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Abstract

An edge-colored graph G is conflict-free connected if any two of its ver-
tices are connected by a path, which contains a color used on exactly one
of its edges. In this paper the question for the smallest number of colors
needed for a coloring of edges of G in order to make it conflict-free connected
is investigated. We show that the answer is easy for 2-edge-connected graphs
and very difficult for other connected graphs, including trees.
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1. Introduction

We use [23] for terminology and notation not defined here and consider finite and
simple graphs only.

An edge-coloring of a graph G is proper if any two adjacent edges in this
coloring receive different colors. If G is colored with a proper coloring, then we
say that G is properly colored.
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An edge-colored graph G is called rainbow connected if any two vertices are
connected by a path whose edges have pairwise distinct colors. The concept of
rainbow connection in graphs was introduced by Chartrand et al. [4]. The rainbow
connection number of a connected graph G, denoted by rc(G), is the smallest
number of colors that are needed in order to make G rainbow connected. There
is an extensive research concerning this parameter, see e.g. [11–14,16,17,21].

As a modification of proper colorings and rainbow colorings of graphs, An-
drews et al. [2] and independently Borozan et al. [3] introduced the concept of
proper connection of graphs. An edge-colored graph G is called properly con-
nected if any two vertices are connected by a path which is properly colored.
The proper connection number of a connected graph G, denoted by pc(G), is the
smallest number of colors that are needed in order to make G properly connected.
One can find many results on proper connection, see e.g. [1, 9,10, 15,19].

Motivated by the above mentioned two concepts and by conflict-free colorings
of graphs and hypergraphs [6–8, 20] we introduce the concept of conflict-free
connection and the concept of proper conflict-free connection.

An edge-colored graph G is called conflict-free connected if any two vertices
are connected by a path which contains at least one color used on exactly one of
its edges. Let us call such a path conflict-free path. The conflict-free connection
number of a connected graph G, denoted by cfc(G), is the smallest number of
colors that are needed in order to make G conflict-free connected. The main
problem studied in this paper is the following.

Problem 1. For a given connected graph G determine its conflict-free connection
number.

An easy observation is that if G has n vertices, then all above mentioned
three parameters are bounded from above by n−1, since one may color the edges
of a given spanning tree of G with distinct colors and color the remaining edges
with already used colors.

The rest of this paper is organized as follows. In Section 2 we prove some
preliminary results. In Section 3 we study the structure of graphs having conflict-
free connection number two. General 1-connected graphs are investigated in
Section 4. There it is shown that for precise answers to the above problem it is
necessary to know exact values of conflict-free connection numbers of trees. Trees
are studied from this point of view in Section 5. The final section, Section 6 is
devoted to studying the proper version of Problem 1.

2. Preliminaries

In this section we prove several lemmas which will be useful later. The first one
is the following analogue of Whitney’s theorem (see [5]).
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Lemma 1. Let u, v be distinct vertices and let e = xy be an edge of a 2-connected
graph G. Then there is a u− v path in G containing the edge e.

Proof. We distinguish two cases.

Case 1. First assume that {x, y} ∩ {u, v} 6= ∅. Let, w.l.o.g., x = u. Because
of the 2-connectivity of G there is a y−v path P which avoids the vertex u. Then
the path u, e, y, P, v is a required path.

Case 2. Let {x, y}∩{u, v} = ∅. Then, by Corollary 2.40 of Whitney’s theorem
(see [5], p. 102), G contains two internally disjoint paths, namely u − x path P1

and v − x path P2. If there is a y − u path P omitting x such that P and P2

are vertex disjoint, then the path u, P, y, e, x, P2, v has the needed property. If
the paths P and P2 have a vertex in common, then let z be the first vertex from
V (P1)∪ V (P2) when going along P from y. If z ∈ V (P2), then denote by Q1 the
subpath of P from y to z and by Q2 the subpath of P2 from z to v. Then the
path u, P1, x, e, y,Q1, z, Q2, v has the property stated in the lemma. If z ∈ V (P1),
then denote by R1 the subpath of P1 from u to z and by R2 the subpath of P
from z to y. Then the path u,R1, z, R2, y, e, x, P2, v has the stated property.

A block of a graph G is a maximal connected subgraph of G that has no
cut-vertex. If G itself is connected and has no cut-vertex, then G is a block. An
edge is a block if and only if it is a cut-edge. A block consisting of a cut-edge is
called trivial. Note that any non-trivial block is 2-connected.

