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Abstract

An L(2, 1)-coloring (or labeling) of a simple connected graph G is a map-
ping f : V (G) → Z+ ∪{0} such that |f(u)− f(v)| ≥ 2 for all edges uv of G,
and |f(u) − f(v)| ≥ 1 if u and v are at distance two in G. The span of an

L(2, 1)-coloring f , denoted by span(f), of G is max{f(v) : v ∈ V (G)}. The
span of G, denoted by λ(G), is the minimum span of all possible L(2, 1)-
colorings of G. For an L(2, 1)-coloring f of a graph G with span k, an
integer l is a hole in f if l ∈ (0, k) and there is no vertex v in G such that
f(v) = l. An L(2, 1)-coloring is a no-hole coloring if there is no hole in it,
and is an irreducible coloring if color of none of the vertices in the graph can
be decreased and yield another L(2, 1)-coloring of the same graph. An irre-

ducible no-hole coloring, in short inh-coloring, of G is an L(2, 1)-coloring of
G which is both irreducible and no-hole. For an inh-colorable graph G, the
inh-span of G, denoted by λinh(G), is defined as λinh(G) = min{span(f) : f
is an inh-coloring of G}. Given a function h : E(G) → N − {1}, and a
positive integer r ≥ 2, the edge-multiplicity-paths-replacement graph G(rPh)
of G is the graph obtained by replacing every edge uv of G with r paths
of length h(uv) each. In this paper we show that G(rPh) is inh-colorable
except possibly the cases h(e) ≥ 2 with equality for at least one but not
for all edges e and (i) ∆(G) = 2, r = 2 or (ii) ∆(G) ≥ 3, 2 ≤ r ≤ 4. We
find the exact value of λinh(G(rPh)) in several cases and give upper bounds
of the same in the remaining. Moreover, we find the value of λ(G(rPh)) in
most of the cases which were left by Lü and Sun in [L(2, 1)-labelings of the

edge-multiplicity-paths-replacement of a graph, J. Comb. Optim. 31 (2016)
396–404].
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1. Introduction

The channel assignment problem is to assign frequencies to a given group of
radio transmitters so that interfering transmitters are assigned frequencies with
at least a minimum allowed separation. Griggs and Yeh [4] mentioned that in
1988, Roberts (in a private communication to Griggs) proposed the problem
of efficiently assigning radio channels to transmitters at several locations, using
nonnegative integers to represent channels, so that close locations receive different
channels, and channels for very close locations are at least two apart. Motivated
by this problem, Griggs and Yeh [4] proposed the L(2, 1)-coloring problem of a
graph as follows. The L(2, 1)-coloring of a simple connected graph G is a vertex
coloring (or labeling) f : V (G) → Z+ ∪ {0} such that |f(u) − f(v)| ≥ 2 for all
edges uv of G, and |f(u)− f(v)| ≥ 1 if d(u, v) = 2, where d(u, v) is the distance
between vertices u and v in G. The span of an L(2, 1)-coloring f of a graph G,
denoted by span(f), is equal to max{f(v) : v ∈ V (G)}. The span of a graph

G, denoted by λ(G), is equal to min{span(f) : f is an L(2, 1)-coloring of G}.
An L(2, 1)-coloring whose span is equal to the span of the graph is called a span

coloring.

Throughout the paper we consider simple connected graphs only. The maxi-
mum degree of a graph G is denoted by ∆(G) or simply ∆ if no confusion arises.
Now we state a result by Chang and Lu [2] which will be used in the sequel.

Proposition 1 (Proposition 1, [2]). For any graph G, λ(G) ≥ ∆+1. Further, if

λ(G) = ∆+1, then in any span coloring of G the maximum degree vertices must

be colored with 0 (or ∆+ 1) and its neighbors must be colored with 2 + i (or i),
i = 0, 1, . . . ,∆− 1.

Fishburn and Roberts [3] introduced no-hole coloring of graphs. For a graph
G and an L(2, 1)-coloring f of it with span k, an integer l is called a hole in
f , if l ∈ (0, k) and there is no vertex v in G such that f(v) = l. An L(2, 1)-
coloring of a graph is a no-hole coloring if there is no hole in it. Since frequencies
are typically used in a block, one may want to use all available frequencies in
that block. This is assured by a no-hole coloring. An L(2, 1)-coloring f of a
graph G is called reducible if there exists another L(2, 1)-coloring g of G such
that g(u) ≤ f(u) for all vertices u ∈ V (G) and there exists a vertex v ∈ V (G)
such that g(v) < f(v). An L(2, 1)-coloring is irreducible if it is not reducible.
An irreducible no-hole coloring is referred as inh-coloring and a graph is called
inh-colorable if there exists an inh-coloring of it. For an inh-colorable graph G

the lower inh-span or simply inh-span of G, denoted by λinh(G), is defined as
λinh(G) = min{span(f) : f is an inh-coloring of G}. Laskar and Villalpando [10]
introduced inh-coloring and studied some properties of it. Further, they obtained
upper and lower bounds of inh-span of unicyclic graphs and triangular lattices.
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Laskar et al. [9] proved that every tree T different from a star is inh-colorable
with λinh(T ) = λ(T ). Jacob et al. [7] studied irreducible no-hole coloring of bi-
partite graphs and Cartesian product of graphs.

Given a graph G and a function h : E(G) → N − {1} the h-subdivision of
G, denoted by G(h), is the graph obtained from G by replacing each edge uv in
G with a path of length h(uv). If h(e) = c for all e ∈ E(G), then we refer G(h)

as G(c). Further, if r ≥ 2 is an integer, the edge-multiplicity-paths-replacement

graph G(rPh) of G is obtained by replacing every edge uv of G with r paths of
length h(uv) each. In particular, if h(e) = c for all edges e ∈ E(G), we denote
G(rPh) simply by G(rPc). The vertices of G in G(h) or G(rPh) are called nodes.

Throughout the paper we follow some notations as given below.

Notation 2. For any graph G we take h as a function from E(G) to N − {1}.
The path of length k in G(h) which replaces the edge uv in G is denoted by

ux1uvx
2
uv · · ·x

k−1
uv v. The r paths of length k each in G(rPh) which replace the

edge uv in G are denoted by P i
h = uxi1uvx

i2
uv · · ·x

ik−1
uv v, 1 ≤ i ≤ r.

The L(2, 1)-colorings of G(2), for any graph G, are studied by Whittlesey et

al. [15], and Havet and Yu [5, 6]. The L(2, 1)-colorings of subdivisions of graphs
are studied by Lü [11], Karst et al. [8] and Chang et al. [1]. Moreover, Mandal
and Panigrahi [13] have studied inh-coloring of subdivision graphs. An L(2, 1)-
coloring f of G(h) is said to be a λ-perfect labeling if f(u) = 0 for all nodes u and
span(f) = ∆(G) + 1 [1]. We state the following proposition by Chang et al. [1]
which will be used in the sequel.

Proposition 3 (Theorem 12, [1]). If G is a graph with ∆(G) ≥ 4, then G(3) has

a λ-perfect labeling.

Lü and Sun [12] studied the L(2, 1)-coloring of the edge-multiplicity-paths-
replacement graph G(rPc) of a graph G. The main results of them are given
in Table 1. They found the exact value of λ(G(rPc)) in the following cases:
∆(G) ≤ 2; c ≥ 3, ∆(G) ≥ 4 is even; and c ≥ 5, ∆(G) ≥ 3 is odd. For the
remaining cases they gave upper bounds to λ(G(rPc)). From Proposition 1 we
get the following result.

Proposition 4. λinh(G(rPh)) ≥ λ(G(rPh)) ≥ r∆(G) + 1 where h(e) ≥ 2 for

all e.

In this paper we show that for any graph G with h(e) ≥ 3 and r ≥ 2, G(rPh)
is inh-colorable and for ∆(G) ≥ 2, G(rP2) is inh-colorable. We also prove that if
G is a graph with ∆(G) ≥ 2, h(e) ≥ 2 for all e in E(G) and h(e) = 2 for at least
one e but not for all, and r ≥ 2, then G(rPh) is inh-colorable except possibly
the following cases: ∆(G) = 2, r = 2; and ∆(G) ≥ 3, 2 ≤ r ≤ 4. We find the
exact value of inh-span of some edge-multiplicity-paths-replacement graphs and
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G c r λ(G(rPc))

∆(G) ≥ 3 ≥ 5 ≥ 2 r∆(G) + 1
4 ≥ 2 ≤ r∆(G) + 2

∆(G) ≥ 4 and ∆(G) is even 3, 4 ≥ 2 r∆(G) + 1

∆(G) ≥ 3 and ∆(G) is odd 3 ≥ 2 ≤ r∆(G) + r + 1

∆(G) ≥ 3 2 ≥ 2 ≤ rχ′(G) + χ(G)
2 ≥ 2 ≤ r(∆(G)+1)+∆(G)

Any graph G 3 ≥ 2 ≤ λ(G) + 2r
2 ≥ 2 ≤ r(λ(G(2))+1)+r−2

∆(G) = 2 ≥ 3 ≥ 2 2r + 1

Pn with 3 ≤ n ≤ 4 2 ≥ 2 2r + 1

Pn with n ≥ 5 2 ≥ 2 2r + 2

Cn with even n 2 ≥ 2 2r + 2

Cn with n ≥ 5 and n is odd 2 2 6
2 3 8
2 ≥ 4 3r − 2

C3 2 2 6
2 ≥ 3 3r − 1

P2 ≥ 3 ≥ 4 r + 1
≥ 7 3 4
3 ≤ c ≤ 6 3 5
≥ 2 2 4

2 ≥ 2 r + 2

Table 1. Results in [12] on λ(G(rPc)).

for the remaining we give upper bounds to the same. Moreover, we determine
the span of G(rPh) in most of the cases which were not obtained by Lü and Sun
[12]. An important point to be noted is that Lü and Sun [12] have considered
the graphs G(rPc) only, that is, all the edges of G are replaced by paths of the
same lengths. We have considered the graphs G(rPh), where different edges of G
may be replaced by paths of different lengths. The main results of the paper are
given in Tables 2 and 3.

2. Inh-Colorability of Graphs G(rPh) with ∆(G) = 1

We first consider the case ∆(G) = 1, and so here the graph G is obviously P2.
In this case we take r ≥ 3 because for r = 2, P2(rPh) is a cycle. We also take
h(e) ≥ 3 because P2(rP2), r ≥ 2, is a complete bipartite graph, which is not
inh-colorable [3].
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∆(G) h(e) r λ(G(rPh)) Theorem

∆(G) = 3 h(e) = 3 for all e ≥ 2 3r + 1 20
h(e) ≥ 3 with h(e) > 3
for at least one edge

≥ 2 3r + 1 22

∆(G) ≥ 4 and
∆(G) is odd

h(e) = 3 for all e ≥ 2 r∆+ 1 Corollary
27

∆(G) ≥4 h(e) ≥ 3 with h(e) > 3
for at least one edge

≥ 2 r∆+ 1 28

Table 2. Results of the paper on λ(G(rPh)).

Theorem 5. For r ≥ 3, λinh(P2(rP3)) = r + 2.

Proof. Let P2 = uv. We give an L(2, 1)-coloring f to P2(rP3) as follows. If
r = 3 then f(u) = 4, f(v) = 5, f

(

x11uv
)

= 0, f
(

x21uv
)

= 2, f
(

x31uv
)

= 1, f
(

x12uv
)

= 2,
f
(

x22uv
)

= 0, and f
(

x32uv
)

= 3. If r ≥ 4 then f(u) = 0, f(v) = r+2, f
(

xi1uv
)

= i+1
for 1 ≤ i ≤ r, f

(

x12uv
)

= r, and f
(

xi2uv
)

= i− 1 for 2 ≤ i ≤ r. We check that f is
an inh-coloring of P2(rP3). Thus λinh(P2(rP3)) ≤ r + 2.

Now we prove that λinh(P2(rP3)) ≥ r+2. We know that λ(P2(rP3)) = r+1
[12]. Suppose λinh(P2(rP3)) = r + 1 and g is an inh-coloring of P2(rP3) with
span r + 1. If both the nodes are colored with 0 then 1 is a hole, and if both
the nodes are colored with r + 1 then r is a hole. Hence one node, say u, is
colored with 0 and the other node, say v, is colored with r + 1. Then for some
i, 1 ≤ i ≤ r, g

(

xi1uv
)

= r + 1. This is a contradiction since d
(

xi1uv, v
)

= 2. Thus
λinh(P2(rP3)) ≥ r + 2 and we get λinh(P2(rP3)) = r + 2.

In the next three theorems we show that inh-span of P2(rPk), k ≥ 4, r ≥ 3,
coincides with its span as computed by Lü and Sun [12].

Theorem 6. For k ≥ 4, λinh(P2(4Pk)) = 5.

