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Abstract

In this paper we consider the behaviour of the largest eigenvalue (also
called the index) of signed graphs under small perturbations like adding
a vertex, adding an edge or changing the sign of an edge. We also give
a partial ordering of signed cacti with common underlying graph by their
indices and demonstrate a general method for obtaining lower and upper
bounds for the index. Finally, we provide our computational results related
to the generation of small signed graphs.
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1. Introduction

For a simple graph G = (V (G), E(G)), let σ : E(G) −→ {1,−1} be a mapping
defined on the edge set of G. Then, Ġ = (G, σ) is called the signed graph derived
from G, while G is its underlying graphs and σ is its sign function (or signature).
Observe that G and Ġ share the same set of vertices (i.e., V (Ġ) = V (G)) and
have equal number of edges (i.e., |E(Ġ)| = |E(G)|). We denote their common
order and size by n and m, respectively.

The edge set E(Ġ) may be divided into two disjoint subsets that contain
positive and negative edges, respectively. It may be observed that a signed graph
is derived from its underlying graph G by reversing the sign of a fixed set of edges
from E(G). Clearly, the n × n adjacency matrix A

Ġ
of Ġ is obtained from the

standard (0, 1)-adjacency matrix of G in a natural way, that is by reversing the
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sign of all 1’s which correspond to negative edges. The characteristic polynomial
Φ
Ġ
(x) = det(xI − A

Ġ
) is also called the characteristic polynomial of Ġ, while

the corresponding eigenvalues are real and form the spectrum of Ġ. We denote
them by λ1, λ2, . . . , λn and also assume that they are ordered non-increasingly.
In particular, the largest eigenvalue is called the index.

A signed cycle with n vertices is denoted by Ċn. A signed cycle Ċ, where
C is a cycle in G, is balanced if it contains an even number of negative edges;
otherwise, it is unbalanced. Hence, the sign of a cycle Ċ is the product of signs
of its edges, i.e., it is equal to

∏

e∈E(Ċ) σ(e).

The theory of spectra of (simple) graphs based on the adjacency matrix is a
highly developed mathematical discipline. In particular, many results concern the
behaviour of eigenvalues, mostly the index, under various graph perturbations.
Some of well known facts about the index of connected simple graphs are as
follows. It is a simple eigenvalue, the modulus of any other eigenvalue does not
exceeds the index, and it strictly increases by adding a non-isolated vertex or an
edge between non-adjacent vertices.

On the contrary, the existence of negative edges imposes a number of restric-
tions in passing to signed graphs. Regarding the index, none of the above facts
holds for all signed graphs. For example, it is sufficient to consider signed graphs
obtained by reversing the sign of all edges in appropriately chosen connected sim-
ple graph. We may also observe that the index of any unbalanced cycle Ċn is of
multiplicity two and that the adding of a negative edge between two endvertices
of a simple path gives an unbalanced cycle with less index [9].

Recently, Koledin and Stanić [6] used a technique based on relocating the
edges in a signed graph to describe those with fixed number of vertices, positive
edges and negative edges that maximize the index. Another approach on the
basis of small perturbations can be found in a paper of Belardo and Petecki [2].

The purpose of this paper is to give a deeper analysis of the index of a
signed graph. In particular, we obtain additional assumptions under which some
of mentioned properties of the index of simple graphs also hold in the case of
signed graphs. We also consider the behaviour of the index under reversing
the signs of edges and give certain partial orderings of specified signed graphs
with respect to their indices. A general method for determining lower or upper
bounds on the index is also demonstrated. It is well-known that the number of
non-isomorphic simple graphs rapidly increases with their order n. According to
the Pólya enumeration theorem [8], this number is asymptotically equivalent to

2(
n

2
)

n!
.
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If we allow the existence of negative edges, then the class of signed graphs is much
broader even if we restrict ourselves to representatives of switching isomorphic
classes. (Switching isomorphic signed graphs that naturally arise in the context
of their spectra are defined in the next section).

An additional purpose of this paper is to introduce the generation of these
representatives having a small order and inspect their cospectrality (the details
are given in Section 4).

After a preparatory section, we present our main results.