Lemma 2. Let G be a connected graph. Then from each of its non-trivial blocks
an edge can be chosen so that the set of all such chosen edges forms a matching.

Proof. The proof is by induction on the number of blocks of G. If G has exactly
one block, then the lemma trivially holds.

Let the lemma hold for every connected graph with b ≥ 1 blocks. Let G have
b + 1 blocks. Consider a leaf-block B with the (unique) cut-vertex v. If B is
trivial, i.e B = vu, then G has the same required matching as G′ = G− u. Now
assume that B is not trivial. The graph G′ = G− (B − v) has fewer blocks than
G, therefore, by induction hypothesis, it has a required set M ′ of independent
edges. Choosing one edge of B not incident with v and adding it to M ′ we get a
required matching of G.

It is easy to see that for any star K1,r on r+1 vertices we have cfc(K1,r) = r,
r ≥ 2.

Theorem 3. If Pn is a path on n edges, then cfc(Pn) = ⌈log2(n+ 1)⌉.

Proof. First we prove that cfc(Pn) ≤ ⌈log2(n+ 1)⌉. Let Pn = e1, e2, . . . , en be a
path on n edges. Color the edge ei with color x+1, where 2x is the largest power



914 J. Czap, S. Jendroľ and J. Valiska

of 2 that divides i. Clearly, the largest color in such a coloring is ⌈log2(n+ 1)⌉.
Every subpath Q of Pn is conflict-free, because the maximum color of the edges
of Q appears only once on Q.

Now we show that cfc(Pn) ≥ ⌈log2(n+ 1)⌉. We prove that any path with
conflict-free connection number k has at most 2k − 1 edges. We use induction
on k. The statement is evidently true for k = 1 and k = 2. Let Pn be a path
with cfc(Pn) = k. Then there is an edge ei with a unique color. Delete this edge
from Pn. The resulting paths Pi−1 = e1, e2, . . . , ei−1 and Pn−i = ei+1, ei+2, . . . , en
have conflict-free connection number at most k − 1 (their edges are colored with
k−1 colors). Therefore, by the induction hypothesis, Pi−1 and Pn−i have at most
2k−1− 1 edges. Consequently, Pn has at most 2 · (2k−1− 1)+1 = 2k − 1 edges.

3. Graphs with Conflict-Free Connection Number Two

Lemma 4. If G is a 2-connected and non-complete graph, then cfc(G) = 2.

Proof. Since G contains non-adjacent edges it holds cfc(G) ≥ 2.

Let e be an edge of G. Color e with color 2 and all other edges of G with
color 1. By Lemma 1, for every two distinct vertices u and v there is, in G, a
u− v path containing the edge e. Clearly, this u− v path is conflict-free.

Let C(G) be the subgraph of G induced on the set of cut-edges of G. Note
that C(G) can be empty. The following lemma provides a necessary condition
for graphs G with cut-edges to have cfc(G) = 2.

Lemma 5. If cfc(G) = 2 for a graph G with cut-edges, then C(G) is a linear
forest whose each component has at most three edges.

Proof. C(G) is a forest since no cut-edge is incident with a cycle. Its maximum
degree is at most 2, because no two edges with the same color can be adjacent in
C(G). Hence, C(G) is a linear forest. Theorem 3 implies that each path with at
least four edges requires at least three colors in a conflict-free coloring, therefore
each component of C(G) has at most three edges.

Theorem 6. If G is a connected graph and C(G) is a linear forest whose each
component is of order 2, then cfc(G) = 2.

Proof. Since the edges of C(G) form a matching, each vertex of degree at least
two is incident with a non-trivial block. By Lemma 2, we can choose from each
non-trivial block one edge so that all chosen edges create a matching S. Next,
we color the edges from S with color 2 and all remaining edges of G with color 1.
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Now we need to show that any two distinct vertices x and y are connected
by any conflict-free x − y path, i.e., an x − y path which contains exactly one
edge colored with color 1 or 2. We distinguish several cases.

Case 1. Let x and y belong to the same block. If this block is trivial, then
x and y are adjacent, and we are done. If this block B is non-trivial, then by
Lemma 1, there is an x−y path in B containing the edge of B colored with color
2. Clearly, this x− y path is conflict-free.