Proof. Let P2 = uv. We first take k ≡ 1 (mod 3). We give an L(2, 1)-coloring f1
to P2(4Pk) as follows: f1(u) = f1(v) = 0, f1

(

x11uv
)

= 2, f1
(

x12uv
)

= 5, f1
(

x13uv
)

= 3,

f1

(

x
1j
uv

)

= 0, 5 or 3 according as j ≡ 1, 2 or 0 (mod 3) for 4 ≤ j ≤ k − 1;

f1
(

x21uv
)

= 3, f1
(

x22uv
)

= 5, f1
(

x23uv
)

= 2, f1

(

x
2j
uv

)

= 0, 4 or 2 according as j ≡ 1,

2 or 0 (mod 3) for 4 ≤ j ≤ k − 1; f1
(

x31uv
)

= 4, f1
(

x32uv
)

= 1, f1
(

x33uv
)

= 5,

for f1

(

x
3j
uv

)

= 0, 2 or 5 according as j ≡ 1,2 or 0 (mod 3) for 4 ≤ j ≤ k − 1;

f1
(

x41uv
)

= 5, f1
(

x42uv
)

= 1, f1
(

x43uv
)

= 4, f1

(

x
4j
uv

)

= 0, 2 or 4 according as j ≡ 1,

2 or 0 (mod 3) for 4 ≤ j ≤ k− 1. It can be checked that f1 is an L(2, 1)-coloring.
We reduce f1 until we arrive at an irreducible coloring f ′

1. In the coloring f ′

1, u is
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colored with 0, its neighbors are colored with 2, 3, 4, 5, and x32uv is colored with
1. Hence f ′

1 is an inh-coloring with span 5.

∆(G) h(e) r λinh(G(rPh)) Theorem

∆(G) = 1, i.e., G = P2 h(e) = 3 ≥ 3 r + 2 5
h(e) ≥ 4 4 5 6
4 ≤ h(e) ≤ 6 3 5 7
h(e) ≥ 7 3 4 7
h(e) ≥ 4 ≥ 5 r + 1 8

∆(G) = 2, Pm, 3 ≤ m≤4 h(e) = 2 ≥ 2 2r + 1 11
i.e., Pm, m ≥ 5 h(e) = 2 ≥ 2 2r + 2 11

G = Pm Pm, m ≥ 3 h(e) ≥ 2 with h(e) > 2
for at least one edge but
not for all

≥ 3 ≤ 3r + 3 12

or h(e) = 3 ≥ 2 2r + 1 13
Cm, C3 h(e) = 3 ≥ 2 2r + 2 14
m ≥ 3 Cm, m even h(e) = 2 ≥ 2 ≤ 2r + 3 15

Cm, m odd h(e) = 2 ≥ 2 ≤ 3r + 2 15
Cm h(e) ≥ 2 with h(e) > 2

for at least one edge but
not for all

≥ 3 ≤ 3r + 3 16

Cm, m ≥ 4 h(e) = 3 2 ≤ 6 17
h(e) = 3 ≥ 3 2r + 1 18
h(e) ≥ 3 with h(e) > 3
for at least one edge

≥ 2 2r + 1 19

∆(G) = 3 h(e) = 3 ≥ 2 ≤ 3r + 2 21
h(e) ≥ 3 with h(e) > 3
for at least one edge

≥ 2 3r + 1 22

∆(G) ≥ 3 h(e) = 2 ≥ 2 ≤



















































χ(G)+rχ′(G)+3

if G is a bipartite

graph other than

a tree

χ(G) + rχ′(G),

otherwise

24

h(e) ≥ 2 with h(e) > 2
for at least one edge but
not for all

≥ 5 ≤ 2r∆− r + 5 25

∆(G) ≥4 h(e) = 3 ≥ 2 ≤ r∆+ 2 26
r∆ + 1 (with some
conditions)

26

h(e) ≥ 3 with h(e) > 3
for at least one edge

≥ 2 r∆+ 1 28

Table 3. Results of the paper on λinh(G(rPh)).

Let k ≡ 2 (mod 3). We give an L(2, 1)-coloring f2 to P2(4Pk) as follows:
f2(u) = f2(v) = 0; f2

(

x11uv
)

= 2, f2
(

x12uv
)

= 5, f2
(

x13uv
)

= 1, f2
(

x14uv
)

= 3,
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f2

(

x
1j
uv

)

= 0, 5 or 3 according as j ≡ 2, 0 or 1 (mod 3) for 5 ≤ j ≤ k − 1;

f2
(

x21uv
)

= 3, f2
(

x22uv
)

= 1, f2
(

x23uv
)

= 5, f2
(

x24uv
)

= 2, f2

(

x
2j
uv

)

= 0, 4 or 2

according as j ≡ 2, 0 or 1 (mod 3) for 5 ≤ j ≤ k − 1; f2
(

x31uv
)

= 4, f2
(

x32uv
)

= 1,

f2
(

x33uv
)

= 3, f2
(

x34uv
)

= 5, f2

(

x
3j
uv

)

= 0, 2 or 5 according as j ≡ 2, 0 or 1 (mod

3) for 5 ≤ j ≤ k − 1; f2
(

x41uv
)

= 5, f2
(

x42uv
)

= 3, f2
(

x43uv
)

= 1, f2
(

x44uv
)

= 4,

f2

(

x
4j
uv

)

= 0, 2 or 4 according as j ≡ 2, 0 or 1 (mod 3) for 5 ≤ j ≤ k − 1. It

can be checked that f2 is an L(2, 1)-coloring. We reduce f2 until we arrive at an
irreducible coloring f ′

2. In the coloring f ′

2, u is colored with 0, its neighbors are
colored with 2, 3, 4, 5, and x32uv is colored with 1. Hence f ′

2 is an inh-coloring
with span 5.

Let k ≡ 0 (mod 3). We give an L(2, 1)-coloring f3 to P2(4Pk) as follows:
f3(u) = f3(v) = 0; f3

(

x11uv
)

= 2, f3
(

x12uv
)

= 5, f3
(

x13uv
)

= 3, f3
(

x14uv
)

= 1,

f3
(

x15uv
)

= 4, f3

(

x
1j
uv

)

= 0, 2 or 4 according as j ≡ 0, 1 or 2 (mod 3) for 6 ≤

j ≤ k − 1; f3
(

x21uv
)

= 4, f3
(

x22uv
)

= 1, f3
(

x23uv
)

= 3, f3
(

x24uv
)

= 5, f3
(

x25uv
)

= 2,

f3

(

x
2j
uv

)

= 0, 4 or 2 according as j ≡ 0, 1 or 2 (mod 3) for 6 ≤ j ≤ k − 1;

f3
(

x31uv
)

= 3, f3
(

x32uv
)

= 1, f3
(

x33uv
)

= 4, f3
(

x34uv
)

= 2, f3
(

x35uv
)

= 5, f3

(

x
3j
uv

)

=

0, 2 or 5 according as j ≡ 0, 1 or 2 (mod 3) for 6 ≤ j ≤ k − 1; f3
(

x41uv
)

= 5,

f3
(

x42uv
)

= 2, f3
(

x43uv
)

= 4, f3
(

x44uv
)

= 1, f3
(

x45uv
)

= 3, f3

(

x
4j
uv

)

= 0, 5 or 3

according as j ≡ 0, 1 or 2 (mod 3) for 6 ≤ j ≤ k − 1. It can be checked that
f3 is an L(2, 1)-coloring. We reduce f3 until we arrive at an irreducible coloring
f ′

3. In f ′

3, u is colored with 0, its neighbors are colored with 2, 3, 4, 5, and x32uv
is colored with 1. Hence f ′

3 is an inh-coloring with span 5. Since λ(P2(4Pk)) = 5
[12] for k ≥ 4, we conclude that λinh(P2(4Pk)) = 5 for k ≥ 4.

In the theorem below we find the exact value of inh-span of P2(rPk) for r = 3
and k ≥ 4.

Theorem 7. The value of λinh(P2(3Pk)) is 5 for 4 ≤ k ≤ 6, and 4 for k ≥ 7.

Proof. Let P2 = uv. From the proof of Theorem 6 we see that for 4 ≤ k ≤ 6,
P2(3Pk) can be given an L(2, 1)-coloring g with span 5 such that g(u) = 0,
g
(

x32uv
)

= 1 and the neighbors of u are colored with 2, 3 and 4. We reduce g

until we arrive at an irreducible coloring g′. Then g′(u) = 0, g′
(

x32uv
)

= 1, and g′

assigns colors 2, 3 and 4 to neighbors of u. Since span g′ ≤ 5, g′ is an inh-coloring.
Then for 4 ≤ k ≤ 6, λinh(P2(3Pk)) = 5 because λ(P2(3Pk)) = 5 [12] for the same
values of k.

For k ≥ 7, Lü and Sun [12] have given an L(2, 1)-coloring f to P2(3Pk) with
span 4 such that f(u) = 0, f

(

x21uv
)

= 3, and the other neighbors of u are colored
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with 2 and 4. We reduce f until we arrive at an irreducible coloring f ′. Then
f ′(u) = 0, f ′

(

x21uv
)

= 3, and f ′ assigns colors 2 and 4 to the other neighbors of u.
Since span(f ′) = 4, f ′

(

x22uv
)

= 1. Thus f ′ is an inh-coloring with span 4. Since
λ(P2(3Pk)) = 4 for k ≥ 7 [12], we conclude that λinh(P2(3Pk)) = 4 for the same
values of k.

Theorem 8. For r ≥ 5 and k ≥ 4, λinh(P2(rPk)) = r + 1.

Proof. Let the nodes of P2(rPk) be u and v. Lü and Sun [12] have given an
L(2, 1)-coloring f to P2(rPk) in which f(u) = f(v) = 0, and for 1 ≤ i ≤ r,

f
(

xi1uv
)

= i + 1 and f
(

x
ik−1
uv

)

= i (mod r) + 2. We recolor the vertices x
2j
uv for

2 ≤ j ≤ k − 2, and get the coloring g as below: for k ≡ 1 (mod 3), g
(

x22uv
)

= 1,

g
(

x23uv
)

= 4, g
(

x
2j
uv

)

= 0, 2, or 4 according as j ≡ 1, 2 or 0 (mod 3), 4 ≤ j ≤ k−2;

for k ≡ 2 (mod 3), g
(

x22uv
)

= 5, g
(

x23uv
)

= 1, g
(

x24uv
)

= 4, g
(

x
2j
uv

)

= 0, 2, or 4

according as j ≡ 2, 0 or 1 (mod 3), 5 ≤ j ≤ k− 2; for k ≡ 0 (mod 3), g
(

x22uv
)

= 1,

g
(

x23uv
)

= 5, g
(

x24uv
)

= 2, g
(

x25uv
)

= 4, g
(

x
2j
uv

)

= 0, 2, or 4 according as j ≡ 0, 1 or

2 (mod 3), 6 ≤ j ≤ k− 2. We reduce g until we arrive at an irreducible coloring,
say g′. In the coloring g′, u is colored with 0, its neighbors are colored with
2, 3, . . . , r+1 and either x22uv or x23uv is colored with 1. Hence g′ is an inh-coloring
with span r + 1. Since λ(P2(rPk)) = r + 1 [12] we get the result.

3. Inh-Colorability of Graphs G(rPh) with ∆(G) = 2

In our next few results we need the following greedy algorithm.

Algorithm 9 (Greedy coloring). Let G be a graph whose few vertices might
have been colored before. Then

1. Order the vertices of the given graph as u1, u2, . . . , un such that all colored
vertices (if any) appear at the beginning of the list.

2. Let ui be the first uncolored vertex that appears in the list.

3. Color ui with the smallest possible color k such that no lower indexed neighbor
of ui in the list is colored with k − 1, k or k + 1 and no lower indexed vertex
at distance two from ui is colored with k.

4. If all the vertices of the graph have received color then stop; otherwise set
i = i+ 1 and go to 3.

The theorem below is obviously true.

Theorem 10. Algorithm 9 gives an L(2, 1)-coloring of G if and only if the pre-

colored vertices of G satisfy constraints of L(2, 1)-coloring in the graph G.
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Now we consider the case ∆(G) = 2. We note that simple connected graphs
with ∆(G) = 2 are paths Pm and cycles Cm only, m ≥ 3. In Theorems 11 and
13 we show respectively that the inh-span of Pm(rP2) and Pm(rP3) coincide with
their span which was computed by Lü and Sun [12].

Theorem 11. Let r ≥ 2 and m ≥ 3. Then

λinh(Pm(rP2)) =

{

2r + 1 for 3 ≤ m ≤ 4,
2r + 2 for m ≥ 5.