2. Preparatory

For U ⊂ V (Ġ), let ĠU be the signed graph obtained from Ġ by reversing the sign
of each edge between a vertex in U and a vertex in V (Ġ) \ U . The signed graph
ĠU is said to be switching equivalent to Ġ. If D is the diagonal matrix of ±1’s
with −1 in the u-th position for each u ∈ U , then we have A

ĠU = D−1A
Ġ
D.

Consequently, the switching equivalence is an equivalence relation and switching
equivalent signed graphs share the same spectrum.

We say that signed graphs Ġ and Ḣ are switching isomorphic if Ḣ is iso-
morphic to a signed graph that is switching equivalent to Ġ. In other words, if
there exist a diagonal matrix D of ±1’s and a permutation (0, 1)-matrix P such
that A

Ġ
= D−1(P−1A

Ḣ
P )D. Again, switching isomorphism is an equivalence

relation that preserves the eigenvalues. Moreover, up to the vertex labelling,
each of switching isomorphic signed graphs can be selected to be a representa-
tive of the corresponding switching equivalence class. We shall return to these
representatives in Section 4.

We say that signed graphs are cospectral if they are not switching isomorphic
but share the same spectrum. Such signed graphs are also known as cospectral
mates.

Concepts like regularity are directly extended to signed graphs (i.e., a signed
graph is regular whenever the same holds for its underlying graph). Most of the
standard graph invariants coincide for G and Ġ. We denote by deg(u) the degree
of a vertex u ∈ V (Ġ), but for convenience we also write deg+(u) and deg−(u) for
the positive and negative vertex degree (i.e., the number of positive and negative
edges incident with u). Clearly, we have deg(u) = deg+(u) + deg−(u).

If considering subgraphs of signed graphs, then their signed functions are the
restrictions of the original ones to the corresponding edge subsets. If u (respec-
tively e) is a vertex (respectively edge) of Ġ, then we write Ġ − u (respectively
Ġ − e) to denote the corresponding vertex-deleted (respectively edge-deleted)
subgraph.

Recall that the Interlacing Theorem [3, Theorem 0.10] and the Rayleigh
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principle [4, p. 12] hold for any Hermitian matrix, and therefore they can be
applied to the adjacency matrix of any signed graph.

If x = (x1, x2, . . . , xn)
T is an eigenvector associated with the eigenvalue λ of

a signed graph Ġ, then it is usually assumed that the entry xu corresponds to
the vertex u (1 ≤ u ≤ n). If so, then the eigenvalue equation reads as follows

(1) λxu =
∑

v∼u

σ(uv)xv (1 ≤ u ≤ n).

We recall from [1] the following Schwenk-like formula

(2) Φ
Ġ
(x) = xΦ

Ġ−u
(x)−

∑

v∼u

Φ
Ġ−u−v

(x)− 2
∑

Ċ∈Ċu

σ(Ċ)Φ
Ġ−Ċ

(x),

where Ċu denotes the set of signed cycles passing through u, and Ġ− Ċ denotes
the signed graph obtained from Ġ by deleting Ċ (we assume that Φ

Ġ−Ċ
(x) = 1

if Ġ− Ċ has no vertices).
We conclude by the following observations related to the switching equiva-

lence classes of signed graphs.
It is well-known that coordinates of an eigenvector associated with the index

of a simple and connected graph are non-zero and of the same sign. Here we
prove that, in the case of signed graphs, (not the same but) similar holds for
any eigenvalue and appropriately selected class representative (depending on the
choice of the eigenvalue).

Lemma 1. Let E denote a class of switching equivalent signed graphs and let λ

be an eigenvalue belonging to the common spectrum. Then E contains a signed

graph for which the eigenvector that corresponds to λ may be chosen in such a

way that all its non-zero coordinates are of the same sign.

