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Abstract

The beta-number, β (G), of a graph G is defined to be either the smallest
positive integer n for which there exists an injective function f : V (G) →
{0, 1, . . . , n} such that each uv ∈ E (G) is labeled |f (u)− f (v)| and the
resulting set of edge labels is {c, c+ 1, . . . , c+ |E (G)| − 1} for some positive
integer c or +∞ if there exists no such integer n. If c = 1, then the resulting
beta-number is called the strong beta-number of G and is denoted by βs (G).
In this paper, we show that if G is a bipartite graph and m is odd, then
β (mG) ≤ mβ (G) + m − 1. This leads us to conclude that β (mG) =
m |V (G)|−1 if G has the additional property that G is a graceful nontrivial
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tree. In addition to these, we examine the (strong) beta-number of forests
whose components are isomorphic to either paths or stars.

Keywords: beta-number, strong beta-number, graceful labeling, Skolem
sequence, hooked Skolem sequence.
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1. Introduction

Terms and notation not defined below follow that used in the book by Chartrand
and Lesniak [3]. All graphs considered in this paper are finite and undirected
without loops or multiple edges. The vertex set of a graph G is denoted by
V (G), while the edge set is denoted by E (G). Let G1 and G2 be vertex-disjoint
graphs. Then the union of G1 and G2, denoted by G1 ∪ G2, is the graph with
V (G1 ∪G2) = V (G1) ∪ V (G2) and E (G1 ∪G2) = E (G1) ∪ E (G2). If G1,
G2, . . . , Gm are pairwise vertex-disjoint graphs that are isomorphic to G, then we
write mG for G1∪G2∪ · · · ∪Gm. As usual, we denote a path with n vertices and
a star with n+ 1 vertices by Pn and Sn, respectively.

For integers a and b with a ≤ b, we write [a, b] for the set {x ∈ Z : a ≤ x ≤ b},
where Z denotes the set of integers. On the other hand, if a > b, then we treat
[a, b] as the empty set. If such situations occur in particular formulas for a given
vertex labeling, then we ignore the corresponding portions of formulas.

The type of graph labelings that have received the most attention over the
years was introduced by Rosa [13] in 1967 who called them β-valuations. For a
graph G of size q, an injective function f : V (G) → [0, q] is called a β-valuation if
each uv ∈ E(G) is labeled |f(u)−f(v)| and the resulting edge labels are distinct.
Such a valuation is now commonly known as a graceful labeling (the term was
coined by Golomb [8] in 1972) and a graph with a graceful labeling is called
graceful. The concept of α-valuations (a particular type of graceful labeling) was
also introduced by Rosa [13] as a tool for decomposing the complete graph into
isomorphic subgraphs. A graceful labeling f is called an α-valuation if there
exists an integer λ so that min {f(u), f(v)} ≤ λ < max{f(u), f(v)} for each
uv ∈ E(G).

The gracefulness, grac(G), of a graph G is the smallest positive integer n
for which there exists an injective function f : V (G) → [0, n] such that each
uv ∈ E (G) is labeled |f (u)− f (v)| and the resulting set of edge labels consists
of distinct integers. If G is a graph of size q with grac(G) = q, then G is graceful.
Thus, the gracefulness of a graph G is a measure of how close G is to being
graceful. This definition first appeared in a paper by Golomb [8].

Motivated by the concept of the gracefulness of a graph, Ichishima et al. [9]
introduced the (strong) beta-number of a graph. The beta-number, β (G), of a
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graph G with q edges is either the smallest positive integer n for which there
exists an injective function f : V (G) → [0, n] such that each uv ∈ E (G) is
labeled |f (u)− f (v)| and the resulting set of edge labels is [c, c+ q − 1] for some
positive integer c or +∞ if there exists no such integer n. If c = 1, then the
resulting beta-number is called the strong beta-number of G and is denoted by
βs (G). These parameters can be regarded as measures of how close a graph is
to being graceful. In literature, there is another kind of parameter that mesures
how a graph is close to being graceful, namely, the ‘gracesize’ (see [15] for the
definition).

To present the new results contained in this paper, the following lemmas
taken from [9] will prove to be useful.

Lemma 1.1. For every graph G of order p and size q,

max {p− 1, q} ≤ grac (G) ≤ β (G) ≤ βs (G) .

Lemma 1.2. For every two positive integers m and n,

β (Sm ∪ Sn) = βs (Sm ∪ Sn) =

{

m+ n+ 1 if mn is even,

m+ n+ 2 if mn is odd.

In Section 2, we prove that if G is a bipartite graph and m is odd, then
β (mG) ≤ mβ (G) + m − 1. This leads us to conclude that if T is a graceful
nontrivial tree of order p and m is odd, then β (mT ) = mp − 1. In Section 3,
we compute the (strong) beta-number of forests whose all components are paths
of order 2. In Section 4, we examine the (strong) beta-number of forests that
all components are isomorphic to either paths or stars. In Section 5, we propose
new conjectures on the (strong) beta-number of forests.

2. Main Results

According to the survey on graph labelings by Gallian [7], various classes of
bipartite graphs have been proved to admit graceful labelings. Furthermore, a
number of techniques to construct trees from smaller ones with graceful labelings
have been shown to yield graceful labelings in the resulting trees. In this section,
we thus compute the beta-number for an odd number of copies of an isomorphic
tree with a graceful labeling. To do this, we start with the following result.