Proof. Lü and Sun [12] proved that λ(P3(rP2)) = 2r + 1. Let P3 = u1u2u3.
We give an L(2, 1)-coloring f1 to P3(rP2) as below: f1(u1) = 1, f1(u2) = 0,
f1(u3) = r + 3, f1

(

xi1u1u2

)

= r + 1 + i and f1
(

xi1u2u3

)

= i + 1 for 1 ≤ i ≤ r. We
check that f1 is an inh-coloring. Thus λinh(P3(rP2)) = 2r + 1.

Lü and Sun [12] proved that λ(P4(rP2)) = 2r + 1. Let P4 = u1u2u3u4.
We give an L(2, 1)-coloring f2 to P4(rP2) as below: f2(u1) = 1, f2(u2) = 0,
f2(u3) = 2r+1, f2(u4) = 3; f2(x

i1
u1u2

) = r+1+ i, f2
(

xi1u2u3

)

= i+1 for 1 ≤ i ≤ r;
f2

(

x11u3u4

)

= 0, f2(x
21
u3u4

) = 1, and f2
(

xi1u3u4

)

= r + i− 1 for 3 ≤ i ≤ r. We check
that f2 is an inh-coloring and thus λinh(P4(rP2)) = 2r + 1.

Lü and Sun [12] proved that for m ≥ 5, λ(Pm(rP2)) = 2r + 2. Let Pm =
u1u2 · · ·um. We give an L(2, 1)-coloring f3 to Pm(rP2) as below: f3(u1) = 2r+1,
f3(uk) = 0 if k is even, f3(uk) = 1 if k > 1 and k is odd, f3

(

x11u1u2

)

= 2,
f3

(

xi1u1u2

)

= 2i − 1 for 2 ≤ i ≤ r, and we color the remaining paths of length
r as 0, (2i + 2), 1 or 1, (2i + 1), 0, where i = 1, 2, . . . , r. We check that f3 is an
inh-coloring and thus for m ≥ 5, λinh(Pm(rP2)) = 2r + 2.

Theorem 12. If m ≥ 3, r ≥ 3, and h(e) ≥ 2 with equality for at least one e but

not for all, then Pm(rPh) is inh-colorable and λinh(Pm(rPh)) ≤ 3r + 3.

Proof. Let Pm be the path u1u2 · · ·um. Let E1 = {uv : uv ∈ E(Pm), h(uv) > 2}
and E2 = E(Pm)−E1. Without loss of generality we assume that E2 has an ele-
ment other than um−1um. We first give a coloring f to the nodes u1, u2, . . . , um
in Pm(rPh) with the colors 0 and 1 such that L(2, 1)-coloring constraints are sat-
isfied. We choose an arbitrary edge ukuk+1 in E1. If f (uk) = 0, then we rename
f as f ′, otherwise we define f ′(up) = 1 − f (up) for 1 ≤ p ≤ m. We reduce the
colors of the colored vertices until color of no vertex can be reduced further and
get the coloring g. There is a vertex colored with 0, a vertex colored with 1, and
the maximum color used till now is 1. We color the vertex x11ukuk+1

greedily. Then

g
(

x11ukuk+1

)

= 2. We color the vertices xi1ukuk+1
, 2 ≤ i ≤ r, greedily in any order.

Let S1 = {xi1upup+1
: p 6= k, upup+1 ∈ E1, 1 ≤ i ≤ r}. We color the vertices in S1

greedily in any order. The maximum color used till now is at most r + 2. Let
S2 =

{

xi1upup+1
: upup+1 ∈ E2, 1 ≤ i ≤ r

}

. Then we color the vertices in S2 greed-
ily in any order. No hole is created so far and the maximum color used is at least



534 N. Mandal and P. Panigrahi

2r + 1 and at the most 3r + 2. Let E3 = {uv : uv ∈ E(G), h(uv) > 3}. For each

edge ujuj+1 in E3 we color the vertices x12ujuj+1
, x13ujuj+1

, . . . , x
1h(ujuj+1)−2

ujuj+1 , x22ujuj+1
,

x23ujuj+1
, . . . , x

2h(ujuj+1)−2

ujuj+1 , . . . , xr2ujuj+1
, xr3ujuj+1

, . . . , x
rh(ujuj+1)−2

ujuj+1 greedily in the list-
ed order. When such a vertex w is colored it has one colored neighbor and at most
two colored vertices at distance two. Hence g(w) ≤ 5. We color the remaining
vertices greedily. When such a vertex w′ is colored it has two colored neighbors
and at most 2r colored vertices at distance two. Hence g(w′) ≤ 2r + 6 ≤ 3r + 3.
Since 5 < 2r+ 1 and r+ 2 < 2r+ 1 no hole is created. Thus g is an inh-coloring
of Pm(rPh) with span at most 3r + 3.

Theorem 13. For m ≥ 3 and r ≥ 2, λinh(Pm(rP3)) = 2r + 1.

Proof. Let Pm = u1u2 · · ·um. We consider two cases depending on values of r.

Case 1. In this case we take r = 2. We give the following L(2, 1)-coloring

f1 to Pm(rP3): for 1 ≤ k ≤ m−1, f1(uk) = 0; for 1 ≤ k ≤ m−2, f1

(

x11ukuk+1

)

= 4,

f1

(

x12ukuk+1

)

= 2, f1

(

x21ukuk+1

)

= 3, f1(x
22
ukuk+1

) = 5; f1(um) = 5, f1

(

x11um−1um

)

=

4, f1

(

x12um−1um

)

= 2, f1

(

x21um−1um

)

= 3 and f1

(

x22um−1um

)

= 1. It can be

checked that f1 is an L(2, 1)-coloring of Pm(rP3). We reduce f1 until we ar-

rive at an irreducible coloring, say f ′

1. Since f1

(

x22um−1um

)

= 1, f1(um−1) = 0,

and d
(

x22um−1um
, um−1

)

= 2, the color of x22um−1um
cannot be reduced and so

f ′

1

(

x22um−1um

)

= 1. Now f ′

1(u2) = 0 and its neighbors are colored with 2, 3,

4 and 5. Thus f ′

1 is an inh-coloring of Pm(2P3) with span 5.

Case 2. In this case we take r ≥ 3. Here Lü and Sun [12] have given
the following L(2, 1)-coloring f2 to Pm(rP3): f2(uk) = 0 for 1 ≤ k ≤ m and

f2

(

xi1ukuk+1

)

= 2i and f2

(

xi2ukuk+1

)

= 2i (mod 2r) + 3 for 1 ≤ k ≤ m − 1,

1 ≤ i ≤ r. We note that f2

(

x
(r−1)2
um−1um

)

= 2r + 1. We recolor the vertices

x
(r−1)2
um−1um and um with colors 1 and 2r + 1, respectively, and get the coloring f ′

2.

No vertex adjacent to x
(r−1)2
um−1um has got the color 0 or 2. No vertex adjacent

to um has received color 2r or 2r + 1 and no vertex at distance two from um
has got the color 2r + 1. Thus f ′

2 is an L(2, 1)-coloring. We reduce f ′

2 until we

arrive at an irreducible coloring, say f ′′

2 . Since f ′

2

(

x
(r−1)2
um−1um

)

= 1, f ′

2(um−1) = 0

and d
(

x
(r−1)2
um−1um , um−1

)

= 2, we get f ′′

2

(

x
(r−1)2
um−1um

)

= 1. Since f ′′

2 (u2) = 0 and

neighbors of u2 are colored with 2, 3, . . . , 2r+1, f ′′

2 is an inh-coloring of Pm(rP3)
with span 2r + 1.

Thus λinh(Pm(rP3)) ≤ 2r + 1. Since λ(Pm(rP3)) = 2r + 1 [12], we get
λinh(Pm(rP3)) = 2r + 1.
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The theorem below says that inh-span of C3(rP3) is exactly one more than
its span [12].

Theorem 14. For r ≥ 2, λinh(C3(rP3)) = 2r + 2.

Proof. Let C3 = u1u2u3u1. We first prove that λinh(C3(rP3)) ≤ 2r+2. For this
we consider two cases depending on values of r.

Case 1. In this case we take r = 2. Lü and Sun [12] have given the following

L(2, 1)-coloring f1 to C3(rP3): f1(uk) = 0 for 1 ≤ k ≤ 3; f1

(

x11ukuk+1

)

= 2,

f1

(

x12ukuk+1

)

= 4, f1

(

x21ukuk+1

)

= 3, f1

(

x22ukuk+1

)

= 5 for k = 1, 2; f1
(

x11u3u1

)

= 2,

f1
(

x12u3u1

)

= 4, f1
(

x21u3u1

)

= 3 and f1
(

x22u3u1

)

= 5. We recolor the vertices u2 and
x22u1u2

with colors 6 and 1 respectively and get the coloring g1. Since no vertex
adjacent to u2 has got the color 5 and no vertex adjacent to x22u1u2

has received
color 0 or 2, g1 is an L(2, 1)-coloring. If g1 is not an irreducible coloring, then we
reduce it until we arrive at an irreducible coloring, say g′1. Since g1

(

x22u1u2

)

= 1,
g1(u1) = 0 and d

(

x22u1u2
, u1

)

= 2, we get g′1
(

x22u1u2

)

= 1. Since the vertex u1
is colored with 0, its neighbors are colored with 2, 3, 4, 5 and the vertex u2 is
colored with 6, g′1 is an inh-coloring with span 6. Hence λinh(C3(rP3)) ≤ 2r + 2
for r = 2.

Case 2. In this case we take r ≥ 3. Lü and Sun [12] have given the following
L(2, 1)-coloring f2 to C3(rP3): f2(uk) = 0 for 1 ≤ k ≤ 3; and for 1 ≤ i ≤ r,

k = 1, 2, f2

(

xi1ukuk+1

)

= 2i, f2

(

xi1ukuk+1

)

= 2i (mod 2r) + 3, f2
(

xi1u3u1

)

= 2i

and f2
(

xi1u3u1

)

= 2i (mod 2r) + 3. We note that f2

(

x
(r−1)2
u1u2

)

= 2r + 1. We

recolor the vertices u2 and x
(r−1)2
u1u2 with colors 2r + 2 and 1, respectively, and

get the coloring g2. Since no vertex adjacent to u2 is colored with 2r + 1 and

no vertex adjacent to x
(r−1)2
u1u2 is colored with 0 or 2, g2 is an L(2, 1)-coloring. If

g2 is not an irreducible coloring, then we reduce it until we get an irreducible

coloring, say g′2. Since g2(x
(r−1)2
u1u2 ) = 1, g2(u1) = 0 and d(x

(r−1)2
u1u2 , u1) = 2, we get

g′2

(

x
(r−1)2
u1u2

)

= 1. The vertex u1 is colored with 0 and its neighbors are colored

with 2, 3, . . . , 2r + 1 and g′2(u2) = 2r + 2. Thus g′2 is an inh-coloring with span
2r + 2. Hence λinh(C3(rP3)) ≤ 2r + 2 for r ≥ 3.

Now we prove that λinh(C3(rP3)) ≥2r+2. From Proposition 4, λinh(C3(rP3))
≥ 2r + 1. Suppose λinh(C3(rP3)) = 2r + 1 and g3 is an inh-coloring of C3(rP3).
From Proposition 1 the vertices u1, u2, u3 are colored with 0 or 2r + 1. If all
the vertices u1, u2 and u3 are colored with 0, then no vertex in C3(rP3) will be
colored with 1. Hence at least one of u1, u2, u3 is colored with 2r + 1. Similarly,
at least one of u1, u2, u3 is colored with 0. If two nodes, say u1, u2, receive the
color 0 then u3 receives the color 2r + 1. Now from Proposition 1, a neighbor of
u3 in C3(rP3), say v, is colored with 0. Since v is at distance two from u1 or u2,
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this is a contradiction. We also get a contradiction if two nodes are colored with
2r + 1. Thus λinh(C3(rP3)) ≥ 2r + 2 and we get λinh(C3(rP3)) = 2r + 2.

In the following theorem we show that Cm(rP2) is inh-colorable and give an
upper bound to its inh-span.

Theorem 15. For r ≥ 2, we have λinh(Cm(rP2)) ≤

{

2r + 3 if m is even,

3r + 2 if m is odd.

