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Abstract

For bipartite graphs F and H and a positive integer s, the s-bipartite
Ramsey number BR,(F, H) of F' and H is the smallest integer ¢ with ¢t > s
such that every red-blue coloring of K, results in a red F' or a blue H.
We evaluate this number for all positive integers s when F' = Kjo and
H e {K2’3,K3,3}.
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1. INTRODUCTION

In a red-blue coloring of a graph G, every edge of GG is colored red or blue. For
two graphs F' and H, the Ramsey number R(F,H) of F and H is the smallest
positive integer n such that every red-blue coloring of the complete graph K, of
order n results in either a subgraph isomorphic to F' all of whose edges are colored
red (a red F) or a subgraph isomorphic to H all of whose edges are colored blue
(a blue H). A graph (subgraph) all of whose edges are colored the same is called
a monochromatic graph (subgraph). We refer to the book [4] for graph theory
notation and terminology not described in this paper.

In [2] Beineke and Schwenk introduced a bipartite version of Ramsey num-
bers. For two bipartite graphs F' and H, the bipartite Ramsey number BR(F, H)
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of F and H is the smallest positive integer r such that every red-blue coloring
of the r-regular complete bipartite graph K, results in either a red F' or a blue
H. Consequently, if BR(F, H) = r for bipartite graphs F' and H, then every red-
blue coloring of K., results in a red F' or a blue H, while there exists a red-blue
coloring of K,_1,_1 for which there is neither a red F' nor a blue H. Beineke
and Schwenk [2] showed that BR(F, H) exists for every two bipartite graphs F’
and H and showed that for the 4-cycle Cy, BR(Cy,Cy) = 5.

In [1], red-blue colorings of the intermediate graph K,_;, were considered,
which led to the concept of the 2-Ramsey number, the definition of which is more
similar to the Ramsey number. For bipartite graphs F' and H, the 2-Ramsey
number Ro(F,H) of F and H is the smallest positive integer n such that every
red-blue coloring of the complete bipartite graph K|, | /2] of order n results
in a red F or a blue H. Thus, either Ro(F,H) = 2BR(F,H) or Ry(F,H) =
2BR(F,H) — 1.

Since the bipartite Ramsey number BR(Cy, Cy) = 5, it follows that Rs(Cy,
Cy) is either 9 or 10. Because there is a red-blue coloring of K, 5 that results in
neither a red C4 nor a blue Cy (see Figure 1, where each solid edge is colored
red and each dashed edge is colored blue), it follows that Ro(Cy4, Cy) > 10 and so
R (Cy, Cy) = 10.

Figure 1. A red-blue coloring of Ky 5.

We now consider red-blue colorings of complete bipartite graphs when the
numbers of vertices in the two partite sets need not differ by at most 1. Let F
and H be two bipartite graphs. For a positive integer s, the s-bipartite Ramsey
number BRs(F, H) of F and H is the smallest integer ¢ with ¢ > s such that
every red-blue coloring of K ; results in a red F' or a blue H. In [3], BRs(F, H)
was studied for F' = H = Cy = K9 and F' = H = K33. The following exact
results were obtained.

Theorem 1.1 [3]. For each integer s > 2,

does not exist if s =2,
BRs(Kap, Ka2) = 7 if s =3,4,
S if s > 5.
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Theorem 1.2 [3]. For each integer s > 2,

does not exist  if s =2,3,4,
BRS(K3,37 K3,3) = 41 lfS = 57 67
29 if s=1,8.

Here, we determine BR(F, H) for all positive integers s when F' = K39 and
H e {K2737K373}, beginning with H = K273.

2. THE s-BIPARTITE RAMSEY NUMBER BR, (K22, K2 3)

We will see, for results presented in this section, that there is a connection with
the concept of Steiner triple systems. For this reason, we briefly discuss this
topic here. A Steiner triple system of order n is a set S with n elements and a
collection T of 3-element subsets of S, called triples, such that every two distinct
elements of S belong to a unique triple in 7. A primary question here is that of
determining those integers n for which a Steiner triple system of order n exists.
An immediate observation is that there exists a Steiner triple system of order
n if and only if K, is K3-decomposable. While it is not difficult to see that if
there is a Steiner triple system of order n, then n =1 (mod 6) or n =3 (mod 6),
Kirkman [5] verified the converse in 1846, resulting in the following result.

Theorem 2.1. A Steiner triple system of order n > 3 exists if and only if n =1
(mod 6) or n =3 (mod 6).

For example, there is a Steiner triple system of order 7. For the set S =
{1,2,...,7}, one Steiner triple system of order 7 has the following set of triples
(where the triple {a, b, ¢} is denoted by abc):

(1) T = {123,145, 246, 356, 167, 257, 347}.

Consequently, every pair of elements of S belongs to exactly one element of T'.
While no two triples of 7" have two elements of S in common, every two triples
of T have exactly one element of S in common. To see that this is the case
for every Steiner triple system of order 7, suppose that there is a Steiner triple
system S = {a,b,c,d,e, f,g} of order 7 with a set T of triples containing two
disjoint triples, say {a, b, c} and {d, e, f}. That is, there is a K3-decomposition of
K7 with vertex set S, containing disjoint triangles with vertex sets {a, b, c} and
{d,e, f}. The vertex g belongs to three triples, where each triple contains one
vertex (element) of {a, b, c} and one vertex of {d, e, f} (see these five triangles in
Figure 2). The element a belongs to one other triple. However, no other pair of
elements of S can form a triple with a that results in a Steiner triple system.
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Figure 2. Five triangles in K7.

Let us return to the Steiner triple system S = {1,2,...,7} of order 7 and
the set T" of triples shown in (1). Let G be the bipartite graph with partite sets
U = {ui,ug,...,ur} and W = {wy,ws,...,wr}. Denote the triples in (1) by

Uy = 123, Uy = 145, Us = 246, Uy = 356, Us = 167, Ug = 257, Uy = 347.

Then u;w; is an edge of G if i € Uj, producing the 3-regular graph G' shown in
Figure 3. The graph G produces seven other triples, namely

Wi =125, Wy = 136, W3 = 147, Wy = 237, W5 = 246, W = 345, W7 = 567,

where u;w; is an edge of G if j € W;. Thus, {W1, Wa, ..., W7} is a second Steiner
triple system for the set S = {1,2,...,7}.

