IRREDUCIBLE NO-HOLE $L(2,1)$-COLORING OF EDGE-MULTIPLICITY-PATHS-REPLACEMENT GRAPH

Nibedita Mandal and Pratima Panigrahi
Department of Mathematics
Indian Institute of Technology Kharagpur, India
e-mail: nibedita.mandal.iitkgp@gmail.com
pratima@maths.iitkgp.ernet.in

Abstract

An $L(2,1)$-coloring (or labeling) of a simple connected graph G is a mapping $f: V(G) \rightarrow Z^{+} \cup\{0\}$ such that $|f(u)-f(v)| \geq 2$ for all edges $u v$ of G, and $|f(u)-f(v)| \geq 1$ if u and v are at distance two in G. The span of an $L(2,1)$-coloring f, denoted by $\operatorname{span}(f)$, of G is $\max \{f(v): v \in V(G)\}$. The span of G, denoted by $\lambda(G)$, is the minimum span of all possible $L(2,1)$ colorings of G. For an $L(2,1)$-coloring f of a graph G with span k, an integer l is a hole in f if $l \in(0, k)$ and there is no vertex v in G such that $f(v)=l$. An $L(2,1)$-coloring is a no-hole coloring if there is no hole in it, and is an irreducible coloring if color of none of the vertices in the graph can be decreased and yield another $L(2,1)$-coloring of the same graph. An irreducible no-hole coloring, in short inh-coloring, of G is an $L(2,1)$-coloring of G which is both irreducible and no-hole. For an inh-colorable graph G, the inh-span of G, denoted by $\lambda_{i n h}(G)$, is defined as $\lambda_{i n h}(G)=\min \{\operatorname{span}(f): f$ is an inh-coloring of $G\}$. Given a function $h: E(G) \rightarrow \mathbb{N}-\{1\}$, and a positive integer $r \geq 2$, the edge-multiplicity-paths-replacement graph $G\left(r P_{h}\right)$ of G is the graph obtained by replacing every edge $u v$ of G with r paths of length $h(u v)$ each. In this paper we show that $G\left(r P_{h}\right)$ is inh-colorable except possibly the cases $h(e) \geq 2$ with equality for at least one but not for all edges e and (i) $\Delta(G)=2, r=2$ or (ii) $\Delta(G) \geq 3,2 \leq r \leq 4$. We find the exact value of $\lambda_{i n h}\left(G\left(r P_{h}\right)\right)$ in several cases and give upper bounds of the same in the remaining. Moreover, we find the value of $\lambda\left(G\left(r P_{h}\right)\right)$ in most of the cases which were left by Lü and Sun in $[L(2,1)$-labelings of the edge-multiplicity-paths-replacement of a graph, J. Comb. Optim. 31 (2016) 396-404].

Keywords: $L(2,1)$-coloring, no-hole coloring, irreducible coloring, subdivision graph, edge-multiplicity-paths-replacement graph.
2010 Mathematics Subject Classification: 05C15.

1. Introduction

The channel assignment problem is to assign frequencies to a given group of radio transmitters so that interfering transmitters are assigned frequencies with at least a minimum allowed separation. Griggs and Yeh [4] mentioned that in 1988, Roberts (in a private communication to Griggs) proposed the problem of efficiently assigning radio channels to transmitters at several locations, using nonnegative integers to represent channels, so that close locations receive different channels, and channels for very close locations are at least two apart. Motivated by this problem, Griggs and Yeh [4] proposed the $L(2,1)$-coloring problem of a graph as follows. The $L(2,1)$-coloring of a simple connected graph G is a vertex coloring (or labeling) $f: V(G) \rightarrow Z^{+} \cup\{0\}$ such that $|f(u)-f(v)| \geq 2$ for all edges $u v$ of G, and $|f(u)-f(v)| \geq 1$ if $d(u, v)=2$, where $d(u, v)$ is the distance between vertices u and v in G. The span of an $L(2,1)$-coloring f of a graph G, denoted by $\operatorname{span}(f)$, is equal to $\max \{f(v): v \in V(G)\}$. The span of a graph G, denoted by $\lambda(G)$, is equal to $\min \{\operatorname{span}(f): f$ is an $L(2,1)$-coloring of $G\}$. An $L(2,1)$-coloring whose span is equal to the span of the graph is called a span coloring.

Throughout the paper we consider simple connected graphs only. The maximum degree of a graph G is denoted by $\Delta(G)$ or simply Δ if no confusion arises. Now we state a result by Chang and $\mathrm{Lu}[2]$ which will be used in the sequel.

Proposition 1 (Proposition 1, [2]). For any graph $G, \lambda(G) \geq \Delta+1$. Further, if $\lambda(G)=\Delta+1$, then in any span coloring of G the maximum degree vertices must be colored with 0 (or $\Delta+1$) and its neighbors must be colored with $2+i$ (or i), $i=0,1, \ldots, \Delta-1$.

Fishburn and Roberts [3] introduced no-hole coloring of graphs. For a graph G and an $L(2,1)$-coloring f of it with span k, an integer l is called a hole in f, if $l \in(0, k)$ and there is no vertex v in G such that $f(v)=l$. An $L(2,1)$ coloring of a graph is a no-hole coloring if there is no hole in it. Since frequencies are typically used in a block, one may want to use all available frequencies in that block. This is assured by a no-hole coloring. An $L(2,1)$-coloring f of a graph G is called reducible if there exists another $L(2,1)$-coloring g of G such that $g(u) \leq f(u)$ for all vertices $u \in V(G)$ and there exists a vertex $v \in V(G)$ such that $g(v)<f(v)$. An $L(2,1)$-coloring is irreducible if it is not reducible. An irreducible no-hole coloring is referred as inh-coloring and a graph is called inh-colorable if there exists an inh-coloring of it. For an inh-colorable graph G the lower inh-span or simply inh-span of G, denoted by $\lambda_{i n h}(G)$, is defined as $\lambda_{\text {inh }}(G)=\min \{\operatorname{span}(f): f$ is an inh-coloring of $G\}$. Laskar and Villalpando [10] introduced inh-coloring and studied some properties of it. Further, they obtained upper and lower bounds of inh-span of unicyclic graphs and triangular lattices.

Laskar et al. [9] proved that every tree T different from a star is inh-colorable with $\lambda_{\text {inh }}(T)=\lambda(T)$. Jacob et al. [7] studied irreducible no-hole coloring of bipartite graphs and Cartesian product of graphs.

Given a graph G and a function $h: E(G) \rightarrow \mathbb{N}-\{1\}$ the h-subdivision of G, denoted by $G_{(h)}$, is the graph obtained from G by replacing each edge $u v$ in G with a path of length $h(u v)$. If $h(e)=c$ for all $e \in E(G)$, then we refer $G_{(h)}$ as $G_{(c)}$. Further, if $r \geq 2$ is an integer, the edge-multiplicity-paths-replacement graph $G\left(r P_{h}\right)$ of G is obtained by replacing every edge $u v$ of G with r paths of length $h(u v)$ each. In particular, if $h(e)=c$ for all edges $e \in E(G)$, we denote $G\left(r P_{h}\right)$ simply by $G\left(r P_{c}\right)$. The vertices of G in $G_{(h)}$ or $G\left(r P_{h}\right)$ are called nodes.

Throughout the paper we follow some notations as given below.
Notation 2. For any graph G we take h as a function from $E(G)$ to $\mathbb{N}-\{1\}$. The path of length k in $G_{(h)}$ which replaces the edge $u v$ in G is denoted by $u x_{u v}^{1} x_{u v}^{2} \cdots x_{u v}^{k-1} v$. The r paths of length k each in $G\left(r P_{h}\right)$ which replace the edge $u v$ in G are denoted by $P_{h}^{i}=u x_{u v}^{i_{1}} x_{u v}^{i_{2}} \cdots x_{u v}^{i_{k-1}} v, 1 \leq i \leq r$.

The $L(2,1)$-colorings of $G_{(2)}$, for any graph G, are studied by Whittlesey et al. [15], and Havet and $\mathrm{Yu}[5,6]$. The $L(2,1)$-colorings of subdivisions of graphs are studied by Lü [11], Karst et al. [8] and Chang et al. [1]. Moreover, Mandal and Panigrahi [13] have studied inh-coloring of subdivision graphs. An $L(2,1)$ coloring f of $G_{(h)}$ is said to be a λ-perfect labeling if $f(u)=0$ for all nodes u and $\operatorname{span}(f)=\Delta(G)+1[1]$. We state the following proposition by Chang et al. [1] which will be used in the sequel.

Proposition 3 (Theorem 12, [1]). If G is a graph with $\Delta(G) \geq 4$, then $G_{(3)}$ has a λ-perfect labeling.

Lü and Sun [12] studied the $L(2,1)$-coloring of the edge-multiplicity-pathsreplacement graph $G\left(r P_{c}\right)$ of a graph G. The main results of them are given in Table 1. They found the exact value of $\lambda\left(G\left(r P_{c}\right)\right)$ in the following cases: $\Delta(G) \leq 2 ; c \geq 3, \Delta(G) \geq 4$ is even; and $c \geq 5, \Delta(G) \geq 3$ is odd. For the remaining cases they gave upper bounds to $\lambda\left(G\left(r P_{c}\right)\right)$. From Proposition 1 we get the following result.

Proposition 4. $\lambda_{\text {inh }}\left(G\left(r P_{h}\right)\right) \geq \lambda\left(G\left(r P_{h}\right)\right) \geq r \Delta(G)+1$ where $h(e) \geq 2$ for all e.

In this paper we show that for any graph G with $h(e) \geq 3$ and $r \geq 2, G\left(r P_{h}\right)$ is inh-colorable and for $\Delta(G) \geq 2, G\left(r P_{2}\right)$ is inh-colorable. We also prove that if G is a graph with $\Delta(G) \geq 2, h(e) \geq 2$ for all e in $E(G)$ and $h(e)=2$ for at least one e but not for all, and $r \geq 2$, then $G\left(r P_{h}\right)$ is inh-colorable except possibly the following cases: $\Delta(G)=2, r=2$; and $\Delta(G) \geq 3,2 \leq r \leq 4$. We find the exact value of inh-span of some edge-multiplicity-paths-replacement graphs and

G	c	r	$\lambda\left(G\left(r P_{c}\right)\right.$)
$\Delta(G) \geq 3$	≥ 5	≥ 2	$r \Delta(G)+1$
	4	≥ 2	$\leq r \Delta(G)+2$
$\Delta(G) \geq 4$ and $\Delta(G)$ is even	3,4	≥ 2	$r \Delta(G)+1$
$\Delta(G) \geq 3$ and $\Delta(G)$ is odd	3	≥ 2	$\leq r \Delta(G)+r+1$
$\Delta(G) \geq 3$	2	≥ 2	$\leq r \chi^{\prime}(G)+\chi(G)$
	2	≥ 2	$\leq r(\Delta(G)+1)+\Delta(G)$
Any graph G	3	≥ 2	$\leq \lambda(G)+2 r$
	2	≥ 2	$\leq r\left(\lambda\left(G_{(2)}\right)+1\right)+r-2$
$\Delta(G)=2$	≥ 3	≥ 2	$2 r+1$
P_{n} with $3 \leq n \leq 4$	2	≥ 2	$2 r+1$
P_{n} with $n \geq 5$	2	≥ 2	$2 r+2$
C_{n} with even n	2	≥ 2	$2 r+2$
C_{n} with $n \geq 5$ and n is odd	2	2	6
	2	3	8
	2	≥ 4	$3 r-2$
C_{3}	2	2	6
	2	≥ 3	$3 r-1$
P_{2}	≥ 3	≥ 4	$r+1$
	≥ 7	3	4
	$3 \leq c \leq 6$	3	5
	≥ 2	2	4
	2	≥ 2	$r+2$

Table 1. Results in [12] on $\lambda\left(G\left(r P_{c}\right)\right)$.
for the remaining we give upper bounds to the same. Moreover, we determine the span of $G\left(r P_{h}\right)$ in most of the cases which were not obtained by Lü and Sun [12]. An important point to be noted is that Lü and Sun [12] have considered the graphs $G\left(r P_{c}\right)$ only, that is, all the edges of G are replaced by paths of the same lengths. We have considered the graphs $G\left(r P_{h}\right)$, where different edges of G may be replaced by paths of different lengths. The main results of the paper are given in Tables 2 and 3.
2. Inh-Colorability of Graphs $G\left(r P_{h}\right)$ with $\Delta(G)=1$

We first consider the case $\Delta(G)=1$, and so here the graph G is obviously P_{2}. In this case we take $r \geq 3$ because for $r=2, P_{2}\left(r P_{h}\right)$ is a cycle. We also take $h(e) \geq 3$ because $P_{2}\left(r P_{2}\right), r \geq 2$, is a complete bipartite graph, which is not inh-colorable [3].

