CONFLICT-FREE CONNECTIONS OF GRAPHS

Július Czap
Department of Applied Mathematics and Business Informatics
Faculty of Economics, Technical University of Košice
Němcovej 32, 04001 Košice, Slovakia
e-mail: julius.czap@tuke.sk
Stanislav Jendrol
AND
Juraj Valiska
Institute of Mathematics, P.J. S̆afárik University
Jesenná 5, 04001 Košice, Slovakia
e-mail: stanislav.jendrol@upjs.sk
juraj.valiska@student.upjs.sk

Abstract

An edge-colored graph G is conflict-free connected if any two of its vertices are connected by a path, which contains a color used on exactly one of its edges. In this paper the question for the smallest number of colors needed for a coloring of edges of G in order to make it conflict-free connected is investigated. We show that the answer is easy for 2-edge-connected graphs and very difficult for other connected graphs, including trees.

Keywords: edge-coloring, conflict-free connection, 2-edge-connected graph, tree.
2010 Mathematics Subject Classification: 05C15.

1. Introduction

We use [23] for terminology and notation not defined here and consider finite and simple graphs only.

An edge-coloring of a graph G is proper if any two adjacent edges in this coloring receive different colors. If G is colored with a proper coloring, then we say that G is properly colored.

An edge-colored graph G is called rainbow connected if any two vertices are connected by a path whose edges have pairwise distinct colors. The concept of rainbow connection in graphs was introduced by Chartrand et al. [4]. The rainbow connection number of a connected graph G, denoted by $r c(G)$, is the smallest number of colors that are needed in order to make G rainbow connected. There is an extensive research concerning this parameter, see e.g. [11-14, 16, 17, 21].

As a modification of proper colorings and rainbow colorings of graphs, Andrews et al. [2] and independently Borozan et al. [3] introduced the concept of proper connection of graphs. An edge-colored graph G is called properly connected if any two vertices are connected by a path which is properly colored. The proper connection number of a connected graph G, denoted by $p c(G)$, is the smallest number of colors that are needed in order to make G properly connected. One can find many results on proper connection, see e.g. [1, $9,10,15,19]$.

Motivated by the above mentioned two concepts and by conflict-free colorings of graphs and hypergraphs $[6-8,20]$ we introduce the concept of conflict-free connection and the concept of proper conflict-free connection.

An edge-colored graph G is called conflict-free connected if any two vertices are connected by a path which contains at least one color used on exactly one of its edges. Let us call such a path conflict-free path. The conflict-free connection number of a connected graph G, denoted by $c f c(G)$, is the smallest number of colors that are needed in order to make G conflict-free connected. The main problem studied in this paper is the following.

Problem 1. For a given connected graph G determine its conflict-free connection number.

An easy observation is that if G has n vertices, then all above mentioned three parameters are bounded from above by $n-1$, since one may color the edges of a given spanning tree of G with distinct colors and color the remaining edges with already used colors.

The rest of this paper is organized as follows. In Section 2 we prove some preliminary results. In Section 3 we study the structure of graphs having conflictfree connection number two. General 1-connected graphs are investigated in Section 4. There it is shown that for precise answers to the above problem it is necessary to know exact values of conflict-free connection numbers of trees. Trees are studied from this point of view in Section 5. The final section, Section 6 is devoted to studying the proper version of Problem 1.

2. Preliminaries

In this section we prove several lemmas which will be useful later. The first one is the following analogue of Whitney's theorem (see [5]).

Lemma 1. Let u, v be distinct vertices and let $e=x y$ be an edge of a 2 -connected graph G. Then there is $a u-v$ path in G containing the edge e.

Proof. We distinguish two cases.
Case 1. First assume that $\{x, y\} \cap\{u, v\} \neq \emptyset$. Let, w.l.o.g., $x=u$. Because of the 2 -connectivity of G there is a $y-v$ path P which avoids the vertex u. Then the path u, e, y, P, v is a required path.