(5 Ug Uusg Uy Us Ug uy
Q.

Figure 3. A 3-regular bipartite graph constructed from a Steiner triple system.

We now determine BR,(K3 2, K2 3) for each integer s > 2, beginning with an
observation when s = 2.

Proposition 1. The number BRy(K2 2, K2 3) does not exist.

Proof. For an arbitrary integer ¢t > 2, the red-blue coloring of K3 ;, in which both
red and blue subgraphs are K1 ; produces neither a red K32 nor a blue K>3. ®
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Theorem 2.2. BRg(K272,K273) = 10.

Proof. First, we show that there exists a red-blue coloring of K39 that avoids
both a red Kz2 and a blue Ky3. For G = K39, let U = {uy,u2,u3} and W =
{wy,wa, ..., wo} be the partite sets of G. Consider the following three 4-element
subsets Wi, Wy, W3 of W, where {wq,wp, we, wq} is denoted by abed, and let
W; =W — W; be the 5-element subset of W for i = 1,2, 3.

Wi | 1378 5679 2489

Wi | 24569 12348 13567

We now define a red-blue coloring of G' by joining each vertex u; (1 <1i < 3)
to the four vertices in W; by red edges and to the remaining five vertices in W;
by blue edges. This coloring is shown in Figure 4, where each solid line indicates
a red edge and each dashed line indicates a blue edge. Since |W; N W;| = 1,
|W; ﬂWj| =2for1<i#j<3and |[W;NWyNWjs| =0, there is neither a red
K5 nor a blue Ky 3 in G. Hence, BR3(K3 2, K33) > 10.

Figure 4. A red-blue coloring of K39 avoiding both a red K52 and a blue K» 3.

Next, we verify that BR3(K22,K23) < 10 by showing that every red-blue
coloring of H = K3 19 results in a red K2 or a blue K33. Let there be given a
red-blue coloring of H, where Hpr denotes the red subgraph of H and Hpg the blue
subgraph. Let U = {u1,u2,us} and W = {wy,ws, ..., wio} be the partite sets of
H. First, suppose that W has at least four vertices of degree at most 1 in Hp; say
degHB w; <1 for 1 <i<4. Thus, degHR w; > 2 for 1 <4 < 4. Since there are
(g) = 3 distinct 2-element subsets of U, at least two vertices in {wj, we, w3, wy}
are joined to the same pair of vertices of U by red edges, producing a red K> ».
On the other hand, if W has at most three vertices of degree at most 1 in Hp,
then W has at least seven vertices of degree 2 or more in Hp. Since there are only
three distinct 2-element subsets of U, at least three vertices of W are joined to
the same pair of vertices in U by blue edges, producing a blue K3 3. In any case,
there is either a red Ko or a blue K3 3 in H. Therefore, BR3(K22,K23) =10. m
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Theorem 2.3. I[f4 < s <7, then BRy(K22,K23) =8.

Proof. First, we show that there exists a red-blue coloring of K77 that avoids
both a red K72 and a blue K33, which then implies that BR;(K22, K23) > 8
for 4 <s <7 LetU = {uy,u,...,ur} and W = {wy,ws, ..., wr} be the partite
sets of G = K7 7. Consider the seven 3-element subsets Uy, Us, ..., Uz of U shown
below, where {u,, up, u.} is denoted by abc and let U; = U — U; for 1 <i < 7.

Up: | 123 145 246 356 167 257 347

U, : | 4567 2367 1357 1247 2345 1346 1256

Notice that Uy, Us, ..., Uy are precisely the seven triples in the Steiner triple
system described in (1). Thus, |U;NU;| =1, [U;NU;| =2for 1 <i# j <7 and
U;NU;NU;| <1for1<i=#j+#k#i<7. Wenow define a red-blue coloring
of G where w; (1 < i <7) is joined to the three vertices in U; by red edges and
to the remaining four vertices in U; by blue edges. Figure 3 shows the resulting
red subgraph, which is exactly the graph of Figure 3 constructed from a Steiner
triple system. By the definition of this red-blue coloring, the red-neighborhood
of w; is Ng(w;) = U; and the blue-neighborhood of w; is Ng(w;) = U; for
1 <7 < 7. Furthermore, for each integer j with 1 < j < 7, let W; = NR(uj)
and W; = Ng(uj) = W — W;. Then, denoting w,,ws,w; by rst, we have the
following;:

Wi | 125 136 147 237 246 345 567

W .| 3467 2457 2356 1456 1357 1267 1234

As we saw, Wy, Ws, ..., W7 are also the triples in a Steiner triple system of
order 7. Let Gg and G p be the resulting red and blue subgraphs of G. Then G
is 3-regular and Gp is 4-regular. It remains to show that there is neither a red
K39 nor a blue K>3 in G. First, each 2-element subset of W belongs to at most
one of Uy, Us,...,U; and each 2-element subset of W belongs to at most one of
Wi, Wa, ..., Wz. Hence, there is no red K. Next, each 3-element subset of U
belongs to at most one of the sets U; for 1 < i < 7 and each 3-element subset
of W belongs to at most one of the sets W, for 1 < j < 7. Hence, there is no
blue K3 3. Therefore, there is neither a red K9 nor a blue K3 in G' and so
BR7(K9,Ky3) > 8.

Next, we show that every red-blue coloring of H = Ky g results in a red K» o
or a blue K33, which then implies that BRs(K22,K23) < 8 for 4 < s < 7. Let
there be given a red-blue coloring of H resulting in the red subgraph Hp and
the blue subgraph Hp such that there is no red Ks2. We show that there is a
blue Ko 3. Let U = {u1,u2, u3,us} and W = {wy,wy, ..., ws} be the partite sets
of H.
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If there are two vertices of W having degree at most 1 in Hp, say degy, w1 <
1 and degy, wa < 1, then degy, w1 > 3 and degy, w2 > 3. Then wy and ws
are joined to at least two vertices of U by red edges and so there is a red Ks 2, a
contradiction. Thus, at most one vertex of W has degree at most 1 in Hg. We
consider two cases.

