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Abstract

A digraph is called irregular if its distinct vertices have distinct degree
pairs. An irregular digraph is called minimal (maximal) if the removal of any
arc (addition of any new arc) results in a non-irregular digraph. It is easily
seen that the minimum sizes among irregular n-vertex whether digraphs or
oriented graphs are the same and are asymptotic to (

√
2/3)n3/2; maximum

sizes, however, are asymptotic to n2 and n2/2, respectively. Let s stand for
the sum of initial positive integers, s = 1, 3, 6, . . . . An oriented graph Hs and
a digraph Fs, both large (in terms of the size), minimal irregular, and on any
such s vertices, s ≥ 21, are constructed in [Large minimal irregular digraphs,
Opuscula Math. 23 (2003) 21–24], co-authored by Z. D-H. and three more
of the present co-authors (Z.M., J.M., Z.S.). In the present paper we nearly
complete these constructions. Namely, a large minimal irregular digraph Fn,
respectively oriented graph Hn, are constructed for any of remaining orders
n, n > 21, and of size asymptotic to n2, respectively to n2/2. Also a digraph
Φn and an oriented graph Gn, both small maximal irregular of any order
n ≥ 6, are constructed. The asymptotic value of the size of Gn is at least
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(
√
2/3)n3/2 and is just the least if n = s → ∞, but otherwise the value is

at most four times larger and is just the largest if n = s − 1 → ∞. On the
other hand, the size of Φn is of the asymptotic order Θ(n3/2).

Keywords: irregular digraph, oriented graph, minimal subdigraph, maxi-
mal subdigraph, asymptotic size.
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1. Introduction

For terminology and notation we refer to Chartrand and Lesniak [1]. Let D =
(V,A) be a digraph with vertex set V = V (D) and arc set A = A(D). A digraph
without loops or 2-dicycles is called an oriented graph. Numbers of vertices and
arcs of D are denoted by |D| and ‖D‖ and are called the order and the size of D,
respectively. The ordered pair (a, b) comprising the two semi-degrees of a vertex,
namely the outdegree a followed by the indegree b, is called the degree pair of the
vertex. The sum of both semi-degrees is called the degree of a vertex. Moreover,
δ(D) and ∆(D) denote respectively the minimum and the maximum degree over
vertices in D.

A digraphD is called diregular (ρ-diregular) if all outdegrees and all indegrees
are mutually equal (and equal to ρ). At the other extreme, D is said to be
irregular if distinct vertices have distinct degree pairs, see Gargano, Kennedy
and Quintas [4]. These digraphs were rediscovered and independently studied
under the name fully irregular digraphs in [6, 7] and next in [2, 3, 5] with due
credit to predecessors. The n-vertex transitive tournament, denoted by Tn (and
coming from game theory), plays a prominent role in our study.

The following statements are well known and easily seen.

Theorem 1. The transitive tournament Tn is the unique largest irregular ori-

ented n-graph.

(1) ‖Tn‖ =
1

2
n(n− 1) ∼ 1

2
n2.

An n-set of n degree pairs is called minimum and symmetric if the set is
symmetric and with smallest possible sum of semi-degrees. In the paper [6],
for each positive integer n, a minimum and symmetric n-set of degree pairs is
presented. An oriented graph with those degree pairs is found. Consequently, a
minimum n-vertex irregular digraph (i.e., with smallest size) is constructed. In
the construction a few cases are considered, and the simplest of them is if n is
the sum of the first t positive integers.
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Notation. Throughout the paper the symbol st (or s as abbrevation) stands for
the sum of the first t positive integers for some integer t,

(2) st (= s) := 1 + 2 + · · ·+ t =
1

2
t(t+ 1).

Proposition 2. For each s, a minimum s-set of degree pairs is unique. Namely,

the following union

(3) Us := T1 ∪ T2 ∪ · · · ∪ Tt

of pairwise vertex disjoint tournaments T1, T2, . . . , Tt is an oriented graph which

is a digraphic realization of the minimum s-set. That realization is not unique if

t ≥ 3.

Related examples. 1. The set of degree pairs of the union T2 ∪ T3 can be
realized by orienting the edges of the path P5 (in three ways), see Figure 1.

s s s s s- - � - s s s s s- � � - s s s s s- -� -

Figure 1. Three more realizations of the set of degree pairs of T2 ∪ T3.

