(uv) distinct from the colors of the (at most six) edges
incident with the vertices in W . So, δ(G) ≥ 2.

Suppose now that G has a 2-vertex v adjacent to u and w. Let N(u) ⊆
{v, u1, u2} and N(w) ⊆ {v, w1, w2}. By the minimality of G, graph G− v has an
L-coloring φ of its edges. We view it as a partial se-coloring of G. Let A(uv) =
L(uv) − φ(u1) − φ(u2) and A(wv) = L(wv) − φ(w1) − φ(w2). By definition,
|A(uv)| ≥ 2 and |A(vw)| ≥ 2. If there is α ∈ A(uv)− φ(w), then by coloring vw
with some β ∈ A(vw) − α and uv with α we get an se-coloring of G. Indeed, at
each step the conditions of Lemma 6(a) will hold. Otherwise, d(u) = d(w) = 3,
d(u1) = d(u2) = d(w1) = d(w2) = 3, uw /∈ E(G),

(1)
L(uv) = {φ(ww1), φ(ww2)} ∪ φ(u1) ∪ φ(u2), and

L(vw) = {φ(uu1), φ(uu2)} ∪ φ(w1) ∪ φ(w2).

In particular, for i = 1, 2, vertex ui (respectively, wi) has two neighbors u′i
and u′′i (respectively, w′

i and w′′
i ) distinct from u (respectively, w). We then try

to color vw with φ(uu2) and uv with either φ(u1u′1) or φ(u1u′′1). If we do not get
an se-coloring of G, then any 2-colored 4-path in G contains edges uv and uu1,
so that each of u′1 and u′′1 is incident with an edge of color φ(uu1). It follows that
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|φ(u′1)∪ φ(u′′1)| ≤ 5. Similarly, each of u′2 and u′′2 is incident with an edge of color
φ(uu2), and |φ(u′2)∪φ(u′′2)| ≤ 5. If there is γ1 ∈ L(uu1)− (φ(u′1)∪φ(u′′1)∪φ(u2)),
then we color uv with φ(uu1), vw with φ(uu2), and recolor uu1 with γ1. By (1) and
the definition of γ1 this would yield an se-coloring of G from L, a contradiction.
This means

(2) L(uu1) = φ(u′1) ∪ φ(u′′1) ∪ φ(u2).

Similarly, L(uu2) = φ(u′2) ∪ φ(u′′2) ∪ φ(u1). In particular, φ(uu2) ∈ L(uu1) and
φ(uu1) ∈ L(uu2). Then switching the colors of uu1 and uu2 we obtain another
se-coloring φ′ of G− v. Repeating the above argument for φ′ in place of φ, we get
that each of u′1 and u′′1 is incident with an edge of color φ′(uu1) = φ(uu2). But
then |φ(u′1) ∪ φ(u′′1)| = 4, a contradiction to (2).

In the following we will say that two edges are at distance at most 1 if they
are adjacent or adjacent to a same edge. Let C = (v1, . . . , vt) be a shortest cycle
in G. Since C is shortest, it has no chords. Thus for each i = 1, . . . , t, vertex vi
has a unique neighbor v′i in V (G) − V (C). Let G1 = G − E(C). An se-coloring
φ of G1 from L is stable if for every i = 1, . . . , t, φ(viv′i) differs from φ(vi−1v

′
i−1),

φ(vi+1v
′
i+1), and from the color of each edge in G1 at distance at most 1 from viv

′
i

in G1 (note that G1 has at most six such edges: two incident with v′i and at most
four others incident with the neighbors of v′i).

Lemma 8. G1 does not have stable se-colorings from L.

Proof. Suppose G1 has a stable se-coloring φ from L. For every i = 1, . . . , t, let
L′(vivi+1) = L(vivi+1) − {φ(vi−1v

′
i−1), φ(viv

′
i), φ(vi+1v

′
i+1), φ(vi+2v

′
i+2)} (indices

taken modulo t).
Then |L′(vivi+1)| ≥ 4 for every i = 1, . . . , t. It is known that every cycle has

an se-coloring from any 4-uniform list. (Simply, the square of any cycle of length
t 6= 5 has a list 4-coloring, and if t = 5, then we can color two nonadjacent edges
with one color, say α, and all other 3 edges with different colors distinct from α.)
So, let φ′ be an se-coloring of C from L′. We claim that φ∪φ′ is an se-coloring of
G from L. This follows from the fact that, by the definitions of stable colorings
and of L′, for every i = 1, . . . , t, φ(viv′i) differs from the colors of all edges at
distance at most 1. Thus we can first uncolor all such edges, and then return
them their colors one by one, and apply Lemma 6 at every step. So we get an
se-coloring of G, a contradiction.