Theorem 2.1. If G is a bipartite graph and m is odd, then

β (mG) ≤ mβ (G) +m− 1.
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Proof. Let G be a bipartite graph of size q. First, notice that the result is trivial
when β (G) = +∞. Thus, assume that β (G) = n for some positive integer n.
Then there exists an injective function f : V (G) → [0, n] such that

{|f (u)− f (v)| : uv ∈ E (G)} = [c, c+ q − 1]

for some positive integer c. If G has the partite sets U and V , then let E (G) =
UV , where the juxtaposition of two partite sets denotes the edges between those
two sets. Now, define H ∼= mG to be the graph with

V (H) =
m
⋃

i=1

(Ui ∪ Vi) and E (H) =
m
⋃

i=1

UiVi,

where xi ∈ Xi (i ∈ [1,m]) if and only if x ∈ X (X is one of the sets U or V ).
Next, consider the vertex labeling g : V (H) → [0,mn+m− 1] such that

g (xi) =











mf (x) + i− 1 if x ∈ U and i ∈ [1,m],

mf (x) + (i− 1) /2 if x ∈ V and i is odd,

mf (x) + (m− 1 + i) /2 if x ∈ V and i is even.

This leads us to conclude that β (mG) ≤ mn+m−1 whenm is odd. To verify this,
notice that for each uv ∈ E (G), where u ∈ U and v ∈ V such that f (u) > f (v),
we have

|g (u)− g (v)| =

{

m (f (u)− f (v)) + (i− 1) /2 if i is odd,

m (f (u)− f (v)) + (i− 1−m) /2 if i is even.

Notice also that for each uv ∈ E (G), where u ∈ U and v ∈ V such that f (u) <
f (v), we have

|g (u)− g (v)| =

{

m (f (v)− f (u))− (i− 1) /2 if i is odd,

m (f (v)− f (u))− (i− 1−m) /2 if i is even.

Consequently, we have

{|g (u)− g (v)| : uv ∈ E (H)} =
[

c′, c′ +mq − 1
]

,

where c′ = (2mc−m+ 1) /2. Finally, to see that

{g (x) : x ∈ V (H)} ⊆ [0,mn+m− 1] ,

notice that for each x ∈ V (G), we have

{f (x) : x ∈ V (G)} ⊆ [0, n] and
m
⋃

i=1

{g (xi)} ⊆
m
⋃

i=1

{mf (x) + i− 1} .
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Figueroa-Centeno et al. [6] introduced the ⊗h-product of digraphs as follows.
Let D be a digraph and let Γ = {F1, F2, . . . , Fn} be a family of digraphs such
that V (Fi) = V for each i ∈ [1, n]. Consider a function h : E (D) → Γ. Then
the product D ⊗h Γ is defined to be the digraph with vertex set V (D) × V and
((a, b) , (c, d)) ∈ E (D ⊗h Γ) if and only if (a, c) ∈ E (D) and (b, d) ∈ E (h (a, c)).
Using this concept together with the techniques described in [12], it is possible
to provide an alternative proof of Theorem 2.1. However, this approach requires
to introduce a considerable amount of machinery. Since the proof presented in
this paper is clear and easy to understand, we omit the alternative approach
mentioned above.

If G is a graceful bipartite graph of size q, then β (G) = q. This together
with Theorem 2.1 gives us the following result.

Corollary 2.2. If G is a graceful bipartite graph of size q, then

β (mG) ≤ mq +m− 1,

where m is odd.

For a graceful nontrivial tree, we have the following result, which shows that
in this case, the bound provided in Corollary 2.2 is sharp.

Corollary 2.3. If T is a graceful nontrivial tree of order p, then

β (mT ) = mp− 1,

where m is odd.

Proof. Let T be a graceful nontrivial tree of order p, and assume that m is
odd. Since T has size p− 1, it follows from Corollary 2.2 that β (mT ) ≤ mp− 1.
Further, the reverse inequality is easily obtained from Lemma 1.1.

The preceding result is the best possible in the sense that m cannot be
even, since every star Sn is graceful (see [13]) and, by Lemma 1.2, we have
β (Sm ∪ Sn) = m+ n+2 when mn is odd. Thus, for every positive integer n, we
have β (2S2n−1) = 4n, but 2 |V (S2n−1)| − 1 = 4n− 1.

We end this section with the following result, which is a direct consequence
of Lemma 1.1 and Theorem 2.1.

Corollary 2.4. If F is a forest of order p such that β (F ) = p− 1, then

β (mF ) = mp− 1,

where m is odd.
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3. Connections with Skolem Type of Sequences

To present our results in this section, we utilize the notion of a Skolem sequence
and its generalization, which has been widely used in the construction of combina-
torial designs. The motivation for these sequences came from the area of balanced
incomplete block designs, in particular, Steiner Triple Systems (see [16]). These
systems are used for (among other things) interference resistant message code for
missile guidance systems (see [4]).