Case 2. Let $\{x, y\} \cap\{u, v\}=\emptyset$. Then, by Corollary 2.40 of Whitney's theorem (see [5], p. 102), G contains two internally disjoint paths, namely $u-x$ path P_{1} and $v-x$ path P_{2}. If there is a $y-u$ path P omitting x such that P and P_{2} are vertex disjoint, then the path u, P, y, e, x, P_{2}, v has the needed property. If the paths P and P_{2} have a vertex in common, then let z be the first vertex from $V\left(P_{1}\right) \cup V\left(P_{2}\right)$ when going along P from y. If $z \in V\left(P_{2}\right)$, then denote by Q_{1} the subpath of P from y to z and by Q_{2} the subpath of P_{2} from z to v. Then the path $u, P_{1}, x, e, y, Q_{1}, z, Q_{2}, v$ has the property stated in the lemma. If $z \in V\left(P_{1}\right)$, then denote by R_{1} the subpath of P_{1} from u to z and by R_{2} the subpath of P from z to y. Then the path $u, R_{1}, z, R_{2}, y, e, x, P_{2}, v$ has the stated property.

A block of a graph G is a maximal connected subgraph of G that has no cut-vertex. If G itself is connected and has no cut-vertex, then G is a block. An edge is a block if and only if it is a cut-edge. A block consisting of a cut-edge is called trivial. Note that any non-trivial block is 2 -connected.

Lemma 2. Let G be a connected graph. Then from each of its non-trivial blocks an edge can be chosen so that the set of all such chosen edges forms a matching.

Proof. The proof is by induction on the number of blocks of G. If G has exactly one block, then the lemma trivially holds.

Let the lemma hold for every connected graph with $b \geq 1$ blocks. Let G have $b+1$ blocks. Consider a leaf-block B with the (unique) cut-vertex v. If B is trivial, i.e $B=v u$, then G has the same required matching as $G^{\prime}=G-u$. Now assume that B is not trivial. The graph $G^{\prime}=G-(B-v)$ has fewer blocks than G, therefore, by induction hypothesis, it has a required set M^{\prime} of independent edges. Choosing one edge of B not incident with v and adding it to M^{\prime} we get a required matching of G.

It is easy to see that for any star $K_{1, r}$ on $r+1$ vertices we have $c f c\left(K_{1, r}\right)=r$, $r \geq 2$.

Theorem 3. If P_{n} is a path on n edges, then $c f c\left(P_{n}\right)=\left\lceil\log _{2}(n+1)\right\rceil$.
Proof. First we prove that $c f c\left(P_{n}\right) \leq\left\lceil\log _{2}(n+1)\right\rceil$. Let $P_{n}=e_{1}, e_{2}, \ldots, e_{n}$ be a path on n edges. Color the edge e_{i} with color $x+1$, where 2^{x} is the largest power
of 2 that divides i. Clearly, the largest color in such a coloring is $\left\lceil\log _{2}(n+1)\right\rceil$. Every subpath Q of P_{n} is conflict-free, because the maximum color of the edges of Q appears only once on Q.

Now we show that $c f c\left(P_{n}\right) \geq\left\lceil\log _{2}(n+1)\right\rceil$. We prove that any path with conflict-free connection number k has at most $2^{k}-1$ edges. We use induction on k. The statement is evidently true for $k=1$ and $k=2$. Let P_{n} be a path with $c f c\left(P_{n}\right)=k$. Then there is an edge e_{i} with a unique color. Delete this edge from P_{n}. The resulting paths $P_{i-1}=e_{1}, e_{2}, \ldots, e_{i-1}$ and $P_{n-i}=e_{i+1}, e_{i+2}, \ldots, e_{n}$ have conflict-free connection number at most $k-1$ (their edges are colored with $k-1$ colors). Therefore, by the induction hypothesis, P_{i-1} and P_{n-i} have at most $2^{k-1}-1$ edges. Consequently, P_{n} has at most $2 \cdot\left(2^{k-1}-1\right)+1=2^{k}-1$ edges.