In the rest of the proof we will attempt to construct a stable se-coloring of
G1 from L. For this, fix an se-coloring ψ of G2 = G1 − V (C) from L (it exists by
the minimality of G). Construct the auxiliary graph H with V (H) = {viv′i : i =
1, . . . , t} by making vjv′j adjacent in H to viv′i if j ∈ {i − 1, i + 1}, or v′j = v′i or
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v′jv
′
i ∈ E(G2). Also, every viv′i ∈ V (H) has list L1(viv

′
i) obtained from L(viv

′
i) by

deleting the colors in ψ of the edges incident with v′i or with its neighbor. Since
|L(viv′i)| = 8 and at most six edges in G2 are incident with v′i or with its neighbor,

(3) |L1(viv
′
i)| ≥ dH(viv

′
i) for every i = 1, . . . , t.

By definition, if H has a L1-coloring ψ′, then the union ψ ∪ ψ′ forms a stable se-
coloring of G1 contradicting Lemma 8. Thus H has no L1-coloring. But by (3), L1

is a so called degree list for H. Since H has Hamiltonian cycle, it is 2-connected.
By a well-known result of Borodin [1] (for a short proof, see [8]), for every 2-
connected H and a list L1 satisfying (3), if H has no L1-coloring, then

(i) |L1(viv
′
i)| = dH(viv

′
i) for every i = 1, . . . , t;

(ii) all lists are the same; and

(iii) H is a complete graph or an odd cycle.

Since |V (H)| = t, we have three cases.

Case 1. H = Kt for t ≥ 5. If not all v′i are distinct, say v′1 = v′r, then since C
is a shortest cycle, r ≤ 3 and t − r ≤ 1. Thus then t ≤ 4, which is not the case.
So, all v′i are distinct. But each v′i is adjacent to at most two other vertices v′j .
Thus to have H = Kt for t ≥ 5, we need t = 5 and NG(v

′
i) = {vi, v′i−2, v

′
i+2} for

all i = 1, . . . , 5. This means, G is the Petersen graph, and ψ colored the edges
of the 5-cycle C1 = (v′1, v

′
3, v

′
5, v

′
2, v

′
4) so that the lists L1(viv

′
i) for all i = 1, . . . , 5

become the same. Since |L(v′1v′3)| = 8, we can recolor v′1v
′
3 with another color in

L(v′1v
′
3) distinct from the colors of all edges in C1. Then the list L1(v2v

′
2) does

not change, but the lists of all other viv′i will change. Thus for the new coloring,
condition (ii) will not hold anymore, and we get a stable se-coloring of G1.

Case 2. H = K4. If not all v′i are distinct, say v′1 = v′r, then since C is a
shortest cycle, r = 3. But then at most 3 colored edges are incident with v′1 or
its neighbor, thus |L1(v1v

′
1)| ≥ 5, a contradiction to (i). So, all v′i are distinct

and v′1v
′
3, v

′
2v

′
4 ∈ E(G). Since at most 6 colored edges are at distance at most 1

from v′1v
′
3 in G2, we can recolor it with another color from its list distinct from

the colors of these at most 6 edges. If after this recoloring, the list L1(v2v
′
2) or

L1(v4v
′
4) does not change, then (ii) does not hold anymore and we can get a stable

se-coloring of G1. If both, L1(v2v
′
2) and L1(v4v

′
4) change, then two edges connect

{v′1, v′3} with {v′2, v′4}. Since G is 3-regular, this means that G has only 8 vertices,
and so |L1(viv

′
i)| ≥ 4 for each i, contradicting (i).

Case 3. H is a cycle with t vertices, where t is odd. Similarly to Case 2, all v′i
are distinct and not adjacent to each other. Also by (ii), we may assume L1(viv

′
i) =

{α, β} for all i = 1, . . . , t. We color viv′i with α for i = 1, 3, 5, . . . , t and with β for
i = 2, 4, 6, . . . , t−1. Then we color v1vt with γ0 ∈ L(v1vt)−ψ(v′1)−ψ(v′t)−{α, β}
and v1v2 with γ1 ∈ L(v1v2)−{α, β, γ0}. Now for i = 2, . . . , t−1, we greedily color
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vivi+1 with a color γi ∈ L(vivi+1)− {α, β, γ0, γ1, γi−2, γi−1}. Similarly to the end
of the proof of Lemma 8, the new coloring is an se-coloring of G, since colors α
and β are not used on the edges distinct from v1v

′
1, . . . , vtv

′
t at distance at most

1 from any of them. This proves the theorem.

4. Proof of Theorem 4.1.

Suppose that the theorem is not true. Let H have the fewest edges among the
subcubic graphs with mad(H) < 7

3 such that for some list L with |L(e)| = 5 for
each e ∈ E(H), H has no se-coloring from L. Clearly, H is connected.

Claim 9. H has no weak 2-vertices.

Proof. Suppose H contains a 2-vertex u adjacent to a 1-vertex u1. Let u2 be
the second neighbor of u. By the minimality of H, graph H ′ = H − {u1u} has
an se-coloring φ from L. We can view φ as a partial se-coloring of H. Since
|φ(u2)| ≤ 3, there is α ∈ L(u1u) − φ(u2). By Lemma 6(a), if we color u1u with
α, then we get an se-coloring of H from L.

Claim 10. H does not contain a 3-vertex adjacent to two 1-vertices.