A Skolem sequence of order m is a sequence S = (s1, s2, . . . , s2m) of 2m
integers satisfying the conditions:

(S1) for every k ∈ [1,m], there exist exactly two subscripts i (k) and j (k) such
that si(k) = sj(k) = k, and

(S2) if si(k) = sj(k) = k with i (k) < j (k), then j (k)− i (k) = k.

The existence of Skolem sequences was settled in 1958 by Skolem [17] as we
state in the following theorem.

Theorem 3.1. A Skolem sequence of order m exists if and only if m ≡ 0 or 1
(mod 4).

For m ≡ 2 or 3 (mod 4), the natural alternative is a hooked Skolem sequence.
A hooked Skolem sequence of order m is a sequence S = (s1, s2, . . . , s2m+1) of
2m+ 1 integers satisfying conditions (S1) and (S2) of the definition of a Skolem
sequence and

(S3) s2m = 0.

The existence of hooked Skolem sequences was settled in 1961 by O’Keefe
[10] as we state in the following theorem.

Theorem 3.2. A hooked Skolem sequence of order m exists if and only if m ≡ 2
or 3 (mod 4).

It is worth to mention that López and Muntaner-Batle [11] recently have
found strong relations between super edge-magic labelings of graphs introduced
independently in [1] and [5], and Skolem type of sequences. Their results can
be used to improve the previously known bounds for the number of Skolem type
of sequences. Hence, graph labelings and Skolem type of sequences are tightly
related.

With the aid of Theorems 3.1 and 3.2, we are now able to provide the fol-
lowing result.

Theorem 3.3. For every positive integer m,

βs (mP2) =

{

2m− 1 if m ≡ 0 or 1 (mod 4),

2m if m ≡ 2 or 3 (mod 4).
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Proof. Let F ∼= mP2 be the forest with

V (F ) = {xk : k ∈ [1,m]} ∪ {yk : k ∈ [1,m]} and E (F ) = {xkyk : k ∈ [1,m]} .

Since |V (F )| = 2m and |E (F )| = m, it follows from Lemma 1.1 that βs (F ) ≥
2m− 1 for every positive integer m.

First, assume that m ≡ 0 or 1 (mod 4). By Theorem 3.1, there exists a
Skolem sequence of order m. That is, for each k ∈ [1,m], there exist exactly two
subscripts i (k) and j (k) satisfying all the conditions of the definition of a Skolem
sequence. Thus, the vertex labeling f : V (F ) → [0, 2m− 1] such that

f (xk) = i (k)− 1 and f (yk) = j (k)− 1 (k ∈ [1,m] )

is a bijective function and satisfies that

{|f (xk)− f (yk)| : k ∈ [1,m]}

=
{

|i (k)− j (k)| : si(k) = sj(k) = k and k ∈ [1,m]
}

= [1, |E (F )|] ,

since i (k), j (k) ∈ [1, 2m] and i (k) < j (k) for all k ∈ [1,m], and |E (F )| = m.
Therefore, βs (F ) ≤ 2m − 1, which leads us to conclude that βs (F ) = 2m − 1
when m ≡ 0 or 1 (mod 4).

For m ≡ 2 or 3 (mod 4), suppose, to the contrary, that βs (F ) = 2m − 1.
Since |V (F )| = 2m, it follows that there exists a bijective function g : V (F ) →
[0, 2m− 1] such that {|g (xk)− g (yk)| : k ∈ [1,m]} = [1,m]. This produces a
Skolem sequence of order m by letting

i (k) = g (xk) + 1 and j (k) = g (yk) + 1 (k ∈ [1,m] ),

which is impossible by Theorem 3.1. Thus, βs (F ) ≥ 2m when m ≡ 2 or 3
(mod 4). On the other hand, it follows from Theorem 3.2 that there exists a
hooked Skolem sequence of order m. That is, for every k ∈ [1,m], there exist
exactly two subscripts i (k) and j (k) satisfying all the conditions of the definition
of a hooked Skolem sequence. Thus, the vertex labeling h : V (F ) → [0, 2m] such
that

h (xk) = i (k)− 1 and h (yk) = j (k)− 1 (k ∈ [1,m] )

is an injective function and satisfies that

{|h (xk)− h (yk)| : k ∈ [1,m]}

=
{

|i (k)− j (k)| : si(k) = sj(k) = k and k ∈ [1,m]
}

= [1, |E (F )|] ,

since i (k), j (k) ∈ [1, 2m+ 1] and i (k) < j (k) for all k ∈ [1,m], and |E (F )| = m.
Therefore, βs (F ) ≤ 2m, which leads us to conclude that βs (F ) = 2m whenm ≡ 2
or 3 (mod 4).



690 R. Ichishima, S.C. López, F.A. Muntaner-Batle and A. Oshima

With the aid of Corollary 2.3 and Theorem 3.3, we are now able to present
the following result.

Corollary 3.4. For every positive integer m,

β (mP2) =

{

2m− 1 if m 6≡ 2 (mod 4),

2m if m ≡ 2 (mod 4).

Proof. Let F ∼= mP2 be the forest as in the proof of Theorem 3.3. Since P2 is
clearly graceful, it follows from Corollary 2.3 that β (F ) = 2m− 1 for m ≡ 1 or 3
(mod 4). It also follows from Lemma 1.1 and Theorem 3.3 that β (F ) = 2m− 1
for m ≡ 0 (mod 4) and β (F ) ≤ 2m for m ≡ 2 (mod 4).