3. Graphs with Conflict-Free Connection Number Two

Lemma 4. If G is a 2-connected and non-complete graph, then $c f c(G)=2$.
Proof. Since G contains non-adjacent edges it holds $c f c(G) \geq 2$.
Let e be an edge of G. Color e with color 2 and all other edges of G with color 1. By Lemma 1 , for every two distinct vertices u and v there is, in G, a $u-v$ path containing the edge e. Clearly, this $u-v$ path is conflict-free.

Let $C(G)$ be the subgraph of G induced on the set of cut-edges of G. Note that $C(G)$ can be empty. The following lemma provides a necessary condition for graphs G with cut-edges to have $c f c(G)=2$.

Lemma 5. If $\operatorname{cfc}(G)=2$ for a graph G with cut-edges, then $C(G)$ is a linear forest whose each component has at most three edges.

Proof. $C(G)$ is a forest since no cut-edge is incident with a cycle. Its maximum degree is at most 2 , because no two edges with the same color can be adjacent in $C(G)$. Hence, $C(G)$ is a linear forest. Theorem 3 implies that each path with at least four edges requires at least three colors in a conflict-free coloring, therefore each component of $C(G)$ has at most three edges.

Theorem 6. If G is a connected graph and $C(G)$ is a linear forest whose each component is of order 2 , then $c f c(G)=2$.

Proof. Since the edges of $C(G)$ form a matching, each vertex of degree at least two is incident with a non-trivial block. By Lemma 2, we can choose from each non-trivial block one edge so that all chosen edges create a matching S. Next, we color the edges from S with color 2 and all remaining edges of G with color 1 .

Now we need to show that any two distinct vertices x and y are connected by any conflict-free $x-y$ path, i.e., an $x-y$ path which contains exactly one edge colored with color 1 or 2 . We distinguish several cases.

Case 1. Let x and y belong to the same block. If this block is trivial, then x and y are adjacent, and we are done. If this block B is non-trivial, then by Lemma 1 , there is an $x-y$ path in B containing the edge of B colored with color 2. Clearly, this $x-y$ path is conflict-free.

Case 2. Let x and y be in different blocks. Consider a shortest $x-y$ path in G. This path goes through blocks, say $B_{1}, \ldots, B_{r}, r \geq 2$, in this order, where $x \in V\left(B_{1}\right)$ and $y \in V\left(B_{r}\right)$. Let v_{i} be the common vertex of blocks B_{i} and B_{i+1}, $1 \leq i \leq r-1$.

Case 2.1. Let B_{1} be a trivial block. Then B_{2} is a non-trivial block by the assumption on $C(G)$ and $v_{1} \neq y$. If $r=2$, then the admired $x-y$ path is a concatenation of the edge $x v_{1}$ and a $v_{1}-y$ path going through the edge colored with 2 in B_{2}. If $r \geq 3$, then the admired $x-y$ path is a concatenation of the edge $x v_{1}$, a $v_{1}-v_{2}$ path going through the edge colored with 2 in B_{2}, a $v_{i-1}-v_{i}$ path in B_{i} omitting the edge colored with 2 in B_{i} for $3 \leq i \leq r-1$, and a $v_{r-1}-y$ path omitting the edge assigned 2 in B_{r}.

Case 2.2. Let B_{1} be a non-trivial block. Then $x \neq v_{1}$. The conflict-free $x-y$ path is a concatenation of an $x-v_{1}$ path in B_{1} going through the edge assigned 2, a $v_{i-1}-v_{i}$ path in B_{i} omitting the edge colored with 2 in B_{i} for $2 \leq i \leq r-1$, and a $v_{r-1}-y$ path omitting the edge assigned 2 in B_{r}.

Lemma 5 gives a necessary condition for a connected graph having conflictfree connection number two. The following theorem points out that this condition is not sufficient. To formulate it we need a new notion. The t-corona of a graph H, denoted by $\operatorname{Cor}_{t}(H)$, is a graph obtained from H by adding t pendant edges to each vertex of H.