Case 1. Exactly one vertex of W has degree at most 1 in Hp, say degy,, wy
< 1. First, suppose that degy, w1 = 0. Thus, degy, w1 = 4; that is, w; is joined
to each vertex in U by a red edge. If there is a vertex w;, where 2 < ¢ < 8, that
is joined to two or more vertices of U by red edges, then there is a red Ks», a
contradiction. Thus, we may assume that degHR w; <1 for 2 <4 < 8 and so
degy,, w; > 3. Since there are (g) = 4 distinct 3-element subsets of U, there are
at least two vertices of W that are joined to the same three vertices in U by blue
edges, producing a blue K> 3.

Next, suppose that degy, wi = 1. Thus, degy, w1 = 3, say Npg,(w1) =
{u1,u9,us}. If any of {ui,u2}, {u1,us} or {uz,us} belongs to the red-neighbor-
hood N, (w;) of some vertex w; where 2 < i < 8, then there is a red Ks2, a
contradiction. Hence, none of {uj,us}, {u1,us} or {ug,us} belongs to the red-
neighborhood Np, (w;) of any vertex w; where 2 < ¢ < 8. Therefore, for each
integer ¢ with 2 < i < 8, at least one of the sets {uj,ua}, {ui,us} or {uz,us}
belongs to N, (w;). Hence, one of these three sets belongs to Np, (w;) for three
vertices w; for 2 <7 < 8 and so Hp contains a blue Kj 3.

Case 2. No vertex of W has degree at most 1 in Hg. Thus, degy, w; > 2
for 1 < ¢ < 8. First, we verify the following:

(2) If w',w"” € W such that degy, w' =degy, w" =2, then Ny, (w')# N, (w”).

If w' and w” are joined to the same two vertices of U by blue edges, then w’
and w” are joined to the remaining two vertices of U by red edges. This then
produces a red Kj o, which is impossible. Therefore, (2) holds.

Since there are six distinct 2-element subsets of U, it follows that W has
at most six vertices of degree 2 in Hp. Hence, at least two vertices in W have
degree 3 or more in Hp. Furthermore, we may assume that no vertex of W have
degree 4 in Hp (for otherwise, there is a blue K3 3). Hence, every vertex of W has
degree 2 or 3 in Hp and least two of them have degree 3. Since there are only four
distinct 3-element subsets of U, we may assume that W has at most four vertices
of degree at least 3 in Hp. If W has exactly four vertices of degree 3 in Hp, say
degy, w; = 3 for 2 <4 <5, then we may assume that Ng,(w2) = {u1,ug, us},
N, (ws) = {ur,uz,ua}, Nggy(ws) = {ui,ug,ua} and Ny, (ws) = {ug,us, us}
(for otherwise, there is a blue K3 3). Since degy, ws = 2, we may assume that
weui and weug are blue. Then there is a blue K 3 with partite sets {u1,u2} and
{w2, w3, we}. Hence, either W has exactly two vertices of degree 3 in Hg or W
has exactly three vertices of degree 3 in Hp. We consider these two subcases.
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Subcase 2.1. W has exactly two vertices of degree 3 in Hp. We may assume
that degy,, w1 = degy, w2 = 3. Then degy, w; = 2 for 3 <7 < 8 and [Ny, (w)
N Np,(w2)| = 2; for otherwise, if |Ng,(wi) N Nug(w2)| = 3, then there is a
blue K3 3. Suppose that Ng, (w1) N Np,(w2) = {uy, uz}. If there is some vertex
w;, where 3 < ¢ < 8, such that Ny, (w;) = {u1,us}, say ws, then there is a
blue Kj3 with partite sets {u1,us} and {wi,ws, w3}. So we may assume that
Ny (wi) # {u1,ug} for 3 < i < 8. However, since there are only (3) —-1=5
distinct 2-element subsets of U that are available for the neighborhoods of six
vertices w; for 3 <1 < 8, at least two of these vertices of degree 2 have the same
neighborhood in Hp, which is a contradiction by (2).

Subcase 2.2. W has exactly three vertices of degree 3 in Hp. We may assume
that degy, w; = 3 for i = 1,2,3. Furthermore, we may assume that Ny, (w1) =
{u1,u2,us}, Ng,(we) = {ur,uz,us} and Ny, (w3) = {u1,us,us}. Then for each
integer ¢ with 4 < ¢ < 8, the blue-neighborhood Ny, (w;) of w; cannot be any
of {ur,us}, {ur,us} and {u,us} (for otherwise, there is a blue Ks3). Since
there are (3) — 3 = 3 distinct 2-element subsets of U that are available as the
blue-neighborhood of the five vertices w; for 4 < ¢ < 8, it follows that at least
two of these vertices of degree 2 have the same neighborhood in Hpg, which is a
contradiction by (2). [

By Theorem 2.3, BR(K22, K2 3) = BR7(K22,K23) =8 and so we have the
following result.

Theorem 2.4. For each integer s > 2,

does not exist if s =2,

10 if s =3,
BRs(K22, Ka3) = 8 if4<s<7
S lfS Z 8.

3. THE s-BIPARTITE RAMSEY NUMBER BR,(K32, K33)

We now determine BR(K2 2, K33) for each integer s > 2, beginning with an
observation for s = 2, 3.

Proposition 2. The number BRs(K22, K3 3) does not exist for s = 2,3.

Proof. For an arbitrarily integer ¢ > s, the red-blue coloring of K3; in which the
red subgraph is K7 ; and the blue subgraph is Ks; produces neither a red K» 2
nor a blue K3 3. [ |
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Theorem 3.1. BR4(K272,K373) = 15.

Proof. First, we show that there exists a red-blue coloring of Ky 14 that avoids
both a red K32 and a blue K33. For G = Ky 14, let U = {u1,ug, u3, us} and
W = {wi,ws,..., w14} be the partite sets of G. Consider the following subsets
U1,Us, ..., Uiy of U, where {ug,uyp, ...} is denoted by ab-- -, and let U; = U — U;
for 1 <i < 14.

Ui: | 1 1 2 2 3 3 4 4 12 13 14 23 24 34
U;:|234 234 134 134 124 124 123 123 34 24 23 14 13 12

We now define a red-blue coloring of G by joining each vertex w; (1 <1 < 14)
to the vertices in U; by red edges and to the remaining vertices in U; by blue
edges. The resulting red subgraph of this red-blue coloring is shown in Figure 5.
Since |U; NU;| < 1 and |UiﬂUjﬁUk| <2for1<i#j#k<14andi # k,
there is neither a red Ks9 nor a blue K33 in G and so BR4 (K22, K33) > 15.

w]p w2 w3 w4 W5 W Wy wg W9 Wi0 Wil W12 W13 wWi4
1 1 2 2 3 3 4 4 12 13 14 23 24 34

Figure 5. The red subgraph in a red-blue coloring of Ky 14.