2. Let v1, v2 and w1, w2, w3, w4 be consecutive vertices of tournaments T2

and T4, respectively. Let D6 be the digraph induced by the following set of arcs
A(D6) = {(v1, w4), (w1, v2), (w1, w3), (w1, w4), (w2, w3), (w2, w4), (w3, w2)}. Then
D6 includes a 2-dicycle ~C2, ~C2 = (w2, w3, w2), and is a realization of the degree
pairs in the union T2 ∪ T4, see Figure 2.

s s

s

s

s

s

v1 w4

w2 w3

w1 v2
-?

-�
6
-�

Figure 2. The digraph D6 which is a realization of the set of degree pairs of T2 ∪ T4.

Theorem 3. Since Us is among the smallest irregular digraphs, the complement

Us (in the complete symmetric digraph K∗
s ) is one of the largest digraphs among

irregular digraphs of order s.

One can see the following consequence of (2):

(4) t =
1

2

(√
8s+ 1− 1

)

∼
√
2s,
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which implies the equality t2 = 2s − t. Therefore, the asymptotic values of the
sizes of Us and Us (which will be very useful) are as follows:

‖Us‖ =
1

2

t
∑

i=1

i(i− 1) =
1

6
t(t2 − 1) =

1

6
(t3 − t) ∼

√
2

3
s3/2,(5)

=
1

6
t(2s− t− 1) =

1

3
ts+O(t2),(6)

(7) ‖Us‖ = ‖K∗
s‖ − ‖Us‖ = s(s− 1)− ‖Us‖ ∼ s2.

An irregular digraph is called minimal if the removal of any arc spoils irreg-
ularity. Obviously, Us is an example of minimal irregular oriented graph (and
digraph). In the paper [2] a large minimal irregular oriented graph Hs and anal-
ogous digraph Fs, where s ≥ 21 is the sum of six or more initial positive integers,
are constructed. The sizes of Hs and Fs are asymptotically the largest possible
since they are asymptotic to s2/2 and s2, respectively. We are going to construct
large minimal irregular structures (an oriented graph Hn and a digraph Fn) of
any remaining order n > 21 and with the same corresponding asymptotic sizes.

An irregular digraph (irregular oriented graph) is called maximal if the addi-
tion of any new arc spoils irregularity (or spoils being an oriented graph). Small
maximal irregular structures (an oriented graph Gn and a digraph Φn) of arbi-
trary order n ≥ 6 and with sizes of asymptotic order Θ(n3/2) will be constructed.
In the special case when n = s = st, we construct a maximal oriented graph, Gs,
with size asymptotic to (

√
2/3)s3/2.

In the constructions which follow we assume that t0, t, s, m and n are positive
integers such that

t ≥ t0, s = st, 0 ≤ m ≤ t, n = s+m.

Consequently, due to (4), m = O(t) = O(
√
s). Moreover,

(8) s ∼ n, t ∼
√
2n and m = O(

√
n).

2. Large Minimal Irregular Digraphs Hn and Fn

In this section we assume that

(9) t ≥ t0 := 6 whence n ≥ s = st ≥ 21.

We first recall the construction (see [2]) of the large minimal irregular oriented
graph Hs.
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Construction 1.

• Let D′
s be a ρ-diregular digraph on s vertices such that ρ = ⌊(s − 1)/2)⌋,

V (D′
s) = Zs, and A(D′

s) = {(i, i+ j) : i, j ∈ Zs, 1 ≤ j ≤ ρ};
• split the vertex sequence (0, 1, . . . , s − 1) into strings (initial sections) of

decreasing lengths: 2t− 1 and next t− 2, t− 3, . . . , 1;

• split the first string (0, 1, . . . , 2t − 2) into two disjoint subsequences which
make up sequences: Vt := (0, 2, . . . , 2t − 2) and Vt−1 := (1, 3, . . . , 2t − 3).
Denote the remaining strings by Vt−2, Vt−3, . . . , V1;

• let U ′
s be the union of t subgraphs of D′

s induced by all t sequences Vj ;

• Hs := D′
s −A(U ′

s).

Theorem 4. Under the assumptions (2) and (9), the digraph U ′
s is isomorphic

to Us, which is defined in (3) within Proposition 2.