Next, assume that m ≡ 2 (mod 4), and suppose, to the contrary, that
β (F ) = 2m − 1. Since |V (F )| = 2m, it certainly follows that there exists a
bijective function f : V (F ) → [0, 2m− 1] such that

{|f (xi)− f (yi)| : i ∈ [1,m]} = [c, c+m− 1]

for some positive integer c. Thus, the sum of induced edge labels of F is

m
∑

i=1

|f (xi)− f (yi)| ≡
m
∑

i=1

(f (xi)− f (yi)) (mod 2)

≡
m
∑

i=1

(f (xi) + f (yi)) (mod 2)

≡ m (2m− 1) ≡ 0 (mod 2).

That is, the sum of induced edge labels of F is even. However, the sum of the
edge labels is

m−1
∑

i=0

(i+ c) = m (m+ 2c− 1) /2,

which is odd for any positive integer c. This produces a contradiction and thus
β (F ) ≥ 2m for m ≡ 2 (mod 4), which leads us to conclude that β (F ) = 2m for
m ≡ 2 (mod 4).

4. Further Results on Forests with Isomorphic Components

As we have already mentioned in Section 2, we cannot extend Corollary 2.3 to
the case that the number of components is even. However, in this section, we are
able to determine the (strong) beta-number for some classes of forests with even
number of isomorphic components.
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Before presenting our next result, we briefly discuss some previously known
results on α-valuations and graceful labelings of paths. We first mention the
result obtained by Rosa [14].

Theorem 4.1. For any positive integer n and any vertex v of the path Pn, there
exists a graceful labeling f of Pn with f (v) = 0. Moreover, an α-valuation of Pn

with f (v) = 0 exists if and only if v is not the central vertex of P5.

When concerning a graceful labeling of a path, Cattell [2] has shown that one
has almost complete freedom to choose a particular label i for any given vertex
v. In particular, he proved the following result.

Theorem 4.2. Let v be any vertex of the nontrivial path Pn. Then there exists a
graceful labeling f of Pn with f (v) = i for any i ∈ [1, n− 1] unless n ≡ 3 (mod 4)
or n ≡ 1 (mod 12); v is in the smaller of the two partite sets of vertices, and
i = (n− 1) /2.

As an immediate consequence of Theorem 4.2, we obtain the following result.

Corollary 4.3. Let v be an end-vertex of the path Pn (n ≥ 3). Then there exists
a graceful labeling f of Pn with f (v) ≤ ⌊(n− 1) /2⌋ − 1.

With the aid of Theorem 4.1 and Corollary 4.3, we are able to determine the
(strong) beta-number of the forest whose components are two copies of nontrivial
paths as our next result indicates. Our proof uses the concept of induced sub-
graph. Let S be a nonempty set of vertices of a graph G. The subgraph induced
by S is the maximal subgraph of G with vertex set S, and is denoted by 〈S〉,
that is, contains precisely those edges of G joining two vertices in S. A subgraph
H of a graph G is an induced subgraph if H ∼= 〈S〉 for some nonempty set S of
vertices of G.

Theorem 4.4. For every integer n ≥ 2,

β (2Pn) = βs (2Pn) =

{

2n if n = 2,

2n− 1 if n ≥ 3.

Proof. For n = 2, the result easily follows from Theorem 3.3 and Corollary 3.4.
It also follows from Lemma 1.2 that β (Sm ∪ Sn) = βs (Sm ∪ Sn) = m + n + 1
when mn is even. Combining this with the fact that 2S2

∼= 2P3, we have the
result for n = 3. Let F ∼= 2Pn be the forest with

V (F ) = {xi : i ∈ [1, n]} ∪ {yi : i ∈ [1, n]}

and
E (F ) = {xixi+1 : i ∈ [1, n− 1]} ∪ {yiyi+1 : i ∈ [1, n− 1]} .
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In light of Lemma 1.1 and Table 2, it suffices to show that βs (F ) ≤ 2n− 1 when
n ≥ 12. Thereby, we first consider the vertex labels of the induced subgraphs of
F . Let F1 be the induced subgraph of F with V (F1) = {xi : i ∈ [1, n]}. Then
F1

∼= Pn, and Theorem 4.1 guarantees the existence of an α-valuation f1 of F1

with f1(x1) = 0. If we define the induced subgraph F2 of F with V (F2) =
{yi : i ∈ [1, ⌈n/2⌉+ 1]}, then F2

∼= P⌈n/2⌉+1, and Corollary 4.3 guarantees the
existence of a graceful labeling f2 of F2 with f2

(

y⌈n/2⌉+1

)

= ⌊n/4⌋ − 1. Let
F3 be the induced subgraph of F with V (F3) = {yi : i ∈ [⌈n/2⌉+ 2, n]}. Then
F3

∼= P⌊n/2⌋−1, and Theorem 4.1 guarantees the existence of an α-valuation f3 of
F3 with f3

(

y⌈n/2⌉+2

)

= 0.
We now consider the vertex labeling g : V (F ) → [0, 2n− 1] such that

g (xj) =

{

1 + f1 (xj) if j = 2i− 1 and i ∈ [1, ⌈n/2⌉],

n+ f1 (xj) if j = 2i and i ∈ [1, ⌊n/2⌋],

and

g (yj) =



















n− ⌊n/4⌋+ f2 (yj) if j ∈ [1, ⌈n/2⌉+ 1],

0 if j = ⌈n/2⌉+ 2,

n− 1− f3 (yj) if j = ⌈n/2⌉+ 1 + 2i and i ∈ [1, ⌈(n− 1) /4⌉−1],

⌈3n/2⌉ − f3 (yj) if j = ⌈n/2⌉+ 2 + 2i and i ∈ [1, ⌊n/4⌋ − 1].