$\Delta(G)$	$h(e)$	r	$\lambda\left(G\left(r P_{h}\right)\right)$	Theorem
$\Delta(G)=3$	$h(e)=3$ for all e	≥ 2	$3 r+1$	20
	$h(e) \geq 3$ with $h(e)>3$ for at least one edge	≥ 2	$3 r+1$	22
$\Delta(G) \geq 4$ and $\Delta(G)$ is odd	$h(e)=3$ for all e	≥ 2	$r \Delta+1$	Corollary 27
$\Delta(G) \geq 4$	$h(e) \geq 3$ with $h(e)>3$ for at least one edge	≥ 2	$r \Delta+1$	28

Table 2. Results of the paper on $\lambda\left(G\left(r P_{h}\right)\right)$.
Theorem 5. For $r \geq 3, \lambda_{\text {inh }}\left(P_{2}\left(r P_{3}\right)\right)=r+2$.
Proof. Let $P_{2}=u v$. We give an $L(2,1)$-coloring f to $P_{2}\left(r P_{3}\right)$ as follows. If $r=3$ then $f(u)=4, f(v)=5, f\left(x_{u v}^{1_{1}}\right)=0, f\left(x_{u v}^{2_{1}}\right)=2, f\left(x_{u v}^{3_{1}}\right)=1, f\left(x_{u v}^{1_{2}}\right)=2$, $f\left(x_{u v}^{2_{2}}\right)=0$, and $f\left(x_{u v}^{3_{2}}\right)=3$. If $r \geq 4$ then $f(u)=0, f(v)=r+2, f\left(x_{u v}^{i_{1}}\right)=i+1$ for $1 \leq i \leq r, f\left(x_{u v}^{1_{2}}\right)=r$, and $f\left(x_{u v}^{i_{2}}\right)=i-1$ for $2 \leq i \leq r$. We check that f is an inh-coloring of $P_{2}\left(r P_{3}\right)$. Thus $\lambda_{\text {inh }}\left(P_{2}\left(r P_{3}\right)\right) \leq r+2$.

Now we prove that $\lambda_{\text {inh }}\left(P_{2}\left(r P_{3}\right)\right) \geq r+2$. We know that $\lambda\left(P_{2}\left(r P_{3}\right)\right)=r+1$ [12]. Suppose $\lambda_{\text {inh }}\left(P_{2}\left(r P_{3}\right)\right)=r+1$ and g is an inh-coloring of $P_{2}\left(r P_{3}\right)$ with span $r+1$. If both the nodes are colored with 0 then 1 is a hole, and if both the nodes are colored with $r+1$ then r is a hole. Hence one node, say u, is colored with 0 and the other node, say v, is colored with $r+1$. Then for some $i, 1 \leq i \leq r, g\left(x_{u v}^{i_{1}}\right)=r+1$. This is a contradiction since $d\left(x_{u v}^{i_{1}}, v\right)=2$. Thus $\lambda_{\text {inh }}\left(P_{2}\left(r P_{3}\right)\right) \geq r+2$ and we get $\lambda_{\text {inh }}\left(P_{2}\left(r P_{3}\right)\right)=r+2$.

In the next three theorems we show that inh-span of $P_{2}\left(r P_{k}\right), k \geq 4, r \geq 3$, coincides with its span as computed by Lü and Sun [12].

Theorem 6. For $k \geq 4$, $\lambda_{\text {inh }}\left(P_{2}\left(4 P_{k}\right)\right)=5$.
Proof. Let $P_{2}=u v$. We first take $k \equiv 1(\bmod 3)$. We give an $L(2,1)$-coloring f_{1} to $P_{2}\left(4 P_{k}\right)$ as follows: $f_{1}(u)=f_{1}(v)=0, f_{1}\left(x_{u v}^{1_{1}}\right)=2, f_{1}\left(x_{u v}^{1_{2}}\right)=5, f_{1}\left(x_{u v}^{1_{3}}\right)=3$, $f_{1}\left(x_{u v}^{1_{j}}\right)=0,5$ or 3 according as $j \equiv 1,2$ or $0(\bmod 3)$ for $4 \leq j \leq k-1$; $f_{1}\left(x_{u v}^{2_{1}}\right)=3, f_{1}\left(x_{u v}^{2_{2}}\right)=5, f_{1}\left(x_{u v}^{2_{3}}\right)=2, f_{1}\left(x_{u v}^{2_{j}}\right)=0,4$ or 2 according as $j \equiv 1$, 2 or $0(\bmod 3)$ for $4 \leq j \leq k-1 ; f_{1}\left(x_{u v}^{3_{1}}\right)=4, f_{1}\left(x_{u v}^{3_{2}}\right)=1, f_{1}\left(x_{u v}^{3_{3}}\right)=5$, for $f_{1}\left(x_{u v}^{3_{j}}\right)=0,2$ or 5 according as $j \equiv 1,2$ or $0(\bmod 3)$ for $4 \leq j \leq k-1$; $f_{1}\left(x_{u v}^{4_{1}}\right)=5, f_{1}\left(x_{u v}^{4_{2}}\right)=1, f_{1}\left(x_{u v}^{4_{3}}\right)=4, f_{1}\left(x_{u v}^{4_{j}}\right)=0,2$ or 4 according as $j \equiv 1$, 2 or $0(\bmod 3)$ for $4 \leq j \leq k-1$. It can be checked that f_{1} is an $L(2,1)$-coloring. We reduce f_{1} until we arrive at an irreducible coloring f_{1}^{\prime}. In the coloring f_{1}^{\prime}, u is
colored with 0 , its neighbors are colored with $2,3,4,5$, and $x_{u v}^{32}$ is colored with 1. Hence f_{1}^{\prime} is an inh-coloring with span 5.

$\Delta(G)$		$h(e)$	r		$\lambda_{i n h}\left(G\left(r P_{h}\right)\right)$	Theorem
$\Delta(G)=1$,	i.e., $G=P_{2}$	$h(e)=3$	≥ 3		$r+2$	5
		$h(e) \geq 4$	4	4	5	6
		$4 \leq h(e) \leq 6$	3	3	5	7
		$\overline{h(e)} \geq 7$	3	3	4	7
		$h(e) \geq 4$			$r+1$	8
$\begin{gathered} \Delta(G)=2, \\ \text { i.e. }, \\ G=P_{m} \end{gathered}$ or C_{m},	$P_{m}, 3 \leq m \leq 4$	$h(e)=2$	≥ 2		$2 r+1$	11
	$P_{m}, m \geq 5$	$h(e)=2$			$2 r+2$	11
	$P_{m}, m \geq 3$	$h(e) \geq 2$ with $h(e)>2$ for at least one edge but not for all	$\geq 3 \leq$		$3 r+3$	12
		$\overline{h(e)}=3$	≥ 2		$2 r+1$	13
	C_{3}	$h(e)=3$	≥ 2		$2 r+2$	14
$\begin{gathered} C_{m}, \\ m \geq 3 \end{gathered}$	C_{m}, m even	$h(e)=2$	≥ 2	2	$2 r+3$	15
	C_{m}, m odd	$h(e)=2$	≥ 2	$2 \leq$	$3 r+2$	15
	C_{m}	$h(e) \geq 2$ with $h(e)>2$ for at least one edge but not for all	≥ 3	$3 \leq$	$3 r+3$	16
	$C_{m}, m \geq 4$	$h(e)=3$		$2 \leq$	6	17
		$\overline{h(e)}=3$	≥ 3		$2 r+1$	18
		$h(e) \geq 3 \text { with } h(e)>3$ for at least one edge			$2 r+1$	19
$\Delta(G)=3$		$h(e)=3$	$\begin{aligned} & \geq 2 \\ & \geq 2 \\ & \geq 2 \end{aligned}$	$2 \leq$	$3 r+2$	21
		$h(e) \geq 3 \text { with } h(e)>3$ for at least one edge			$3 r+1$	22
$\Delta(G) \geq 3$		$h(e)=2$	$\geq 2 \leq$		$\leq\left\{\begin{array}{l} \chi(G)+r \chi^{\prime}(G)+3 \\ \text { if } G \text { is a bipartite } \\ \text { graph other than } \\ \text { a tree } \\ \\ \chi(G)+r \chi^{\prime}(G), \\ \text { otherwise } \end{array}\right.$	24
		$\overline{h(e) \geq 2}$ with $h(e)>2$ for at least one edge but not for all			$2 r \Delta-r+5$	25
$\Delta(G) \geq 4$		$h(e)=3$			$r \Delta+2$ $r \Delta+1$ (with some conditions)	$\begin{aligned} & 26 \\ & 26 \end{aligned}$
		$\begin{aligned} & h(e) \geq 3 \text { with } h(e)>3 \\ & \text { for at least one edge } \end{aligned}$	≥ 2		$r \Delta+1$	28

Table 3. Results of the paper on $\lambda_{i n h}\left(G\left(r P_{h}\right)\right)$.
Let $k \equiv 2(\bmod 3)$. We give an $L(2,1)$-coloring f_{2} to $P_{2}\left(4 P_{k}\right)$ as follows: $f_{2}(u)=f_{2}(v)=0 ; f_{2}\left(x_{u v}^{1_{1}}\right)=2, f_{2}\left(x_{u v}^{1_{2}}\right)=5, f_{2}\left(x_{u v}^{1_{3}}\right)=1, f_{2}\left(x_{u v}^{1_{4}}\right)=3$,
$f_{2}\left(x_{u v}^{1_{j}}\right)=0,5$ or 3 according as $j \equiv 2,0$ or $1(\bmod 3)$ for $5 \leq j \leq k-1$; $f_{2}\left(x_{u v}^{2_{1}}\right)=3, f_{2}\left(x_{u v}^{2_{2}}\right)=1, f_{2}\left(x_{u v}^{2_{3}}\right)=5, f_{2}\left(x_{u v}^{2_{4}}\right)=2, f_{2}\left(x_{u v}^{2_{j}}\right)=0,4$ or 2 according as $j \equiv 2,0$ or $1(\bmod 3)$ for $5 \leq j \leq k-1 ; f_{2}\left(x_{u v}^{3_{1}}\right)=4, f_{2}\left(x_{u v}^{3_{2}}\right)=1$, $f_{2}\left(x_{u v}^{3_{3}}\right)=3, f_{2}\left(x_{u v}^{3_{4}}\right)=5, f_{2}\left(x_{u v}^{3_{j}}\right)=0,2$ or 5 according as $j \equiv 2,0$ or $1(\bmod$ 3) for $5 \leq j \leq k-1 ; f_{2}\left(x_{u v}^{4_{1}}\right)=5, f_{2}\left(x_{u v}^{4_{2}}\right)=3, f_{2}\left(x_{u v}^{4_{3}}\right)=1, f_{2}\left(x_{u v}^{4_{4}}\right)=4$, $f_{2}\left(x_{u v}^{4_{j}}\right)=0,2$ or 4 according as $j \equiv 2,0$ or $1(\bmod 3)$ for $5 \leq j \leq k-1$. It can be checked that f_{2} is an $L(2,1)$-coloring. We reduce f_{2} until we arrive at an irreducible coloring f_{2}^{\prime}. In the coloring f_{2}^{\prime}, u is colored with 0 , its neighbors are colored with $2,3,4,5$, and $x_{u v}^{32}$ is colored with 1 . Hence f_{2}^{\prime} is an inh-coloring with span 5 .