Proof. Due to the above definition of the digraph D′
s, it is enough to prove,

for the longest sequence Vt which is Vt = (0, 2, . . . , 2t − 2), the following two
properties:

(i) an arc exists which joins the initial vertex 0 to the terminal vertex 2t− 2,

(ii) no arc of the digraph joins the terminal vertex 2t − 2 to another vertex
of the sequence.

It is so because then Vt and each shorter sequence induce transitive tournaments.

The properties (i) and (ii) are clearly implied by the respective inequalities:

(i’) 2t− 2 ≤ ρ, and (ii’) 2t− 2 + ρ ≤ s− 1. It remains to prove (i’) for t ≥ 6
because then, for ρ = ⌊(s− 1)/2⌋, we have 2ρ ≤ s− 1. To this end, we introduce
the following notation.

Lt = 2t − 2, ρ = ρt where s = st is involved, and next we use induction
on t ≥ 6. Note that equality holds in (i’) if the initial t = 6. Assume that the
inequality (i’), that is, ρt ≥ Lt, holds for some t ≥ 6. Then, for the next value
t + 1, we have Lt+1 = Lt + 2, st+1 = st + t + 1 whence ρt+1 = ⌊(st+1 − 1)/2⌋ =
⌊((st − 1) + t+ 1)/2⌋ ≥ ρt + t/2 ≥ Lt+1, which ends the induction.

Theorem 5 (Theorem 1 in [2]). Under the assumptions (2) and (9), the di-

graph Hs obtained by Construction 1 is a minimal irregular oriented graph of size

‖Hs‖ ∼ s2/2, s = 21, 28, . . . .

Construction 2 (extension of Construction 1 under the assumption n = s+m,
s = st and 0 < m ≤ t).

• Let Sm be an oriented graph on m new vertices v1, v2, . . . , vm and with the
following arc set:

A(Sm) =
{

(vi, vj) : 1 ≤ i ≤
⌊m

2

⌋

, m− i+ 1 ≤ j ≤ m
}

;
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• H ′
n := Hs ∪ Sm where Hs is the digraph obtained by Construction 1 (and

0 < m ≤ t).

Lemma 6. The digraph Sm, see Construction 2, is a minimal irregular oriented

graph of size O(n).

Proof. The structure is clearly correct if m = 1, 2, 3. Let m ≥ 4. The outdegrees
of initial vertices 1, 2, . . . , ⌊m/2⌋ grow by one from 1 to ⌊m/2⌋, the indegrees of
next vertices grow analogously, either from 0 if m is odd or from 1 otherwise, up
to ⌊m/2⌋, and all remaining semi-degrees of vertices in Sm equal 0. Hence Sm is
irregular. Moreover, each arc of Sm is incident with a vertex which has a semi-

degree larger than 1. This proves minimality. Furthermore, ‖Sm‖ =
∑⌊m/2⌋

i=1
i ≤

1 + 2 + · · ·+ ⌊t/2⌋ ≤ t(t+ 2)/8 = O(n) due to (8).

Let

Hn =

{

Hs if n = s = st (m = 0),

H ′
n if n = s+m, s = st and 0 < m ≤ t.

Theorem 7. The digraph Hn is a large minimal irregular oriented graph of order

n and size ‖Hn‖ ∼ n2/2.

Proof. Due to Theorem 5, it remains to consider the case m > 0 and Hn = H ′
n.

By Lemma 6, Sm is a minimal irregular oriented graph. Moreover, digraphs Hs

and Sm are vertex-disjoint, and the maximum degree in Sm is not greater than t/2
while the minimum degree in Hs (see Construction 1) is δ(Hs) = δ(D′

s)−∆(Us) =
2ρ− (t− 1) ≥ (s− 2)− t+ 1 = s− (t+ 1) = (t+ 1)(t− 2)/2 due to (2) and then
δ(Hs) > t/2 due to (9). Therefore, the digraphH ′

n is irregular, too. It is clear that
the removal of any arc from Hs or from Sm spoils irregularity of H ′

n. On the other
hand, by Theorem 5 and Lemma 6, since s ∼ n, ‖H ′

n‖ = ‖Hs‖+‖Sm‖ ∼ n2/2.

A large minimal irregular digraph Fn of order n, n = s+m with 0 ≤ m ≤ t,
is obtained in a similar way. Namely, F ′

n = Fs ∪ Sm with m > 0 is the disjoint
union, where Sm is the digraph defined above, and digraphs Fs, F

′
n and next Fn

are constructed in the following way.