Then g is a bijective function. To show this, we first compute the vertex labels
of F1. Since f1 is an α-valuation of F1 with f1 (x1) = 0, it follows that

{f1 (x2i−1) : i ∈ [1, ⌈n/2⌉]} = [0, ⌈n/2⌉ − 1]

and
{f1 (x2i) : i ∈ [1, ⌊n/2⌋]} = [⌈n/2⌉ , n− 1] .

This in turn implies that

{g (x2i−1) : i ∈ [1, ⌈n/2⌉]} = [1, ⌈n/2⌉]

and

{g (x2i) : i ∈ [1, ⌊n/2⌋]} = [n+ ⌈n/2⌉ , 2n− 1] = [⌈3n/2⌉ , 2n− 1] ,

which implies that

{g (v) : v ∈ V (F1)} = [1, ⌈n/2⌉] ∪ [⌈3n/2⌉ , 2n− 1] .

We next compute the vertex labels of F2. Since f2 is a graceful labeling of F2, it
follows that

{f2 (yi) : i ∈ [1, ⌈n/2⌉+ 1]} = [0, ⌈n/2⌉] ,
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which implies that

{g (yi) : i ∈ [1, ⌈n/2⌉+ 1]} = [n− ⌊n/4⌋ , n− ⌊n/4⌋+ ⌈n/2⌉] ,

that is,
{g (v) : v ∈ V (F2)} = [n− ⌊n/4⌋ , n− ⌊n/4⌋+ ⌈n/2⌉] .

It remains to compute the vertex labels of F3. Since f3 is an α-valuation of
F3with f3

(

y⌈n/2⌉+2

)

= 0, it follows that
{

f3
(

y⌈n/2⌉+1+2i

)

: i ∈ [1, ⌈(n− 1) /4⌉ − 1]
}

= [⌊n/4⌋ , n− ⌈n/2⌉ − 2]

and
{

f3
(

y⌈n/2⌉+2+2i

)

: i ∈ [1, ⌊n/4⌋ − 1]
}

= [1, ⌊n/4⌋ − 1] .

This in turn implies that
{

g
(

y⌈n/2⌉+1+2i

)

: i ∈ [1, ⌈(n− 1)/4⌉ − 1]
}

= [n− ⌊n/2⌋+ 1, n− ⌊n/4⌋ − 1]

= [⌈n/2⌉+ 1, n− ⌊n/4⌋ − 1]

and
{

g
(

y⌈n/2⌉+2+2i

)

: i ∈ [1, ⌊n/4⌋ − 1]
}

= [⌈3n/2⌉ − ⌊n/4⌋+ 1, ⌈3n/2⌉ − 1]

= [n− ⌊n/4⌋+ ⌈n/2⌉+ 1, ⌈3n/2⌉ − 1] .

This together with g
(

y⌈n/2⌉+2

)

= 0 implies that

{g (v) : v ∈ V (F3)} = {0} ∪ [⌈n/2⌉+ 1, n− ⌊n/4⌋ − 1]

∪ [n− ⌊n/4⌋+ ⌈n/2⌉+ 1, ⌈3n/2⌉ − 1] .

Thus, we have
{g (v) : v ∈ V (F )} = [0, 2n− 1] ,

which shows that g is a bijective function.
We finally compute the induced edge labels by ascending order. Since f2 is

a graceful labeling of F2, it follows that

{|f2 (u)− f2 (v)| : uv ∈ E (F2)} = [1, ⌈n/2⌉] ,

which implies that

{|g (u)− g (v)| : uv ∈ E (F2)} = [1, ⌈n/2⌉] .

Next, notice that f3
(

y⌈n/2⌉+3

)

= n− ⌈n/2⌉ − 2. This implies that

g
(

y⌈n/2⌉+3

)

= n− 1− f3
(

y⌈n/2⌉+3

)

= ⌈n/2⌉+ 1.
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This together with g
(

y⌈n/2⌉+2

)

= 0 implies that

∣

∣g
(

y⌈n/2⌉+3

)

− g
(

y⌈n/2⌉+2

)∣

∣ = ⌈n/2⌉+ 1.