Proof. Suppose that H contains a 3-vertex u with N(u) = {u1, u2, u3}, where
d(u1) = d(u2) = 1. By the minimality of H, graph H ′ = H − {u1u} has an se-
coloring φ from L. As in the proof of Claim 9, we view φ as a partial se-coloring
of H. Since |φ(u3)| ≤ 3 and |φ(u2)| = 1, there is α ∈ L(u1u)− φ(u2)− φ(u3). By
Lemma 6(a), if we color u1u with α, then we get an se-coloring of H from L.

Let H∗ denote the graph obtained from H by deleting all vertices of degree 1.
By Claims 9 and 10, δ(H∗) ≥ 2.

Claim 11. H∗ has no 3-cycle C = xvwx such that dH∗(v) = dH∗(w) = 2.

Proof. Suppose that H contains a cycle xvwx such that dH∗(v) = dH∗(w) = 2.
If z ∈ {v, w} has a 1-neighbor in H − {v, w}, denote this neighbor by z′.

If x has a neighbor in H different from v and w we denote it by t.

Case 1. H∗ = C. Let φ be any coloring of the edges of C from the lists such
that all three colors are distinct. By definition, this is a partial se-coloring of H.
Now consecutively for each z ∈ {x, v, w}, color edge zz′ (if it exists) with a color
in L(zz′) − {φ(xv), φ(vw), φ(wx)}. By Lemma 6(b), at each step we again will
obtain a partial se-coloring of H. So, after the last step we get an se-coloring of
H from L, a contradiction.

Case 2. The vertex t exists and dH(t) ≥ 2. Let H0 = H − {v, v′, w, w′}, note
that the vertices v′ and w′ may not exist.
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By the minimality of H, graph H0 has an se-coloring φ from L. We view φ as
a partial se-coloring of H. Color vx with a color α1 ∈ L(vx)−φ(t) and wx with a
color α2 ∈ L(wx)−φ(t)−α1. By Lemma 6(a), the new partial edge-coloring φ′ is
an se-coloring. Now color vw with some α3 ∈ L(vw)−φ′(t). Again by Lemma 6(a),
the new partial edge-coloring φ′′ is an se-coloring. Then consecutively for z ∈
{v, w}, color edge zz′ (if it exists) with a color in L(zz′) − {α3} − φ(x). By
Lemma 6(b), at each step we again will obtain a partial se-coloring of H. So,
after the last step we get an se-coloring of H from L, a contradiction.

Lemma 12. Graph H∗ has no 4-cycle xuvwx such that dH∗(u) = dH∗(v) =
dH∗(w) = 2. Furthermore, if H∗ contains a path xuvwy such that dH∗(u) =
dH∗(v) = dH∗(w) = 2, then dH∗(x) = dH∗(y) = 3. Moreover, if NH∗(x) =
{u, x1, x2} and NH∗(y) = {w, y1, y2}, then dH∗(x1) = dH∗(x2) = dH∗(y1) =
dH∗(y2) = 3.

Proof. Suppose that H contains a path xuvwy or a cycle xuvwx such that
dH∗(u) = dH∗(v) = dH∗(w) = 2. If u has a 1-neighbor in H, we will denote
this neighbor by u′. The vertices v′ and w′ are defined similarly.

Now we will prove that the vertex v′ does not exist. Otherwise, consider
H ′ = H − v′. By the minimality of H, graph H ′ has an se-coloring φ from L. We
view φ as a partial se-coloring of H. By Lemma 6(b), the coloring φ′ obtained
from φ by coloring vv′ with a color in L(vv′) − {φ(xu), φ(uv), φ(vw), φ(wy)} if
we have a path (or a color in L(vv′)− {φ(xu), φ(uv), φ(vw), φ(wx)} if we have a
4-cycle) is a se-coloring from L of the whole H. This contradicts the choice of H.
So

(4) dH(v) = 2.

Case 1. H∗ contains a cycle C = xuvwx such that dH∗(u) = dH∗(v) =
dH∗(w) = 2. Let t be the third neighbor of x in H, if it exists.

Case 1.1. H∗ = C. Let φ be any coloring of the edges of C from the lists
such that all four colors are distinct. By definition, this is a partial se-coloring of
H. Now consecutively for each z ∈ {u,w}, color the edge zz′ (if it exists) with a
color in L(zz′)−{φ(xu), φ(uv), φ(vw), φ(wx)}. If xt exits, then color the edge xt
with a color L(xt)− {φ(xu), φ(uv), φ(vw), φ(wx)}. By Lemma 6(b), at each step
we again will obtain a partial se-coloring of H. So, after the last step we get an
se-coloring of H from L, a contradiction.

Case 1.2. The vertex t exists and dH(t) ≥ 2. Let H0 = H − {u, v, w, u′, w′}.
By the minimality of H, graph H0 has an se-coloring φ from L. We view φ as a
partial se-coloring of H. Color ux with a color α1 ∈ L(ux)− φ(t) and wx with a
color α2 ∈ L(wx) − φ(t) − α1. By Lemma 6(a), the new partial edge-coloring φ′

is an se-coloring. Now color vw with some α3 ∈ L(vw)− φ′(x) and uv with some
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α4 ∈ L(uv)−φ′(x)−α3. Again by Lemma 6(a), the new partial edge-coloring φ′′

is an se-coloring. Then consecutively for z ∈ {u,w}, color edge zz′ (if it exists)
with a color in L(zz′)− {α1, α2, α3, α4}. By Lemma 6(b), at each step we again
will obtain a partial se-coloring of H. So, after the last step we get an se-coloring
of H from L, a contradiction.