Proof. It is sufficient to prove that all coordinates of are non-negative. Let
Ġ ∈ E , and let x = (x1, x2, . . . , xn)

T be a vector satisfying A
Ġ
x = λx. If x

is non-negative, then Ġ is the desired signed graph. Otherwise, let D stand
for the diagonal matrix of ±1’s with −1 exactly in positions (i, i) for which
xi < 0. Observe that Dx is non-negative. In addition, there is a signed graph
H ∈ E with the adjacency matrix A

Ḣ
= D−1A

Ġ
D. Since D−1 = D it also holds

D−1A
Ḣ
D = A

Ġ
, and so we have the following chain of implications:

D−1A
Ḣ
Dx = λx ⇒ A

Ḣ
Dx = D−1λx ⇒ A

Ḣ
Dx = λDx.

Thus, Ḣ is the desired signed graph with Dx in the role of the corresponding
eigenvector.

Here is a structural property of a representative.
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Lemma 2. If E(G) denotes the class of switching equivalent signed graphs whose

underlying graph is G, then

(i) for every vertex u ∈ V (G), E(G) contains a signed graph in which deg(u) =
deg+(u) holds;

(ii) E(G) contains a signed graph such that deg+(u) ≥ deg−(u) holds for all its

vertices.

Proof. (i) If uv1, uv2, . . . , uvk are the negative edges incident with u (in Ġ ∈
E(G)), then reversing the sign of all edges incident with the vertices v1, v2, . . . , vk
gives the desired signed graph.

(ii) The desired signed graph is obtained by selecting arbitrary signed graph
Ġ ∈ E(G) and repeating the following procedure. If there is no a vertex u ∈ V (Ġ)
for which deg+(u) < deg−(u), we are done. Otherwise, take any such vertex and
reverse the sign of all edges incident. Since this procedure is followed by a strict
decreasing in the total number of negative edges, after finite repetition we arrive
at the result.

3. Index

We first prove the following theorem.

Theorem 3. Let Ġ be a signed graph with two non-adjacent vertices u and v,

let x = (x1, x2, . . . , xn)
T be an eigenvector associated with its index, and let Ġuv

be a signed graph obtained from Ġ by adding the edge uv. If Ġuv is connected

and at least one of the entries xu, xv is non-zero, then for at least one of choices

σ(uv) = 1 or σ(uv) = −1 we have λ1(Ġ) < λ1(Ġuv).

Proof. We may assume that ||x||=1, and then using the Rayleigh principle, we
get

(3) λ1(Ġuv) ≥ xTA
Ġuv

x = λ1(Ġ) + 2σ(uv)xuxv.

If xuxv > 0 (respectively xuxv < 0), then the result follows by choosing positive
(respectively negative) signature for uv. If, say xu = 0 (so, xv 6= 0), and equality
holds in (3) then x corresponds to λ1(Ġuv), but then the eigenvalue equation (1)
cannot hold for u in both signed graphs, and we are done.

Observe that the previous theorem covers a special case concerning a discon-
nected signed graph with an isolated vertex. The next corollary follows immedi-
ately.

Corollary 4. Given a connected signed graph Ġ, let x = (x1, x2, . . . , xn)
T be an

eigenvector associated with its index and Ġu a signed graph obtained by joining
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an isolated vertex u to the vertices v1, v2, . . . , vk of Ġ. If at least one of the

entries xvi (1 ≤ i ≤ k) is non-zero, then for appropriately chosen signatures for

uvi (1 ≤ i ≤ k) we have λ1(Ġ) < λ1(Ġu).

Proof. The proof is obtained by consecutive application of the previous theorem
to Ġ and u forming together one (disconnected) signed graph.

Remark 5. The signed graph Ġ considered in Theorem 3 and Corollary 4 is
switching equivalent to a signed graph for which all signatures mentioned in
these statements may be taken to be positive.

We may also consider the multiplicity of the index.

Theorem 6. Let Ġu be a signed graph obtained by joining an isolated vertex u

to a subset of vertices of a signed graph Ġ. If λ1(Ġ) < λ1(Ġu), then λ1(Ġu) is a

simple eigenvalue.

Proof. The proof is a direct consequence of the Interlacing Theorem. Namely,
if λ1(Ġu) = λ2(Ġu), then it must hold λ1(Ġu) = λ1(Ġ). A contradiction.

We denote by Ġ · e the signed graph obtained by reversing the sign of the
edge e of Ġ.