For all uv ∈ E (F3)−
{

y⌈n/2⌉+2y⌈n/2⌉+3

}

, where

u ∈
{

y⌈n/2⌉+2+2i : i ∈ [1, ⌊n/4⌋ − 1]
}

and

v ∈
{

y⌈n/2⌉+1+2i : i ∈ [1, ⌈(n− 1) /4⌉ − 1]
}

,

we know from the vertex labels computed in the above that f3 (u) < f3 (v). This
implies that g (u) > g (v) and

|g (u)− g (v)| = g (u)− g (v)

= ⌈3n/2⌉ − n+ 1− (f3 (u)− f3 (v))

for all uv ∈ E (F3)−
{

y⌈n/2⌉+2y⌈n/2⌉+3

}

, where

u ∈
{

y⌈n/2⌉+2+2i : i ∈ [1, ⌊n/4⌋ − 1]
}

and

v ∈
{

y⌈n/2⌉+1+2i : i ∈ [1, ⌈(n− 1) /4⌉ − 1]
}

.

It is now easy to see that

{

f3 (v)− f3 (u) : uv ∈ E (F3)−
{

y⌈n/2⌉+2y⌈n/2⌉+3

}}

= [1, ⌊n/2⌋ − 3] ,

since f3 is an α-valuation of F3 with f3
(

y⌈n/2⌉+2

)

= 0. From this and the
last equation on the induced edge labels |g (u)− g (v)|, where uv ∈ E (F3) −
{

y⌈n/2⌉+2y⌈n/2⌉+3

}

, we obtain

{

|g (u)− g (v)| : uv ∈ E (F3)−
{

y⌈n/2⌉+2y⌈n/2⌉+3

}}

= [⌈n/2⌉+ 2, n− 2] .

Recall that f2
(

y⌈n/2⌉+1

)

= ⌊n/4⌋ − 1, which implies that

g
(

y⌈n/2⌉+1

)

= n− ⌊n/4⌋+ f2
(

y⌈n/2⌉+1

)

= n− 1.

This together with g
(

y⌈n/2⌉+2

)

= 0 implies that

∣

∣g
(

y⌈n/2⌉+1

)

− g
(

y⌈n/2⌉+2

)
∣

∣ = n− 1.

It remains to compute the induced edge labels of F1. As we can see from the vertex
labels computed above, we have f1 (u) > f1 (v) for all uv ∈ E (F1), where u ∈
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{x2i : i ∈ [1, ⌈n/2⌉]} and v ∈ {x2i−1 : i ∈ [1, ⌊n/2⌋]}. This implies that g (u) >
g (v) and

|g (u)− g (v)| = g (u)− g (v)

= n− 1 + (f1 (u)− f1 (v))

for all uv ∈ E (F1), where u ∈ {x2i : i ∈ [1,⌈n/2⌉]} and v ∈ {x2i−1 : i ∈ [1,⌊n/2⌋]}.
By definition,

{f1 (u)− f1 (v) : uv ∈ E (F1)} = [1, n− 1] ,

since f1 is an α-valuation of F1 with f1 (x1) = 0. From this and the last equation
on the induced edge labels |g (u)− g (v)|, where uv ∈ E (F1), we obtain

{|g (u)− g (v)| : uv ∈ E (F1)} = [n, 2n− 2] .

It is now immediate that

{|g (u)− g (v)| : uv ∈ E (F )} = [1, |E (F )|] .

Therefore, we conclude that βs (F ) ≤ 2n − 1 for all integers n ≥ 12, completing
the proof.

For each integer n with 4 ≤ n ≤ 11, we illustrate the construction described
in Theorem 4.4 using Table 1, which contains the vertex labels of F1, F2 and F3.
The resulting vertex labeling of F appears in Table 2.

Table 1. The vertex labeling of F1, F2 and F3 for small values of n.

n F1 F2 F3

4 (0, 3, 1, 2) (1, 2, 0) (0)

5 (0, 4, 1, 3, 2) (2, 1, 3, 0) (0)

6 (0, 5, 1, 4, 2, 3) (2, 1, 3, 0) (0, 1)

7 (0, 6, 1, 5, 2, 4, 3) (2, 3, 1, 4, 0) (0, 1)

8 (0, 7, 1, 6, 2, 5, 3, 4) (3, 0, 4, 2, 1) (0, 2, 1)

9 (0, 8, 1, 7, 2, 6, 3, 5, 4) (4, 2, 3, 0, 5, 1) (0, 2, 1)

10 (0, 9, 1, 8, 2, 7, 3, 6, 4, 5) (4, 2, 3, 0, 5, 1) (0, 3, 1, 2)

11 (0, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5) (2, 5, 3, 4, 0, 6, 1) (0, 3, 1, 2)

It is well known that every nontrivial path Pn is graceful. This together with
Corollary 2.3 implies that β (mPn) = mn − 1 when m is odd and n ≥ 2. It also
follows from Corollary 2.4 and Theorem 4.4 that β (mPn) = mn− 1 when m ≡ 2
(mod 4) and n ≥ 3. Thus, we have the following result.
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Table 2. The vertex labeling of F for small values of n.

n F

4 (1, 7, 2, 6), (4, 5, 3, 0)

5 (1, 9, 2, 8, 3), (6, 5, 7, 4, 0)

6 (1, 11, 2, 10, 3, 9), (7, 6, 8, 5, 0, 4)

7 (1, 13, 2, 12, 3, 11, 4), (8, 9, 7, 10, 6, 0, 5)

8 (1, 15, 2, 14, 3, 13, 4, 12), (9, 6, 10, 8, 7, 0, 5, 11)

9 (1, 17, 2, 16, 3, 15, 4, 14, 5), (11, 9, 10, 7, 12, 8, 0, 6, 13)

10 (1, 19, 2, 18, 3, 17, 4, 16, 5, 15), (12, 10, 11, 8, 13, 9, 0, 6, 14, 7)

11 (1, 21, 2, 20, 3, 19, 4, 18, 5, 17, 6), (11, 14, 12, 13, 9, 15, 10, 0, 7, 16, 8)

Corollary 4.5. For every two positive integers m and n such that m 6≡ 0 (mod 4)
and n ≥ 3,

β (mPn) = mn− 1.