Construction 3 (under the assumption n = s+m, s = st and 0 < m ≤ t).

• Let D′′
s be the digraph with vertex set V (D′′

s ) = Zs obtained from the com-
plete digraph K∗

s by deleting arcs (i, i − 1) and (i, i − 2j), for i, j ∈ Zs and
j = 2, 3, . . . , t− 1;

• let Us be the union of transitive tournaments on sequences V1, V2, . . . , Vt, cf.
Construction 1;

• let Fs = D′′
s −A(Us);

• let F ′
n = Fs ∪ Sm, with m > 0 and Sm as in Construction 2.
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Hence ‖D′′
s‖ = ‖K∗

s‖ − s(t− 1) and

(10) ‖Fs‖ = ‖D′′
s‖ − ‖Us‖ = ‖K∗

s‖ − s(t− 1)− ‖Us‖.

Let

(11) Fn =

{

Fs if n = s = st (m = 0),

F ′
n = Fs ∪ Sm if n = s+m, s = st and 0 < m ≤ t.

Theorem 8 (Theorem 2 in [2]). Under the assumptions (2) and (9), the digraph

Fs obtained by Construction 3 is a minimal irregular digraph of size ‖Fs‖ =
s(s− t)− ‖Us‖ ∼ s2, s = 21, 28, . . . .

Theorem 9. The digraph Fn, see (11), is a large minimal irregular digraph of

order n and size ‖Fn‖ ∼ n2.

The proof of Theorem 9 is analogous to that of Theorem 7 because δ(Fs) > t/2 ≥
∆(Sm).

3. Small Maximal Irregular Digraphs Gs, Gn, and Φs, Φn

In this section we assume that

t ≥ t0 := 3 whence n ≥ s = st ≥ 6.

We now present a construction of a small maximal irregular oriented graph
Gs of order s and with the spanning cycle ~Cs = (0, 1, 2, . . . , s− 1, 0).

Construction 4.

• Assume that the sequence Vt, Vt−1, . . . , V2, V1 represents a partition of the
vertex set V ( ~Cs) into i-sets Vi, i = t, t− 1, . . . , 2, 1. Subsets Vi are chosen in
such a way that in all ⌊t/2⌋ pairs (Vi, Vi−1) with i = t, t−2, . . . down to i = 3
or i = 2, depending on the parity of t, the sets Vi, Vi−1 intertwine along the
cycle ~Cs. For instance, Vt = {0, 2, . . . , 2t − 2} and Vt−1 = {1, 3, . . . , 2t − 3}.
Consequently, each Vi is an independent subset of V ( ~Cs);

• for k = 1, 2, . . . , t, let Tk be the transitive tournament such that V (Tk) = Vk

and for i, j ∈ Vk, (i, j) ∈ A(Tk) ⇔ i < j;

• let Us =
⋃t

i=1
Ti;

• let Gs = ~Cs +A(Us).

Theorem 10. The digraph Gs obtained by Construction 4 is a small maximal

irregular oriented graph of order s and size ‖Gs‖ ∼ (
√
2/3)s3/2.
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Proof. To show maximality is to prove that, for any arc e which joins nonadja-
cent vertices of Gs, the digraph Gs + e is not irregular. To this end, let an arc e
join a vertex, say x ∈ Vi, with a vertex, say x′, of some Vj such that j > i and ver-
tices x, x′ are nonadjacent in Gs. Because each subset Vk with 1 ≤ k ≤ t induces
a transitive tournament in Gs, |Vk| is the number of degree pairs in Gs of vertices
of that subset. Consequently, if k = j < t and z = x′ ∈ Vk or k = i < j − 1 and
z = x ∈ Vk, then the degree pair pGs+e(z) coincides with degree pair pGs

(y) of a
vertex y ∈ Vk+1. The case which still remains is i + 1 = j = t. Then the degree
pair pGs+e(x) coincides with that of a neighbor of x on the cycle ~Cs. This shows
maximality of Gs. Note that ‖Gs‖ = |A(~C)|+ |A(Us)| = s+ ‖Us‖ ∼ (

√
2/3)s3/2

due to (5).

We now construct a small maximal irregular oriented graph G′
n of order

n = s+m with 0 < m ≤ t.