Proof. Let Cm = u1u2 · · ·umu1. For even m, we give an L(2, 1)-coloring f1 to
Cm(rP2) as below: f1(uk) = 0 for odd k; f1(uk) = 1 if k 6= m and k is even;

f1(um) = 2r + 3; f1

(

xi1ukuk+1

)

= 2i + 1 for 1 ≤ k ≤ m − 1, 1 ≤ i ≤ r and

k odd; f1

(

xi1ukuk+1

)

= 2i + 2 for 1 ≤ k ≤ m − 2, 1 ≤ i ≤ r and k even; and

f1
(

xi1umu1

)

= 2i for 1 ≤ i ≤ r. We check that f1 is an inh-coloring and thus
λinh(Cm(rP2)) ≤ 2r + 3 for m even. For odd m, we give an L(2, 1)-coloring f2
to Cm(rP2) as below: f2(uk) = 0 for odd k, k 6= m; f2(uk) = 1 if k is even;

f2(um) = 2; f2

(

xi1ukuk+1

)

= 2i+1 for odd k and 1 ≤ i ≤ r; f2

(

xi1ukuk+1

)

= 2i+2

for even k and 1 ≤ i ≤ r, and f2
(

xi1umu1

)

= 2r + 2 + i for 1 ≤ i ≤ r. We check
that f2 is an inh-coloring and thus λinh(Cm(rP2)) ≤ 3r + 2 for odd m.

Theorem 16. If m ≥ 3, r ≥ 3, and h(e) ≥ 2 with equality for at least one e but

not for all, then Cm(rPh) is inh-colorable and λinh(Cm(rPh)) ≤ 3r + 3.

Proof. Let Cm be the cycle u1u2 · · ·umu1. Let E1 = {uv : uv ∈ E(Cm), h(uv) >
2} and E2 = E(Cm)−E1. For our convenience we call the edge umu1 as umum+1

too. We first give a coloring f to the nodes u1, u2, . . . , um in Cm(rPh) using
the colors 0 and 1 only such that L(2, 1)-coloring constraints are satisfied. This
is possible since h(e) > 2 for at least one edge e of Cm. We choose an arbi-
trary edge ukuk+1 in E1. If f (uk) = 0, then we rename f as f ′, otherwise
we define f ′(up) = 1 − f (up) for 1 ≤ p ≤ m. We reduce the colors of the
colored vertices until color of no vertex can be reduced further and get the col-
oring g. There is a vertex colored with 0, a vertex colored with 1, and the
maximum color used till now is 1. We color the vertex x11ukuk+1

greedily. Then

g
(

x11ukuk+1

)

= 2. We color the vertices xi1ukuk+1
, 2 ≤ i ≤ r, greedily in any order.

Let S1 =
{

xi1upup+1
: p ∈ [1, k − 1] ∪ [k + 1,m], upup+1 ∈ E1, 1 ≤ i ≤ r

}

. We color
the vertices in S1 greedily in any order. The maximum color used till now is at
most r + 2. Let S2 =

{

xi1upup+1
: p ∈ [1,m], upup+1 ∈ E2, 1 ≤ i ≤ r

}

. Then we
color the vertices in S2 greedily in any order. No hole is created till now and
the maximum color used is at least 2r + 1 and at the most 3r + 2. Let E3 =
{uv : uv ∈ E(G), h(uv) > 3}. For each edge ujuj+1 in E3 we color the vertices

x12ujuj+1
, x13ujuj+1

, . . . , x
1h(ujuj+1)−2

ujuj+1 , x22ujuj+1
, x23ujuj+1

, . . . , x
2h(ujuj+1)−2

ujuj+1 , . . . , xr2ujuj+1
,
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xr3ujuj+1
, . . . , x

rh(ujuj+1)−2

ujuj+1 greedily in the listed order. When such a vertex w is
colored it has one colored neighbor and at most two colored vertices at distance
two. Hence g(w) ≤ 5. We color the remaining vertices greedily. When such a
vertex w′ is colored it is adjacent to two colored vertices and there are at most 2r
vertices at distance two from it. Hence g(w′) ≤ 2r+6 ≤ 3r+3. Since 5 < 2r+1
and r+2 < 2r+1, no hole is created. Thus g is an inh-coloring of Cm(rPh) with
span at most 3r + 3.

The theorem below gives an upper bound to inh-span of Cm(2P3), m ≥ 4,
which is one more than the exact value of its span [12].

Theorem 17. For m ≥ 4, λinh(Cm(2P3)) ≤ 6.

Proof. Let Cm = u1u2 · · ·umu1. For m ≥ 4, Lü and Sun [12] have given the

following L(2, 1)-coloring f to Cm(2P3): f (uk) = 0 for 1 ≤ k ≤ m; f
(

x11ukuk+1

)

=

2, f
(

x12ukuk+1

)

= 4, f
(

x21ukuk+1

)

= 3, f
(

x22ukuk+1

)

= 5 for 1 ≤ k ≤ m − 1; and

f
(

x11umu1

)

= 2, f
(

x12umu1

)

= 4, f
(

x21umu1

)

= 3 and f
(

x22umu1

)

= 5. We recolor
the vertices u2 and x22u1u2

with colors 6 and 1, respectively and get the coloring
g. Since no vertex adjacent to u2 has got the color 5 and no vertex adjacent
to x22u1u2

has received the color 0 or 2, g is an L(2, 1)-coloring. If g is not an
irreducible coloring we reduce it until we arrive at an irreducible coloring, say g′.
Since g

(

x22u1u2

)

= 1, g(u1) = 0 and d
(

x22u1u2
, u1

)

= 2, we get g′
(

x22u1u2

)

= 1. The
vertex u1 is colored with 0 and its neighbors are colored with 2, 3, 4 and 5. Thus
g′ is an inh-coloring with span 6 and hence λinh(Cm(2P3)) ≤ 6 for m ≥ 4.

In the next theorem we show that inh-span of Cm(rP3) is equal to its span
[12] for m ≥ 4 and r ≥ 3.

Theorem 18. For m ≥ 4 and r ≥ 3, λinh(Cm(rP3)) = 2r + 1.

Proof. Let Cm = u1u2 · · ·umu1. We give an L(2, 1)-coloring f to Cm(rP3) as
follows: f (u1) = f (u2) = 2r+1 and f (uk) = 0 for 3 ≤ k ≤ m; f

(

x11u1u2

)

= 0 and
f
(

xi1u1u2

)

= i for 2 ≤ i ≤ r; f
(

xi2u1u2

)

= r+ i for 1 ≤ i ≤ r− 1 and f
(

xr2u1u2

)

= 0;
f
(

xi1u2u3

)

= i and f
(

xi2u2u3

)

= r + i for 1 ≤ i ≤ r; f
(

x11u3u4

)

= 2r + 1 and

f
(

xi1u3u4

)

= i for 2 ≤ i ≤ r; f
(

xi2u3u4

)

= r+i+1 for 1 ≤ i ≤ r; f
(

xi1ukuk+1

)

= i+1

and f
(

xi2ukuk+1

)

= r + i+ 1 for 1 ≤ i ≤ r and 4 ≤ k ≤ m− 1; f
(

xi1umu1

)

= i+ 1

for 1 ≤ i ≤ r; f
(

xi2umu1

)

= r + i for 1 ≤ i ≤ r − 1; and f
(

xr2umu1

)

= 1.

Now we check that f is an L(2, 1)-coloring. We note that either a node is
colored with 0 and its neighbors are colored with 2, 3, . . . , 2r + 1 or a node is
colored with 2r + 1 and its neighbors are colored with 0, 1, . . . , 2r − 1. In the
coloring f , if a node is colored with 0 (respectively 2r+1), no vertex at distance
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two from it is colored with 0 (respectively 2r+1). Now
∣

∣f
(

x11u1u2

)

− f
(

x12u1u2

)∣

∣ =
r + 1 and

∣

∣f
(

xi1u1u2

)

− f
(

xi2u1u2

)
∣

∣ = r for 2 ≤ i ≤ r,
∣

∣f
(

xi1u2u3

)

− f
(

xi2u2u3

)
∣

∣ = r

for 1 ≤ i ≤ r,
∣

∣f
(

x11u3u4

)

− f
(

x12u3u4

)∣

∣ = r − 1 and
∣

∣f
(

xi1u3u4

)

− f
(

xi2u3u4

)∣

∣ = r + 1

for 2 ≤ i ≤ r,
∣

∣

∣
f
(

xi1ukuk+1

)

− f
(

xi2ukuk+1

)
∣

∣

∣
= r for 1 ≤ i ≤ r and 4 ≤ k ≤ m− 1,

∣

∣f
(

xi1umu1

)

− f
(

xi2umu1

)∣

∣ = r−1 for 1 ≤ i ≤ r−1 and |f
(

xr1umu1

)

−f
(

xr2umu1

)

| = r.
Thus

∣

∣f
(

xi1uv
)

− f
(

xi2uv
)
∣

∣ ≥ 2 for every edge uv of Cm and 1 ≤ i ≤ r. Hence f is
an L(2, 1)-coloring. In Cm(rP3) every vertex is either a maximum degree vertex or
adjacent to a maximum degree vertex. We have span(f) = 2r+1 and maximum
degree of Cm(rP3) = 2r. Thus f is an irreducible coloring. Since f

(

x11u2u3

)

= 1,
u3 is colored with 0 and its neighbors are colored with 2, 3, . . . , 2r + 1, and f

is an inh-coloring with span 2r + 1, we get λinh(Cm(rP3)) ≤ 2r + 1. Since
λ(Cm(rP3)) = 2r + 1 [12], we get λinh(Cm(rP3)) = 2r + 1.

If G is any graph with ∆ = 2 and h : E(G) → N − {1, 2} with h(e) > 3 for
at least one e, then the next theorem gives span as well as inh-span of G(rPh),
and shows that both the spans are equal.

Theorem 19. For any graph G with ∆ = 2, r ≥ 2, and h(e) ≥ 3 with strict

inequality for at least one e, λinh(G(rPh)) = λ(G(rPh)) = 2r + 1.

Proof. Here G is either a path Pm = u1u2 · · ·um or cycle Cm = u1u2 · · ·umu1,
m ≥ 3. For our convenience we call the edge umu1 as umum+1 too. We give an
L(2, 1)-coloring to G(rPh) in three cases depending on values of r. In all these
cases, ukuk+1 is an arbitrary edge of G.

Case 1. In this case we take r = 2. We give an L(2, 1)-coloring g1 to
G(rPh) as follows: g1(u) = 0 for all nodes u of G(rPh); if h(ukuk+1) = 3, then

g1

(

x11ukuk+1

)

= 2, g1

(

x12ukuk+1

)

= 4, g1

(

x21ukuk+1

)

= 5, and g1

(

x22ukuk+1

)

= 3;

if h(ukuk+1) = 6, then g1

(

x11ukuk+1

)

= 2, g1

(

x12ukuk+1

)

= 5, g1

(

x13ukuk+1

)

=

3, g1

(

x14ukuk+1

)

= 1, g1

(

x15ukuk+1

)

= 4, g1

(

x21ukuk+1

)

= 5, g1

(

x22ukuk+1

)

= 3,

g1

(

x23ukuk+1

)

= 0, g1

(

x24ukuk+1

)

= 5, and g1

(

x25ukuk+1

)

= 3; for h(ukuk+1) ≥ 4,

h(ukuk+1) 6= 6: if h(ukuk+1) ≡ 0 (mod 4) then g1

(

x
1j
ukuk+1

)

= 0, 2, 5 or 3 accord-

ing as j ≡ 0, 1, 2 or 3 (mod 4) and g1(x
2j
ukuk+1) = 0, 5, 1 or 4 according as j ≡ 0, 1, 2

or 3 (mod 4); if h(ukuk+1) ≡ 1 (mod 4) then g1

(

x11ukuk+1

)

= 2, g1

(

x12ukuk+1

)

= 5,

g1

(

x13ukuk+1

)

= 1, g1

(

x14ukuk+1

)

= 3 and for j ≥ 5, g1

(

x
1j
ukuk+1

)

= 0, 2, 5 or

3 according as j ≡ 1, 2, 3 or 0 (mod 4), g1

(

x21ukuk+1

)

= 5, g1

(

x22ukuk+1

)

= 3,

g1

(

x23ukuk+1

)

= 1, g1

(

x24ukuk+1

)

= 4 and for j ≥ 5, g1

(

x
2j
ukuk+1

)

= 0, 5, 1 or 4 ac-

cording as j ≡ 1, 2, 3 or 0 (mod 4); if h(ukuk+1) ≡ 2 (mod 4), then g1

(

x11ukuk+1

)

=
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2, g1

(

x12ukuk+1

)

= 4, g1

(

x13ukuk+1

)

= 0, g1

(

x14ukuk+1

)

= 5, g1

(

x15ukuk+1

)

= 3

and for j ≥ 6, g1

(

x
1j
ukuk+1

)

= 0, 2, 5 or 3 according as j ≡ 2, 3, 0 or 1 (mod

4), g1

(

x21ukuk+1

)

= 5, g1

(

x22ukuk+1

)

= 3, g1

(

x23ukuk+1

)

= 0, g1(x
24
ukuk+1

) = 2,

g1

(

x25ukuk+1

)

= 4 and for j ≥ 6, g1

(

x
2j
ukuk+1

)

= 0, 5, 1 or 4 according as j ≡ 2, 3, 0

or 1 (mod 4); if h(ukuk+1) ≡ 3 (mod 4), then g1

(

x11ukuk+1

)

= 2, g1

(

x12ukuk+1

)

=

5, g1

(

x13ukuk+1

)

= 3, g1

(

x14ukuk+1

)

= 0, g1

(

x15ukuk+1

)

= 5, g1

(

x16ukuk+1

)

= 3

and for j ≥ 7, g1

(

x
1j
ukuk+1

)

= 0, 2, 5 or 3 according as j ≡ 3, 0, 1 or 2 (mod

4), g1

(

x21ukuk+1

)

= 5, g1

(

x22ukuk+1

)

= 1, g1

(

x23ukuk+1

)

= 4, g1

(

x24ukuk+1

)

= 0,

g1

(

x25ukuk+1

)

= 2, g1

(

x26ukuk+1

)

= 4 and for j ≥ 7, g1

(

x
2j
ukuk+1

)

= 0, 5, 1 or 4

according as j ≡ 3, 0, 1 or 2 (mod 4).