Theorem 7. If C_{n} denotes the n-cycle, $n \geq 4$, and G is its 2 -corona, then $C(G)$ is a linear forest whose components are paths on two edges and $\operatorname{cfc}(G)=3$.

Proof. Let $C_{n}=v_{1}, v_{2}, \ldots, v_{n}$ be the n-cycle. Denote by x_{i} and y_{i} the ends of pendant edges of G added to the vertex v_{i} of C_{n}. Suppose that the conflict-free connection number of G is two. Since there is only one $x_{i}-y_{i}$ path in G, the edges $x_{i} v_{i}$ and $y_{i} v_{i}$ must have different colors, say 1 and 2 , respectively. Without loss of generality, we can assume that the edge $v_{1} v_{2}$ has color 1 . The graph G contains only two $x_{1}-x_{2}$ paths, moreover, the path $x_{1}, v_{1}, v_{2}, x_{2}$ is monochromatic. This implies that only one edge of C_{n} has color 2 , say $v_{i} v_{i+1}$. Consequently, there is no conflict-free $y_{i}-y_{i+1}$ path in G, a contradiction.

It is easy to see that the following 3 -edge-coloring c makes G conflict-free connected: $c\left(x_{i} v_{i}\right)=1$ and $c\left(y_{i} v_{i}\right)=2$ for $1 \leq i \leq n ; c\left(v_{n} v_{1}\right)=3$ and $c\left(v_{i} v_{i+1}\right)=$ 2 for $1 \leq i \leq n-1$.

4. General 1-Connected Graphs with Cut-Edges

Let G be a connected graph and $h(G)=\max \{c f c(K): K$ is a component of $C(G)\}$.

Theorem 8. If G is a connected graph with cut-edges, then $h(G) \leq c f c(G) \leq$ $1+h(G)$. Moreover, these bounds are tight.

Proof. The inequality $h(G) \leq c f c(G)$ holds. So it suffices to show that $c f c(G) \leq$ $h(G)+1$.

Let us start with coloring the edges of G. First we color every component K of $C(G)$ with at most $h(G)$ colors, say $1,2, \ldots, h(G)$, so that any two vertices of K are connected by a conflict-free path.

Then according to Lemma 2 we choose in any non-trivial block of G an edge so that the set S of such chosen edges forms a matching. We color the edges from S with color $h(G)+1$ and the uncolored edges of G with color 1 .

Next, we have to show that for any two distinct vertices x and y there is a conflict free $x-y$ path. If the vertices x and y are from the same component K of $C(G)$, then such a path exists. If they are in the same non-trivial block, then by Lemma 1, there is an $x-y$ path through an edge colored with color $h(G)+1$. If none of the above situations appears, then x and y are either from distinct components of $C(G)$, or distinct non-trivial blocks, or one is from a component of $C(G)$ and the other from a non-trivial block.

Consider a shortest $x-y$ path P. Let v_{1}, \ldots, v_{r-1} be all cut-vertices of G lying on P, in this order. The path P goes through blocks B_{1}, \ldots, B_{r} indicated by the vertices x and v_{1}, v_{1} and v_{2}, \ldots, v_{r-1} and y, respectively. Some of them may be trivial but at least one is non-trivial. If B_{1} (respectively B_{i}, for some $i \in\{2, \ldots, r-1\}$, or B_{r}) is the first one which is non-trivial, then in it we choose a conflict free $x-v_{1}$ path ($v_{i-1}-v_{i}$ path, or $v_{r-1}-y$ path) through the edge of $B_{1}\left(B_{i}\right.$ or $\left.B_{r}\right)$ colored with color $1+h(G)$. Then in the remaining blocks $B_{j}, j \in\{1, \ldots, r\}-\{1\}(j \in\{1, \ldots, r\}-\{i\}$ or $j \in\{1, \ldots, r\}-\{r\})$ we choose a monochromatic $v_{j-1}-v_{j}$ path. The admired conflict-free $x-y$ path is then concatenated of these so chosen one conflict-free and the remaining monochromatic paths. Clearly, the resulting $x-y$ path contains exactly one edge colored with the largest color $1+h(G)$.