Next, we show that BR4 (K22, K33) < 15. That is, we show that every red-
blue coloring of H = Ky 15 results in a red K3 or a blue K3 3. Let there be given
a red-blue coloring of H resulting in the red subgraph Hg and the blue subgraph
Hpg. Suppose that there is no red K. We show that there is a blue K3 3. Let
U = {u1,u,us,us} and W = {wy,ws,...,wi5} be the partite sets of H. First,
we claim that W contains at least 9 vertices of degree at least 3 in Hp. This is
certainly true if the maximum degree of vertices of W in Hp is at most 1. Thus,
we may assume that the maximum degree of vertices of W in Hp is 4, 3 or 2.
We consider these three cases.

Case 1. The maximum degree of vertices of W in Hp is 4. Since there is
no red Ko, it follows that W contains exactly one vertex of degree 4 in Hp,
say degp, w1 = 4. This implies that degy, w; <1 for each integer 2 < ¢ < 15.
Consequently, degHB w; > 3 for 2 <4 < 15 and so W contains 14 vertices of
degree at least 3 in Hp.
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Case 2. The maximum degree of vertices of W in Hp is 3. Since there
is no red Ko, it follows that W contains exactly one vertex of degree 3, say
degp, w1 = 3 and Nyp(w1) = {u1,uz,us}. If degy, w; = 2 for some integer i
with 2 <4 <15, then Ny, (w;) cannot be a subset of Ng,(w1), namely Ny, (w;)
cannot be any of the three sets {uy,us}, {u1,us}, {ug,us}; for otherwise, there
is a red Ka2. Since there are only (3) — 3 = 3 available 2-element subsets of U
for Ng,(w;) for 2 <4 <15, it follows that W has at most 3 vertices of degree 2
in Hr. Consequently, W has at least 11 vertices of degree at most 1 in Hr and
so W has at least 11 vertices of degree at least 3 in Hp.

Case 3. The mazimum degree of vertices of W in Hpg is 2. Since there is no
red Kyo and there are only six distinct 2-element subsets of U, it follows that
W contains at most 6 vertices of degree 2 in Hgr. Consequently, W contains at
least 9 vertices of degree at most 1 in Hr and so W contains at least 9 vertices
of degree at least 3 in Hp.

In each case, W contains at least 9 vertices of degree at least 3 in Hp, as
claimed. Since there are only 4 distinct 3-element subsets of U, at least three
vertices of W are joined to the same three vertices in U by blue edges, producing
a blue K3,3. Therefore, BR4(K272,K373) < 15 and so BR4(K272,K373) = 15. |

Theorem 3.2. BR5(K272,K373) = BR6(K2’2,K3’3) =12.

Proof. It suffices to show (1) there exists a red-blue coloring of K 11 that avoids
both a red Ks9 and a blue K33 and (2) every red-blue coloring of Kj 19 results
in a red K2 or a blue K33. We begin with (1). For G = Kg11, let U =
{u1,ug,...,u¢} and W = {wy,we,..., w11} be the partite sets of G. Consider
the following subsets Uy, Us, ..., Uj; of U, where {ug, up, ...} is denoted by ab- - -,
and let U; = U — U; for 1 <i < 11.

U;: | 123 14 15 16 24 25 26 34 35 36 456

U;: | 456 2356 2346 2345 1356 1346 1345 1256 1246 1245 123

We now define a red-blue coloring of G by joining each vertex w; (1 < i < 11)
to the vertices in U; by red edges and to the remaining vertices in U; by blue
edges. The resulting red subgraph of this red-blue coloring is shown in Figure 6.
Since [U; NU;| < 1and |U;NU; NU;| <2for 1 <i#j#k<11 and i # k,
there is neither a red K32 nor a blue K33 in G and so BRg(K22, K33) > 12.
This also implies that BR5 (K22, K33) > 12.

Next, we show (2), that is, we show that every red-blue coloring of H = K5 12
results in a red K22 or a blue K33. Let there be given a red-blue coloring of H
resulting in the red subgraph Hp and the blue subgraph Hp. Suppose that there
is no red Ks9. We show that there is a blue K33. Let U = {u1,ug, us, us, us}
and W = {wy,ws, ..., w12} be the partite sets of H. First, we verify two claims:
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wi w2 w3 w4 ws we wr ws wyg w10 w11
123 14 15 16 24 25 26 34 35 36 456

Figure 6. The red subgraph in a red-blue coloring of Kg 11.

Claim 1. If W contains at least six vertices of degree at least 4 in Hp, then H
contains a blue K3 3.

To show Claim 1, we may assume that degp, w; > 4 for 1 < ¢ < 6.
Since there are (Z) = 5 distinct 4-element subsets of U, at least two vertices
in {wy,ws,...,we} are joined to the same four vertices in U by blue edges, say
{u1,u2,u3,us} € Npy(w1) N Npy(wz). Since degy, ws > 4, it follows that w3
is joined to at least three vertices of {uy,us,us, us} by blue edges, producing a
blue K3 3. Thus, Claim 1 holds.

Claim 2. No two vertices of W having degree 3 in Hp can be joined to the same
three vertices of U by blue edges.

If Claim 2 is false, then there are two vertices of W having degree 3 in Hp
that are joined to the same three vertices of U by blue edges. However then,
these two vertices are joined to the two remaining vertices of U by red edges,
producing a red K» 2, a contradiction. Thus, Claim 2 holds.

By Claim 1, if the maximum degree of vertices of W in Hpg is at most 1,
then H contains a blue K3 3. Hence, we may assume that the maximum degree
of vertices of W in Hp is b, 4, 3 or 2. We consider these four cases.

Case 1. The maximum degree of vertices of W in Hp is 5. Since there is
no red K, it follows that W contains exactly one vertex of degree 5 in Hp,
say degy, w1 = 5. Thus, degy, w; < 1 for each integer 2 < ¢ < 12 and so
degHB w; > 4 for 2 <4 < 12. Therefore, W contains at least 11 vertices of degree
at least 4 in Hp and so H contains a blue K33 by Claim 1.