Let $k \equiv 0(\bmod 3)$. We give an $L(2,1)$-coloring f_{3} to $P_{2}\left(4 P_{k}\right)$ as follows: $f_{3}(u)=f_{3}(v)=0 ; f_{3}\left(x_{u v}^{1_{1}}\right)=2, f_{3}\left(x_{u v}^{1_{2}}\right)=5, f_{3}\left(x_{u v}^{1_{3}}\right)=3, f_{3}\left(x_{u v}^{1_{4}}\right)=1$, $f_{3}\left(x_{u v}^{1_{5}}\right)=4, f_{3}\left(x_{u v}^{1_{j}}\right)=0,2$ or 4 according as $j \equiv 0,1$ or $2(\bmod 3)$ for $6 \leq$ $j \leq k-1 ; f_{3}\left(x_{u v}^{2_{1}}\right)=4, f_{3}\left(x_{u v}^{2_{2}}\right)=1, f_{3}\left(x_{u v}^{2_{3}}\right)=3, f_{3}\left(x_{u v}^{2_{4}}\right)=5, f_{3}\left(x_{u v}^{2_{5}}\right)=2$, $f_{3}\left(x_{u v}^{2_{j}}\right)=0,4$ or 2 according as $j \equiv 0,1$ or $2(\bmod 3)$ for $6 \leq j \leq k-1$; $f_{3}\left(x_{u v}^{3_{1}}\right)=3, f_{3}\left(x_{u v}^{3_{2}}\right)=1, f_{3}\left(x_{u v}^{3_{3}}\right)=4, f_{3}\left(x_{u v}^{3_{4}}\right)=2, f_{3}\left(x_{u v}^{3_{5}}\right)=5, f_{3}\left(x_{u v}^{3_{j}}\right)=$ 0,2 or 5 according as $j \equiv 0,1$ or $2(\bmod 3)$ for $6 \leq j \leq k-1 ; f_{3}\left(x_{u v}^{4_{1}}\right)=5$, $f_{3}\left(x_{u v}^{4_{2}}\right)=2, f_{3}\left(x_{u v}^{4_{3}}\right)=4, f_{3}\left(x_{u v}^{4_{4}}\right)=1, f_{3}\left(x_{u v}^{4_{5}}\right)=3, f_{3}\left(x_{u v}^{4_{j}}\right)=0,5$ or 3 according as $j \equiv 0,1$ or $2(\bmod 3)$ for $6 \leq j \leq k-1$. It can be checked that f_{3} is an $L(2,1)$-coloring. We reduce f_{3} until we arrive at an irreducible coloring f_{3}^{\prime}. In f_{3}^{\prime}, u is colored with 0 , its neighbors are colored with $2,3,4,5$, and $x_{u v}^{3_{2}}$ is colored with 1 . Hence f_{3}^{\prime} is an inh-coloring with span 5. Since $\lambda\left(P_{2}\left(4 P_{k}\right)\right)=5$ [12] for $k \geq 4$, we conclude that $\lambda_{\text {inh }}\left(P_{2}\left(4 P_{k}\right)\right)=5$ for $k \geq 4$.

In the theorem below we find the exact value of inh-span of $P_{2}\left(r P_{k}\right)$ for $r=3$ and $k \geq 4$.

Theorem 7. The value of $\lambda_{\text {inh }}\left(P_{2}\left(3 P_{k}\right)\right)$ is 5 for $4 \leq k \leq 6$, and 4 for $k \geq 7$.
Proof. Let $P_{2}=u v$. From the proof of Theorem 6 we see that for $4 \leq k \leq 6$, $P_{2}\left(3 P_{k}\right)$ can be given an $L(2,1)$-coloring g with span 5 such that $g(u)=0$, $g\left(x_{u v}^{32}\right)=1$ and the neighbors of u are colored with 2,3 and 4. We reduce g until we arrive at an irreducible coloring g^{\prime}. Then $g^{\prime}(u)=0, g^{\prime}\left(x_{u v}^{3_{2}}\right)=1$, and g^{\prime} assigns colors 2,3 and 4 to neighbors of u. Since span $g^{\prime} \leq 5, g^{\prime}$ is an inh-coloring. Then for $4 \leq k \leq 6, \lambda_{i n h}\left(P_{2}\left(3 P_{k}\right)\right)=5$ because $\lambda\left(P_{2}\left(3 P_{k}\right)\right)=5[12]$ for the same values of k.

For $k \geq 7$, Lü and Sun [12] have given an $L(2,1)$-coloring f to $P_{2}\left(3 P_{k}\right)$ with span 4 such that $f(u)=0, f\left(x_{u v}^{2_{1}}\right)=3$, and the other neighbors of u are colored
with 2 and 4. We reduce f until we arrive at an irreducible coloring f^{\prime}. Then $f^{\prime}(u)=0, f^{\prime}\left(x_{u v}^{21}\right)=3$, and f^{\prime} assigns colors 2 and 4 to the other neighbors of u. Since $\operatorname{span}\left(f^{\prime}\right)=4, f^{\prime}\left(x_{u v}^{2}\right)=1$. Thus f^{\prime} is an inh-coloring with span 4. Since $\lambda\left(P_{2}\left(3 P_{k}\right)\right)=4$ for $k \geq 7$ [12], we conclude that $\lambda_{i n h}\left(P_{2}\left(3 P_{k}\right)\right)=4$ for the same values of k.

Theorem 8. For $r \geq 5$ and $k \geq 4$, $\lambda_{\text {inh }}\left(P_{2}\left(r P_{k}\right)\right)=r+1$.
Proof. Let the nodes of $P_{2}\left(r P_{k}\right)$ be u and v. Lü and Sun [12] have given an $L(2,1)$-coloring f to $P_{2}\left(r P_{k}\right)$ in which $f(u)=f(v)=0$, and for $1 \leq i \leq r$, $f\left(x_{u v}^{i_{1}}\right)=i+1$ and $f\left(x_{u v}^{i_{k-1}}\right)=i(\bmod r)+2$. We recolor the vertices $x_{u v}^{2_{j}}$ for $2 \leq j \leq k-2$, and get the coloring g as below: for $k \equiv 1(\bmod 3), g\left(x_{u v}^{2_{2}}\right)=1$, $g\left(x_{u v}^{2_{3}}\right)=4, g\left(x_{u v}^{2_{j}}\right)=0,2$, or 4 according as $j \equiv 1,2$ or $0(\bmod 3), 4 \leq j \leq k-2$; for $k \equiv 2(\bmod 3), g\left(x_{u v}^{2_{2}}\right)=5, g\left(x_{u v}^{2_{3}}\right)=1, g\left(x_{u v}^{2_{4}}\right)=4, g\left(x_{u v}^{2_{j}}\right)=0,2$, or 4 according as $j \equiv 2,0$ or $1(\bmod 3), 5 \leq j \leq k-2$; for $k \equiv 0(\bmod 3), g\left(x_{u v}^{2_{2}}\right)=1$, $g\left(x_{u v}^{2_{3}}\right)=5, g\left(x_{u v}^{2_{4}}\right)=2, g\left(x_{u v}^{2_{5}}\right)=4, g\left(x_{u v}^{2_{j}}\right)=0,2$, or 4 according as $j \equiv 0,1$ or $2(\bmod 3), 6 \leq j \leq k-2$. We reduce g until we arrive at an irreducible coloring, say g^{\prime}. In the coloring g^{\prime}, u is colored with 0 , its neighbors are colored with $2,3, \ldots, r+1$ and either $x_{u v}^{2_{2}}$ or $x_{u v}^{2_{3}}$ is colored with 1 . Hence g^{\prime} is an inh-coloring with span $r+1$. Since $\lambda\left(P_{2}\left(r P_{k}\right)\right)=r+1$ [12] we get the result.

3. Inh-Colorability of Graphs $G\left(r P_{h}\right)$ with $\Delta(G)=2$

In our next few results we need the following greedy algorithm.
Algorithm 9 (Greedy coloring). Let G be a graph whose few vertices might have been colored before. Then

1. Order the vertices of the given graph as $u_{1}, u_{2}, \ldots, u_{n}$ such that all colored vertices (if any) appear at the beginning of the list.
2. Let u_{i} be the first uncolored vertex that appears in the list.
3. Color u_{i} with the smallest possible color k such that no lower indexed neighbor of u_{i} in the list is colored with $k-1, k$ or $k+1$ and no lower indexed vertex at distance two from u_{i} is colored with k.
4. If all the vertices of the graph have received color then stop; otherwise set $i=i+1$ and go to 3 .

The theorem below is obviously true.
Theorem 10. Algorithm 9 gives an $L(2,1)$-coloring of G if and only if the precolored vertices of G satisfy constraints of $L(2,1)$-coloring in the graph G.

Now we consider the case $\Delta(G)=2$. We note that simple connected graphs with $\Delta(G)=2$ are paths P_{m} and cycles C_{m} only, $m \geq 3$. In Theorems 11 and 13 we show respectively that the inh-span of $P_{m}\left(r P_{2}\right)$ and $P_{m}\left(r P_{3}\right)$ coincide with their span which was computed by Lü and Sun [12].

Theorem 11. Let $r \geq 2$ and $m \geq 3$. Then

$$
\lambda_{i n h}\left(P_{m}\left(r P_{2}\right)\right)=\left\{\begin{array}{l}
2 r+1 \text { for } 3 \leq m \leq 4 \\
2 r+2 \text { for } m \geq 5
\end{array}\right.
$$

Proof. Lü and Sun [12] proved that $\lambda\left(P_{3}\left(r P_{2}\right)\right)=2 r+1$. Let $P_{3}=u_{1} u_{2} u_{3}$. We give an $L(2,1)$-coloring f_{1} to $P_{3}\left(r P_{2}\right)$ as below: $f_{1}\left(u_{1}\right)=1, f_{1}\left(u_{2}\right)=0$, $f_{1}\left(u_{3}\right)=r+3, f_{1}\left(x_{u_{1} u_{2}}^{i_{1}}\right)=r+1+i$ and $f_{1}\left(x_{u_{2} u_{3}}^{i_{1}}\right)=i+1$ for $1 \leq i \leq r$. We check that f_{1} is an inh-coloring. Thus $\lambda_{\text {inh }}\left(P_{3}\left(r P_{2}\right)\right)=2 r+1$.

Lü and Sun [12] proved that $\lambda\left(P_{4}\left(r P_{2}\right)\right)=2 r+1$. Let $P_{4}=u_{1} u_{2} u_{3} u_{4}$. We give an $L(2,1)$-coloring f_{2} to $P_{4}\left(r P_{2}\right)$ as below: $f_{2}\left(u_{1}\right)=1, f_{2}\left(u_{2}\right)=0$, $f_{2}\left(u_{3}\right)=2 r+1, f_{2}\left(u_{4}\right)=3 ; f_{2}\left(x_{u_{1} u_{2}}^{i_{1}}\right)=r+1+i, f_{2}\left(x_{u_{2} u_{3}}^{i_{1}}\right)=i+1$ for $1 \leq i \leq r$; $f_{2}\left(x_{u_{3} u_{4}}^{1_{1}}\right)=0, f_{2}\left(x_{u_{3} u_{4}}^{2_{1}}\right)=1$, and $f_{2}\left(x_{u_{3} u_{4}}^{i_{1}}\right)=r+i-1$ for $3 \leq i \leq r$. We check that f_{2} is an inh-coloring and thus $\lambda_{\text {inh }}\left(P_{4}\left(r P_{2}\right)\right)=2 r+1$.

Lü and Sun [12] proved that for $m \geq 5, \lambda\left(P_{m}\left(r P_{2}\right)\right)=2 r+2$. Let $P_{m}=$ $u_{1} u_{2} \cdots u_{m}$. We give an $L(2,1)$-coloring f_{3} to $P_{m}\left(r P_{2}\right)$ as below: $f_{3}\left(u_{1}\right)=2 r+1$, $f_{3}\left(u_{k}\right)=0$ if k is even, $f_{3}\left(u_{k}\right)=1$ if $k>1$ and k is odd, $f_{3}\left(x_{u_{1} u_{2}}^{1_{1}}\right)=2$, $f_{3}\left(x_{u_{1} u_{2}}^{i_{1}}\right)=2 i-1$ for $2 \leq i \leq r$, and we color the remaining paths of length r as $0,(2 i+2), 1$ or $1,(2 i+1), 0$, where $i=1,2, \ldots, r$. We check that f_{3} is an inh-coloring and thus for $m \geq 5, \lambda_{\text {inh }}\left(P_{m}\left(r P_{2}\right)\right)=2 r+2$.