Case 2. Let x and y be in different blocks. Consider a shortest x − y path
in G. This path goes through blocks, say B1, . . . , Br, r ≥ 2, in this order, where
x ∈ V (B1) and y ∈ V (Br). Let vi be the common vertex of blocks Bi and Bi+1,
1 ≤ i ≤ r − 1.

Case 2.1. Let B1 be a trivial block. Then B2 is a non-trivial block by the
assumption on C(G) and v1 6= y. If r = 2, then the admired x − y path is a
concatenation of the edge xv1 and a v1 − y path going through the edge colored
with 2 in B2. If r ≥ 3, then the admired x−y path is a concatenation of the edge
xv1, a v1 − v2 path going through the edge colored with 2 in B2, a vi−1 − vi path
in Bi omitting the edge colored with 2 in Bi for 3 ≤ i ≤ r − 1, and a vr−1 − y

path omitting the edge assigned 2 in Br.

Case 2.2. Let B1 be a non-trivial block. Then x 6= v1. The conflict-free x−y

path is a concatenation of an x− v1 path in B1 going through the edge assigned
2, a vi−1− vi path in Bi omitting the edge colored with 2 in Bi for 2 ≤ i ≤ r− 1,
and a vr−1 − y path omitting the edge assigned 2 in Br.

Lemma 5 gives a necessary condition for a connected graph having conflict-
free connection number two. The following theorem points out that this condition
is not sufficient. To formulate it we need a new notion. The t-corona of a graph
H, denoted by Cort(H), is a graph obtained from H by adding t pendant edges
to each vertex of H.

Theorem 7. If Cn denotes the n-cycle, n ≥ 4, and G is its 2-corona, then C(G)
is a linear forest whose components are paths on two edges and cfc(G) = 3.

Proof. Let Cn = v1, v2, . . . , vn be the n-cycle. Denote by xi and yi the ends of
pendant edges of G added to the vertex vi of Cn. Suppose that the conflict-free
connection number of G is two. Since there is only one xi−yi path in G, the edges
xivi and yivi must have different colors, say 1 and 2, respectively. Without loss of
generality, we can assume that the edge v1v2 has color 1. The graph G contains
only two x1 − x2 paths, moreover, the path x1, v1, v2, x2 is monochromatic. This
implies that only one edge of Cn has color 2, say vivi+1. Consequently, there is
no conflict-free yi − yi+1 path in G, a contradiction.
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It is easy to see that the following 3-edge-coloring c makes G conflict-free
connected: c(xivi) = 1 and c(yivi) = 2 for 1 ≤ i ≤ n; c(vnv1) = 3 and c(vivi+1) =
2 for 1 ≤ i ≤ n− 1.

4. General 1-Connected Graphs with Cut-Edges

Let G be a connected graph and h(G) = max{cfc(K) : K is a component of
C(G)}.

Theorem 8. If G is a connected graph with cut-edges, then h(G) ≤ cfc(G) ≤
1 + h(G). Moreover, these bounds are tight.

Proof. The inequality h(G) ≤ cfc(G) holds. So it suffices to show that cfc(G) ≤
h(G) + 1.

Let us start with coloring the edges of G. First we color every component K

of C(G) with at most h(G) colors, say 1, 2, . . . , h(G), so that any two vertices of
K are connected by a conflict-free path.

Then according to Lemma 2 we choose in any non-trivial block of G an edge
so that the set S of such chosen edges forms a matching. We color the edges from
S with color h(G) + 1 and the uncolored edges of G with color 1.

Next, we have to show that for any two distinct vertices x and y there is a
conflict free x− y path. If the vertices x and y are from the same component K

of C(G), then such a path exists. If they are in the same non-trivial block, then
by Lemma 1, there is an x− y path through an edge colored with color h(G)+1.
If none of the above situations appears, then x and y are either from distinct
components of C(G), or distinct non-trivial blocks, or one is from a component
of C(G) and the other from a non-trivial block.