Case 2. The maximum degree of vertices of W in Hpg is 4. Since there is
no red K, it follows that W contains exactly one vertex of degree 4 in Hg,
say degy, w1 = 4 and Npy,(w1) = {u1,u2,u3,us}, and W contains no vertex
of degree 3 in Hp. If degy, w; = 2 for some integer ¢ with 2 < ¢ < 12, then
N, (w;) is one of {uy,us}, {uz, us}, {us, us} and {u4, us}; for otherwise, there is
a red Ks2. Hence, W has at most four vertices of degree 2 in Hr and so W has
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at least seven vertices of degree at most 1 in Hgr. This implies that W has at
least seven vertices of degree at least 4 in Hp and so H contains a blue K33 by
Claim 1.

Case 3. The maximum degree of vertices of W in Hpg is 3. Since there is
no red Koo, it follows that W contains at most two vertices of degree 3 in Hp.
If W contains two vertices of degree 3, say degy, wi = degy, w2 = 3, then
|Nipg(w1) N Np,(w2)] = 1. We may assume that Ny, (wi) = {u1,u2,usz} and
Npp(ws) = {us, u4,us}. If degy, w; = 2 for some integer 7 with 3 < i < 12, then
Ny, (w;) is one of {ui, ua}, {ur,us}, {uz, ua} and {ug, us}; for otherwise, there is
a red Ks2. Hence, W has at most four vertices of degree 2 in Hr and so W has
at least six vertices of degree at most 1 in Hgr. This implies that W contains
at least six vertices of degree at least 4 in Hp. Thus, H contains a blue K33
by Claim 1. So, we may assume that W contains exactly one vertex of degree 3
in Hg, say degy, w1 = 3 and Ny (w1) = {u1,u,uz}. Then degy, w; < 2 for
2 <1 <12 If degy, wj = 2 for some 2 < j < 12, then, since there is no red Kz 2,
none of {uy,us}, {ur,us} and {ug, us} belongs to Ng,(w;). So there are at most
(g) — 3 = 7 vertices of degree 2 in Hi. Thus, W contains at least four vertices
of degree at most 1 in Hgi. This implies that W contains at least four vertices
of degree at least 4 in Hg. We may assume that there is no vertex of degree 5
in Hp and any two vertices of degree 4 in Hp have different neighborhoods (for
otherwise, there is a blue K33). By Claim 1, we may further assume that W
contains at most five vertices of degree 4 in Hp. Thus, the number of vertices of
W having degree 4 in Hp is 4 or 5. We consider these two subcases.

Subcase 3.1. W contains exactly four vertices of degree 4 in Hg. We may
assume that degy, w; = 4 for 2 < i < 5 and Nyg(w2) = {u1,uz2,u3,us},
Nuy(ws) = {u,u2,u3,us}, Ngy(ws) = {ur,u2, ug, us} and Ny, (ws) = {u1, us,
ug,us}. Then degy, w; = 3 for 6 < i < 12. Then we may assume that none
of {u1,ug, us}, {ur,uz,us}, {ur,us, us}, {u1,us, us}, {ur,us, us} and {uy,uq,us}
belongs to N, (w;) for 6 < i < 12; for otherwise, there is a blue K3 3. So there

are (g) — 6 = 4 distinct 3-element subsets that are available for Ny, (w;) where
6 < i < 12. However then, at least two vertices in {wg, w7, ..., w12} are joined

to the same three vertices of U in Hp, which contradicts Claim 2.

Subcase 3.2. W contains exactly five vertices of degree 4 in Hp. We may
assume that degy, w; = 4 for 2 < i < 6 and Nyg(w2) = {u1,u2,u3,us},
N (w3) = {u1,uz, u3, us}, Ny (ws) = {ur,u,ug,us5}, Ngy(ws) = {u1, uz, ug,
us} and Ny, (we) = {ug,u3,uq,us}. Then degy w; = 3 for 7 < i < 12. Each
triple of U belongs to exactly two of Ny, (w;) for 2 < i < 6. Since degy, wr = 3,
we may assume that Ny, (w7) = {u1,u2,uz}. Then there is a blue K33 with
partite sets {uy, ug,us} and {ws, w3, wr}.
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Case 4. The mazimum degree of vertices of W in Hpg is 2. Then degy, w; >
3 for each integer ¢ with 1 <14 < 12. Since there are (g) = 10 distinct 2-element
subsets of U, there are at most ten vertices of W of degree 2 in Hp, or equivalently,
there are at most ten vertices of W of degree 3 in Hp. This implies that there
are at least two vertices of W of degree at least 4 in Hp, say deg Hp w1 > 4 and
degy, wy > 4. Hence, [Ny, (w1) N Np,(wa)| > 3. There are two subcases.

Subcase 4.1. |Ng,(wi) N Np,(w2)] > 4. We may assume, without loss of
generality, that {ui,ug,us,us} € Npg,(wi) N Npg(wz). If there is a vertex w;
where 3 < j < 12 such that wj is joined to three vertices in {u1, ug,uz, us} by
blue edges, then H contains a blue K3 3. Hence, degy, w; = 3 for 3 < j < 12.
Furthermore, no 3-element subset of {u1,u2,us,us} can be Ny, (w;) for each j
with 3 < j < 12. Hence, there are at most (g) — (g) = 6 distinct 3-element subsets
of U that are available for Ny, (wj) for all 7 with 3 < j < 12. Since there are
exactly ten vertices of degree 3 in Hp, at least two of these vertices are joined to

the same three vertices in U by blue edges, which is impossible by Claim 2.

Subcase 4.2. | N, (w1) N N, (w2)| = 3. We may assume that

(3) Npg(wi) = {u1,u2, uz, us} and Ny, (we2) = {ug, us, us, us}.