Theorem 7. If e is an edge that does not belong to any unbalanced cycle of a

connected signed graph Ġ, then λ1(Ġ) ≥ λ1(Ġ · e).

Proof. We write Ġ′ for Ġ · e. If u is a vertex incident with e, then we have

Φ
Ġ
(x) = xΦ

Ġ−u
(x)−

∑

v∼u

Φ
Ġ−u−v

(x)− 2
∑

Ċ∈Ċu

σ(Ċ)Φ
Ġ−Ċ

(x)

and
Φ
Ġ′(x) = xΦ

Ġ′−u
(x)−

∑

v∼u

Φ
Ġ′−u−v

(x)− 2
∑

Ċ∈Ċu

σ(Ċ)Φ
Ġ′−Ċ

(x).

Let Ċe ⊆ Ċu be the subset containing only the cycles traversing along e. Using
the above formulas, we get

(4) Φ
Ġ′(x)− Φ

Ġ
(x) = 4

∑

Ċ∈Ċe

Φ
Ġ−Ċ

(x).

By setting x = λ1(Ġ) and using the Interlacing Theorem, we get Φ
Ġ′(λ1(Ġ)) ≥ 0,

which gives the assertion.

Observe that the set Ċe from the previous proof may be empty. So, to obtain
a strict inequality we need an additional assumption.
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Corollary 8. If the edge e from the previous theorem belongs to at least one

balanced cycle, then λ1(Ġ) > λ1(Ġ · e).

Proof. Assume that there is a signed graph Ġ of a minimal order for which our
claim fails to hold. By the previous theorem, we have λ1(Ġ) ≥ λ1(Ġ

′) (where Ġ′

stands for Ġ · e), and so according to our assumption it must be λ1(Ġ) = λ1(Ġ
′).

If Φ
Ġ−Ċ

(λ1(Ġ)) > 0 holds for at least one cycle that contains e, we are done

(by (4)). So, assume in further that Φ
Ġ−Ċ

(λ1(Ġ)) = 0 holds for all of them. (In

other words, Ġ and Ġ− Ċ share the same index.)
If there are at least two balanced cycles containing e, say Ċ ′ and Ċ ′′, then

there are two vertices u and v such that u ∈ V (Ċ ′)\V (Ċ ′′) and v ∈ V (Ċ ′′)\V (Ċ ′).
The removal of one of these vertices, say u, results in a signed component Ḣ

that contains e and satisfies λ1(Ġ) = λ1(Ḣ). On the contrary, the minimality
of Ġ and the Interlacing Theorem respectively yield the following inequalities
λ1(Ḣ) > λ1(Ḣ · e) ≥ λ1(Ġ− Ċ ′) = λ1(Ġ). A contradiction.

Let there be exactly one balanced cycle, say Ċ, containing e. Since e does
not belong to any unbalanced cycle, we conclude that no edge of Ċ belongs to
any other cycle.

Assume first that Ċ contains exactly one vertex, say v, of degree at least
3 (in Ġ) and let v′ and v′′ be its neighbours in Ċ. Since λ1(Ġ) = λ1(Ġ − Ċ),
we have λ1(Ġ) = λ1(Ġ − vv′) = λ1(Ġ − vv′′) = λ1(Ġ − vv′ − vv′′). On the
contrary, since Ġ − vv′ − vv′′ consists of two components one of them being a
path, we conclude that inserting an edge of any signature between v and v′ (in
Ġ− vv′− vv′′) strictly increases the index (by Theorem 3, since the coordinate of
an eigenvector to λ1(Ġ − vv′ − vv′′) that corresponds to an endvertex of a path
is non-zero). A contradiction.

If Ċ contains more than one vertex of degree at least 3, then Ġ − Ċ is
disconnected and λ1(Ġ−Ċ) = λ1(Ġ), which means that there exists a component,
say Ḣ, such that λ1(Ḣ) = λ1(Ġ − Ċ). Now, by removing all vertices of V (Ġ)
that are outside V (Ḣ) ∪ V (Ċ), we get a signed graph in which Ċ contains only
one vertex of degree at least 3, and then application of the previous part of the
proof leads to the final contradiction.