Theorem 12. If $m \geq 3, r \geq 3$, and $h(e) \geq 2$ with equality for at least one e but not for all, then $P_{m}\left(r P_{h}\right)$ is inh-colorable and $\lambda_{\text {inh }}\left(P_{m}\left(r P_{h}\right)\right) \leq 3 r+3$.
Proof. Let P_{m} be the path $u_{1} u_{2} \cdots u_{m}$. Let $E_{1}=\left\{u v: u v \in E\left(P_{m}\right), h(u v)>2\right\}$ and $E_{2}=E\left(P_{m}\right)-E_{1}$. Without loss of generality we assume that E_{2} has an element other than $u_{m-1} u_{m}$. We first give a coloring f to the nodes $u_{1}, u_{2}, \ldots, u_{m}$ in $P_{m}\left(r P_{h}\right)$ with the colors 0 and 1 such that $L(2,1)$-coloring constraints are satisfied. We choose an arbitrary edge $u_{k} u_{k+1}$ in E_{1}. If $f\left(u_{k}\right)=0$, then we rename f as f^{\prime}, otherwise we define $f^{\prime}\left(u_{p}\right)=1-f\left(u_{p}\right)$ for $1 \leq p \leq m$. We reduce the colors of the colored vertices until color of no vertex can be reduced further and get the coloring g. There is a vertex colored with 0 , a vertex colored with 1 , and the maximum color used till now is 1 . We color the vertex $x_{u_{k} u_{k+1}}^{1_{1}}$ greedily. Then $g\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=2$. We color the vertices $x_{u_{k} u_{k+1}}^{i_{1}}, 2 \leq i \leq r$, greedily in any order. Let $S_{1}=\left\{x_{u_{p} u_{p+1}}^{i_{1}}: p \neq k, u_{p} u_{p+1} \in E_{1}, 1 \leq i \leq r\right\}$. We color the vertices in S_{1} greedily in any order. The maximum color used till now is at most $r+2$. Let $S_{2}=\left\{x_{u_{p}}^{i_{1} u_{p+1}}: u_{p} u_{p+1} \in E_{2}, 1 \leq i \leq r\right\}$. Then we color the vertices in S_{2} greedily in any order. No hole is created so far and the maximum color used is at least
$2 r+1$ and at the most $3 r+2$. Let $E_{3}=\{u v: u v \in E(G), h(u v)>3\}$. For each edge $u_{j} u_{j+1}$ in E_{3} we color the vertices $x_{u_{j} u_{j+1}}^{1_{2}}, x_{u_{j} u_{j+1}}^{1_{3}}, \ldots, x_{u_{j} u_{j+1}}^{1_{h\left(u_{j} u_{j+1}\right)-2}}, x_{u_{j} u_{j+1}}^{2_{2}}$, $x_{u_{j} u_{j+1}}^{2_{3}}, \ldots, x_{u_{j} u_{j+1}}^{2_{h\left(u_{j} u_{j+1}\right)-2}}, \ldots, x_{u_{j} u_{j+1}}^{r_{2}}, x_{u_{j} u_{j+1}}^{r_{3}}, \ldots, x_{u_{j} u_{j+1}}^{r_{h\left(u_{j} u_{j+1}\right)-2}}$ greedily in the listed order. When such a vertex w is colored it has one colored neighbor and at most two colored vertices at distance two. Hence $g(w) \leq 5$. We color the remaining vertices greedily. When such a vertex w^{\prime} is colored it has two colored neighbors and at most $2 r$ colored vertices at distance two. Hence $g\left(w^{\prime}\right) \leq 2 r+6 \leq 3 r+3$. Since $5<2 r+1$ and $r+2<2 r+1$ no hole is created. Thus g is an inh-coloring of $P_{m}\left(r P_{h}\right)$ with span at most $3 r+3$.

Theorem 13. For $m \geq 3$ and $r \geq 2, \lambda_{\text {inh }}\left(P_{m}\left(r P_{3}\right)\right)=2 r+1$.
Proof. Let $P_{m}=u_{1} u_{2} \cdots u_{m}$. We consider two cases depending on values of r.
Case 1. In this case we take $r=2$. We give the following $L(2,1)$-coloring f_{1} to $P_{m}\left(r P_{3}\right)$: for $1 \leq k \leq m-1, f_{1}\left(u_{k}\right)=0$; for $1 \leq k \leq m-2, f_{1}\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=4$, $f_{1}\left(x_{u_{k} u_{k+1}}^{1_{2}}\right)=2, f_{1}\left(x_{u_{k} u_{k+1}}^{2_{1}}\right)=3, f_{1}\left(x_{u_{k} u_{k+1}}^{2_{2}}\right)=5 ; f_{1}\left(u_{m}\right)=5, f_{1}\left(x_{u_{m-1} u_{m}}^{1_{1}}\right)=$ $4, f_{1}\left(x_{u_{m-1} u_{m}}^{1_{2}}\right)=2, f_{1}\left(x_{u_{m-1} u_{m}}^{2_{1}}\right)=3$ and $f_{1}\left(x_{u_{m-1} u_{m}}^{2_{2}}\right)=1$. It can be checked that f_{1} is an $L(2,1)$-coloring of $P_{m}\left(r P_{3}\right)$. We reduce f_{1} until we arrive at an irreducible coloring, say f_{1}^{\prime}. Since $f_{1}\left(x_{u_{m-1} u_{m}}^{2_{2}}\right)=1, f_{1}\left(u_{m-1}\right)=0$, and $d\left(x_{u_{m-1} u_{m}}^{2_{2}}, u_{m-1}\right)=2$, the color of $x_{u_{m-1} u_{m}}^{2_{2}}$ cannot be reduced and so $f_{1}^{\prime}\left(x_{u_{m-1} u_{m}}^{2_{2}}\right)=1$. Now $f_{1}^{\prime}\left(u_{2}\right)=0$ and its neighbors are colored with 2,3 , 4 and 5. Thus f_{1}^{\prime} is an inh-coloring of $P_{m}\left(2 P_{3}\right)$ with span 5.

Case 2. In this case we take $r \geq 3$. Here Lü and Sun [12] have given the following $L(2,1)$-coloring f_{2} to $P_{m}\left(r P_{3}\right)$: $f_{2}\left(u_{k}\right)=0$ for $1 \leq k \leq m$ and $f_{2}\left(x_{u_{k} u_{k+1}}^{i_{1}}\right)=2 i$ and $f_{2}\left(x_{u_{k} u_{k+1}}^{i_{2}}\right)=2 i(\bmod 2 r)+3$ for $1 \leq k \leq m-1$, $1 \leq i \leq r$. We note that $f_{2}\left(x_{u_{m-1} u_{m}}^{(r-1)_{2}}\right)=2 r+1$. We recolor the vertices $x_{u_{m-1} u_{m}}^{(r-1)_{2}}$ and u_{m} with colors 1 and $2 r+1$, respectively, and get the coloring f_{2}^{\prime}. No vertex adjacent to $x_{u_{m-1} u_{m}}^{(r-1)_{2}}$ has got the color 0 or 2 . No vertex adjacent to u_{m} has received color $2 r$ or $2 r+1$ and no vertex at distance two from u_{m} has got the color $2 r+1$. Thus f_{2}^{\prime} is an $L(2,1)$-coloring. We reduce f_{2}^{\prime} until we arrive at an irreducible coloring, say $f_{2}^{\prime \prime}$. Since $f_{2}^{\prime}\left(x_{u_{m-1} u_{m}}^{(r-1)_{2}}\right)=1, f_{2}^{\prime}\left(u_{m-1}\right)=0$ and $d\left(x_{u_{m-1} u_{m}}^{(r-1)_{2}}, u_{m-1}\right)=2$, we get $f_{2}^{\prime \prime}\left(x_{u_{m-1} u_{m}}^{(r-1)_{2}}\right)=1$. Since $f_{2}^{\prime \prime}\left(u_{2}\right)=0$ and neighbors of u_{2} are colored with $2,3, \ldots, 2 r+1, f_{2}^{\prime \prime}$ is an inh-coloring of $P_{m}\left(r P_{3}\right)$ with span $2 r+1$.

Thus $\lambda_{i n h}\left(P_{m}\left(r P_{3}\right)\right) \leq 2 r+1$. Since $\lambda\left(P_{m}\left(r P_{3}\right)\right)=2 r+1$ [12], we get $\lambda_{i n h}\left(P_{m}\left(r P_{3}\right)\right)=2 r+1$.

The theorem below says that inh-span of $C_{3}\left(r P_{3}\right)$ is exactly one more than its span [12].

Theorem 14. For $r \geq 2$, $\lambda_{\text {inh }}\left(C_{3}\left(r P_{3}\right)\right)=2 r+2$.
Proof. Let $C_{3}=u_{1} u_{2} u_{3} u_{1}$. We first prove that $\lambda_{\text {inh }}\left(C_{3}\left(r P_{3}\right)\right) \leq 2 r+2$. For this we consider two cases depending on values of r.

Case 1. In this case we take $r=2$. Lü and Sun [12] have given the following $L(2,1)$-coloring f_{1} to $C_{3}\left(r P_{3}\right): f_{1}\left(u_{k}\right)=0$ for $1 \leq k \leq 3 ; f_{1}\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=2$, $f_{1}\left(x_{u_{k} u_{k+1}}^{1_{2}}\right)=4, f_{1}\left(x_{u_{k} u_{k+1}}^{2_{1}}\right)=3, f_{1}\left(x_{u_{k} u_{k+1}}^{2_{2}}\right)=5$ for $k=1,2 ; f_{1}\left(x_{u_{3} u_{1}}^{1_{1}}\right)=2$, $f_{1}\left(x_{u_{3} u_{1}}^{1_{2}}\right)=4, f_{1}\left(x_{u_{3} u_{1}}^{2_{1}}\right)=3$ and $f_{1}\left(x_{u_{3} u_{1}}^{2_{2}}\right)=5$. We recolor the vertices u_{2} and $x_{u_{1} u_{2}}^{22_{2}}$ with colors 6 and 1 respectively and get the coloring g_{1}. Since no vertex adjacent to u_{2} has got the color 5 and no vertex adjacent to $x_{u_{1} u_{2}}^{22}$ has received color 0 or $2, g_{1}$ is an $L(2,1)$-coloring. If g_{1} is not an irreducible coloring, then we reduce it until we arrive at an irreducible coloring, say g_{1}^{\prime}. Since $g_{1}\left(x_{u_{1} u_{2}}^{22}\right)=1$, $g_{1}\left(u_{1}\right)=0$ and $d\left(x_{u_{1} u_{2}}^{22}, u_{1}\right)=2$, we get $g_{1}^{\prime}\left(x_{u_{1} u_{2}}^{22}\right)=1$. Since the vertex u_{1} is colored with 0 , its neighbors are colored with $2,3,4,5$ and the vertex u_{2} is colored with $6, g_{1}^{\prime}$ is an inh-coloring with span 6 . Hence $\lambda_{\text {inh }}\left(C_{3}\left(r P_{3}\right)\right) \leq 2 r+2$ for $r=2$.

Case 2. In this case we take $r \geq 3$. Lü and Sun [12] have given the following $L(2,1)$-coloring f_{2} to $C_{3}\left(r P_{3}\right): f_{2}\left(u_{k}\right)=0$ for $1 \leq k \leq 3$; and for $1 \leq i \leq r$, $k=1,2, f_{2}\left(x_{u_{k} u_{k+1}}^{i_{1}}\right)=2 i, f_{2}\left(x_{u_{k} u_{k+1}}^{i_{1}}\right)=2 i(\bmod 2 r)+3, f_{2}\left(x_{u_{3} u_{1}}^{i_{1}}\right)=2 i$ and $f_{2}\left(x_{u_{3} u_{1}}^{i_{1}}\right)=2 i(\bmod 2 r)+3$. We note that $f_{2}\left(x_{u_{1} u_{2}}^{(r-1)_{2}}\right)=2 r+1$. We recolor the vertices u_{2} and $x_{u_{1} u_{2}}^{(r-1)_{2}}$ with colors $2 r+2$ and 1 , respectively, and get the coloring g_{2}. Since no vertex adjacent to u_{2} is colored with $2 r+1$ and no vertex adjacent to $x_{u_{1} u_{2}}^{(r-1)_{2}}$ is colored with 0 or $2, g_{2}$ is an $L(2,1)$-coloring. If g_{2} is not an irreducible coloring, then we reduce it until we get an irreducible coloring, say g_{2}^{\prime}. Since $g_{2}\left(x_{u_{1} u_{2}}^{(r-1)_{2}}\right)=1, g_{2}\left(u_{1}\right)=0$ and $d\left(x_{u_{1} u_{2}}^{(r-1)_{2}}, u_{1}\right)=2$, we get $g_{2}^{\prime}\left(x_{u_{1} u_{2}}^{(r-1)_{2}}\right)=1$. The vertex u_{1} is colored with 0 and its neighbors are colored with $2,3, \ldots, 2 r+1$ and $g_{2}^{\prime}\left(u_{2}\right)=2 r+2$. Thus g_{2}^{\prime} is an inh-coloring with span $2 r+2$. Hence $\lambda_{\text {inh }}\left(C_{3}\left(r P_{3}\right)\right) \leq 2 r+2$ for $r \geq 3$.