We claim that W contains at least three vertices of degree 4 in Hp. If this were
not the case, then degy, w; = 3 for 3 < j < 12. If there is a vertex w; where
3 < j < 12 that is joined to each vertex of {ug,us,us} by a blue edge, then there
is a blue K3 3. Hence, there are only (g) — 1 = 9 distinct 3-element subsets of
U that are available for Ny, (w;) for 3 < j < 12. This implies that at least
two vertices of W having degree 3 in Hp are joined to the same three vertices of
U by blue edges, which is impossible by Claim 2. Therefore, there are at least
three vertices of W having degree 4 in Hp. By Claim 1, we may assume that W
contains at most five vertices of degree 4 in Hp. Thus, the number of vertices of

W having degree 4 in Hg is 5, 4 or 3.

e If W contains exactly 5 vertices of degree 4 in Hp, then by (3) we may assume
that Nuj,(ws) = {u1,u2,us,us}, Ngg(wa) = {u1,us,us,us} and Ny, (ws) =
{u1,u3,uq,us}. Since degy, we = 3, we may assume that weui, weug and weus
are blue. Then there is a blue K3 3 with partite sets {uy, us, ug} and {wy, w3, we}.

e If W contains exactly 4 vertices of degree 4 in Hp, then by (3) we may as-
sume that Np,(ws) = {ui,u2,uz,us} and Np,(ws) = {ui,ug, ug,us}. Since
{u1,ug,uq}, {ur,us, us}, {u1,uq,us} and {us, uq,us} are the only 3-element sub-
sets of U that belong to at most one of Ny, (w;) for 1 <i <5, we may assume
that Np, (w;) is one of {uy,us,ua}, {u1,us,us}, {u1,us,us} and {us, us,us} for
each integer j with 5 < ¢ < 12; for otherwise, there is a blue K33. Since W
contains exactly eight vertices of degree 3 in Hp, at least two of these vertices
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are joined to the same three vertices of U by blue edges, which is impossible by
Claim 2.

e If W contains exactly 3 vertices of degree 4 in Hp, then by (3) we may as-
sume that N, (w3) = {u1,ug, us, us}. Since each of {uy, ua, ug}, {uz,us,us} and
{u2,us,us} belongs to exactly two of Ny, (w;) for 1 < i < 3, we may assume
that Ng,(w;) is not any of {uy, us, us}, {ua, us, ua}, {uz,us, us} for each integer
J with 4 < j < 12; for otherwise, there is a blue K33. Hence, there are only
(g) — 3 = 7 distinct 3-element subsets of U for Ny, (w;) for 4 < j < 12 and so
at least two vertices of W having degree 3 in Hp are joined to the same three
vertices of U by blue edges, which is impossible by Claim 2.

Thus, every red-blue coloring of K5 12 results in a red K29 or a blue K3 3.
Hence, BR5 (K22, K33) < 12 and so BR5(K> 2, K3 3) = 12. This also implies that
every red-blue coloring of Kg 12 results in a red K2 or a blue K33. Therefore,
BRG(KQ’Q, Kg}g) > 12 and so BR6<K272, K373) =12. |

Theorem 3.3. BR7(K2’2, Kg,g) = BRg(KQ’Q, Kg’g) =9.

Proof. It suffices to show (1) there exists a red-blue coloring of Ky g that avoids
both a red K32 and a blue K33 and (2) every red-blue coloring of K7 g results in
ared Ky or a blue K3 3. We begin with (1). Although one could use the known
fact that BR(K22, K33) = 9 to show that BRg(K22, K33) > 9, we provide an
independent proof here for completion. For G = Kgg, let U = {u1,us,...,us}
and W = {wy, we, ..., ws} be the partite sets of G. Consider the following subsets
Ui, Us,...,Us of U, where {ug,up, ...} is denoted by ab-- -, and let U; = U — Uj;
for 1 <4 <8.

U;: | 123 145 1678 246 257 356 347 38

U;: | 45678 23678 2345 13578 13468 12478 12568 124567

We now define a red-blue coloring of G by joining each vertex w; (1 <1i < 8)
to the vertices in U; by red edges and to the remaining vertices in U; by blue
edges. The resulting red subgraph of this red-blue coloring is shown in Figure 7.
Since |U;NU;| <1 and |Uiﬂﬁj NU| <2for1<i##j#k<8andi#k, there
is neither a red K52 nor a blue K33 in G and so BRg(K22, K33) > 9. This also
implies that there exists a red-blue coloring of K7g that avoids both a red Ko
and a blue K33 and so BR7(K22, K33) > 9.

Next, we show (2); that is, we show that every red-blue coloring of H = K7 g
results in a red Ko2 or a blue K33. Let there be given a red-blue coloring of H
resulting in the red subgraph Hp and the blue subgraph Hp. Suppose that there
is no red K32. We show that there is a blue K33. Let U = {uy, ug,...,ur} and
W = {w1,ws,...,wy} be the partite sets of H. First, we verify the following two
claims.
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w1 w2 w3 4
123 145 1678 246 257 356 347 38

ws we wr ws
Figure 7. The red subgraph in a red-blue coloring of Kgs.

Claim 1. If W contains three vertices such that the union of their neighborhoods
in Hp consists of at most four vertices, then H contains a blue K3 3.

To show Claim 1, we may assume that | Ny, (w1)UNg, (w2) UNg, (w3)| < 4.
Since |U| = 7, there are at least three vertices of |U|, say ui, us and us, that
are not joined to wi, we and ws by red edges. It follows that uq, us and ug are
joined to wy, we and w3 by blue edges, producing a blue K33 with partite sets
{u1,ug2,us} and {wy, we,ws}. Thus, Claim 1 holds.

Claim 2. If W contains at least five vertices of degree at most 2 in Hgr, then H
contains a blue K3 3.

To show Claim 2, we may assume that degy, w; < 2 for 1 <7 < 5. By
Claim 1, we may assume that W contains no vertex of degree 0 in Hp and
contains at most one vertex of degree 1 in Hp. First, suppose that W contains
exactly one vertex of degree 1 in Hp, say degy, w1 = 1 and Np,(w1) = {u1}.
Thus, degy, w; = 2 for 2 < i < 5. By Claim 1 then, u; ¢ Np,(w;) and
Nu,(wj) N Ny (wg) = 0 for 2 < 4,5,k < 5 and j # k. So, there are only
three possibilities for N, (w;) where 2 < i < 5. Hence, at least two vertices of
{wa, w3, wq, w5} are joined to the same two vertices by red edges, producing a
red K39, which is a contradiction. Next, suppose that W contains no vertex of
degree 1 in Hg. Hence, degy, w; = 2 for 1 <14 < 5. Then at least two vertices in
{w1, w2, ws, wy, ws} are joined to the same vertex by red edges, say Ng,(w1) =
{u1,u2} and Ny, (w2) = {ug,us}. By Claim 1, Ny, (w;) C {u4,us,ue, ur} for
3 <14 <5, producing a blue K3 3. Therefore, Claim 2 holds.