Case 2. H∗ contains a path P = xuvwy such that dH∗(u) = dH∗(v) =
dH∗(w) = 2. Let NH(y) ⊆ {w, y1, y2} (maybe only one of y1, y2 exists) and
NH(x) ⊆ {u, x1, x2}. Let H1 = H − {v, u′, w′}. By the minimality of H, graph
H1 has an se-coloring φ from L. We view φ as a partial se-coloring of H. Let
A(wv) = L(wv) − φ(y), A(ww′) = L(ww′) − φ(y), A(uv) = L(uv) − φ(x) and
A(uu′) = L(uu′)− φ(x). Since |φ(z)| ≤ 3 for every z ∈ V (H),

(5) each of A(wv), A(ww′), A(uv) and A(uu′) contains at least two colors.

Case 2.1. Suppose |A(wv) ∪ A(ww′)| + |A(uv) ∪ A(uu′)| ≥ 5. By (5) and
symmetry, we may assume |A(uv) ∪ A(uu′)| ≥ 3. Color wv with a color α1 ∈
A(wv) − φ(xu) and ww′ with a color α2 ∈ A(ww′) − α1. Since edge uv is not
colored, by Lemma 6(a), the new partial edge-coloring φ1 is an se-coloring. By (5)
and the fact that |A(uv) ∪ A(uu′)| ≥ 3, we can choose distinct α3 ∈ A(uv) − α1

and α4 ∈ A(uu′) − α1. Let φ2 be obtained from φ1 by coloring uv with α3. We
claim that

(6) φ2 is a partial se-coloring of H.

Indeed, suppose there is a color β and either a path z1z2z3z4z5 or a cycle z1z2z3z4z1
containing edge uv whose edges are colored with α3 and β. By symmetry, we may
assume that {u, v} = {zi, zi+1} for some i ∈ {1, 2}. Then φ(zi+2zi+3) = α3. Since
α3 ∈ A(uv) = L(uv)−φ(x), this yields zi+2 = w and thus u = zi, v = zi+1. Since
φ1(vw) = α1 6= φ1(xu), β = α1, i = 1 and we have no bicolored cycles. Since
i = 1, z4 6= w′. So z4 = y and z5 ∈ {y1, y2}. But α1 /∈ φ(y). This contradiction
proves (6).

Now, let φ3 be obtained from φ2 by coloring uu′ with α4. By (6) and
Lemma 6(b), φ3 is a partial se-coloring of H. But by (4), φ3 colors all edges
of H. This contradiction proves Case 2.1.

If Case 2.1 does not hold, then by (5), we may assume that A(uv) = A(uu′) =
{α1, α2} and A(wv) = A(ww′) = {β1, β2}. This means that

(7) L(uv) = L(uu′) = {α1, α2} ∪ φ(x) and L(wv) = L(ww′) = {β1, β2} ∪ φ(y).

In particular, dH(x) = dH(y) = 3.

Case 2.2. {α1, α2} ∩ {β1, β2} = ∅. By symmetry, we may assume that α1 6=
φ(wy) and β1 6= φ(xu). Let φ1 be obtained from φ by coloring uv with α1 and vw
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with β1. By Lemma 6(a), φ1 is a partial se-coloring of H. Then let φ2 be obtained
from φ1 by coloring uu′ with α2 and ww′ with β2. Again by Lemma 6(a), φ2 is a
partial se-coloring of H. By (4), φ2 colors all edges of H, contradicting the choice
of H.

Case 2.3. |{α1, α2} ∩ {β1, β2}| = 1. By (7), we may assume that L(wv) =
L(ww′) = {1, 2, 3, 4, 5}, α1 = β1 = 1, β2 = 2, φ(wy) = 3, φ(yy1) = 4 and
φ(yy2) = 5. By the case, α2 6= 2. Let φ1 be obtained from φ by setting φ1(vw) = 2
and φ1(uv) = 1 (in this order). Then we get partial se-colorings after both steps
by Lemma 6(a), since 1 /∈ φ(y) ∪ φ(x). Let φ2 be obtained from φ1 by setting
φ2(uu

′) = α2. If φ2 has a bicolored path z1z2z3z4z5 with z1z2 = u′u, then the
second edge should be uv, since α2 /∈ φ(x). But then the third edge must be vw
and φ1(vw) = 2 and α2 6= 2. Hence no such a bicolored path exists. Thus φ2
is a partial se-coloring of H. So if 3 /∈ φ(y1), then by coloring ww′ with 4, we
obtain from φ2 an se-coloring of H, a contradiction. Thus 3 ∈ φ(y1). Similarly,
3 ∈ φ(y2).