With the aid of Corollary 4.5, we have the following result.

Corollary 4.6. For every positive integer m,

β (mP3) = 3m− 1.

Proof. In light of Lemma 1.1 and the preceding corollary, it suffices to verify
that β (mP3) ≤ 3m − 1 when m ≡ 0 (mod 4). To do so, let F ∼= mP3 be the
forest with

V (F ) = {xi : i ∈ [1,m]} ∪ {yi : i ∈ [1,m]} ∪ {zi : i ∈ [1,m]}

and
E (F ) = {xiyi : i ∈ [1,m]} ∪ {yizi : i ∈ [1,m]} ,

and define the vertex labeling f : V (F ) → [0, 3m− 1] such that f (x1) = m,
f (y1) = 0, f (z1) = 3m/2 and

f (w) =























i− 1 if w = x2i−1 and i ∈ [2,m/2],
m/2− 1 + i if w = x2i and i ∈ [1,m/2],
2m− 1 + i if w = yi and i ∈ [2,m],
m− 1 + i if w = z2i−1 and i ∈ [2,m/2],
3m/2 + i if w = z2i and i ∈ [1,m/2].

It remains to observe that

{f (v) : v ∈ V (F )} = [0, 3m− 1]
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and

{|f (u)− f (v)| : uv ∈ E (F )} = [m/2,m/2 + |E (F )| − 1] .

Thus, β (mP3) ≤ 3m− 1 when m ≡ 0 (mod 4).

We turn our attention to the (strong) beta-number of forests whose compo-
nents are all stars.

Theorem 4.7. For every positive integer n,

β (4Sn) = βs (4Sn) = 4n+ 3.

Proof. In light of Lemma 1.1, it suffices to show that βs (4Sn) ≤ 4n+3 for every
positive integer n. To do this, define the forest F ∼= 4Sn with

V (F ) = {xi : i ∈ [1, 4]} ∪
{

yji : i ∈ [1, 4] and j ∈ [1, n]
}

and

E (F ) =
{

xiy
j
i : i ∈ [1, 4] and j ∈ [1, n]

}

,

and consider the cases according to the parity of the integer n.

First, let n = 2k − 1, where k is a positive integer, and define the vertex
labeling f : V (F ) → [0, 8k − 1] such that f (x1) = 0, f (x2) = 8k − 3, f (x3) =
8k − 1, f (x4) = 8k − 2 and

f
(

yj1
)

=















k if j = 1,
2k if j = 2,
3k − 3 + j if j ∈ [3, k] ,
3k + j if j ∈ [k + 1, 2k − 1] ,

f
(

yj2
)

=







j if j ∈ [1, k − 1] ,
4k − 2 if j = k,
6k − 3 + j if j ∈ [k + 1, 2k − 1] ,

f
(

yj3
)

=







2k + j if j ∈ [1, k − 1] ,
4k − 1 if j = k,
4k − 1 + j if j ∈ [k + 1, 2k − 1] ,

f
(

yj4
)

=







k + j if j ∈ [1, k − 1] ,
4k if j = k,
5k − 2 + j if j ∈ [k + 1, 2k − 1] .
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Notice that

{

f
(

xi
)

: i ∈ [1, 4]
}

= {0} ∪ [8k − 3, 8k − 1] ,
{

f
(

yj1
)

: j ∈ [1, 2k − 1]
}

= {k, 2k} ∪ [3k, 4k − 3] ∪ [4k + 1, 5k − 1] ,
{

f
(

yj2
)

: j ∈ [1, 2k − 1]
}

= [1, k − 1] ∪ {4k − 2} ∪ [7k − 2, 8k − 4] ,
{

f
(

yj3
)

: j ∈ [1, 2k − 1]
}

= [2k + 1, 3k − 1] ∪ {4k − 1} ∪ [5k, 6k − 2] ,
{

f
(

yj4
)

: j ∈ [1, 2k − 1]
}

= [k + 1, 2k − 1] ∪ {4k} ∪ [6k − 1, 7k − 3] .

This implies that

{f (v) : v ∈ V (F )} = [0, 8k − 1] ,

which means that f is a bijective function. Notice also that

{∣

∣f (x1)− f
(

yj1
)∣

∣ : j ∈ [1, 2k − 1]
}

= {k, 2k} ∪ [3k, 4k − 3] ∪ [4k + 1, 5k − 1] ,
{∣

∣f (x2)− f
(

yj2
)∣

∣ : j ∈ [1, 2k − 1]
}

= [1, k − 1] ∪ {4k − 1} ∪ [7k − 2, 8k − 4] ,
{∣

∣f (x3)− f
(

yj3
)∣

∣ : j ∈ [1, 2k − 1]
}

= [2k + 1, 3k − 1] ∪ {4k} ∪ [5k, 6k − 2] ,
{
∣

∣f (x4)− f
(

yj4
)
∣

∣ : j ∈ [1, 2k − 1]
}

= [k + 1, 2k − 1] ∪ {4k − 2}

∪ [6k − 1, 7k − 3] .