Now we prove that $\lambda_{\text {inh }}\left(C_{3}\left(r P_{3}\right)\right) \geq 2 r+2$. From Proposition 4, $\lambda_{\text {inh }}\left(C_{3}\left(r P_{3}\right)\right)$ $\geq 2 r+1$. Suppose $\lambda_{\text {inh }}\left(C_{3}\left(r P_{3}\right)\right)=2 r+1$ and g_{3} is an inh-coloring of $C_{3}\left(r P_{3}\right)$. From Proposition 1 the vertices u_{1}, u_{2}, u_{3} are colored with 0 or $2 r+1$. If all the vertices u_{1}, u_{2} and u_{3} are colored with 0 , then no vertex in $C_{3}\left(r P_{3}\right)$ will be colored with 1 . Hence at least one of u_{1}, u_{2}, u_{3} is colored with $2 r+1$. Similarly, at least one of u_{1}, u_{2}, u_{3} is colored with 0 . If two nodes, say u_{1}, u_{2}, receive the color 0 then u_{3} receives the color $2 r+1$. Now from Proposition 1, a neighbor of u_{3} in $C_{3}\left(r P_{3}\right)$, say v, is colored with 0 . Since v is at distance two from u_{1} or u_{2},
this is a contradiction. We also get a contradiction if two nodes are colored with $2 r+1$. Thus $\lambda_{i n h}\left(C_{3}\left(r P_{3}\right)\right) \geq 2 r+2$ and we get $\lambda_{i n h}\left(C_{3}\left(r P_{3}\right)\right)=2 r+2$.

In the following theorem we show that $C_{m}\left(r P_{2}\right)$ is inh-colorable and give an upper bound to its inh-span.
Theorem 15. For $r \geq 2$, we have $\lambda_{i n h}\left(C_{m}\left(r P_{2}\right)\right) \leq\left\{\begin{array}{l}2 r+3 \text { if } m \text { is even, } \\ 3 r+2 \text { if } m \text { is odd. }\end{array}\right.$
Proof. Let $C_{m}=u_{1} u_{2} \cdots u_{m} u_{1}$. For even m, we give an $L(2,1)$-coloring f_{1} to $C_{m}\left(r P_{2}\right)$ as below: $f_{1}\left(u_{k}\right)=0$ for odd $k ; f_{1}\left(u_{k}\right)=1$ if $k \neq m$ and k is even; $f_{1}\left(u_{m}\right)=2 r+3 ; f_{1}\left(x_{u_{k} u_{k+1}}^{i_{1}}\right)=2 i+1$ for $1 \leq k \leq m-1,1 \leq i \leq r$ and k odd; $f_{1}\left(x_{u_{k} u_{k+1}}^{i_{1}}\right)=2 i+2$ for $1 \leq k \leq m-2,1 \leq i \leq r$ and k even; and $f_{1}\left(x_{u_{m} u_{1}}^{i_{1}}\right)=2 i$ for $1 \leq i \leq r$. We check that f_{1} is an inh-coloring and thus $\lambda_{\text {inh }}\left(C_{m}\left(r P_{2}\right)\right) \leq 2 r+3$ for m even. For odd m, we give an $L(2,1)$-coloring f_{2} to $C_{m}\left(r P_{2}\right)$ as below: $f_{2}\left(u_{k}\right)=0$ for odd $k, k \neq m ; f_{2}\left(u_{k}\right)=1$ if k is even; $f_{2}\left(u_{m}\right)=2 ; f_{2}\left(x_{u_{k} u_{k+1}}^{i_{1}}\right)=2 i+1$ for odd k and $1 \leq i \leq r ; f_{2}\left(x_{u_{k} u_{k+1}}^{i_{1}}\right)=2 i+2$ for even k and $1 \leq i \leq r$, and $f_{2}\left(x_{u_{m} u_{1}}^{i_{1}}\right)=2 r+2+i$ for $1 \leq i \leq r$. We check that f_{2} is an inh-coloring and thus $\lambda_{\text {inh }}\left(C_{m}\left(r P_{2}\right)\right) \leq 3 r+2$ for odd m.

Theorem 16. If $m \geq 3, r \geq 3$, and $h(e) \geq 2$ with equality for at least one e but not for all, then $C_{m}\left(r P_{h}\right)$ is inh-colorable and $\lambda_{\text {inh }}\left(C_{m}\left(r P_{h}\right)\right) \leq 3 r+3$.

Proof. Let C_{m} be the cycle $u_{1} u_{2} \cdots u_{m} u_{1}$. Let $E_{1}=\left\{u v: u v \in E\left(C_{m}\right), h(u v)>\right.$ $2\}$ and $E_{2}=E\left(C_{m}\right)-E_{1}$. For our convenience we call the edge $u_{m} u_{1}$ as $u_{m} u_{m+1}$ too. We first give a coloring f to the nodes $u_{1}, u_{2}, \ldots, u_{m}$ in $C_{m}\left(r P_{h}\right)$ using the colors 0 and 1 only such that $L(2,1)$-coloring constraints are satisfied. This is possible since $h(e)>2$ for at least one edge e of C_{m}. We choose an arbitrary edge $u_{k} u_{k+1}$ in E_{1}. If $f\left(u_{k}\right)=0$, then we rename f as f^{\prime}, otherwise we define $f^{\prime}\left(u_{p}\right)=1-f\left(u_{p}\right)$ for $1 \leq p \leq m$. We reduce the colors of the colored vertices until color of no vertex can be reduced further and get the coloring g. There is a vertex colored with 0 , a vertex colored with 1 , and the maximum color used till now is 1 . We color the vertex $x_{u_{k} u_{k+1}}^{1_{1}}$ greedily. Then $g\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=2$. We color the vertices $x_{u_{k} u_{k+1}}^{i_{1}}, 2 \leq i \leq r$, greedily in any order. Let $S_{1}=\left\{x_{u_{p} u_{p+1}}^{i_{1}}: p \in[1, k-1] \cup[k+1, m], u_{p} u_{p+1} \in E_{1}, 1 \leq i \leq r\right\}$. We color the vertices in S_{1} greedily in any order. The maximum color used till now is at most $r+2$. Let $S_{2}=\left\{x_{u_{p} u_{p+1}}^{i_{1}}: p \in[1, m], u_{p} u_{p+1} \in E_{2}, 1 \leq i \leq r\right\}$. Then we color the vertices in S_{2} greedily in any order. No hole is created till now and the maximum color used is at least $2 r+1$ and at the most $3 r+2$. Let $E_{3}=$ $\{u v: u v \in E(G), h(u v)>3\}$. For each edge $u_{j} u_{j+1}$ in E_{3} we color the vertices $x_{u_{j} u_{j+1}}^{1_{2}}, x_{u_{j} u_{j+1}}^{1_{3}}, \ldots, x_{u_{j} u_{j+1}}^{1_{h\left(u_{j} u_{j+1}\right)-2}}, x_{u_{j} u_{j+1}}^{2_{2}}, x_{u_{j} u_{j+1}}^{2_{3}}, \ldots, x_{u_{j} u_{j+1}}^{2_{h\left(u_{j} u_{j+1}\right)-2}}, \ldots, x_{u_{j} u_{j+1}}^{r_{2}}$,
$x_{u_{j} u_{j+1}}^{r_{3}}, \ldots, x_{u_{j} u_{j+1}}^{r_{h\left(u_{j} u_{j+1}\right)-2}}$ greedily in the listed order. When such a vertex w is colored it has one colored neighbor and at most two colored vertices at distance two. Hence $g(w) \leq 5$. We color the remaining vertices greedily. When such a vertex w^{\prime} is colored it is adjacent to two colored vertices and there are at most $2 r$ vertices at distance two from it. Hence $g\left(w^{\prime}\right) \leq 2 r+6 \leq 3 r+3$. Since $5<2 r+1$ and $r+2<2 r+1$, no hole is created. Thus g is an inh-coloring of $C_{m}\left(r P_{h}\right)$ with span at most $3 r+3$.

The theorem below gives an upper bound to inh-span of $C_{m}\left(2 P_{3}\right), m \geq 4$, which is one more than the exact value of its span [12].

Theorem 17. For $m \geq 4$, $\lambda_{\text {inh }}\left(C_{m}\left(2 P_{3}\right)\right) \leq 6$.
Proof. Let $C_{m}=u_{1} u_{2} \cdots u_{m} u_{1}$. For $m \geq 4$, Lü and Sun [12] have given the following $L(2,1)$-coloring f to $C_{m}\left(2 P_{3}\right): f\left(u_{k}\right)=0$ for $1 \leq k \leq m ; f\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=$ $2, f\left(x_{u_{k} u_{k+1}}^{1_{2}}\right)=4, f\left(x_{u_{k} u_{k+1}}^{2_{1}}\right)=3, f\left(x_{u_{k} u_{k+1}}^{2_{2}}\right)=5$ for $1 \leq k \leq m-1$; and $f\left(x_{u_{m} u_{1}}^{1_{1}}\right)=2, f\left(x_{u_{m} u_{1}}^{1_{2}}\right)=4, f\left(x_{u_{m} u_{1}}^{2_{1}}\right)=3$ and $f\left(x_{u_{m} u_{1}}^{2_{2}}\right)=5$. We recolor the vertices u_{2} and $x_{u_{1} u_{2}}^{22_{2}}$ with colors 6 and 1 , respectively and get the coloring g. Since no vertex adjacent to u_{2} has got the color 5 and no vertex adjacent to $x_{u_{1} u_{2}}^{22}$ has received the color 0 or $2, g$ is an $L(2,1)$-coloring. If g is not an irreducible coloring we reduce it until we arrive at an irreducible coloring, say g^{\prime}. Since $g\left(x_{u_{1} u_{2}}^{22}\right)=1, g\left(u_{1}\right)=0$ and $d\left(x_{u_{1} u_{2}}^{2_{2}}, u_{1}\right)=2$, we get $g^{\prime}\left(x_{u_{1} u_{2}}^{2_{2}}\right)=1$. The vertex u_{1} is colored with 0 and its neighbors are colored with $2,3,4$ and 5 . Thus g^{\prime} is an inh-coloring with span 6 and hence $\lambda_{\text {inh }}\left(C_{m}\left(2 P_{3}\right)\right) \leq 6$ for $m \geq 4$.

In the next theorem we show that inh-span of $C_{m}\left(r P_{3}\right)$ is equal to its span [12] for $m \geq 4$ and $r \geq 3$.

Theorem 18. For $m \geq 4$ and $r \geq 3, \lambda_{\text {inh }}\left(C_{m}\left(r P_{3}\right)\right)=2 r+1$.
Proof. Let $C_{m}=u_{1} u_{2} \cdots u_{m} u_{1}$. We give an $L(2,1)$-coloring f to $C_{m}\left(r P_{3}\right)$ as follows: $f\left(u_{1}\right)=f\left(u_{2}\right)=2 r+1$ and $f\left(u_{k}\right)=0$ for $3 \leq k \leq m ; f\left(x_{u_{1} u_{2}}^{1_{1}}\right)=0$ and $f\left(x_{u_{1} u_{2}}^{i_{1}}\right)=i$ for $2 \leq i \leq r ; f\left(x_{u_{1} u_{2}}^{i_{2}}\right)=r+i$ for $1 \leq i \leq r-1$ and $f\left(x_{u_{1} u_{2}}^{r_{2}}\right)=0$; $f\left(x_{u_{2} u_{3}}^{i_{1}}\right)=i$ and $f\left(x_{u_{2} u_{3}}^{i_{2}}\right)=r+i$ for $1 \leq i \leq r ; f\left(x_{u_{3} u_{4}}^{1_{1}}\right)=2 r+1$ and $f\left(x_{u_{3} u_{4}}^{i_{1}}\right)=i$ for $2 \leq i \leq r ; f\left(x_{u_{3} u_{4}}^{i_{2}}\right)=r+i+1$ for $1 \leq i \leq r ; f\left(x_{u_{k} u_{k+1}}^{i_{1}}\right)=i+1$ and $f\left(x_{u_{k} u_{k+1}}^{i_{2}}\right)=r+i+1$ for $1 \leq i \leq r$ and $4 \leq k \leq m-1 ; f\left(x_{u_{m} u_{1}}^{i_{1}}\right)=i+1$ for $1 \leq i \leq r ; f\left(x_{u_{m} u_{1}}^{i_{2}}\right)=r+i$ for $1 \leq i \leq r-1$; and $f\left(x_{u_{m} u_{1}}^{r_{2}}\right)=1$.