By Claim 2, if the maximum degree of vertices of W in Hp is at most 2, then
H contains a blue K3 3. If the maximum degree of vertices of W in Hp is at least
6, say degHR wy > 6, then, since there is no red K », it follows that degHR w; < 2
for 2 <4 < 9. Again, by Claim 2, there is a blue K3 3. Hence, we may assume
that the maximum degree of vertices of W in Hp is 5, 4 or 3. We consider these
three cases.
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Case 1. The maximum degree of vertices of W in Hg is 5. Since there is no
red Ky o, it follows that W contains at most one vertex of degree 3, no vertex
of degree 4, and exactly one vertex of degree 5 in Hgr. Then W contains at
least seven vertices of degree at most 2 in Hg. Thus, H contains a blue K33 by
Claim 2.

Case 2. The mazimum degree of vertices of W in Hp is 4. Since there
is no red Ky, it follows that W contains at most two vertices of degree 4 in
Hp. First suppose that W contains exactly two vertices of degree 4 in Hpg, say
degHR wp = degHR wy = 4. Since there is no red K2, we may assume that
Npp(wr) = {u1,ug,u3, us} and Np,(w2) = {ug, us, ue, ur} and so degy . w; < 2
for 3 < ¢ < 9. Thus, W contains seven vertices of degree at most 2 in Hg. By
Claim 2, H contains a blue K33. Next, suppose that W contains exactly one
vertex of degree 4 in Hpg, say degy, w1 = 4 and Ny, (w1) = {u1,u2,us, us}.
Again, since there is no red Ks 2, any vertex of degree 3 in Hr must be joined
to at least two vertices of {us, ug, u7} by red edges. If there is a vertex of degree
3 in Hp that is joined to us, ug and w7 by red edges, then, since there is no red
Ko o, it follows that W contains at most one vertex of degree 3. If W contains no
vertex of degree 3 in Hp that are joined to us, ug and u; by red edges, then any
vertex of degree 3 in Hr must be joined to exactly two vertices of {us, ug, u7} by
red edges. In this case, W has at most three vertices of degree 3 in Hp. This
implies that W has at least five vertices of degree at most 2 in Hgr. Thus, H
contains a blue K33 by Claim 2.

Case 3. The mazimum degree of vertices of W in Hp is 3. If W contains
two vertices of degree 1 in Hg, say degy, w1 = degy, we = 1, then, by Claim 1,
W contains no vertex of degree 2 in Hr and Ny, (w1) # Np,(w2). This implies
that degy,w; = 3 for 3 < i < 9. We may assume that Ny (w1) = {u1}
and Npp,(w2) = {u2}. Then, by Claim 1, {u1,u2} € Ny, (w;) for each i with
3 <1 < 9. Since there is no Steiner triple system of order 5, it follows that W has
at least two vertices of degree 3 in Hy that are joined to the same two vertices of
U by red edges, producing a red K2, which is a contradiction. So W contains
at most one vertex of degree 1 in Hp.

Since there is a Steiner triple system of order 7, it follows that W contains
at most seven vertices of degree 3 in Hgr. If W has exactly seven vertices of
degree 3 in Hp, say degy, w; = 3 for 1 <7 <7, then any two vertices of U are
joined to exactly one of these seven vertices by red edges. Since there is no red
K> 9, it follows that W contains no vertex of degree 2 in Hg. This implies that
degp, ws = degy, w9 = 1, which is a contradiction. Thus, W contains at most
six vertices of degree 3 in Hr. By Claim 2, W contains at least five vertices of
degree 3 in Hi. Hence, we consider two subcases, according to whether W has
five vertices of degree 3 or six vertices of degree 3 in Hp.
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Subcase 3.1. W contains exactly five vertices of degree 3 in Hr. We assume
that degy, w; = 3 for 1 < ¢ < 5 and degp, w; < 2 for 6 < i < 9. First,
suppose that W contains one vertex of degree 1 in Hp, say degy, wg = 1 and
Npp(ws) = {u1}. Then degy, w; = 2 for 7 <4 < 9. By Claim 1, it follows
that |Ng,(w;) N Nug(wy)| = 0 and uy ¢ Ny, (w;) for 7 < 4,5,k < 9 and
Jj # k. So, we may assume that Ny, (wr) = {ug,usz}, Ny, (ws) = {us,us},
and Np,(wg) = {ug,ur}. Then by Claim 1, u; ¢ Ng,(w;) for 1 <4 < 5. Since
there is no Steiner triple system of order 6, it follows that W has at least two
vertices of degree 3 in Hp that are joined to the same two vertices of U by red
edges, producing a red K 2, which is a contradiction.

Next, suppose that W contains no vertex of degree 1 in Hg, that is, degy, w;
= 2 for 6 <7 < 9. Then there are at least two vertices of {wg, w7, ws,we} that
are joined to the same vertex of U by red edges, say Ny, (ws) = {u1,u2} and
N (wr) = {ug,uz}. By Claim 1, Ny, (ws) U Nup,(wg) C {u4,us, ue, ur}. If
|Nip,(ws) N Nip,(wg)| = 1, then we may assume that N, (ws) = {u4,us} and
N (wg) = {us,us}. By Claim 1, we may further assume that none of the 2-
element sets {u1,us}, {ur,us}, {ue,us}, {us,us}, {us,us}, {us, ug} is a subset of
Npp, (w;) for each ¢ with 1 < i < 5. Since there are (;) = 21 distinct 2-element
subsets of U, there are 21 — 6 = 15 distinct 2-element sets that are available for
the 2-elements subsets of Ng, (w;) where 1 < i < 5. Since there is no red Ko,
each of these 15 distinct 2-element sets must belong to exactly one of Ng, (w;)
for 1 < i <5, say {u1,us} € Np,(wi) and {ui,us} C Np,(wz). Then we
must have Ny, (w1) = {u1,us, ur} and Ny, (w2) = {u1,us, ur}, producing a red
K55 with the partite sets {u1,u7} and {w;,ws}, which is a contradiction. So
Nip(ws) N Npp(wg) = 0, say Ny, (wg) = {u4,us} and Npg,(wg) = {ue, ur}.
By Claim 1, none of the 2-element sets {u1,u2}, {ui,us}, {ua,us}, {us,us} and
{ug, ur} is a subset of Ny, (w;) for each ¢ with 1 < ¢ < 5. Furthermore, each
w; is joined to exactly one vertex of {uj,us,us} and exactly two vertices of
{u4, us,ug,ur}. Since (1) there are only (%) = 6 distinct 2-element subsets of
{ua,us,u, u7} and (2) {us,us} and {ug,ur} are not subsets of Ny, (w;) for any
i with 1 <4 <5, there are four possibilities for Ng, (w;) where 1 <47 < 5. Thus,
there are at least two vertices of W that are joined to the same two vertices of
{14, us, ug, u7} by red edges, producing a red Ks 2, which is a contradiction.