We say that a cycle in a signed graph is independent of a fixed set of cycles
if it contains an edge that does not belong to any cycle of that set. According to
this terminology, in the previous corollary we dealt with a balanced cycle that is
independent of the set of all unbalanced ones.

A signed cactus is a connected signed graph in which any two cycles have
at most one common vertex. We proceed with another characterization of these
signed graphs.

Lemma 9. A connected signed graph is a signed cactus if and only if every its

cycle is independent of the remaining ones.
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Proof. The first implication follows directly from definition.

Assume that a connected signed graph whose every cycle is independent of
the remaining ones is not a signed cactus. Then its two cycles share a (non-empty)
set of edges, and therefore each edge belonging to any of them also belongs to
another cycle formed by combining the edges of these two, and we are done.

Now, Corollary 8 and Lemma 9 provide a partial ordering of signed cacti by
their indices.

Corollary 10. Given a simple cactus G having k cycles enumerated by 1, 2, . . . , k,
let Ġ(i) (1 ≤ i ≤ k) be a signed cactus derived from G in which the cycles 1, 2, . . . , i
are unbalanced and remaining cycles balanced. Then,

λ1(G) > λ1(Ġ
(1)) > λ1(Ġ

(2)) > · · · > λ1(Ġ
(k)).

Proof. The proof follows directly from the last two statements.

At the end of this section we demonstrate a method for obtaining lower or
upper bounds on the index of a signed graph Ġ. Namely, the adjacency matrix
A

Ġ
may be decomposed into the sum

A
Ġ
= P +N,

where P and N correspond to positive and negative edges of Ġ, respectively. If we
use introduced notation for the eigenvalues, then by applying the Courant-Weyl
inequalities [10, Theorem 1.3], we get

λ1(P ) + λn(N) ≤ λ1(Ġ) ≤ λ1(P ) + λ1(N).

Equivalently,

λ1(P )− λ1(−N) ≤ λ1(Ġ) ≤ λ1(P )− λn(−N).

Observe that −N is the adjacency matrix of a simple graph which together
with that of P is making up the partition of edges of the underlying graph G. If
we denote these graphs by GP and G−N , then a lower bound for λ1(GP ) and an
upper bound for λ1(G−N ) sum up to a lower bound for λ1(Ġ), and similarly for
the second inequality.

In this way we have transferred the problem to the field of simple graphs,
and so we may use any of known bounds for the corresponding eigenvalues (more
details can be found in [10]). For example, we have

(5) λ1(Ġ) ≥

√

d2+ − max
u∈V (Ġ)

m−(u),
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where d2+ stands for the average square of positive vertex degrees and m−(u) is
the the average negative vertex degree in the set of neigbours of u. Namely, using

the Hofmeister inequality (cf. [10, p. 32]), we get λ1(GP ) ≥
√

1
n

∑

n

u=1 deg(u)
2

which gives the first term. The second term is obtained from the well-known
upper bound λ1(G−N ) ≤ maxu∈V (G−N )m(u), where m(u) now stands for usual
average vertex degree in the neighbourhood of u (cf. [10, p. 34]).

Observe that (5) holds for disconnected signed graphs and that this lower
bound may be trivial. A decrease in the number of negative edges (obtained by
repeating the procedure described in the proof of Lemma 2) results in an increase
of this bound. Moreover, the following lemma holds.

Lemma 11. Equality in (5) holds if Ġ is a regular signed graph whose positive

and negative edges induce two spanning regular signed subgraphs such that the

n× 1 all-1 eigenvector j corresponds to the largest eigenvalue of Ġ.

Proof. The graphs GP and G−N are regular and j is an eigenvector correspond-
ing to their indices. Moreover, it is easy to check that j also corresponds to the

eigenvalue λ1(GP ) − λ1(G−N ) =
√

d2+ −max
u∈V (Ġ)m−(u) of Ġ, and the result

follows.