Construction 5 (under the assumption n = s+m, s = st and 0 < m ≤ t).

• Let Gs be the oriented graph as in Construction 4;

• let Tm be the transitive tournament on m new vertices v1, v2, . . . , vm;

• let G′
n = Gs ∪ Tm + Am where m > 0 and Am is the set of all arcs which go

from vertices of Tm to those of Gs, Am = {(u, v) : u ∈ V (Tm), v ∈ V (Gs)}.
Let

Gn =

{

Gs if n = s = st (m = 0),

G′
n if n = s+m, s = st and 0 < m ≤ t.

The following theorem complements Theorem 10.

Theorem 11. The digraph Gn is a small maximal irregular oriented graph of

order n and size ‖Gn‖ = Θ(n3/2). Moreover, if m = t and n = st + t, then
‖Gn‖ ∼ (4

√
2/3)n3/2 wherein the asymptotic coefficient is the largest possible.

Proof. Due to Theorem 10, it remains to consider the case m > 0 and Gn = G′
n.

It is easy to see that G′
n is an irregular oriented graph. Note that only an arc with

both endvertices in the subgraph Gs can be added to G′
n so that the property of

being an oriented graph could be preserved. However, adding any such arc spoils
irregularity, cf. the above proof of Theorem 10. This shows maximality.

Let n = s + t where, due to (2), s = t(t + 1)/2 = O(t2). Then ‖Gs‖ =
s + ‖Us‖ = t3/6 + O(t2) due to (2) and (6), ‖Tt‖ = O(t2) due to (1), and
|Am| ≤ |At| = ts = t3/2 + O(t2) due to (2) whence ‖G′

n‖ ≤ ‖G′
s+t‖ = ‖Gs‖ +

‖Tt‖+ |At| = t3/6 + t3/2 +O(t2) ∼ 2t3/3 ∼ (4
√
2/3)n3/2 due to (8).

Proposition 12. The complement of a (large) minimal irregular digraph is a

(small) maximal irregular digraph, and conversely.
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Using (11) we define

(12) Φn =

{

Fs if n = s = st (m = 0),

F ′
n if n = s+m, s = st and 0 < m ≤ t.

Theorem 13. We refer to (12), (11) and Construction 3 under the assumptions

(2) and (9). The digraph Φn is a small maximal irregular digraph of order n
and with size ‖Φn‖ = Θ(n3/2) where ‖Φs‖ ∼ (4

√
2/3) s3/2 if n = s (m = 0).

The largest asymptotic coefficient is if n = s + t (m = t) and then ‖Φn‖ ∼
(10

√
2/3)n3/2.

Proof. The digraph Φn is maximal irregular due to Proposition 12 and Theorems
8 and 9. Note that, due to (12) and (10), ‖Φs‖ = ‖K∗

s‖−‖Fs‖ = s(t− 1)+ ‖Us‖.
Hence, due to (4) and (5),

(13) ‖Φs‖ ∼ s
√
2s+

√
2

3
s3/2 = 4

√
2

3
s3/2.

Next if n = s + m and 0 < m ≤ t then, due to (11) and (10), ‖Φs+m‖ =
‖Fs ∪ Sm‖ = ‖K∗

s+m‖−‖Fs‖−‖Sm‖ = s(s−1)−‖Fs‖+2sm+m(m−1)−‖Sm‖ =
‖Φs‖ + 2sm + ‖Sm‖ = ‖Φs‖ + 2sm + O(m2). Using this equality for m = t and
n = s + t, and using asymptotic formulas (8) and (13), we get O(m2) = O(s),
2sm = 2st ∼ (2s)3/2, and ‖Φs+t‖ ∼ (4

√
2/3) s3/2 + 2

√
2 s3/2 = (10

√
2/3) s3/2,

which ends the proof because s ∼ n.

4. Concluding Remarks

Constructed in this paper are large minimal irregular oriented graphs Hn (re-
spectively digraphs Fn) of order n ≥ 21 on one hand, and small maximal irreg-
ular oriented graphs Gn/digraphs Φn, both of order n ≥ 6, on the other hand.
They have sizes which are asymptotically best possible as compared to the cor-
responding smallest/largest irregular structures, see Theorems 7, 9, 11, 13 versus
Theorems 1, 3 and asymptotics in formulas (1), (5) and (7).
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