It is now immediate that

{|f (u)− f (v)| : uv ∈ E (F )} = [1, |E (F )|] .

Consequently, βs (F ) ≤ 8k − 1 for every positive integer k.

Next, let n = 2k, where k is a positive integer, and define the vertex labeling
f : V (F ) → [0, 8k + 3] such that f (x1) = 0, f (x2) = 8k + 1, f (x3) = 8k + 2,
f (x4) = 8k + 3 and

f
(

yj1
)

=







k + 1 if j = 1,
2k + 2 if j = 2,
3k + j if j ∈ [3, 2k] ,

f
(

yj2
)

=

{

j if j ∈ [1, k] ,
6k + j if j ∈ [k + 1, 2k] ,

f
(

yj3
)

=

{

k + 1 + j if j ∈ [1, k] ,
5k + j if j ∈ [k + 1, 2k] ,

f
(

yj4
)

=

{

2k + 2 + j if j ∈ [1, k] ,
4k + j if j ∈ [k + 1, 2k] .
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Notice that

{

f
(

xi
)

: i ∈ [1, 4]
}

= {0} ∪ [8k + 1, 8k + 3] ,
{

f
(

yj1
)

: j ∈ [1, 2k]
}

= {k + 1, 2k + 2} ∪ [3k + 3, 5k] ,
{

f
(

yj2
)

: j ∈ [1, 2k]
}

= [1, k] ∪ [7k + 1, 8k] ,
{

f
(

yj3
)

: j ∈ [1, 2k]
}

= [k + 2, 2k + 1] ∪ [6k + 1, 7k] ,
{

f
(

yj4
)

: j ∈ [1, 2k]
}

= [2k + 3, 3k + 2] ∪ [5k + 1, 6k] .

This implies that

{f (v) : v ∈ V (F )} = [0, 8k + 3] ,

which means that f is a bijective function. Notice also that

{
∣

∣f (x1)− f
(

yj1
)
∣

∣ : j ∈ [1, 2k]
}

= {k + 1, 2k + 2} ∪ [3k + 3, 5k] ,
{∣

∣f (x2)− f
(

yj2
)∣

∣ : j ∈ [1, 2k]
}

= [1, k] ∪ [7k + 1, 8k] ,
{∣

∣f (x3)− f
(

yj3
)∣

∣ : j ∈ [1, 2k]
}

= [k + 2, 2k + 1] ∪ [6k + 1, 7k] ,
{∣

∣f (x4)− f
(

yj4
)∣

∣ : j ∈ [1, 2k]
}

= [2k + 3, 3k + 2] ∪ [5k + 1, 6k] .

It is now immediate that

{|f (u)− f (v)| : uv ∈ E (F )} = [1, |E (F )|] .

Consequently, βs (F ) ≤ 8k + 3 for every positive integer k.

Therefore, it follows from the above cases that βs (F ) ≤ 4n + 3 for every
positive integer n, completing the proof.

Now, we obtain the following result from Corollary 2.4 and Theorem 4.7.

Corollary 4.8. For every two positive integers m and n such that m ≡ 4
(mod 8),

β (mSn) = mn+m− 1.

Every star Sn is clearly graceful. This together with Corollary 2.3 implies
that β (mSn) = mn + m − 1 when m is odd and n ≥ 1. It is also known from
Lemma 1.2 that β (Sm ∪ Sn) = m + n + 1 when mn is even. This implies that
β (2Sn) = 2n + 1 when n is even. It follows from this and Corollary 2.4 that
β (mSn) = mn+m−1 when m ≡ 2 (mod 4) and n is even. Combining all these,
we have the following result.
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Corollary 4.9. For every two positive integers m and n such that m is odd, or
m ≡ 2 (mod 4) and n is even,

β (mSn) = mn+m− 1.

5. Conclusions

Ichishima et al. [9] have provided a constructive proof that the strong beta-
number of forests is finite. This proof gives a crude upper bound for βs (F )
when F is a forest. However, we believe that the actual value of βs (F ) is always
smaller than the one provided by the proof. The previous explorations on the
(strong) beta-numbers of forests in [9] and the results included in this paper lead
us to propose the following two conjectures. We first state the weaker of the two
conjectures.

Conjecture 5.1. If F is a forest of order p, then β (F ) is either p− 1 or p.

We actually believe that more is true.

Conjecture 5.2. If F is a forest of order p, then βs (F ) is either p− 1 or p.

Of course, if Conjecture 5.2 is true, so is Conjecture 5.1 by Lemma 1.1.
Indeed, the truth of Conjecture 5.2 implies the truth of the following conjecture
by Lemma 1.1.

Conjecture 5.3. If F is a forest of order p, then grac (F ) is either p− 1 or p.
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