Now we show that for every positive integer k there is a graph G with $h(G)=$ k and $c f c(G)=1+h(G)$. Let P be a path with $c f c(P)=k$. Let G be a graph
obtained from an arbitrary 2-connected graph H by adding two copies of the path P to two distinct vertices of H; one to each. Clearly, $h(G)=k$. Let u and v be the leaves of G. Any $u-v$ path in G contains all edges of the added paths, therefore no $u-v$ path has a conflict-free coloring with $h(G)$ colors. Consequently, $c f c(G) \geq 1+h(G)$.

5. Trees

A k-edge ranking of a connected graph G is a labeling of its edges with labels $1, \ldots, k$ such that every path between two edges with the same label i contains an edge with label $j>i$. A graph G is said to be k-edge rankable if it has a k-edge ranking. The minimum k for which G is k-edge rankable is denoted by $\operatorname{rank}(G)$.

Lemma 9. If G is a connected graph, then $c f c(G) \leq \operatorname{rank}(G)$.
Proof. Consider an edge ranking of G. Let x and y be two vertices of G and let P be an $x-y$ path in G. Let k be the maximum label used on P. If P contains only one edge of label k, then P is conflict-free. So suppose that P contains at least two such edges. Then, by the definition of edge-ranking, P contains an edge of label greater than k, a contradiction.

The main result in this section is the following.
Theorem 10. If T is an n-vertex tree of maximum degree $\Delta(T) \geq 3$ and diameter $d(T)$, then

$$
\max \left\{\Delta(T), \log _{2} d(T)\right\} \leq c f c(T) \leq \frac{(\Delta(T)-2) \cdot \log _{2} n}{\log _{2} \Delta(T)-1}
$$

Proof. The lower bound immediately follows from Theorem 3. By Lemma 9, the parameter $c f c(T)$ is bounded by $\operatorname{rank}(T)$, which is not greater than the mentioned upper bound, see [18].

6. Proper Conflict-Free Connection of Graphs

If we require a graph to be simultaneously properly colored and conflict-free connected, then we get a definition of the proper conflict-free connection. The proper conflict-free connection number of a connected graph G, denoted by pcfc (G), is the smallest number of colors that are needed in order to make G properly conflict-free connected.

Recall that the edge chromatic number (or, equivalently, chromatic index) of a graph G, denoted by $\chi^{\prime}(G)$, is the minimum number of colors that are needed to make the graph G properly colored. Clearly, $\chi^{\prime}(G) \geq \Delta(G)$, where $\Delta(G)$ denotes the maximum degree of G. Vizing [22] proved that $\chi^{\prime}(G) \leq \Delta(G)+1$.

Observe that for any tree T there is $p c f c(T)=c f c(T)$. For 2-connected graphs we have the following.

Theorem 11. If G is a 2 -connected graph, then

$$
\Delta(G) \leq \chi^{\prime}(G) \leq p c f c(G) \leq \chi^{\prime}(G)+1 \leq \Delta(G)+2
$$

Proof. The first two inequalities in the theorem are obvious. To prove the third inequality consider the proof of Lemma 4 . By this lemma, G has a 2 -edge coloring such that only one edge of G, say e, has color 2 and there exists a conflict-free path between any two vertices.

Consider the graph $G^{\prime}=G-e$. The graph G^{\prime} has a proper edge-coloring with at most $\chi^{\prime}(G)$ colors, since its supergraph G has such a coloring. Let these colors be $3,4, \ldots, \chi^{\prime}(G), \chi^{\prime}(G)+1$ and 1 . If we color the edge e with color 2 , then we obtain a proper edge-coloring of G in which any two vertices are connected by a conflict-free path. This gives the third inequality.

The fourth inequality follows from the above mentioned Vizing's theorem.
Combining the techniques from the proofs of Theorems 8 and 11 one can get the following.