Now we check that f is an $L(2,1)$-coloring. We note that either a node is colored with 0 and its neighbors are colored with $2,3, \ldots, 2 r+1$ or a node is colored with $2 r+1$ and its neighbors are colored with $0,1, \ldots, 2 r-1$. In the coloring f, if a node is colored with 0 (respectively $2 r+1$), no vertex at distance
two from it is colored with 0 (respectively $2 r+1$). Now $\left|f\left(x_{u_{1} u_{2}}^{1_{1}}\right)-f\left(x_{u_{1} u_{2}}^{1_{2}}\right)\right|=$ $r+1$ and $\left|f\left(x_{u_{1} u_{2}}^{i_{1}}\right)-f\left(x_{u_{1} u_{2}}^{i_{2}}\right)\right|=r$ for $2 \leq i \leq r,\left|f\left(x_{u_{2} u_{3}}^{i_{1}}\right)-f\left(x_{u_{2} u_{3}}^{i_{2}}\right)\right|=r$ for $1 \leq i \leq r,\left|f\left(x_{u_{3} u_{4}}^{1_{1}}\right)-f\left(x_{u_{3} u_{4}}^{1}\right)\right|=r-1$ and $\left|f\left(x_{u_{3} u_{4}}^{i_{1}}\right)-f\left(x_{u_{3} u_{4}}^{i_{2}}\right)\right|=r+1$ for $2 \leq i \leq r,\left|f\left(x_{u_{k} u_{k+1}}^{i_{1}}\right)-f\left(x_{u_{k} u_{k+1}}^{i_{2}}\right)\right|=r$ for $1 \leq i \leq r$ and $4 \leq k \leq m-1$, $\left|f\left(x_{u_{m} u_{1}}^{i_{1}}\right)-f\left(x_{u_{m} u_{1}}^{i_{2}}\right)\right|=r-1$ for $1 \leq i \leq r-1$ and $\left|f\left(x_{u_{m} u_{1}}^{r_{1}}\right)-f\left(x_{u_{m} u_{1}}^{r_{2}}\right)\right|=r$. Thus $\left|f\left(x_{u v}^{i_{1}}\right)-f\left(x_{u v}^{i_{2}}\right)\right| \geq 2$ for every edge $u v$ of C_{m} and $1 \leq i \leq r$. Hence f is an $L(2,1)$-coloring. In $C_{m}\left(r P_{3}\right)$ every vertex is either a maximum degree vertex or adjacent to a maximum degree vertex. We have $\operatorname{span}(f)=2 r+1$ and maximum degree of $C_{m}\left(r P_{3}\right)=2 r$. Thus f is an irreducible coloring. Since $f\left(x_{u_{2} u_{3}}^{1_{1}}\right)=1$, u_{3} is colored with 0 and its neighbors are colored with $2,3, \ldots, 2 r+1$, and f is an inh-coloring with span $2 r+1$, we get $\lambda_{\text {inh }}\left(C_{m}\left(r P_{3}\right)\right) \leq 2 r+1$. Since $\lambda\left(C_{m}\left(r P_{3}\right)\right)=2 r+1$ [12], we get $\lambda_{\text {inh }}\left(C_{m}\left(r P_{3}\right)\right)=2 r+1$.

If G is any graph with $\Delta=2$ and $h: E(G) \rightarrow \mathbb{N}-\{1,2\}$ with $h(e)>3$ for at least one e, then the next theorem gives span as well as inh-span of $G\left(r P_{h}\right)$, and shows that both the spans are equal.

Theorem 19. For any graph G with $\Delta=2, r \geq 2$, and $h(e) \geq 3$ with strict inequality for at least one e, $\lambda_{\text {inh }}\left(G\left(r P_{h}\right)\right)=\lambda\left(G\left(r P_{h}\right)\right)=2 r+1$.
Proof. Here G is either a path $P_{m}=u_{1} u_{2} \cdots u_{m}$ or cycle $C_{m}=u_{1} u_{2} \cdots u_{m} u_{1}$, $m \geq 3$. For our convenience we call the edge $u_{m} u_{1}$ as $u_{m} u_{m+1}$ too. We give an $L(2,1)$-coloring to $G\left(r P_{h}\right)$ in three cases depending on values of r. In all these cases, $u_{k} u_{k+1}$ is an arbitrary edge of G.

Case 1. In this case we take $r=2$. We give an $L(2,1)$-coloring g_{1} to $G\left(r P_{h}\right)$ as follows: $g_{1}(u)=0$ for all nodes u of $G\left(r P_{h}\right)$; if $h\left(u_{k} u_{k+1}\right)=3$, then $g_{1}\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=2, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{2}}\right)=4, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{1}}\right)=5$, and $g_{1}\left(x_{u_{k} u_{k+1}}^{22}\right)=3$; if $h\left(u_{k} u_{k+1}\right)=6$, then $g_{1}\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=2, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{2}}\right)=5, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{3}}\right)=$ $3, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{4}}\right)=1, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{5}}\right)=4, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{1}}\right)=5, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{2}}\right)=3$, $g_{1}\left(x_{u_{k} u_{k+1}}^{2_{3}}\right)=0, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{4}}\right)=5$, and $g_{1}\left(x_{u_{k} u_{k+1}}^{25}\right)=3$; for $h\left(u_{k} u_{k+1}\right) \geq 4$, $h\left(u_{k} u_{k+1}\right) \neq 6$: if $h\left(u_{k} u_{k+1}\right) \equiv 0(\bmod 4)$ then $g_{1}\left(x_{u_{k} u_{k+1}}^{1_{j}}\right)=0,2,5$ or 3 according as $j \equiv 0,1,2$ or $3(\bmod 4)$ and $g_{1}\left(x_{u_{k} u_{k+1}}^{2 j}\right)=0,5,1$ or 4 according as $j \equiv 0,1,2$ or $3(\bmod 4)$; if $h\left(u_{k} u_{k+1}\right) \equiv 1(\bmod 4)$ then $g_{1}\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=2, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{2}}\right)=5$, $g_{1}\left(x_{u_{k} u_{k+1}}^{1_{3}}\right)=1, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{4}}\right)=3$ and for $j \geq 5, g_{1}\left(x_{u_{k}}^{1_{j} u_{k+1}}\right)=0,2,5$ or 3 according as $j \equiv 1,2,3$ or $0(\bmod 4), g_{1}\left(x_{u_{k} u_{k+1}}^{2_{1}}\right)=5, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{2}}\right)=3$, $g_{1}\left(x_{u_{k} u_{k+1}}^{2_{3}}\right)=1, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{4}}\right)=4$ and for $j \geq 5, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{j}}\right)=0,5,1$ or 4 according as $j \equiv 1,2,3$ or $0(\bmod 4)$; if $h\left(u_{k} u_{k+1}\right) \equiv 2(\bmod 4)$, then $g_{1}\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=$
$2, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{2}}\right)=4, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{3}}\right)=0, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{4}}\right)=5, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{5}}\right)=3$ and for $j \geq 6, g_{1}\left(x_{u_{k} u_{k+1}}^{11_{j}}\right)=0,2,5$ or 3 according as $j \equiv 2,3,0$ or $1(\bmod$ 4), $g_{1}\left(x_{u_{k} u_{k+1}}^{2_{1}}\right)=5, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{2}}\right)=3, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{3}}\right)=0, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{4}}\right)=2$, $g_{1}\left(x_{u_{k} u_{k+1}}^{25}\right)=4$ and for $j \geq 6, g_{1}\left(x_{u_{k} u_{k+1}}^{2}\right)=0,5,1$ or 4 according as $j \equiv 2,3,0$ or $1(\bmod 4)$; if $h\left(u_{k} u_{k+1}\right) \equiv 3(\bmod 4)$, then $g_{1}\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=2, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{2}}\right)=$ $5, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{3}}\right)=3, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{4}}\right)=0, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{5}}\right)=5, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{6}}\right)=3$ and for $j \geq 7, g_{1}\left(x_{u_{k} u_{k+1}}^{1_{j}}\right)=0,2,5$ or 3 according as $j \equiv 3,0,1$ or $2(\bmod$ 4), $g_{1}\left(x_{u_{k} u_{k+1}}^{2_{1}}\right)=5, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{2}}\right)=1, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{3}}\right)=4, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{4}}\right)=0$, $g_{1}\left(x_{u_{k} u_{k+1}}^{2_{5}}\right)=2, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{6}}\right)=4$ and for $j \geq 7, g_{1}\left(x_{u_{k} u_{k+1}}^{2_{j}}\right)=0,5,1$ or 4 according as $j \equiv 3,0,1$ or $2(\bmod 4)$.

For every edge $u v$ in G the $L(2,1)$-coloring constraints are satisfied within the paths P_{h}^{i} for $1 \leq i \leq 2$ and colors assigned to neighbors of a node are different. Hence g_{1} is an $L(2,1)$-coloring with span 5 . Now we reduce g_{1} until we arrive at an irreducible coloring, say g_{1}^{\prime}. We prove that g_{1}^{\prime} is a no-hole coloring. From the way g_{1} is defined there is at least one vertex w colored with 1 and lying at distance two from a vertex colored with 0 in g_{1}. Hence $g_{1}^{\prime}(w)=1$. A vertex in $G\left(r P_{h}\right)$ with degree 4 is colored with 0 and its neighbors are colored with $2,3,4$, 5 . Thus g_{1}^{\prime} is an inh-coloring with span 5 .

Case 2. In this case we take $r=3$. Now we give an $L(2,1)$-coloring g_{2} to $G\left(r P_{h}\right)$ as follows: $g_{2}(u)=0$ for all nodes u of $G\left(r P_{h}\right)$; if $h\left(u_{k} u_{k+1}\right)=3$ then $g_{2}\left(x_{u_{k} u_{k+1}}^{i_{1}}\right)=i+1, g_{2}\left(x_{u_{k} u_{k+1}}^{i_{2}}\right)=i+4$ for $1 \leq i \leq 3$; if $h\left(u_{k} u_{k+1}\right) \equiv 1(\bmod$ 3), then $g_{2}\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=2, g_{2}\left(x_{u_{k} u_{k+1}}^{1_{2}}\right)=7, g_{2}\left(x_{u_{k} u_{k+1}}^{1_{3}}\right)=5, g_{2}\left(x_{u_{k} u_{k+1}}^{2_{1}}\right)=$ $3, g_{2}\left(x_{u_{k} u_{k+1}}^{2_{2}}\right)=1, g_{2}\left(x_{u_{k} u_{k+1}}^{2_{3}}\right)=6, g_{2}\left(x_{u_{k} u_{k+1}}^{3_{1}}\right)=4, g_{2}\left(x_{u_{k} u_{k+1}}^{3_{2}}\right)=1$, $g_{2}\left(x_{u_{k} u_{k+1}}^{33}\right)=7$, for $1 \leq i \leq 3$ and $j \geq 4, g_{2}\left(x_{u_{k} u_{k+1}}^{i_{j}}\right)=0, i+1$ or $i+4$ according as $j \equiv 1,2$ or $0(\bmod 3)$; if $h\left(u_{k} u_{k+1}\right) \equiv 2(\bmod 3)$ then $g_{2}\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=$ $2, g_{2}\left(x_{u_{k} u_{k+1}}^{1_{2}}\right)=7, g_{2}\left(x_{u_{k} u_{k+1}}^{1_{3}}\right)=1, g_{2}\left(x_{u_{k} u_{k+1}}^{1_{4}}\right)=5, g_{2}\left(x_{u_{k} u_{k+1}}^{2_{1}}\right)=3$, $g_{2}\left(x_{u_{k} u_{k+1}}^{22}\right)=1, g_{2}\left(x_{u_{k} u_{k+1}}^{2_{3}}\right)=4, g_{2}\left(x_{u_{k} u_{k+1}}^{2_{4}}\right)=6, g_{2}\left(x_{u_{k} u_{k+1}}^{3_{1}}\right)=4$, $g_{2}\left(x_{u_{k} u_{k+1}}^{3_{2}}\right)=1, g_{2}\left(x_{u_{k} u_{k+1}}^{3_{3}}\right)=3, g_{2}\left(x_{u_{k} u_{k+1}}^{3_{4}}\right)=7$, for $1 \leq i \leq 3$ and $j \geq 5$, $g_{2}\left(x_{u_{k} u_{k+1}}^{i_{j}}\right)=0, i+1$ or $i+4$ according as $j \equiv 2,0$ or $1(\bmod 3)$; if $h\left(u_{k} u_{k+1}\right) \geq 6$ and $h\left(u_{k} u_{k+1}\right) \equiv 0(\bmod 3)$, then $g_{2}\left(x_{u_{k} u_{k+1}}^{1_{1}}\right)=2, g_{2}\left(x_{u_{k} u_{k+1}}^{1_{2}}\right)=5$, $g_{2}\left(x_{u_{k} u_{k+1}}^{1_{3}}\right)=0, g_{2}\left(x_{u_{k} u_{k+1}}^{1_{4}}\right)=2, g_{2}\left(x_{u_{k} u_{k+1}}^{1_{5}}\right)=5, g_{2}\left(x_{u_{k} u_{k+1}}^{2_{1}}\right)=3$,
$g_{2}\left(x_{u_{k} u_{k+1}}^{2_{2}}\right)=1, g_{2}\left(x_{u_{k} u_{k+1}}^{2_{3}}\right)=4, g_{2}\left(x_{u_{k} u_{k+1}}^{2_{4}}\right)=2, g_{2}\left(x_{u_{k} u_{k+1}}^{2_{5}}\right)=6$, $g_{2}\left(x_{u_{k} u_{k+1}}^{3_{1}}\right)=4, g_{2}\left(x_{u_{k} u_{k+1}}^{3_{2}}\right)=1, g_{2}\left(x_{u_{k} u_{k+1}}^{3_{3}}\right)=3, g_{2}\left(x_{u_{k} u_{k+1}}^{3_{4}}\right)=5$, $g_{2}\left(x_{u_{k} u_{k+1}}^{3_{5}}\right)=7$, and $g_{2}\left(x_{u_{k} u_{k+1}}^{i_{j}}\right)=0, i+1$ or $i+4$ according as $j \equiv 0,1$ or $2(\bmod 3)$, where $1 \leq i \leq 3$ and $j \geq 6$.