Let γ1, γ2 ∈ L(wy) − {3, 4, 5}. Return to coloring φ. Suppose γ1 /∈ φ(y1) ∪
φ(y2). We recolor wy with γ1, color vw with γ2, uv with a color α ∈ {1, α2}− γ1,
and uu′ with α′ ∈ {1, α2} − α (in this order). After each step, by Lemma 6(a),
we get a partial se-coloring of H. So the resulting coloring φ3 is a partial se-
coloring of H in which only ww′ is uncolored. Now after coloring ww′ with
λ ∈ {4, 5} − φ3(uv) we get an se-coloring of H from L, a contradiction. Thus by
the symmetry between γ1 and γ2, {γ1, γ2} ⊂ φ(y1) ∪ φ(y2). In particular, this
means dH(y1) = dH(y2) = 3. Let NH(y1) = {y, y3, y4} and NH(y2) = {y, y5, y6}.
We may assume that φ(y1y3) = φ(y2y5) = 3, φ(y1y4) = γ1 and φ(y2y6) = γ2.

If 4 /∈ φ(y4), consider the se-coloring φ3 from the previous paragraph, but now
color ww′ with 5. Since γ1 /∈ φ(y2) and 2 /∈ {α1, α2}, the only possible bicolored
path with 4 edges is w′wvux. This means φ(xu) = 2 and α2 = φ3(uv) = 5. In
this case, recolor vw with 3. Thus 4 ∈ φ(y4), and in particular, dH(y4) ≥ 2, so
y4 ∈ V (H∗). Similarly, 5 ∈ φ(y6), and so y6 ∈ V (H∗). We claim that also

(8) {y3, y5} ⊂ V (H∗).

Suppose (8) fails, say dH(y5) = 1. Consider again the partial se-coloring φ2.
Recolor y5y2 with a λ ∈ L(y5y2) − {3, 5} − φ(y6) (since 5 ∈ φ(y6), this set is
nonempty) and color ww′ with 5. If there is a bicolored 4-path z1z2z3z4z5 with
z1 = y5 and z2 = y2, then since λ /∈ φ(y6), z3 = y. Since λ 6= 3, z4 = y1
and λ = 4. But 5 /∈ φ(y1) since γ1 /∈ {3, 4, 5}. So we obtain an se-coloring of
H from L, contradicting the choice of H. This proves (8). This together with
y4, y6 ∈ V (H∗) shows dH∗(y) = dH∗(y1) = dH∗(y2) = 3. By symmetry also
dH∗(x) = dH∗(x1) = dH∗(x2) = 3, and so the lemma holds in this case.

Case 2.4. {α1, α2} = {β1, β2}. By (7), we may assume that L(wv) =
L(ww′) = {1, 2, 3, 4, 5}, α1 = β1 = 1, α2 = β2 = 2, φ(wy) = 3, φ(yy1) = 4
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and φ(yy2) = 5. Consider the partial se coloring φ1 defined in Case 2.3. Let φ4 be
obtained from φ1 by coloring uu′ with 2. If there is a bicolored 4-path z1z2z3z4z5
with z1 = u′ and z2 = u, then since 2 /∈ φ(x), z3 = v and so z4 = w. But
φ(wy) = 3 6= 1. Thus φ4 is a partial se-coloring of H. Repeating the argument
of the end of the first paragraph of Case 2.3, we conclude that 3 ∈ φ(y1) and
3 ∈ φ(y2).

Let γ1, γ2 ∈ L(wy) − {3, 4, 5}. Return to coloring φ. Suppose γ1 /∈ φ(y1) ∪
φ(y2). We uncolor wy, color vw with λ ∈ {4, 5}−φ(xu), ww′ with λ′ ∈ {4, 5}−λ,
uv with a color α ∈ {1, 2} − γ1, uu′ with α′ ∈ {1, 2} − α and finally wy with γ1
(in this order). After each step, by Lemma 6(a), we get a partial se-coloring of
H. So the resulting coloring φ5 is an se-coloring of H, a contradiction. Thus by
the symmetry between γ1 and γ2, {γ1, γ2} ⊂ φ(y1) ∪ φ(y2). In particular, this
means dH(y1) = dH(y2) = 3. Let NH(y1) = {y, y3, y4} and NH(y2) = {y, y5, y6}.
We may assume that φ(y1y3) = φ(y2y5) = 3, φ(y1y4) = γ1 and φ(y2y6) = γ2.

If 4 /∈ φ(y4), consider the se-coloring φ5 from the previous paragraph, in which
recolor the edge e ∈ {wv,ww′} of color 4 with 3. We will get an se-coloring of H
from L, unless e = wv and φ(xu) = 3. But in this case, we recolor wv with 5 and
ww′ with 3 (i.e., switch the colors of wv and ww′). Thus 4 ∈ φ(y4). Similarly,
5 ∈ φ(y6). As in Case 2.3, we claim that also (8) holds and the proof word by word
repeats such proof in Case 2.3. So we again get dH∗(y) = dH∗(y1) = dH∗(y2) = 3
and by symmetry dH∗(x) = dH∗(x1) = dH∗(x2) = 3. This proves the lemma.