4. Representatives of Small Switching Equivalent Signed Graphs

Recall from Section 2 that all switching isomorphic signed graphs share the same
spectrum and that each of them can be considered as a representative of the
corresponding switching equivalence class. Here we present computational results
related to determination of class representatives of comparatively small order. In
particular, we provide the theoretical basis for our computational approach and
give some numerical data, while the corresponding signed graphs can be found
on http://www.math.rs/∼zstanic/siggr.htm.

We use publicly available library of programs nauty [7] to generate all con-
nected graphs having a given number of vertices. We also use the results of the
forthcoming theorems.

For a moment we include isomorphic signed graphs by introducing labelling
of their vertices. A labelled (signed) graph is a (signed) graph with each vertex
labelled differently and so they are distinguished one from another. Usually, the
vertices are labelled by the numbers 1, 2, . . . , n. Clearly, labelled signed graphs
G and H are switching equivalent whenever they are switching equivalent if con-
sidered as unlabelled. It can easily be seen that the number of (not necessarily

connected) labelled simple graphs with n vertices is 2(
n

2
). In the following the-

orem we consider labelled signed graphs that share the same underlying graph.
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Recall that a connected (signed) graph is called k-cyclic if its order and size
satisfy m = n+ k − 1.

Theorem 12. If S(G) denotes the set of all labelled signed graphs that are not

pairwise switching equivalent and share given connected k-cyclic underlying graph

G, then |S(G)| = 2k.

Proof. Our proof is based on induction arguments. For k = 0, the statement
holds trivially. Assume that the statement holds for any connected (k− 1)-cyclic
underlying graph.

Let G be a k-cyclic connected graph and e its edge contained in at least one
cycle. Then, by the induction hypothesis, the set S(G − e) counts exactly 2k−1

labelled signed graphs. By adding the edge e, first with positive and then with
negative signature, to each of them we get the required set S(G). Indeed, by
its construction, S(G) does not contain any pair of switching equivalent signed
graphs. In addition, if Ġ is a labelled signed graph with G as an underlying
graph, then Ġ− e ∈ S(G− e) and consequently Ġ ∈ S(G).

Determination of these signed graphs is considered in our next result.

Theorem 13. If T is a spanning tree of a k-cyclic graph G and e1, e2, . . . , ek are

the edges outside T , then the 2k labelled signed graphs of S(G) are obtained by

taking all possible combinations for the signature of the edges e1, e2, . . . , ek.

Proof. Clearly, in the described way we obtain 2k signed graphs. To complete
the proof we need to show that no two of them are switching equivalent. Since
switching equivalent signed graphs share the same set of balanced cycles, the
latter follows from the fact that each of our labelled signed graphs has a unique
set of balanced elementary cycles (with respect to T ).

Now it is easy to do our computer search. For every simple graph generated
by nauty we determine a spanning tree, then using the last theorem we determine
all signed graphs that are derived from it, and simultaneously eliminate switching
isomorphic ones. We denote by T (n) the total number of connected signed graphs
that are not switching isomorphic and have n vertices. Here is an overview of the
results including signed graphs having at most 8 vertices.

n 3 4 5 6 7 8

T (n) 3 12 79 1123 42 065 4 880 753
% of underlying graphs 66.67 50.00 26.58 9.97 2.03 0.23

As expected, the proportion of underlying graphs in the total number de-
creases dramatically.
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On the basis of these results we may consider the cospectrality of signed
graphs. No signed graph with at most 4 vertices has a cospectral mate. We give
the numerical data on graphs of T (n), where n ∈ {5, 6, 7}, that have at least one
cospectral mate. The number of such signed graphs is denoted by C(n). Note
that disconnected signed graphs are included as possible cospectral mates (they
are easily derived by combining connected ones). The results are as follows.

n 5 6 7

C(n) 2 131 8219
% in T (n) 2.53 11.67 19.54

One may observe that C(5) is equal to 2, contrary to the case of simple graphs
where there is a unique connected graph that have a (disconnected) cospectral
mate. In addition, the proportion of connected cospectral signed graphs with 6
or 7 vertices is larger than that for simple graphs (for the corresponding data, we
refer to [5]).
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[3] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs — Theory and Application,
3rd Edition (Johann Ambrosius Barth Verlag, Heidelberg–Leipzig, 1995).
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