Theorem 12. Let G be a connected graph with $\Delta^{*}(G)=\Delta(G-E(C(G)))$ and $h(G)=\max \{c f c(K): K$ is a component of $C(G)\}$. Then

$$
p c f c(G) \leq \Delta^{*}(G)+h(G)+2
$$

Acknowledgement

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0116 and by the Slovak VEGA Grant 1/0368/16.

References

[1] S.A. van Aardt, C. Brause, A.P. Burger, M. Frick, A. Kemnitz and I. Schiermeyer, Proper connection and size of graphs, Discrete Math. 340 (2017) 2673-2677. doi:10.1016/j.disc.2016.09.021
[2] E. Andrews, C. Lumduanhom, E. Laforge and P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput. 97 (2016) 189-207.
[3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero and Zs. Tuza, Proper connection of graphs, Discrete Math. 312 (2012) 2550-2560. doi:10.1016/j.disc.2011.09.003
[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[5] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, Sixth Edition (Boca Raton, CRC Press, 2016).
[6] P. Cheilaris, B. Keszegh and D. Pálvölgyi, Unique-maximum and conflict-free coloring for hypergraphs and tree graphs, SIAM J. Discrete Math. 27 (2013) 1775-1787. doi:10.1137/120880471
[7] P. Cheilaris and G. Tóth, Graph unique-maximum and conflict-free colorings, J. Discrete Algorithms 9 (2011) 241-251. doi:10.1016/j.jda.2011.03.005
[8] I. Fabrici and F. Göring, Unique-maximum coloring of plane graphs, Discuss. Math. Graph Theory 36 (2016) 95-102. doi:10.7151/dmgt. 1846
[9] R. Gu, X. Li and Z. Qin, Proper connection number of random graphs, Theoret. Comput. Sci. 609 (2016) 336-343. doi:10.1016/j.tcs.2015.10.017
[10] F. Huang, X. Li and S. Wang, Proper connection number and 2-proper connection number of a graph. arxiv.org/pdf/1507.01426v2.pdf
[11] N. Kamčev, M. Krivelevich and B. Sudakov, Some remarks on rainbow connectivity, J. Graph Theory 83 (2016) 372-383. doi:10.1002/jgt. 22003
[12] A. Kemnitz, J. Przybyło, I. Schiermeyer and M. Woźniak, Rainbow connection in sparse graphs, Discuss. Math. Graph Theory 33 (2013) 181-192. doi:10.7151/dmgt. 1640
[13] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313-320. doi:10.7151/dmgt. 1547
[14] X. Li, M. Liu and I. Schiermeyer, Rainbow connection number of dense graphs, Discuss. Math. Graph Theory 33 (2013) 603-611.
doi:10.7151/dmgt. 1692
[15] X. Li and C. Magnant, Properly colored notions of connectivity - a dynamic survey, Theory and Applications of Graphs 0, Article 2 (2015). doi:10.20429/tag.2015.000102
[16] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: a survey, Graphs Combin. 29 (2013) 1-38. doi:10.1007/s00373-012-1243-2
[17] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs in Mathematics, Berlin, Springer, 2012).
[18] K. Makino, Y. Uno and T. Ibaraki, On minimum edge ranking spanning trees, J. Algorithms 38 (2001) 411-437.
doi:10.1006/jagm. 2000.1143
[19] R. Melville and W. Goddard, Coloring graphs to produce properly colored walks, Graphs Combin. 33 (2017) 1271-1281. doi:10.1007/S00373-017-1843-y
[20] J. Pach and G. Tardos, Conflict-free colourings of graphs and hypergraphs, Comb. Probab. Comput. 18 (2009) 819-834. doi:10.1017/S0963548309990290
[21] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, IWOCA 2009, Lecture Notes in Comput. Sci. 5874 (2009) 432-437. doi:10.1007/978-3-642-10217-2.42
[22] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30.
[23] D.B. West, Introduction to Graph Theory, Second Edition (New Delhi, PrenticeHall, 2005).