Lemma 13. H∗ does not contain a 3-vertex adjacent to three 2-vertices such that

at least two of these vertices have 2-neighbors in H∗.

Proof. Suppose that H∗ contains a 3-vertex u adjacent to 2-vertices x, y, z such
that y has a 2-neighbor y1 and z has a 2-neighbor z1. By Claim 11, y1, z1 /∈
{x, y, z}. By Lemma 12, y1 6= z1. Let w (respectively, t) denote the second
neighbor in H∗ of y1 (respectively, z1). For each r ∈ {x, y, y1, z, z1}, if r has a
(unique) 1-neighbor in H, then we denote this neighbor by r′ (see Figure 2). Let
v be the neighbor of x different from x′ and u.

Let H1 = H−{u, x′, y, y′, z, z′, y′1, z′1}. By the minimality of H, graph H1 has
an se-coloring φ from L. We view φ as a partial se-coloring of H. Let A(xu) =
L(xu) − φ(v), A(xx′) = L(xx′) − φ(v), A(yy1) = L(yy1) − φ(w), A(y1y′1) =
L(y1y

′
1)− φ(w), A(zz1) = L(zz1)− φ(t) and A(z1z′1) = L(z1z

′
1)− φ(t). Similarly

to (5), we have

(9)
each of A(xu), A(xx′), A(yy1), A(y1y′1), A(zz1)

and A(z1z′1) contains at least two colors.

Case 1. There is α ∈ A(yy1) ∩ A(zz1). Color yy1 and zz1 with α, then
color xu with a color β ∈ A(xu) − α, then y1y

′
1 with α1 ∈ A(y1y

′
1) − α, z1z′1
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with α2 ∈ A(z1z
′
1) − α and xx′ with β′ ∈ A(xx′) − β. Since edges uz and uy

are not colored, by Lemma 6(a), the new partial edge-coloring φ1 of H is an
se-coloring. Then we color uy with γ1 ∈ L(uy) − {α, β, φ(xv)} and uz with
γ2 ∈ L(uz) − {α, β, φ(xv), γ1}. Let φ2 be the new coloring. If Lemma 6(b) does
not apply to φ2(zu), then φ2(zu) = φ1(tz1). But the color α of z1z is not in
φ2(u) ∪ φ2(t) by definition. So there is no bicolored 4-path in φ2 containing uz.
Similarly, there is no bicolored 4-path in φ2 containing uy. Thus, φ2 is a partial
se-coloring of H. Finally, color yy′ with λ1 ∈ L(yy′)− {α, β, φ2(uy), φ2(uz)} and
zz′ with λ2 ∈ L(zz′) − {α, β, φ2(uy), φ2(uz)}. Let φ3 be the new coloring. As
above, if Lemma 6(b) does not apply to φ3(zz′), then φ3(zz′) = φ1(tz1). But the
color α of z1z is not in φ3(t) by definition. So there is no bicolored 4-path in φ3
containing zz′. Similarly, there is no bicolored 4-path in φ3 containing yy′. Thus,
φ3 is an se-coloring of H, a contradiction.

b

b

b b b bbbb

b

b b b b
u

zz1t y y1 w

y′ y′1z′z′1

x
x′

v

bc
bc

bcbc

bc
bc

Figure 2. Forbidden configuration of Lemma 13 in H.

Case 2. A(yy1)∩A(zz1) = ∅. Color xu with a color β ∈ A(xu), then color yy1
with a color α1 ∈ A(yy1)−β, then zz1 with a color α2 ∈ A(zz1)−β, then y1y′1 with
α′
1 ∈ A(y1y

′
1) − α1, z1z′1 with α′

2 ∈ A(z1z
′
1) − α2 and xx′ with β′ ∈ A(xx′) − β.

Similarly to Case 1, by Lemma 6(a), the new partial edge coloring φ1 of H is
an se-coloring. Then we color uy with γ1 ∈ L(uy) − {α1, α2, β, φ(xv)} and uz
with γ2 ∈ L(uz) − {α1, α2, β, γ1}. Let φ2 be the new coloring. If Lemma 6(b)
does not apply to φ2(zu), then φ2(zu) ∈ {φ1(tz1), φ1(xv)}. But the color α2 of
z1z is not in φ2(u) ∪ φ2(t), and the color β of xu is not in φ2(v) ∪ φ2(z), by
definition. So there is no bicolored 4-path in φ2 containing uz. Similarly, there
is no bicolored 4-path in φ2 containing uy. Thus, φ2 is a partial se-coloring of
H. Finally, color yy′ with λ1 ∈ L(yy′) − {α1, β, φ2(uy), φ2(uz)} and zz′ with
λ2 ∈ L(zz′) − {α2, β, φ2(uy), φ2(uz)}. Let φ3 be the new coloring. As above, if
Lemma 6(b) does not apply to φ3(zz′), then φ3(zz′) = φ1(tz1). But the color α2

of z1z is not in φ2(t) by definition. So there is no bicolored 4-path in φ3 containing
zz′. Similarly, there is no bicolored 4-path in φ3 containing yy′. Thus, φ3 is an
se-coloring of H, a contradiction.
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We will now show that |E(H∗)| ≥ 7
6 |V (H∗)|, which will contradict the fact

that mad(H) < 7
3 . For this, we will use the discharging method. First, recall that

by Claims 9 and 10, δ(H∗) ≥ 2. Also, by Lemma 12, for each path uvw in H∗,

(10)
if dH∗(u) = dH∗(v) = dH∗(w) = 2,

then u and w have distinct 3-neighbors in H∗.