For every edge uv in G the L(2, 1)-coloring constraints are satisfied within
the paths P i

h for 1 ≤ i ≤ 2 and colors assigned to neighbors of a node are different.
Hence g1 is an L(2, 1)-coloring with span 5. Now we reduce g1 until we arrive
at an irreducible coloring, say g′1. We prove that g′1 is a no-hole coloring. From
the way g1 is defined there is at least one vertex w colored with 1 and lying at
distance two from a vertex colored with 0 in g1. Hence g′1(w) = 1. A vertex in
G(rPh) with degree 4 is colored with 0 and its neighbors are colored with 2, 3, 4,
5. Thus g′1 is an inh-coloring with span 5.

Case 2. In this case we take r = 3. Now we give an L(2, 1)-coloring g2 to
G(rPh) as follows: g2(u) = 0 for all nodes u of G(rPh); if h(ukuk+1) = 3 then

g2

(

xi1ukuk+1

)

= i + 1, g2

(

xi2ukuk+1

)

= i + 4 for 1 ≤ i ≤ 3; if h(ukuk+1) ≡ 1 (mod

3), then g2

(

x11ukuk+1

)

= 2, g2

(

x12ukuk+1

)

= 7, g2

(

x13ukuk+1

)

= 5, g2

(

x21ukuk+1

)

=

3, g2

(

x22ukuk+1

)

= 1, g2

(

x23ukuk+1

)

= 6, g2

(

x31ukuk+1

)

= 4, g2

(

x32ukuk+1

)

= 1,

g2

(

x33ukuk+1

)

= 7, for 1 ≤ i ≤ 3 and j ≥ 4, g2

(

x
ij
ukuk+1

)

= 0, i + 1 or i + 4

according as j ≡ 1, 2 or 0 (mod 3); if h(ukuk+1) ≡ 2 (mod 3) then g2

(

x11ukuk+1

)

=

2, g2

(

x12ukuk+1

)

= 7, g2

(

x13ukuk+1

)

= 1, g2

(

x14ukuk+1

)

= 5, g2

(

x21ukuk+1

)

= 3,

g2

(

x22ukuk+1

)

= 1, g2

(

x23ukuk+1

)

= 4, g2

(

x24ukuk+1

)

= 6, g2

(

x31ukuk+1

)

= 4,

g2

(

x32ukuk+1

)

= 1, g2

(

x33ukuk+1

)

= 3, g2

(

x34ukuk+1

)

= 7, for 1 ≤ i ≤ 3 and j ≥ 5,

g2(x
ij
ukuk+1) = 0, i+1 or i+4 according as j ≡ 2, 0 or 1 (mod 3); if h(ukuk+1) ≥ 6

and h(ukuk+1) ≡ 0 (mod 3), then g2

(

x11ukuk+1

)

= 2, g2

(

x12ukuk+1

)

= 5,

g2

(

x13ukuk+1

)

= 0, g2

(

x14ukuk+1

)

= 2, g2

(

x15ukuk+1

)

= 5, g2

(

x21ukuk+1

)

= 3,
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g2

(

x22ukuk+1

)

= 1, g2

(

x23ukuk+1

)

= 4, g2

(

x24ukuk+1

)

= 2, g2

(

x25ukuk+1

)

= 6,

g2

(

x31ukuk+1

)

= 4, g2

(

x32ukuk+1

)

= 1, g2

(

x33ukuk+1

)

= 3, g2

(

x34ukuk+1

)

= 5,

g2

(

x35ukuk+1

)

= 7, and g2

(

x
ij
ukuk+1

)

= 0, i + 1 or i + 4 according as j ≡ 0, 1

or 2 (mod 3), where 1 ≤ i ≤ 3 and j ≥ 6.
For every edge uv in G the L(2, 1)-coloring constraints are satisfied within

the paths P i
h for 1 ≤ i ≤ 3 and colors assigned to neighbors of a node are different.

Hence g2 is an L(2, 1)-coloring with span 7. Now we reduce g2 until we arrive
at an irreducible coloring, say g′2. We prove that g′2 is a no-hole coloring. From
the way g2 is defined there is at least one vertex w′ colored with 1 and lying at
distance two from a vertex colored with 0 in g2. Hence g′2(w

′) = 1. A vertex in
G(rPh) with degree 6 is colored with 0 and its neighbors are colored with 2, 3, 4,
5, 6, 7. Thus g′2 is an inh-coloring with span 7.

Case 3. In this case we take r ≥ 4. We give an L(2, 1)-coloring g2 to

G(rPh) as follows: g2(u) = 0 for all nodes u of G(rPh); g3

(

xi1ukuk+1

)

= i + 1

and g3

(

x
ih(ukuk+1)−1

ukuk+1

)

= r + i + 1 for 1 ≤ i ≤ r. L(2, 1)-coloring constraints

are satisfied for the colored vertices so far. We take an edge u′v′ of G such

that h(u′v′) > 3 and assign g3

(

x22u′v′

)

= 1. Since no vertex adjacent to x22u′v′ is

colored with color 0 or 2, L(2, 1)-coloring constraints are satisfied for the colored
vertices. The maximum color used till now is 2r + 1. We color the remaining
vertices greedily. If z is such a vertex then it has two neighbors and there are two
vertices at distance two apart from it. Hence g3(z) ≤ 8. Thus span(g3) = 2r + 1
because r ≥ 4. Now we reduce g3 until we arrive at an irreducible coloring, say
g′3. A vertex in G(rPh) with degree 2r is colored with 0 and its neighbors are

colored with 2, 3, . . . , 2r+1. Since g3

(

x22u′v′

)

= 1, g3(u
′) = 0 and d

(

x22u′v′ , u
′

)

= 2,

we get g′3

(

x22u′v′

)

= 1. Hence g′3 is an inh-coloring with span 2r + 1.

Combining all these cases we conclude that G(rPh) is inh-colorable and
λinh(G(rPh)) ≤ 2r+1. Thus from Proposition 4 we get λinh(G(rPh)) =λ(G(rPh))
= 2r + 1.

4. Inh-Colorability of Graphs G(rPh) with ∆(G) ≥ 3

In this section we first consider the case ∆(G) = 3. In Theorem 20 below we
find the exact value of span of G(rP3), r ≥ 2, which were not computed by Lü
and Sun [12]. Moreover, this value of λ(G(rP3)) agrees with λ

(

G(3)

)

for r = 1,
computed by Chang et al. [1], for some graphs G.

Theorem 20. If G is a graph with ∆(G) = 3, then for r ≥ 2, λ(G(rP3)) = 3r+1.
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Proof. We first consider the graph G(3). Let S = V
(

G(3)

)

− V (G). Since every
vertex in S is at distance two apart from at most two other vertices in S, we can
give a coloring f to vertices in S using colors 0, 1 and 2 only such that vertices
at distance two in G(3) have different colors.

Now we give an L(2, 1)-coloring g to G(rP3). We assign g(u) = 0 for all
u ∈ V (G). For every edge uv of G we assign colors to the vertices xi1uv and xi2uv,
1 ≤ i ≤ r, as below: if f

(

x1uv
)

= f
(

x2uv
)

= 0 then g
(

xi1uv
)

= 3i− 1 for 1 ≤ i ≤ r,
g
(

x12uv
)

= 3r − 1 and g
(

xi2uv
)

= 3i − 4 for 2 ≤ i ≤ r; if f
(

x1uv
)

= f
(

x2uv
)

= 1
then g(xi1uv) = 3i for 1 ≤ i ≤ r, g(x12uv) = 3r and g(xi2uv) = 3i− 3 for 2 ≤ i ≤ r; if
f
(

x1uv
)

= f
(

x2uv
)

= 2, then g
(

xi1uv
)

= 3i+ 1 for 1 ≤ i ≤ r, g
(

x12uv
)

= 3r + 1 and
g
(

xi2uv
)

= 3i−2 for 2 ≤ i ≤ r; if f
(

x1uv
)

= 0 and f
(

x2uv
)

= 1, then g
(

xi1uv
)

= 3i−1
for 1 ≤ i ≤ r, g

(

x12uv
)

= 3r and g
(

xi2uv
)

= 3i− 3 for 2 ≤ i ≤ r; if f
(

x1uv
)

= 1 and
f
(

x2uv
)

= 2, then g
(

xi1uv
)

= 3i for 1 ≤ i ≤ r, g
(

x12uv
)

= 3r+1 and g
(

xi2uv
)

= 3i−2
for 2 ≤ i ≤ r; if f

(

x1uv
)

= 0 and f
(

x2uv
)

= 2, then g
(

xi1uv
)

= 3i− 1 for 1 ≤ i ≤ r

and g
(

xi2uv
)

= 3i+ 1 for 1 ≤ i ≤ r.

For any edge uv of G and for 1 ≤ i ≤ r, |g(xi1uv)− g(xi2uv)| ≥ 2. Colors of the
vertices of G(rP3) adjacent to a node are distinct. Colors of the nodes are 0 and
colors of the other vertices are greater than or equal to 2. Hence g is an L(2, 1)-
coloring with span 3r+1. Thus λ(G(rP3)) ≤ 3r+1. Now from Proposition 4 we
get λ(G(rP3)) = 3r + 1.

The theorem below gives an upper bound to inh-span of G(rP3), r ≥ 2. We
note that this bound agrees with the upper bound of λinh

(

G(3)

)

given by Mandal
and Panigrahi [13] for r = 1.

Theorem 21. If G is a graph with ∆(G) = 3, then for r ≥ 2, G(rP3) is inh-

colorable and λinh(G(rP3)) ≤ 3r + 2.

Proof. We consider the same L(2, 1)-coloring g of G(rP3) as given in the proof of
Theorem 20. Note that g has a hole only at 1. Also note that colors of neighbors
of a vertex colored with 2 lies in the set {0, 4, 3r− 1, 3r}. Let u be a vertex in G

with deg(u) = 3 if G is a regular graph and deg(u) 6= 3 otherwise. From the way
g is defined, we get that u is adjacent to a vertex in G(rP3) that is colored with
2, 3 or 3r + 1. We consider three cases depending on colors of neighbors of u.

Case 1. Here u is adjacent to a vertex colored with 3r + 1. Let g
(

xi1uv1

)

=
3r + 1. Then g

(

xi2uv1

)

6= 2. We give an another L(2, 1)-coloring g1 to G(rP3)
as follows: g1(y) = g(y) if y 6= u, xi1uv1 and g1

(

xi1uv1

)

= 1. Since xi1uv1 is adjacent
to u and xi2uv1 only, and the vertex xi1uv1 receives the color 1, the L(2, 1)-coloring
constraints are satisfied so far. We color the vertex u with the least available
color such that L(2, 1) coloring constraints are satisfied. Since u is not adjacent
to any vertex colored with 3r + 1 in g1, g1(u) ≤ 3r + 2. Now we reduce g1
until we arrive at an irreducible coloring g′1. Then span(g′1) ≤ 3r + 2. Since
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g1
(

xi1uv1

)

= 1, g1(v1) = 0 and d
(

xi1uv1 , v1
)

= 2, color of xi1uv1 cannot be reduced,
and so g′1

(

xi1uv1

)

= 1. There is a vertex of degree 3r in G(rP3) colored with 0 and
its neighbors are colored with 2, 3, . . . , 3r + 1. Hence g′1 is an inh-coloring.