For every edge $u v$ in G the $L(2,1)$-coloring constraints are satisfied within the paths P_{h}^{i} for $1 \leq i \leq 3$ and colors assigned to neighbors of a node are different. Hence g_{2} is an $L(2,1)$-coloring with span 7 . Now we reduce g_{2} until we arrive at an irreducible coloring, say g_{2}^{\prime}. We prove that g_{2}^{\prime} is a no-hole coloring. From the way g_{2} is defined there is at least one vertex w^{\prime} colored with 1 and lying at distance two from a vertex colored with 0 in g_{2}. Hence $g_{2}^{\prime}\left(w^{\prime}\right)=1$. A vertex in $G\left(r P_{h}\right)$ with degree 6 is colored with 0 and its neighbors are colored with $2,3,4$, $5,6,7$. Thus g_{2}^{\prime} is an inh-coloring with span 7.

Case 3. In this case we take $r \geq 4$. We give an $L(2,1)$-coloring g_{2} to $G\left(r P_{h}\right)$ as follows: $g_{2}(u)=0$ for all nodes u of $G\left(r P_{h}\right) ; g_{3}\left(x_{u_{k} u_{k+1}}^{i_{1}}\right)=i+1$ and $g_{3}\left(x_{u_{k} u_{k+1}}^{i_{h\left(u_{k} u_{k+1}\right)-1}}\right)=r+i+1$ for $1 \leq i \leq r . L(2,1)$-coloring constraints are satisfied for the colored vertices so far. We take an edge $u^{\prime} v^{\prime}$ of G such that $h\left(u^{\prime} v^{\prime}\right)>3$ and assign $g_{3}\left(x_{u^{\prime} v^{\prime}}^{2}\right)=1$. Since no vertex adjacent to $x_{u^{\prime} v^{\prime}}^{22}$ is colored with color 0 or $2, L(2,1)$-coloring constraints are satisfied for the colored vertices. The maximum color used till now is $2 r+1$. We color the remaining vertices greedily. If z is such a vertex then it has two neighbors and there are two vertices at distance two apart from it. Hence $g_{3}(z) \leq 8$. Thus span $\left(g_{3}\right)=2 r+1$ because $r \geq 4$. Now we reduce g_{3} until we arrive at an irreducible coloring, say g_{3}^{\prime}. A vertex in $G\left(r P_{h}\right)$ with degree $2 r$ is colored with 0 and its neighbors are colored with $2,3, \ldots, 2 r+1$. Since $g_{3}\left(x_{u^{\prime} v^{\prime}}^{22}\right)=1, g_{3}\left(u^{\prime}\right)=0$ and $d\left(x_{u^{\prime} v^{\prime}}^{22}, u^{\prime}\right)=2$, we get $g_{3}^{\prime}\left(x_{u^{\prime} v^{\prime}}^{22}\right)=1$. Hence g_{3}^{\prime} is an inh-coloring with span $2 r+1$.

Combining all these cases we conclude that $G\left(r P_{h}\right)$ is inh-colorable and $\lambda_{i n h}\left(G\left(r P_{h}\right)\right) \leq 2 r+1$. Thus from Proposition 4 we get $\lambda_{i n h}\left(G\left(r P_{h}\right)\right)=\lambda\left(G\left(r P_{h}\right)\right)$ $=2 r+1$.

4. Inh-Colorability of Graphs $G\left(r P_{h}\right)$ with $\Delta(G) \geq 3$

In this section we first consider the case $\Delta(G)=3$. In Theorem 20 below we find the exact value of span of $G\left(r P_{3}\right), r \geq 2$, which were not computed by Lü and Sun [12]. Moreover, this value of $\lambda\left(G\left(r P_{3}\right)\right)$ agrees with $\lambda\left(G_{(3)}\right)$ for $r=1$, computed by Chang et al. [1], for some graphs G.
Theorem 20. If G is a graph with $\Delta(G)=3$, then for $r \geq 2, \lambda\left(G\left(r P_{3}\right)\right)=3 r+1$.

Proof. We first consider the graph $G_{(3)}$. Let $S=V\left(G_{(3)}\right)-V(G)$. Since every vertex in S is at distance two apart from at most two other vertices in S, we can give a coloring f to vertices in S using colors 0,1 and 2 only such that vertices at distance two in $G_{(3)}$ have different colors.

Now we give an $L(2,1)$-coloring g to $G\left(r P_{3}\right)$. We assign $g(u)=0$ for all $u \in V(G)$. For every edge $u v$ of G we assign colors to the vertices $x_{u v}^{i_{1}}$ and $x_{u v}^{i_{2}}$, $1 \leq i \leq r$, as below: if $f\left(x_{u v}^{1}\right)=f\left(x_{u v}^{2}\right)=0$ then $g\left(x_{u v}^{i_{1}}\right)=3 i-1$ for $1 \leq i \leq r$, $g\left(x_{u v}^{12}\right)=3 r-1$ and $g\left(x_{u v}^{i_{2}}\right)=3 i-4$ for $2 \leq i \leq r$; if $f\left(x_{u v}^{1}\right)=f\left(x_{u v}^{2}\right)=1$ then $g\left(x_{u v}^{i_{1}}\right)=3 i$ for $1 \leq i \leq r, g\left(x_{u v}^{1_{2}}\right)=3 r$ and $g\left(x_{u v}^{i_{2}}\right)=3 i-3$ for $2 \leq i \leq r$; if $f\left(x_{u v}^{1}\right)=f\left(x_{u v}^{2}\right)=2$, then $g\left(x_{u v}^{i_{1}}\right)=3 i+1$ for $1 \leq i \leq r, g\left(x_{u v}^{1_{2}}\right)=3 r+1$ and $g\left(x_{u v}^{i_{2}}\right)=3 i-2$ for $2 \leq i \leq r$; if $f\left(x_{u v}^{1}\right)=0$ and $f\left(x_{u v}^{2}\right)=1$, then $g\left(x_{u v}^{i_{1}}\right)=3 i-1$ for $1 \leq i \leq r, g\left(x_{u v}^{1_{2}}\right)=3 r$ and $g\left(x_{u v}^{i_{2}}\right)=3 i-3$ for $2 \leq i \leq r$; if $f\left(x_{u v}^{1}\right)=1$ and $f\left(x_{u v}^{2}\right)=2$, then $g\left(x_{u v}^{i_{1}}\right)=3 i$ for $1 \leq i \leq r, g\left(x_{u v}^{1_{2}}\right)=3 r+1$ and $g\left(x_{u v}^{i_{2}}\right)=3 i-2$ for $2 \leq i \leq r$; if $f\left(x_{u v}^{1}\right)=0$ and $f\left(x_{u v}^{2}\right)=2$, then $g\left(x_{u v}^{i_{1}}\right)=3 i-1$ for $1 \leq i \leq r$ and $g\left(x_{u v}^{i_{2}}\right)=3 i+1$ for $1 \leq i \leq r$.

For any edge $u v$ of G and for $1 \leq i \leq r,\left|g\left(x_{u v}^{i_{1}}\right)-g\left(x_{u v}^{i_{2}}\right)\right| \geq 2$. Colors of the vertices of $G\left(r P_{3}\right)$ adjacent to a node are distinct. Colors of the nodes are 0 and colors of the other vertices are greater than or equal to 2 . Hence g is an $L(2,1)$ coloring with span $3 r+1$. Thus $\lambda\left(G\left(r P_{3}\right)\right) \leq 3 r+1$. Now from Proposition 4 we get $\lambda\left(G\left(r P_{3}\right)\right)=3 r+1$.

The theorem below gives an upper bound to inh-span of $G\left(r P_{3}\right), r \geq 2$. We note that this bound agrees with the upper bound of $\lambda_{\text {inh }}\left(G_{(3)}\right)$ given by Mandal and Panigrahi [13] for $r=1$.

Theorem 21. If G is a graph with $\Delta(G)=3$, then for $r \geq 2, G\left(r P_{3}\right)$ is inhcolorable and $\lambda_{\text {inh }}\left(G\left(r P_{3}\right)\right) \leq 3 r+2$.

Proof. We consider the same $L(2,1)$-coloring g of $G\left(r P_{3}\right)$ as given in the proof of Theorem 20. Note that g has a hole only at 1 . Also note that colors of neighbors of a vertex colored with 2 lies in the set $\{0,4,3 r-1,3 r\}$. Let u be a vertex in G with $\operatorname{deg}(u)=3$ if G is a regular graph and $\operatorname{deg}(u) \neq 3$ otherwise. From the way g is defined, we get that u is adjacent to a vertex in $G\left(r P_{3}\right)$ that is colored with 2,3 or $3 r+1$. We consider three cases depending on colors of neighbors of u.

Case 1. Here u is adjacent to a vertex colored with $3 r+1$. Let $g\left(x_{u v_{1}}^{i_{1}}\right)=$ $3 r+1$. Then $g\left(x_{u v_{1}}^{i_{2}}\right) \neq 2$. We give an another $L(2,1)$-coloring g_{1} to $G\left(r P_{3}\right)$ as follows: $g_{1}(y)=g(y)$ if $y \neq u, x_{u v_{1}}^{i_{1}}$ and $g_{1}\left(x_{u v_{1}}^{i_{1}}\right)=1$. Since $x_{u v_{1}}^{i_{1}}$ is adjacent to u and $x_{u v_{1}}^{i_{2}}$ only, and the vertex $x_{u v_{1}}^{i_{1}}$ receives the color 1 , the $L(2,1)$-coloring constraints are satisfied so far. We color the vertex u with the least available color such that $L(2,1)$ coloring constraints are satisfied. Since u is not adjacent to any vertex colored with $3 r+1$ in $g_{1}, g_{1}(u) \leq 3 r+2$. Now we reduce g_{1} until we arrive at an irreducible coloring g_{1}^{\prime}. Then $\operatorname{span}\left(g_{1}^{\prime}\right) \leq 3 r+2$. Since
$g_{1}\left(x_{u v_{1}}^{i_{1}}\right)=1, g_{1}\left(v_{1}\right)=0$ and $d\left(x_{u v_{1}}^{i_{1}}, v_{1}\right)=2$, color of $x_{u v_{1}}^{i_{1}}$ cannot be reduced, and so $g_{1}^{\prime}\left(x_{u v_{1}}^{i_{1}}\right)=1$. There is a vertex of degree $3 r$ in $G\left(r P_{3}\right)$ colored with 0 and its neighbors are colored with $2,3, \ldots, 3 r+1$. Hence g_{1}^{\prime} is an inh-coloring.