For each vertex v of H∗, we define the charge of v as ω(v) = d(v)− 7
3 . So

(11)
∑

v∈V (H∗)

ω(v) =
∑

v∈V (H∗)

dH∗(v)− 7

3
|V (H∗)| = 2|E(H∗)| − 7

3
|V (H∗)|.

During the discharging process, we will modify ω to a new charge ω∗ so that
the total sum of charges will not change. On the other hand, we will show that
ω∗(v) ≥ 0 for all v ∈ V (H∗). By (11), this will yield |E(H∗)| ≥ 7

6 |V (H∗)|
contradicting mad(H) < 7

3 .
The discharging rules are as follows:

(R1) Every 2-vertex in H∗ adjacent to two 3-vertices receives 1
6 from each of

the two neighbors.

(R2) Every 2-vertex in H∗ adjacent to exactly one 3-vertex receives 1
3 from this

3-vertex.

(R3) Every 2-vertex in H∗ adjacent to two 2-vertices, say x and y, receives 1
6

from the other neighbor of x and 1
6 from the other neighbor of y. Note

that by (10), these "other neighbors" are distinct 3-vertices in H∗.
By (R1)–(R3) none of the 2-vertices in H∗ gives away any charge, and each

of them receives charge exactly 1
3 from other vertices. Thus ω∗(v) = 0 for each

2-vertex v.
Now, let v be a 3-vertex in H∗. If v has no 2-neighbors, then it keeps its

charge 2
3 . If v has exactly one 2-neighbor, then by (R1)–(R3), it gives away at

most 1
3 + 1

6 and is left with charge at least 2
3 − 1

3 − 1
6 = 1

6 . If v has exactly two
2-neighbors, then by Lemma 12, Rule (R3) does not apply to v. Thus in this case
v gives away at most 1

3 + 1
3 and is left with charge at least 0. Finally, suppose

v has three 2-neighbors. Again by Lemma 12, Rule (R3) does not apply to v.
Moreover, by Lemma 13, at most one 2-neighbor of v has also a 2-neighbor. This
means that (R2) applies to v at most once. So, v is left with charge at least
2
3 − 1

3 − 1
6 − 1

6 = 0. This completes the proof of Theorem 4.1.

5. Proof of Theorem 4.2.

Suppose that the theorem is not true. Let H have the fewest edges among the
subcubic graphs with mad(H) < 5

2 such that for some list L with |L(e)| = 6 for
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each e ∈ E(H), H has no se-coloring from L. Clearly, H is connected.
Claims 9 and 10 hold for the graph H since they hold for such graph no

matter what is the mad. Then we have the following.

Claim 14. H has no weak 2-vertices.

Claim 15. H does not contain a 3-vertex adjacent to two 1-vertices.

So, as in the previous section, the graph H∗ obtained from H by deleting all
vertices of degree 1 has minimum degree at least two.

Lemma 16. H∗ does not contain a 2-vertex adjacent to a 2-vertex.

Proof. Suppose that H contains a path xuvy or a cycle xuvx such that dH∗(u) =
dH∗(v) = 2. If u (respectively, v) has a 1-neighbor in H, denote this neighbor by
u′ (respectively, by v′), otherwise it does not exist.

Case 1. H∗ contains a cycle C = xuvx such that dH∗(u) = dH∗(v) = 2. Let
w be the third neighbor of x in H, if it exists. If H∗ = C, then H has at most
6 edges, and we can greedily color them with all colors distinct. So, H∗ 6= C,
and thus the vertex w exists and dH(w) ≥ 2. Let H0 = H − {u, u′, v, v′}. By
the minimality of H, graph H0 has an se-coloring φ from L. We view φ as a
partial se-coloring of H. Color ux with a color α1 ∈ L(ux) − φ(w), then vx
with a color α2 ∈ L(vx) − φ(w) − α1, and then color uv with a color α3 ∈
L(uv)−φ(w)−α1−α2. By Lemma 6(a), the new partial edge-coloring φ′ of H is
an se-coloring. Now consecutively for z ∈ {u, v}, color edge zz′ (if it exists) with
a color in L(zz′)− φ′(x)−α3. By Lemma 6(b), at each step we again will obtain
a partial se-coloring of H. So, after the last step we get an se-coloring of H from
L, a contradiction.