Case 2. Here u is not adjacent to any vertex colored with 3r+1 and adjacent
to a vertex colored with 2. Let g

(

xi1uv2

)

= 2. Then g
(

xi2uv2

)

6= 2. We give an
another L(2, 1)-coloring g2 to G (rP3) as follows: g2(y) = g(y) if y 6= u, xi1uv2
and g2

(

xi1uv2

)

= 1. Since xi1uv2 is adjacent to u and xi2uv2 only, and the vertex
xi1uv2 is colored with 1, the L(2, 1)-coloring constraints are satisfied so far. Then
we color the vertex u with the least available color such that L(2, 1)-coloring
constraints are satisfied. Since u is not adjacent to any vertex colored with 3r+1,
g2(u) ≤ 3r + 2. Now we reduce g2 until we arrive at an irreducible coloring g′2.
Then span(g′2) ≤ 3r + 2. Since g2

(

xi1uv2

)

= 1, g2(v2) = 0 and d
(

xi1uv2 , v2
)

= 2,
color of xi1uv2 cannot be reduced, and so g′2

(

xi1uv2

)

= 1. There is a vertex of degree
3r in G(rP3) colored with 0 and its neighbors are colored with 2, 3, . . . , 3r + 1.
Hence g′2 is an inh-coloring.

Case 3. In this case, u is not adjacent to any vertex colored with 3r+1 or 2.
Then u is adjacent to a vertex colored with 3. Let g

(

xi1uv3

)

= 3. Then g
(

xi2uv3

)

6=
2. We give an another L(2, 1)-coloring g3 to G (rP3) as follows: g3(y) = g(y) if
y 6= u, xi1uv3 and g3

(

xi1uv3

)

= 1. Since xi1uv3 is adjacent to u and xi2uv3 only, and the
vertex xi1uv3 is colored with 1, the L(2, 1)-coloring constraints are satisfied so far.
Then we color the vertex u with the least available color such that L(2, 1)-coloring
constraints are satisfied. Since u is not adjacent to any vertex colored with 3r+1,
g3(u) ≤ 3r + 2. Now we reduce g3 until we arrive at an irreducible coloring g′3.
Then span(g′3) ≤ 3r + 2. Since g3

(

xi1uv3

)

= 1, g3(v3) = 0 and d
(

xi1uv3 , v3
)

= 2,
color of xi1uv3 cannot be reduced, and so g′3

(

xi1uv3

)

= 1. There is a vertex of degree
3r in G (rP3) colored with 0 and its neighbors are colored with 2, 3, . . . , 3r + 1.
Hence g′3 is an inh-coloring.

Combining all these cases we get thatG(rP3) is inh-colorable andλinh(G(rP3))
≤ 3r + 2.

In Theorem 22 below we find span as well as inh-span of G(rPh), where r ≥ 2
and h(e) ≥ 3 with strict inequality for at least one e. Moreover, here we settle
the case h(e) = 4, for all e, which was left by Lü and Sun [12].

Theorem 22. If G is a graph with ∆(G) = 3, r ≥ 2 and h(e) ≥ 3 with strict

inequality for at least one e, then λinh(G(rPh)) = λ(G(rPh)) = 3r + 1.

Proof. We choose an edge u′v′ in G such that h(u′v′) > 3. We first consider the
graph G(3). Let S = V

(

G(3)

)

− V (G). Since every vertex in S is at distance two
from at most two other vertices in S, we can give a coloring f to S using the
colors 0, 1 and 2 only such that vertices at distance two get different colors and
f
(

x1u′v′

)

= f
(

x2u′v′

)

= 1. Then we give an L(2, 1)-coloring g to G (rP3) following
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the same method of coloring in the proof of Theorem 20. Now we consider two
cases depending on values of r.

Case 1. In this case we take r = 2. We give a coloring g1 to G(rPh) as below.

For any edge uv of G and for i = 1, 2, g1
(

xi1uv
)

= g
(

xi1uv
)

and g1

(

x
ih(uv)−1
uv

)

=

g
(

xi2uv
)

. To color the remaining vertices we have the following subcases depending

on values of g1
(

xi1uv
)

and g1

(

x
ih(uv)−1
uv

)

for i = 1, 2 and an arbitrary edge uv in G.

Subcase 1. g1
(

xi1uv
)

= 2, g1

(

x
ih(uv)−1
uv

)

= 5. Then g1 assigns colors to the

remaining vertices as follows. If h(uv) ≡ 0 (mod 3), then g1

(

x
ij
uv

)

= 0, 2 or 5

according as j ≡ 0, 1 or 2 (mod 3). If h(uv) ≡ 1 (mod 3) then g1
(

xi1uv
)

= 2,

g1
(

xi2uv
)

= 7, g1
(

xi3uv
)

= 5, and for j ≥ 4, g1

(

x
ij
uv

)

= 0, 2 or 5 according as

j ≡ 1, 2 or 0 (mod 3). If h(uv) ≡ 2 (mod 3) then g1
(

xi1uv
)

= 2, g1
(

xi2uv
)

= 7,

g1
(

xi3uv
)

= 3, g1
(

xi4uv
)

= 5, and for j ≥ 5, g1

(

x
ij
uv

)

= 0, 2 or 5 according as

j ≡ 2, 0 or 1 (mod 3).

Subcase 2. g1
(

xi1uv
)

= 2, g1

(

x
ih(uv)−1
uv

)

= 6. Then g1 assigns colors to the

remaining vertices as follows. If h(uv) ≡ 0 (mod 3) then g1

(

x
ij
uv

)

= 0, 2 or 6

according as j ≡ 0, 1 or 2 (mod 3). If h(uv) ≡ 1 (mod 3) then g1
(

xi1uv
)

= 2,

g1
(

xi2uv
)

= 4, g1
(

xi3uv
)

= 6, and for j ≥ 4, g1

(

x
ij
uv

)

= 0, 2 or 6 according as

j ≡ 1, 2 or 0 (mod 3). If h(uv) ≡ 2 (mod 3) then g1
(

xi1uv
)

= 2, g1
(

xi2uv
)

= 4,

g1
(

xi3uv
)

= 1, g1
(

xi4uv
)

= 6, and for j ≥ 5, g1

(

x
ij
uv

)

= 0, 2 or 6 according as

j ≡ 2, 0 or 1 (mod 3).

Subcase 3. g1
(

xi1uv
)

= 3, g1

(

x
ih(uv)−1
uv

)

= 5. Then g1 assigns colors to the

remaining vertices as follows. If h(uv) ≡ 0 (mod 3) then g1

(

x
ij
uv

)

= 0, 3 or 5

according as j ≡ 0, 1 or 2 (mod 3). If h(uv) ≡ 1 (mod 3) then g1
(

xi1uv
)

= 3,

g1
(

xi2uv
)

= 1, g1
(

xi3uv
)

= 5, and for j ≥ 4, g1

(

x
ij
uv

)

= 0, 3 or 5 according as

j ≡ 1, 2 or 0 (mod 3). If h(uv) ≡ 2 (mod 3) then g1
(

xi1uv
)

= 3, g1
(

xi2uv
)

= 1,

g1
(

xi3uv
)

= 7, g1
(

xi4uv
)

= 5, and for j ≥ 5, g1

(

x
ij
uv

)

= 0, 3 or 5 according as

j ≡ 2, 0 or 1 (mod 3).

Subcase 4. g1
(

xi1uv
)

= 2, g1

(

x
ih(uv)−1
uv

)

= 4. Then g1 assigns colors to the

remaining vertices as follows. If h(uv) ≡ 0 (mod 3) then g1

(

x
ij
uv

)

= 0, 2 or 4

according as j ≡ 0, 1 or 2 (mod 3). If h(uv) ≡ 1 (mod 3), then g1
(

xi1uv
)

= 2,

g1
(

xi2uv
)

= 6, g1
(

xi3uv
)

= 4, and for j ≥ 4, g1

(

x
ij
uv

)

= 0, 2 or 4 according as
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j ≡ 1, 2 or 0 (mod 3). If h(uv) ≡ 2 (mod 3) then g1
(

xi1uv
)

= 2, g1
(

xi2uv
)

= 6,

g1
(

xi3uv
)

= 1, g1
(

xi4uv
)

= 4, and for j ≥ 5, g1

(

x
ij
uv

)

= 0, 2 or 4 according as

j ≡ 2, 0 or 1 (mod 3).

Subcase 5. g1
(

xi1uv
)

= 5, g1

(

x
ih(uv)−1
uv

)

= 7. Then g1 assigns colors to the

remaining vertices as follows. If h(uv) ≡ 0 (mod 3) then g1

(

x
ij
uv

)

= 0, 5 or 7

according as j ≡ 0, 1 or 2 (mod 3). If h(uv) ≡ 1 (mod 3) then g1
(

xi1uv
)

= 5,

g1
(

xi2uv
)

= 1, g1
(

xi3uv
)

= 7, and for j ≥ 4, g1

(

x
ij
uv

)

= 0, 5 or 7 according as

j ≡ 1, 2 or 0 (mod 3). If h(uv) ≡ 2 (mod 3), g1
(

xi1uv
)

= 5, g1
(

xi2uv
)

= 1,

g1
(

xi3uv
)

= 3, g1
(

xi4uv
)

= 7, and for j ≥ 5, g1

(

x
ij
uv

)

= 0, 5 or 7 according as

j ≡ 2, 0 or 1 (mod 3).

Subcase 6. g1
(

xi1uv
)

= 3, g1

(

x
ih(uv)−1
uv

)

= 6. Then g1 assigns colors to

the remaining vertices as follows. If h(uv) ≡ 0 (mod 3) and h(uv) ≥ 6 then
g1

(

xi1uv
)

= 3, g1
(

xi2uv
)

= 1, g1
(

xi3uv
)

= 4, g1
(

xi4uv
)

= 2, g1
(

xi5uv
)

= 6, and for

j ≥ 6, g1

(

x
ij
uv

)

= 0, 3 or 6 according as j ≡ 0, 1 or 2 (mod 3). If h(uv) ≡ 1 (mod

3), then g1
(

xi1uv
)

= 3, g1
(

xi2uv
)

= 1, g1
(

xi3uv
)

= 6, and for j ≥ 4, g1

(

x
ij
uv

)

= 0, 3

or 6 according as j ≡ 1, 2 or 0 (mod 3). If h(uv) ≡ 2 (mod 3), then g1
(

xi1uv
)

= 3,

g1
(

xi2uv
)

= 1, g1
(

xi3uv
)

= 4, g1
(

xi4uv
)

= 6, and for j ≥ 5, g1

(

x
ij
uv

)

= 0, 3 or 6

according as j ≡ 2, 0 or 1 (mod 3).

Subcase 7. g1
(

xi1uv
)

= 3, g1

(

x
ih(uv)−1
uv

)

= 7. Then g1 assigns colors to the

remaining vertices as follows. If h(uv) ≡ 0 (mod 3) then g1

(

x
ij
uv

)

= 0, 3 or 7

according as j ≡ 0, 1 or 2 (mod 3). If h(uv) ≡ 1 (mod 3) then g1
(

xi1uv
)

= 3,

g1
(

xi2uv
)

= 1, g1
(

xi3uv
)

= 7, and for j ≥ 4, g1

(

x
ij
uv

)

= 0, 3 or 7 according as

j ≡ 1, 2 or 0 (mod 3). If h(uv) ≡ 2 (mod 3) then g1
(

xi1uv
)

= 3, g1
(

xi2uv
)

= 1,

g1
(

xi3uv
)

= 4, g1
(

xi4uv
)

= 7, and for j ≥ 5, g1

(

x
ij
uv

)

= 0, 3 or 7 according as

j ≡ 2, 0 or 1 (mod 3).

Subcase 8. g1
(

xi1uv
)

= 4, g1

(

x
ih(uv)−1
uv

)

= 6. Then g1 assigns colors to the

remaining vertices as follows. If h(uv) ≡ 0 (mod 3) then g1

(

x
ij
uv

)

= 0, 4 or 6

according as j ≡ 0, 1 or 2 (mod 3). If h(uv) ≡ 1 (mod 3), then g1
(

xi1uv
)

= 4,

g1
(

xi2uv
)

= 1, g1
(

xi3uv
)

= 6, and for j ≥ 4, g1

(

x
ij
uv

)

= 0, 4 or 6 according as

j ≡ 1, 2 or 0 (mod 3). If h(uv) ≡ 2 (mod 3) then g1
(

xi1uv
)

= 4, g1
(

xi2uv
)

= 1,

g1
(

xi3uv
)

= 3, g1
(

xi4uv
)

= 6, and for j ≥ 5, g1

(

x
ij
uv

)

= 0, 4 or 6 according as
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j ≡ 2, 0 or 1 (mod 3).

Subcase 9. g1
(

xi1uv
)

= 4, g1

(

x
ih(uv)−1
uv

)

= 7. Then g1 assigns colors to the

remaining vertices as follows. If h(uv) ≡ 0 (mod 3) then g1

(

x
ij
uv

)

= 0, 4 or 7

according as j ≡ 0, 1 or 2 (mod 3). If h(uv) ≡ 1 (mod 3) then g1
(

xi1uv
)

= 4,

g1
(

xi2uv
)

= 1, g1
(

xi3uv
)

= 7, and for j ≥ 4, g1

(

x
ij
uv

)

= 0, 4 or 7 according as

j ≡ 1, 2 or 0 (mod 3). If h(uv) ≡ 2 (mod 3) then g1
(

xi1uv
)

= 4, g1
(

xi2uv
)

= 1,

g1
(

xi3uv
)

= 3, g1
(

xi4uv
)

= 7, and for j ≥ 5, g1

(

x
ij
uv

)

= 0, 4 or 7 according as

j ≡ 2, 0 or 1 (mod 3).