Consider a shortest x − y path P . Let v1, . . . , vr−1 be all cut-vertices of G
lying on P , in this order. The path P goes through blocks B1, . . . , Br indicated
by the vertices x and v1, v1 and v2, . . . , vr−1 and y, respectively. Some of them
may be trivial but at least one is non-trivial. If B1 (respectively Bi, for some
i ∈ {2, . . . , r − 1}, or Br) is the first one which is non-trivial, then in it we
choose a conflict free x − v1 path (vi−1 − vi path, or vr−1 − y path) through
the edge of B1 (Bi or Br) colored with color 1 + h(G). Then in the remaining
blocks Bj , j ∈ {1, . . . , r} − {1} (j ∈ {1, . . . , r} − {i} or j ∈ {1, . . . , r} − {r})
we choose a monochromatic vj−1 − vj path. The admired conflict-free x − y

path is then concatenated of these so chosen one conflict-free and the remaining
monochromatic paths. Clearly, the resulting x−y path contains exactly one edge
colored with the largest color 1 + h(G).

Now we show that for every positive integer k there is a graph G with h(G) =
k and cfc(G) = 1 + h(G). Let P be a path with cfc(P ) = k. Let G be a graph
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obtained from an arbitrary 2-connected graph H by adding two copies of the
path P to two distinct vertices of H; one to each. Clearly, h(G) = k. Let u and
v be the leaves of G. Any u− v path in G contains all edges of the added paths,
therefore no u−v path has a conflict-free coloring with h(G) colors. Consequently,
cfc(G) ≥ 1 + h(G).

5. Trees

A k-edge ranking of a connected graph G is a labeling of its edges with labels
1, . . . , k such that every path between two edges with the same label i contains
an edge with label j > i. A graph G is said to be k-edge rankable if it has a
k-edge ranking. The minimum k for which G is k-edge rankable is denoted by
rank(G).

Lemma 9. If G is a connected graph, then cfc(G) ≤ rank(G).

Proof. Consider an edge ranking of G. Let x and y be two vertices of G and let
P be an x− y path in G. Let k be the maximum label used on P . If P contains
only one edge of label k, then P is conflict-free. So suppose that P contains at
least two such edges. Then, by the definition of edge-ranking, P contains an edge
of label greater than k, a contradiction.

The main result in this section is the following.

Theorem 10. If T is an n-vertex tree of maximum degree ∆(T ) ≥ 3 and diameter
d(T ), then

max{∆(T ), log2 d(T )} ≤ cfc(T ) ≤
(∆(T )− 2) · log2 n

log2∆(T )− 1
.

Proof. The lower bound immediately follows from Theorem 3. By Lemma 9, the
parameter cfc(T ) is bounded by rank(T ), which is not greater than the mentioned
upper bound, see [18].

6. Proper Conflict-Free Connection of Graphs

If we require a graph to be simultaneously properly colored and conflict-free con-
nected, then we get a definition of the proper conflict-free connection. The proper
conflict-free connection number of a connected graph G, denoted by pcfc(G),
is the smallest number of colors that are needed in order to make G properly
conflict-free connected.



918 J. Czap, S. Jendroľ and J. Valiska

Recall that the edge chromatic number (or, equivalently, chromatic index) of
a graph G, denoted by χ′(G), is the minimum number of colors that are needed to
make the graph G properly colored. Clearly, χ′(G) ≥ ∆(G), where ∆(G) denotes
the maximum degree of G. Vizing [22] proved that χ′(G) ≤ ∆(G) + 1.

Observe that for any tree T there is pcfc(T ) = cfc(T ). For 2-connected graphs
we have the following.

Theorem 11. If G is a 2-connected graph, then

∆(G) ≤ χ′(G) ≤ pcfc(G) ≤ χ′(G) + 1 ≤ ∆(G) + 2.

Proof. The first two inequalities in the theorem are obvious. To prove the third
inequality consider the proof of Lemma 4. By this lemma, G has a 2-edge coloring
such that only one edge of G, say e, has color 2 and there exists a conflict-free
path between any two vertices.

Consider the graph G′ = G − e. The graph G′ has a proper edge-coloring
with at most χ′(G) colors, since its supergraph G has such a coloring. Let these
colors be 3, 4, . . . , χ′(G), χ′(G)+1 and 1. If we color the edge e with color 2, then
we obtain a proper edge-coloring of G in which any two vertices are connected
by a conflict-free path. This gives the third inequality.

The fourth inequality follows from the above mentioned Vizing’s theorem.

Combining the techniques from the proofs of Theorems 8 and 11 one can get
the following.

Theorem 12. Let G be a connected graph with ∆∗(G) = ∆(G− E(C(G))) and
h(G) = max{cfc(K) : K is a component of C(G)}. Then

pcfc(G) ≤ ∆∗(G) + h(G) + 2.
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