Case 2. H∗ contains a path P = xuvy such that dH∗(u) = dH∗(v) = 2. Let
NH(y) ⊆ {v, y1, y2} (maybe only one of y1, y2 exists) and NH(x) ⊆ {u, x1, x2}.
Let H1 = H −{u′, v′}− uv. Similarly to Case 1, H1 has an se-coloring ψ from L.
We view ψ as a partial se-coloring of H. First, we try to extend ψ to uv. If there
is α1 ∈ L(uv)−ψ(x)−ψ(y), then we color uv, which by Lemma 6(a), would yield
a new partial se-coloring of H. Otherwise, L(uv) ⊆ ψ(x) ∪ ψ(y), which yields
that ψ(x) and ψ(y) are disjoint sets of size 3 each. So, we may assume that

(12)
L(uv) = {1, . . . , 6}, where ψ(xu) = 1, ψ(xx1) = 2,

ψ(xx2) = 3, ψ(yy1) = 4, ψ(yy2) = 5, ψ(vy) = 6.

In particular, dH(x) = dH(y) = 3. For i = {1, 2}, let NH(yi) = {y, zi, ti} (see
Figure 3). If coloring uv with 4 does not create a bicolored 4-path, we do this.
Otherwise, this is a path of colors 4 and 6, and so 6 ∈ ψ(y1). Similarly, after
trying to color uv with 5, we conclude that 6 ∈ ψ(y2) and so |ψ(y1) ∪ ψ(y2)| ≤ 5.
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Figure 3. Two adjacent 2-vertices in H∗.

So we may recolor vy with α2 ∈ L(vy)− (ψ(y1)∪ψ(y2)) and color uv with 6.
By the definition of α2 and the fact that all colors 1, . . . , 6 are distinct, the new
edge-coloring ψ′ is a partial se-coloring of H from L.

Now we simply color uu′ (if exists) with α3 ∈ L(uu′)− ψ′(x)− ψ′(v) and vv′

(if exists) with α4 ∈ L(vv′) − ψ′(u) − ψ′(y) (note that we allow α4 = α3). By
Lemma 6(b), this yields an se-coloring of H from L, a contradiction.

Lemma 17. H∗ does not contain a 3-vertex adjacent to three 2-vertices.

Proof. Suppose that H∗ contains a 3-vertex v adjacent to three 2-vertices x1,
x2 and x3 whose second neighbors in H∗ are y1, y2 and y3, respectively. By
Lemma 16, dH∗(yi) = 3 for all i ∈ {1, 2, 3}. So for i ∈ {1, 2, 3}, let NH(yi) =
{xi, ui, wi} (some of these vertices yi may coincide). Also, for i ∈ {1, 2, 3}, let x′i
denote the neighbor of degree 1 of xi in H, if exists (see Figure 4).

bcbc

b b

bbb bb

b b
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bc
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bc

b

v

x′2
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x3

y1

y2y3

x′1

x2

x′3

w3

u3 u2

w2

w1u1

1
2

3

4

5
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Figure 4. Forbidden configuration of Lemma 17 in H

By the minimality of H, graph H0 = H − {v, x′1, x′2, x′3} has an se-coloring φ
from L. We view φ as a partial se-coloring of H. If for some i ∈ {1, 2, 3}, color
φ(xiyi) is present in both, φ(ui) and φ(wi), then we can recolor xiyi with a color
in L(xiyi)− (φ(ui) ∪ φ(wi)). Thus by the symmetry between ui and wi, we may
assume that

(13) φ(xiyi) /∈ φ(ui) for all i ∈ {1, 2, 3}.
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We will extend φ to the whole H in two steps.

Step 1. We extend φ to the edges incident with v. We color vx1 with β1 ∈
L(vx1) − φ(y1) − φ(y2x2) − φ(y3x3), then color vx2 with β2 ∈ L(vx2) − φ(y2) −
φ(y3x3) − β1, and then vx3 with β3 ∈ L(vx3) − φ(y3) − β1 − β2. We claim that
the resulting coloring φ′ is a partial se-coloring of H. Indeed, if not, then for
some i ∈ {1, 2, 3}, edge vxi is in a bicolored path or cycle P with 4 edges. Since
βi /∈ φ(yi), the second edge of the color βi in P must be xjyj for some j 6= i.
Then edge vxj is also in P . By the symmetry between i and j, we conclude that
xiyi is in P and may assume i < j. But then by the definition of βi, it differs
from φ(xjyj), a contradiction.

Step 2. We extend φ′ to those of xix′i that exist. For each such i, we color xix′i
with a color γi ∈ L(xix

′
i)−φ′(v)−{φ′(xiyi), φ′(yiwi)}. If the resulting coloring φ′′

is not an se-coloring of H, then for some i ∈ {1, 2, 3} there is a bicolored 4-path
P starting from x′i. Since γi /∈ φ′(v), the second edge of color γi in P is incident
with yi. Since γi was chosen distinct from φ′(yiwi), this second edge is yiui. But
this contradicts (13).

For j ∈ {1, 2, 3}, let Vj denote the set of vertices of degree j in H∗. As it was
mentioned above, by Claims 14 and 15, V1 = ∅. By Lemma 16, every v ∈ V2 has
two neighbors in V3, and by Lemma 17, every v ∈ V3 has at most two neighbors
in V2. It follows that |V3| ≥ |V2|, which yields mad(H∗) ≥ 5/2. This proves
Theorem 4.2.
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