Note that the colors of the vertices xi1uv and x
ih(uv)−1
uv remain unchanged. We

reduce g1 until we arrive at an irreducible coloring g′1. Now we prove that g′1

is a no hole coloring. Since f
(

x1u′v′

)

= f
(

x2u′v′

)

= 1 we get g1

(

x11u′v′

)

= 3 and

g1

(

x
1h(uv)−1

u′v′

)

= 6. Thus g1

(

x12u′v′

)

= 1. Since g1(u
′) = 0 and d

(

x12u′v′ , u
′

)

= 2,

color of the vertex x12u′v′ cannot be reduced and so g′1

(

x12u′v′

)

= 1. A maximum

degree vertex is colored with 0 and its neighbors are colored with 2, 3, 4, 5, 6 and
7. Hence g′1 is an inh-coloring with span 7.

Case 2. In this case we take r ≥ 3. We give a coloring g2 to G(rPh) as below.

For any edge uv of G, g2
(

xi1uv
)

= g
(

xi1uv
)

and g2

(

x
ih(uv)−1
uv

)

= g(xi2uv), 1 ≤ i ≤ r.

Since g2

(

x11u′v′

)

= 3 and g2

(

x
1h(uv)−1

u′v′

)

= 3r we take g2

(

x12u′v′

)

= 1. Then we

color the remaining vertices greedily in any order. If w is such a vertex, then
it has two neighbors and there are two vertices at distance two from it. Hence
g2(w) ≤ 8. Since r ≥ 3, we get 3r + 1 > 8. Thus span(g2) = 3r + 1. We reduce
g2 until we arrive at an irreducible coloring g′2. Now we prove that g′2 is a no

hole coloring. Since g2

(

x12u′v′

)

= 1, g2(u
′) = 0 and d

(

x12u′v′ , u
′

)

= 2, color of the

vertex x12u′v′ cannot be reduced and so g′2

(

x12u′v′

)

= 1. A maximum degree vertex

is colored with 0 and its neighbors are colored with 2, 3, . . . , 3r + 1. Hence g′2 is
an inh-coloring with span 3r + 1.

From these two cases we conclude that G(rPh) is inh-colorable and λ(G(rPh))
≤ λinh(G(rPh)) ≤ 3r + 1. Thus from Proposition 4 we get λinh(G(rPh)) =
λ(G(rPh)) = 3r + 1.

We state the following lemma by Mandal and Panigrahi [13] which will be
used in our next few results.

Lemma 23 [13]. Let f be an irreducible coloring of a graph G. Then no two

consecutive numbers can be holes in f . Further, if l is a hole in f then every

vertex colored with l + 1 is adjacent to a vertex colored with l − 1.



546 N. Mandal and P. Panigrahi

Now we consider graphs G with ∆(G) ≥ 3. The theorem below gives upper
bound to λinh(G(rP2)) which agrees with the upper bound of λinh

(

G(2)

)

given
by Mandal and Panigrahi [13], for r = 1. If G is either a tree or a non-bipartite
graph then the bound agrees with the upper bound of λ(G(rP2)) given by Lü
and Sun [12].

Theorem 24. Let G be a graph with ∆(G) ≥ 3. Then for r ≥ 2, G(rP2) is
inh-colorable and

λinh(G(rP2)) ≤

{

χ(G) + rχ′(G) + 3 if G is a bipartite graph other than a tree,

χ(G) + rχ′(G) otherwise,

where χ(G) and χ′(G) are respectively the chromatic number and edge chromatic

number of G.

Proof. Let G be a bipartite graph other than a tree. Now let f ′

1 be an edge
coloring of G starting with color 1 and ending with χ′(G). Mandal and Panigrahi
[13] have given an inh-coloring f1 to G(2). We describe the coloring f1 below.

Let y be a vertex in G of degree at least 3 and y1, y2, y3 be its neighbors
with degree of y1 greater than or equal to 2. Let y11 be a neighbor of y1 different
from y. We give an L(2, 1)-coloring c1 to G(2) as below. c1(y) = 1, c1(yi) = 0
and c1

(

x1yyi

)

= i+ 2 for i = 1, 2, 3, c1
(

x1y1y11

)

= 2 and c1(y11) = 4. We color all
the uncolored vertices in V (G) with the colors 0 and 1 so that L(2, 1)-coloring
constraints are satisfied in G(2) and any vertex in V (G) colored with 1 is at dis-
tance 2 in G(2) from a vertex colored with 0. We color the remaining uncolored
vertices of G(2) with the colors 6, 7, . . . , χ′(G) + 5 such that L(2, 1)-coloring con-
straints are satisfied. We reduce c1 until we arrive at an irreducible coloring f1.
Mandal and Panigrahi [13] have proved that f1 is an inh-coloring of G(2) with
span less than or equal to χ(G) + χ′(G) + 3 and greater than 4 such that color
of each node is less than or equal to 4.

Let span(f1) = λ1. Let S1 = V (G) ∪
{

x11uv : uv ∈ E(G)
}

and S′

1 =
V (G(rP2))−S1. We give an L(2, 1)-coloring g1 to G(rP2) as below: g1(u) = f1(u)
for all u ∈ V (G), g1

(

x11uv
)

= f1(x
1
uv) for all edges uv of G, and we assign

g1
(

xi1uv
)

= χ(G) + χ′(G) + 3 + (i − 2)χ′(G) + f ′

1(uv) for 2 ≤ i ≤ r. Then all
the vertices adjacent to a node have different colors. Since colors of nodes are
less than 5 and colors of vertices in S′

1 are greater than 5, g1 is an L(2, 1)-coloring.
We reduce g1 until we arrive at an irreducible coloring g′1. In this process color
of vertices in S′

1 are only reduced. We prove that g′1 is a no-hole coloring. Let l
be a hole in g′1. Then l ≥ λ1 + 1 ≥ 6. From Lemma 23, a vertex colored with
l + 1 is adjacent to a vertex colored with l − 1. A vertex colored with l + 1 lies
in S′

1 and it is adjacent to vertices in V (G) only. Hence l − 1 ≤ 4. This is a
contradiction. Hence g′1 is an inh-coloring with span(g′1) ≤ χ(G) + rχ′(G) + 3
and λinh(G(rP2)) ≤ χ(G) + rχ′(G) + 3.
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Next let G be a tree. We take a leaf s of G. Let t be the vertex adjacent to
s. We give an L(2, 1)-coloring g2 to G(rP2) as below. We color the vertex t with
color 0. We color the vertices x11ts , x

21
ts , . . . , x

r1
ts and s with colors 2, 3, . . . , r+1 and

r + 3 respectively. We order the uncolored nodes of G(rP2) in increasing order
of their distances from t and color them greedily. We note that colors 0 and 1
are only used by these nodes. We order the remaining vertices of of G(rP2) in
increasing order of their distance from t and color them greedily. When such a
vertex w is colored it is adjacent to two vertices colored with 0 and 1 and there
are at most r∆−1 colored vertices at distance two from it. Thus g2(w) ≤ r∆+2
and so span(g2) ≤ r∆+2. Now g2 is an irreducible coloring and the only possible
hole is r+2. But a neighbor of t is colored with r+2. Thus g2 is an inh-coloring.
Since r∆+ 2 = χ(G) + rχ′(G), we get λinh(G(rP2)) ≤ χ(G) + rχ′(G).

Finally, let G be not a bipartite graph. Now let f ′

3 be an edge coloring of
G starting with color 1 and ending with χ′(G). Mandal and Panigrahi [13] have
given an inh-coloring f3 to G(2). We describe the coloring f3 below.

Let c be a proper coloring of G which uses χ(G) colors starting from 1
such that color of no vertex can be reduced. There is at least one vertex z

colored with 1 and adjacent to at least one vertex of every other color class.
Let z1, z2, . . . , zχ(G)−1 be vertices adjacent to z and colored with 2, 3, . . . , χ(G),
respectively. From c we construct an L(2, 1)-coloring c3 of G(2) as below. c3(u) =
c(u)−1 if u ∈ V (G) and c3

(

x1zz1

)

= 3. If χ(G) = 3 we do not assign color to x1zz2
now. If χ(G) > 3 then c3

(

x1zz2

)

= 4. If χ(G) = 4 we do not assign color to x1zz3

now. If χ(G) > 4 then for 3 ≤ i ≤ χ(G)−2, c3(x
1
zzi

) = i+2 and c3

(

x1zzχ(G)−1

)

= 2.

For any uncolored vertex z′ in G(2) we define c3(z
′) = χ(G)+ f ′(ez′), where ez′ is

the edge of G that is subdivided by z. If c3 is not irreducible we reduce c3 until
we arrive at an irreducible coloring f3. Mandal and Panigrahi [13] have proved
that f3 is an inh-coloring of G(2) with span less than or equal to χ(G) + χ′(G)
and greater than χ(G) − 1 such that color of each node is less than or equal to
χ(G)− 1.

Let span(f3) = λ3. Let S3 = V (G) ∪
{

x11uv : uv ∈ E(G)
}

and S′

3 =
V (G(rP2)) − S3. We give an L(2, 1)-coloring g3 to G(rP2) as below: g3(u) =
f3(u) for all u ∈ V (G), g3

(

x11uv
)

= f3
(

x1uv
)

for all edges uv of G, g3(x
i1
uv) =

χ(G) + (i − 1)χ′(G) + f ′

3(uv) for 2 ≤ i ≤ r. Then g3 is an L(2, 1)-coloring be-
cause all the vertices adjacent to a node have different colors, all nodes have
colors less than χ(G), and colors of vertices in S′

3 are greater than χ(G). We
reduce g3 until we arrive at an irreducible coloring g′3. In this process color of
vertices in S′

3 are only reduced. We prove that g′3 is a no-hole coloring. If l is
a hole in g′3, then l ≥ λ3 + 1 ≥ χ(G) + 1. From Lemma 23, a vertex colored
with l + 1 is adjacent to a vertex colored with l − 1. A vertex colored with l + 1
lies in S′

3 and is adjacent to vertices in V (G) only. Hence l−1 ≤ χ(G)−1. This is
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a contradiction. Hence g′3 is an inh-coloring with span(g′3) ≤ χ(G) + rχ′(G) and
λinh(G(rP2)) ≤ χ(G) + rχ′(G).

Theorem 25. Let G be a graph with ∆(G) ≥ 3, h(e) ≥ 2, and h(e) = 2 for

at least one e but not for all. Then for r ≥ 5, G(rPh) is inh-colorable and

λinh(G(rPh)) ≤ 2r∆− r + 5.