Subcase 3.2. W contains exactly siz vertices of degree 3 in Hg, say degy, w;
=3 for 1 <i <6 and degy, w; < 2 for 7 < i < 9. First, suppose that W
contains one vertex of degree 1 in Hp, say degy . wr = 1 and Ny, (wr) = {u1}.
By Claim 1, Ny, (ws) N Np,(wg) = 0 and u; ¢ Ny, (ws) U N, (wg). So we
may assume that Ng, (wg) = {ug,uz} and Ny, (wg) = {us, us}. Since there are
(;) = 21 distinct 2-element subsets of U, there are 21 — 2 = 19 distinct 2-element
sets available for the 18 distinct 2-element subsets of N, (w;) where 1 < i < 6.
By Claim 1, {u1,ug} and {u1,us2} cannot belong to any of Ng, (w;) for 1 <i < 6.
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So, there are at most 17 distinct 2-element subsets for the 18 distinct 2-element
subsets of Np, (w;) where 1 <4 < 6. Thus, W contains two vertices of degree 3
in Hp that are joined to the same two vertices of U by red edges, producing a
red K9, which is a contradiction.

Next, suppose that W contains no vertex of degree 1 in Hg and so degy,. w;
=2 for 7 < i < 9. Then there are exactly 21 — 3 = 18 distinct 2-element sets
for the 18 distinct 2-element subsets of Np,(w;) where 1 < ¢ < 6. If there are
two vertices in {wr, wg, wg} that are joined to the same vertex of U by red edges,
say Np,(w7) = {u1,u2} and Ny, (wg) = {u2,us}, then by Claim 1, we may
assume that Np,(wg) = {us4,us}. Since {u1,uz} must be a subset of Ng, (w;)
for some ¢ with 1 <4 < 6, say {ui,u3} C Np,(wi), it follows that | N, (w;) U
N, (w7) U N, (wg)| < 4. Thus, there is a blue K33 by Claim 1. Hence, we
may assume that Ny, (w;) N Ny, (w;) = 0 for 7 < i,j < 9 and i # j, say
Nup(wr) = {u1,u2}, Nu,(ws) = {usg,us}, and Ny, (wg) = {us,ue}. Since
{u1,u7} and {usz,u7} must belong to the neighborhoods of two distinct vertices
w; in Hi for 1 <4 < 6, we may assume that (1) Ny, (w1) = {u1,ur, ug} and
(2) Np,(w2) = {ug,ur,us} or Ng,(ws) = {uz,u7,us}. First, suppose that
Ny (wi) = {u1,u7,usz} and Ny, (w2) = {uz, ur,us}. Since {us, ur} is contained
in the neighborhood of some w; in Hr for 3 < ¢ < 6, we may assume that
{us,ur} € Npg,(w3). So ws is joined to one of the vertices in {uy, us, ug, us, ue}
by a red edge. If ws is joined to one of the vertices in {u1,ua,us,us} by a red
edge, say wsau; is red, then H contains a red Kj o with partite sets {u;, ur} and
{w1,ws}, a contradiction; while if w3 is joined to ug by a red edge, then H contains
ared Koo with partite sets {us, ug} and {ws, wg}, which is a contradiction. Next
suppose that Np,(w1) = {u1,ur,uz} and Np,(w2) = {ug,ur,us}. Since each
2-element subset of U belongs to the neighborhood of exactly one of the vertices
of W, we may assume that {us,ur} € Np,(w3). Since there is no red Ko,
it follows that Npg,(w3) = {u4,u7,us}. Now, consider {u;,us} and we may
assume that {u1,us} € Ny, (wsg). Then Np,(ws) = {u1,us, us}. Next, consider
{u2,us} and we may assume that {ug,us} C Np,(ws). Since |Np,(ws)| = 3, it
follows that Ng,(ws) = {u2,u4,u;}, where ¢ € {1,3,5,6,7}. However then, this
produces a red Ks9. For example, Np,(ws) = {u2,us,u;}, then there is a red
K55 whose partite sets are {u1,us} and {ws,wr}. Therefore, a contradiction is
produced.

Thus, every red-blue coloring of K7g results in a red K29 or a blue K3 3.
Hence, BR7(K22, K33) <9 and so BR7(K322, K33) = 9. This also implies that
every red-blue coloring of Kgg results in a red K32 or a blue K33. Therefore,
BRB(KQQ, Kg,g) > 9 and so BRg(KQ’Q, Kg’g) =9. |

By Theorem 33, it follows that BR(K272,K373) = BRQ(KQ’Q,K:;’?,) = 9.
Hence, we have the following result.
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Theorem 3.4. For each integer s > 2,

does not exist if s = 2,3,

15 if s =4,

BRy(K2p,K33) = 12 if s =15,6,
9 ifs =18,
s ifs>9.

There is a familiar problem corresponding to the Ramsey number R(K3, K3),
which is stated as follows: What is the smallest number of people who must
be present at a gathering, where every two people are either acquaintances or
strangers, such that there are three among them who are either mutual acquain-
tances or mutual strangers? Since R(K3, K3) = 6, the answer to this question
is 6. On the other hand, for a gathering of people, six of whom are women, what
is the smallest number of men who must also be present at the gathering so that
there are four among them, two women and two men, where each woman is an
acquaintance of each man, or there are six among them, three women and three
men, where each woman is a stranger of each man. Since BRg(K22, K33) = 12,
the required number of men to be present is 12.
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