Proof. Let uv be an edge in G with h(uv) > 2 and deg(u) ≥ deg(v). We give
a coloring f to vertices in G(rPh) as below: f(u) = f(v) = 0, and uncolored
nodes of G(rPh) are colored greedily using Algorithm 9 in any order. Let c

be the maximum color used by f till now. When a node is colored it has no
colored neighbor and there are most ∆ colored vertices at distance two from it.
Also there exist at least two nodes distance two apart from each other. Hence
1 ≤ c ≤ ∆. We color the vertex x11uv greedily and get f

(

x11uv
)

= 2. If c = 1
then the maximum color used till now is 2 and no hole is created. If c > 1
then there is a vertex y1 in V (G) colored with c − 1. Since the coloring is
obtained greedily, y1 is at distance two from at least c− 1 vertices in V (G), say,
z1, z2, . . . , zc−1 colored with 0, 1, . . . , c − 2, respectively. We color the vertices
x11y1z1 , x

11
y1z2

, . . . , x11y1zc−1
greedily in the order they are listed. Then the colors

c−2, c−1, c, f
(

x11y1z1

)

, f
(

x11y1z2

)

, . . . , f
(

x11y1zc−2

)

, and f
(

x11y1zc−1

)

are all distinct

and one of them is c + 1. Therefore, c + 1 is not a hole. Hence the maximum
color used till now is at least c + 1 and no hole is created. Let V1 =

{

xi1u1v1
:

h(u1v1) = 2, 1 ≤ i ≤ r
}

. We color the vertices in V1 greedily in any order.
No hole is created till now. We color the vertices xi1uv, 2 ≤ i ≤ r, greedily in
any order. We choose a maximum degree vertex w of G, where w 6= v. This
is possible since deg(u) ≥ deg(v). We color the uncolored vertices adjacent to
w greedily in any order. No hole is created till now and the maximum color
used so far is at least r∆ + 1, since w is a maximum degree vertex. Let V2 =
{

x11uv
}

∪
{

x11wv2
: h(wv2) > 2

}

∪
{

x11u3v3
: h(u3v3) > 2, x

1h(u3v3)−1
u3v3 6∈ V2

}

and V3 =
{

xi1u3v3
: x11u3v3

∈ V2, 1 ≤ i ≤ r
}

. We color the uncolored vertices in V3 greedily
in any order. Let c1 be the maximum color used by vertices in V3. No hole

is created till now. Let V4 =
{

x
ih(u3v3)−1
u3v3 : f

(

xi1u3v3

)

= c1, x
i1
u3v3

∈ V3

}

and V5 =
{

x
ih(u3v3)−1
u3v3 : xi1u3v3

∈ V3

}

. We color the vertices in V4 greedily in any order. When

a vertex x
ih(u3v3)−1
u3v3 in V4 is colored it can use any color other than f (v3) , f (v3)±

1, f (u3) , f
(

xi1u3v3

)

, f
(

xi1u3v3

)

±1 and the colors of at most r∆−r colored neighbors

of v3. Hence f
(

x
ih(u3v3)−1
u3v3

)

≤ r∆ − r + 7 ≤ r∆ + 2. No hole is created since

c1 ≥ r∆ + 1. We color the remaining vertices in V5 greedily in any order. No
hole is created so far. Finally, we color all the remaining vertices greedily in any
order. Let x

ij
u4v4 be such a vertex. Number of vertices adjacent to x

ij
u4v4 is 2 and
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number of vertices at distance two from x
ij
u4v4 is also 2. Thus color of x

ij
u4v4 is at

most 8. Hence f is an inh-coloring of G(rPh) and G(rPh) is inh-colorable.
We prove that span(f) ≤ 2r∆ − r + 5. Color of a node is less than ∆ + 1.

Let xi1u5v5
be a vertex such that h(u5v5) = 2. Then u5 and v5 have at most r∆

neighbors each, of which r neighbors are common. Thus u5 and v5 have at most
2r∆− r neighbors in total. Hence number of vertices adjacent to xi1u5v5

is 2 and
number of vertices at distance two from it is at most 2r∆ − r − 1. Thus color
of xi1u5v5

is at most 2r∆ − r + 5. Let xi1u6v6
be a vertex such that h(u6v6) > 2.

Number of vertices adjacent to xi1u6v6
is 2 and number of vertices at distance two

from it is at most r∆. Thus color of xi1y6v6 is at most r∆ + 6. Let x
ij
u7v7 be a

vertex not adjacent to u7 or v7. Number of vertices adjacent to x
ij
u7v7 is 2 and

number of vertices at distance two from x
ij
u7v7 is 2. Thus color of x

ij
u7v7 is at most

8. Therefore span(f) ≤ 2r∆− r + 5 and hence the result follows.

Finally, we consider graphs having maximum degree at least 4. In the theo-
rem below we obtain an upper bound of λinh (G(rP3)), r ≥ 2, which agrees with
the upper bound of λinh

(

G(3)

)

given by Mandal and Panigrahi [13], for r = 1.
Moreover, we find the exact value of λinh (G(rP3)) if ∆(G) is at least four times
the minimum degree of G.

Theorem 26. If G is a graph with ∆ ≥ 4, then for r ≥ 2, G(rP3) is inh-colorable
and λinh(G(rP3)) ≤ r∆ + 2. Further, if ∆ ≥ 4δ then λinh(G(rP3)) = r∆ + 1,
where δ is the minimum degree in G.

Proof. Let G1 be the subgraph of G(rP3) induced on the vertex set V (G)∪
{

x
1j
uv :

j ∈ {1, 2}, uv ∈ E(G)
}

. Then G1 is isomorphic to G(3). According to Proposition
3 we get a λ-perfect labeling f of G1. We note that 1 is the only hole in f

because nodes are colored with 0, vertices adjacent to a maximum degree vertex
are colored with 2, 3, . . . ,∆+ 1 and every vertex is either a node or adjacent to
a node. Now we use f to construct an L(2, 1)-coloring g of G(rP3) with span
r∆+1 as below: g(w) = f(w) if w ∈ V (G1), for all edges uv of G, 2 ≤ i ≤ r and

1 ≤ j ≤ 2, g
(

x
ij
uv

)

= g
(

x
1j
uv

)

+ (i− 1)∆. We check that g is an L(2, 1)-coloring

with span r∆+ 1 and having a hole at 1. A maximum degree vertex in G(rP3)
is colored with 0 and its neighbors are colored with 2, 3, . . . , r∆ + 1. Thus 1 is
the only hole in g. Let u′ be a minimum degree vertex of G. Let y be a vertex
having the maximum color among the neighbors of u′ in G (rP3). Then y = xr1u′v′

for some neighbor v′ of u′ in G. Thus (r − 1)∆ + 2 ≤ g
(

xr1u′v′

)

≤ r∆ + 1 and
(r− 1)∆+ 2 ≤ g(xr2u′v′) ≤ r∆+ 1. We give another L(2, 1)-coloring g′ to G (rP3)
where g′(z) = g(z) if z 6= u′, xr1u′v′ and g′

(

xr1u′v′

)

= 1. Since no vertex adjacent
to xr1u′v′ is colored with 0 or 2, L(2, 1)-coloring constraints are satisfied. Next, u′

is colored with the least available color such that L(2, 1)-coloring constraints are
satisfied by g′. Since no vertex adjacent to u′ is colored with r∆+1, g′(u′) ≤ r∆+2
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and thus span(g′) ≤ r∆+2. Again, the number of vertices adjacent to u′ is rδ and
the number of vertices at distance two from u′ is also rδ. Hence the number of
colors not available for u′ is at most 4rδ and so g′(u′) ≤ 4rδ. Therefore, if ∆ ≥ 4δ
then g′(u′) ≤ r∆+1 and so span(g′) = r∆+1. Now we reduce g′ until we arrive
at an irreducible coloring g′′. Since g′

(

xr1u′v′

)

= 1, g′(v′) = 0 and d
(

xr1u′v′ , v
′
)

= 2,
color of xr1u′v′ cannot be reduced and so g′′

(

xr1u′v′

)

= 1. There is a maximum degree
vertex in G(rP3) colored with 0 and its neighbors are colored with 2, 3, . . . , r∆+1
by g′′. Thus g′′ is an inh-coloring of G(rP3) and λinh(G(rP3)) ≤ r∆+2. Further,
by Proposition 4 if ∆ ≥ 4δ then λinh(G(rP3)) = r∆+ 1.

Lü and Sun [12] have found the exact value of λ(G(rP3)), r ≥ 2, when ∆(G)
is even. In the corollary below we find the same when ∆(G) is odd.

Corollary 27. If G is a graph with ∆(G) ≥ 5, ∆(G) odd, then for r ≥ 2,
λ(G(rP3)) = r∆+ 1.

Proof. In the proof of Theorem 26 we have given an L(2, 1)-coloring g to G(rP3)
with span r∆+ 1. Thus from Proposition 4 we get λ(G(rP3)) = r∆+ 1.

In Theorem 28 below we find the exact value of span and inh-span of G(rPh)
(with some restrictions on h) which coincide with span and inh-span of G(h), for
r = 1, given by Chang et al. [1] and Mandal and Panigrahi [13], respectively.
In particular, for ∆(G) odd we get the exact value of λ(G(rP4)) which was not
found by Lü and Sun [12].

Theorem 28. If G is a graph with ∆(G) ≥ 4, r ≥ 2, and h(e) ≥ 3 with strict

inequality for at least one e, then λinh(G(rPh)) = λ(G(rPh)) = r∆+ 1.

Proof. Here we consider the same L(2, 1)-coloring g of G(rP3) that appears in
the proof of Theorem 26. Note that span of g is r∆ + 1 and g assigns color 0
to all nodes. Let u′v′ be an edge in G such that h(u′v′) > 3. Then we give an
L(2, 1)-coloring g′ to G(rPh) as below. For any edge uv in G and for 1 ≤ i ≤ r,

g′
(

xi1uv
)

= g
(

xi1uv
)

, g′
(

x
ih(uv)−1
uv

)

= g
(

xi2uv
)

, and g′
(

x22u′v′

)

= 1 (this is possible

since g′
(

x21u′v′

)

> ∆ + 1 and g′
(

x
2h(u′v′)−1

u′v′

)

> ∆ + 1). We color the remaining

vertices greedily in any order applying Algorithm 9. When such a vertex w is
colored it is adjacent to two vertices and there are two vertices at distance two
from it. Hence g′(w) ≤ 8. Since r ≥ 2 and ∆ ≥ 4, g′(w) ≤ r∆ + 1. Thus
span(g′) = r∆ + 1. Now we reduce g′ until we arrive at an irreducible coloring

g′′. We prove that g′′ is a no-hole coloring. Since g′
(

x22u′v′

)

= 1, g′(u′) = 0

and d
(

x22u′v′ , u
′

)

= 1, the color of x22u′v′ cannot be reduced and thus g′′
(

x22u′v′

)

=

1. A maximum degree vertex is colored with 0 and its neighbors are colored
with 2, 3, . . . , r∆ + 1 by g′′. Hence g′′ is an inh-coloring with span r∆ + 1.
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Thus λ(G(rPh)) ≤ λinh (G(rPh)) ≤ r∆ + 1. Now from Proposition 4 we get
λinh (G(rPh)) = λ(G(rPh)) = r∆+ 1.

5. Concluding Remarks

In this paper we show that for any graph G with h(e) ≥ 3 and r ≥ 2, G(rPh) is
inh-colorable and for ∆(G) ≥ 2, G(rP2) is inh-colorable. We also prove that if G
is a graph with ∆(G) ≥ 2, h(e) ≥ 2 for all e in E(G) and h(e) = 2 for at least
one e but not for all, and r ≥ 2, then G(rPh) is inh-colorable except possibly the
following cases: ∆(G) = 2, r = 2; and ∆(G) ≥ 3, 2 ≤ r ≤ 4. We have found
the exact value of λinh(G(rPh)) in several cases and given upper bounds in the
remaining. However, some of the upper bounds given in the paper may not be
sharp. So the following problems remain open.

1. Is G(2Ph) inh-colorable for any G with ∆ = 2, h(e) ≥ 2 for all edges and
equality for at least one but not for all?

2. Is G(rPh) inh-colorable for any graph G with ∆ ≥ 3, h(e) ≥ 2 for all edges
and equality for at least one but not for all, and 2 ≤ r ≤ 4?

3. Can the upper bound of λinh(G(rPh)), when ∆(G) = 2, r ≥ 2 and h(e) ≥ 2
with equality for at least one e but not for all (Theorems 12 and 16) be
improved?

4. Can the upper bound of λinh(G(rPh)), when ∆(G) ≥ 3, r ≥ 5 and h(e) ≥ 2
with equality for at least one e but not for all (Theorem 25) be improved?

5. Whether λinh(G(rP3)) = r∆ + 1, for every graph G with ∆ ≥ 3 and r ≥ 2
(Theorems 21 and 26)?

6. Is the upper bound 6 for λinh(Cm(2P3)), m ≥ 4 (Theorem 17) sharp?

7. Can the upper bound for λinh(Cm(rP2)) given in Theorem 15 be improved?
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[12] D. Lü and J. Sun, L(2, 1)-labelings of the edge-multiplicity-paths-replacement of a

graph, J. Comb. Optim. 31 (2016) 396–404.
doi:10.1007/s10878-014-9761-x

[13] N. Mandal and P. Panigrahi, On irreducible no-hole L(2, 1)-coloring of subdivision

of graphs , J. Comb. Optim. 33 (2017) 1421–1442.
doi:10.1007/s10878-016-0047-3

[14] D.B. West, Introduction to Graph Theory (New Delhi, Prentice-Hall, 2003).

[15] M.A. Whittlesey, J.P. Georges and D.W. Mauro, On the λ-number of Qn and related

graphs , SIAM J. Discrete Math. 8 (1995) 499–506.
doi:10.1137/S0895480192242821

Received 26 August 2016
Revised 10 January 2017

Accepted 10 January 2017

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1016/S0166-218X\(03\)00329-9
http://dx.doi.org/10.1137/0405048
http://dx.doi.org/10.1016/j.disc.2007.03.034
http://dx.doi.org/10.1007/s10878-013-9632-x
http://dx.doi.org/10.1002/net.20286
http://dx.doi.org/10.1007/s10878-012-9470-2
http://dx.doi.org/10.1007/s10878-014-9761-x
http://dx.doi.org/10.1007/s10878-016-0047-3
http://dx.doi.org/10.1137/S0895480192242821
http://www.tcpdf.org