Case 2. Here u is not adjacent to any vertex colored with $3 r+1$ and adjacent to a vertex colored with 2 . Let $g\left(x_{u v_{2}}^{i_{1}}\right)=2$. Then $g\left(x_{u v_{2}}^{i_{2}}\right) \neq 2$. We give an another $L(2,1)$-coloring g_{2} to $G\left(r P_{3}\right)$ as follows: $g_{2}(y)=g(y)$ if $y \neq u, x_{u v_{2}}^{i_{1}}$ and $g_{2}\left(x_{u v_{2}}^{i_{1}}\right)=1$. Since $x_{u v_{2}}^{i_{1}}$ is adjacent to u and $x_{u v_{2}}^{i_{2}}$ only, and the vertex $x_{u v_{2}}^{i_{1}}$ is colored with 1 , the $L(2,1)$-coloring constraints are satisfied so far. Then we color the vertex u with the least available color such that $L(2,1)$-coloring constraints are satisfied. Since u is not adjacent to any vertex colored with $3 r+1$, $g_{2}(u) \leq 3 r+2$. Now we reduce g_{2} until we arrive at an irreducible coloring g_{2}^{\prime}. Then $\operatorname{span}\left(g_{2}^{\prime}\right) \leq 3 r+2$. Since $g_{2}\left(x_{u v_{2}}^{i_{1}}\right)=1, g_{2}\left(v_{2}\right)=0$ and $d\left(x_{u v_{2}}^{i_{1}}, v_{2}\right)=2$, color of $x_{u v_{2}}^{i_{1}}$ cannot be reduced, and so $g_{2}^{\prime}\left(x_{u v_{2}}^{i_{1}}\right)=1$. There is a vertex of degree $3 r$ in $G\left(r P_{3}\right)$ colored with 0 and its neighbors are colored with $2,3, \ldots, 3 r+1$. Hence g_{2}^{\prime} is an inh-coloring.

Case 3. In this case, u is not adjacent to any vertex colored with $3 r+1$ or 2 . Then u is adjacent to a vertex colored with 3 . Let $g\left(x_{u v_{3}}^{i_{1}}\right)=3$. Then $g\left(x_{u v_{3}}^{i_{2}}\right) \neq$ 2. We give an another $L(2,1)$-coloring g_{3} to $G\left(r P_{3}\right)$ as follows: $g_{3}(y)=g(y)$ if $y \neq u, x_{u v_{3}}^{i_{1}}$ and $g_{3}\left(x_{u v_{3}}^{i_{1}}\right)=1$. Since $x_{u v_{3}}^{i_{1}}$ is adjacent to u and $x_{u v_{3}}^{i_{2}}$ only, and the vertex $x_{u v_{3}}^{i_{1}}$ is colored with 1 , the $L(2,1)$-coloring constraints are satisfied so far. Then we color the vertex u with the least available color such that $L(2,1)$-coloring constraints are satisfied. Since u is not adjacent to any vertex colored with $3 r+1$, $g_{3}(u) \leq 3 r+2$. Now we reduce g_{3} until we arrive at an irreducible coloring g_{3}^{\prime}. Then $\operatorname{span}\left(g_{3}^{\prime}\right) \leq 3 r+2$. Since $g_{3}\left(x_{u v_{3}}^{i_{1}}\right)=1, g_{3}\left(v_{3}\right)=0$ and $d\left(x_{u v_{3}}^{i_{1}}, v_{3}\right)=2$, color of $x_{u v_{3}}^{i_{1}}$ cannot be reduced, and so $g_{3}^{\prime}\left(x_{u v_{3}}^{i_{1}}\right)=1$. There is a vertex of degree $3 r$ in $G\left(r P_{3}\right)$ colored with 0 and its neighbors are colored with $2,3, \ldots, 3 r+1$. Hence g_{3}^{\prime} is an inh-coloring.

Combining all these cases we get that $G\left(r P_{3}\right)$ is inh-colorable and $\lambda_{i n h}\left(G\left(r P_{3}\right)\right)$ $\leq 3 r+2$.

In Theorem 22 below we find span as well as inh-span of $G\left(r P_{h}\right)$, where $r \geq 2$ and $h(e) \geq 3$ with strict inequality for at least one e. Moreover, here we settle the case $h(e)=4$, for all e, which was left by Lü and Sun [12].

Theorem 22. If G is a graph with $\Delta(G)=3, r \geq 2$ and $h(e) \geq 3$ with strict inequality for at least one e, then $\lambda_{\text {inh }}\left(G\left(r P_{h}\right)\right)=\lambda\left(G\left(r P_{h}\right)\right)=3 r+1$.

Proof. We choose an edge $u^{\prime} v^{\prime}$ in G such that $h\left(u^{\prime} v^{\prime}\right)>3$. We first consider the graph $G_{(3)}$. Let $S=V\left(G_{(3)}\right)-V(G)$. Since every vertex in S is at distance two from at most two other vertices in S, we can give a coloring f to S using the colors 0,1 and 2 only such that vertices at distance two get different colors and $f\left(x_{u^{\prime} v^{\prime}}^{1}\right)=f\left(x_{u^{\prime} v^{\prime}}^{2}\right)=1$. Then we give an $L(2,1)$-coloring g to $G\left(r P_{3}\right)$ following
the same method of coloring in the proof of Theorem 20. Now we consider two cases depending on values of r.

Case 1. In this case we take $r=2$. We give a coloring g_{1} to $G\left(r P_{h}\right)$ as below. For any edge $u v$ of G and for $i=1,2, g_{1}\left(x_{u v}^{i_{1}}\right)=g\left(x_{u v}^{i_{1}}\right)$ and $g_{1}\left(x_{u v}^{i_{h}(u v)-1}\right)=$ $g\left(x_{u v}^{i_{2}}\right)$. To color the remaining vertices we have the following subcases depending on values of $g_{1}\left(x_{u v}^{i_{1}}\right)$ and $g_{1}\left(x_{u v}^{i_{h(u v)-1}}\right)$ for $i=1,2$ and an arbitrary edge $u v$ in G.

Subcase 1. $g_{1}\left(x_{u v}^{i_{1}}\right)=2, g_{1}\left(x_{u v}^{i_{h(u v)-1}}\right)=5$. Then g_{1} assigns colors to the remaining vertices as follows. If $h(u v) \equiv 0(\bmod 3)$, then $g_{1}\left(x_{u v}^{i_{j}}\right)=0,2$ or 5 according as $j \equiv 0,1$ or $2(\bmod 3)$. If $h(u v) \equiv 1(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=2$, $g_{1}\left(x_{u v}^{i_{2}}\right)=7, g_{1}\left(x_{u v}^{i_{3}}\right)=5$, and for $j \geq 4, g_{1}\left(x_{u v}^{i_{j}}\right)=0,2$ or 5 according as $j \equiv 1,2$ or $0(\bmod 3)$. If $h(u v) \equiv 2(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=2, g_{1}\left(x_{u v}^{i_{2}}\right)=7$, $g_{1}\left(x_{u v}^{i_{3}}\right)=3, g_{1}\left(x_{u v}^{i_{4}}\right)=5$, and for $j \geq 5, g_{1}\left(x_{u v}^{i_{j}}\right)=0,2$ or 5 according as $j \equiv 2,0$ or $1(\bmod 3)$.

Subcase 2. $g_{1}\left(x_{u v}^{i_{1}}\right)=2, g_{1}\left(x_{u v}^{i_{h(u v)-1}}\right)=6$. Then g_{1} assigns colors to the remaining vertices as follows. If $h(u v) \equiv 0(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{j}}\right)=0,2$ or 6 according as $j \equiv 0,1$ or $2(\bmod 3)$. If $h(u v) \equiv 1(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=2$, $g_{1}\left(x_{u v}^{i_{2}}\right)=4, g_{1}\left(x_{u v}^{i_{3}}\right)=6$, and for $j \geq 4, g_{1}\left(x_{u v}^{i_{j}}\right)=0,2$ or 6 according as $j \equiv 1,2$ or $0(\bmod 3)$. If $h(u v) \equiv 2(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=2, g_{1}\left(x_{u v}^{i_{2}}\right)=4$, $g_{1}\left(x_{u v}^{i_{3}}\right)=1, g_{1}\left(x_{u v}^{i_{4}}\right)=6$, and for $j \geq 5, g_{1}\left(x_{u v}^{i_{j}}\right)=0,2$ or 6 according as $j \equiv 2,0$ or $1(\bmod 3)$.

Subcase 3. $g_{1}\left(x_{u v}^{i_{1}}\right)=3, g_{1}\left(x_{u v}^{i_{h(u v)-1}}\right)=5$. Then g_{1} assigns colors to the remaining vertices as follows. If $h(u v) \equiv 0(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{j}}\right)=0,3$ or 5 according as $j \equiv 0,1$ or $2(\bmod 3)$. If $h(u v) \equiv 1(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=3$, $g_{1}\left(x_{u v}^{i_{2}}\right)=1, g_{1}\left(x_{u v}^{i_{3}}\right)=5$, and for $j \geq 4, g_{1}\left(x_{u v}^{i_{j}}\right)=0,3$ or 5 according as $j \equiv 1,2$ or $0(\bmod 3)$. If $h(u v) \equiv 2(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=3, g_{1}\left(x_{u v}^{i_{2}}\right)=1$, $g_{1}\left(x_{u v}^{i_{3}}\right)=7, g_{1}\left(x_{u v}^{i_{4}}\right)=5$, and for $j \geq 5, g_{1}\left(x_{u v}^{i_{j}}\right)=0,3$ or 5 according as $j \equiv 2,0$ or $1(\bmod 3)$.

Subcase 4. $g_{1}\left(x_{u v}^{i_{1}}\right)=2, g_{1}\left(x_{u v}^{i_{h(u v)-1}}\right)=4$. Then g_{1} assigns colors to the remaining vertices as follows. If $h(u v) \equiv 0(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{j}}\right)=0,2$ or 4 according as $j \equiv 0,1$ or $2(\bmod 3)$. If $h(u v) \equiv 1(\bmod 3)$, then $g_{1}\left(x_{u v}^{i_{1}}\right)=2$, $g_{1}\left(x_{u v}^{i_{2}}\right)=6, g_{1}\left(x_{u v}^{i_{3}}\right)=4$, and for $j \geq 4, g_{1}\left(x_{u v}^{i_{j}}\right)=0,2$ or 4 according as
$j \equiv 1,2$ or $0(\bmod 3)$. If $h(u v) \equiv 2(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=2, g_{1}\left(x_{u v}^{i_{2}}\right)=6$, $g_{1}\left(x_{u v}^{i_{3}}\right)=1, g_{1}\left(x_{u v}^{i_{4}}\right)=4$, and for $j \geq 5, g_{1}\left(x_{u v}^{i_{j}}\right)=0,2$ or 4 according as $j \equiv 2,0$ or $1(\bmod 3)$.

Subcase 5. $g_{1}\left(x_{u v}^{i_{1}}\right)=5, g_{1}\left(x_{u v}^{i_{h(u v)-1}}\right)=7$. Then g_{1} assigns colors to the remaining vertices as follows. If $h(u v) \equiv 0(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{j}}\right)=0,5$ or 7 according as $j \equiv 0,1$ or $2(\bmod 3)$. If $h(u v) \equiv 1(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=5$, $g_{1}\left(x_{u v}^{i_{2}}\right)=1, g_{1}\left(x_{u v}^{i_{3}}\right)=7$, and for $j \geq 4, g_{1}\left(x_{u v}^{i_{j}}\right)=0,5$ or 7 according as $j \equiv 1,2$ or $0(\bmod 3)$. If $h(u v) \equiv 2(\bmod 3), g_{1}\left(x_{u v}^{i_{1}}\right)=5, g_{1}\left(x_{u v}^{i_{2}}\right)=1$, $g_{1}\left(x_{u v}^{i_{3}}\right)=3, g_{1}\left(x_{u v}^{i_{4}}\right)=7$, and for $j \geq 5, g_{1}\left(x_{u v}^{i_{j}}\right)=0,5$ or 7 according as $j \equiv 2,0$ or $1(\bmod 3)$.

Subcase 6. $g_{1}\left(x_{u v}^{i_{1}}\right)=3, g_{1}\left(x_{u v}^{i_{h(u v)-1}}\right)=6$. Then g_{1} assigns colors to the remaining vertices as follows. If $h(u v) \equiv 0(\bmod 3)$ and $h(u v) \geq 6$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=3, g_{1}\left(x_{u v}^{i_{2}}\right)=1, g_{1}\left(x_{u v}^{i_{3}}\right)=4, g_{1}\left(x_{u v}^{i_{4}}\right)=2, g_{1}\left(x_{u v}^{i_{5}}\right)=6$, and for $j \geq 6, g_{1}\left(x_{u v}^{i_{j}}\right)=0,3$ or 6 according as $j \equiv 0,1$ or $2(\bmod 3)$. If $h(u v) \equiv 1(\bmod$ 3), then $g_{1}\left(x_{u v}^{i_{1}}\right)=3, g_{1}\left(x_{u v}^{i_{2}}\right)=1, g_{1}\left(x_{u v}^{i_{3}}\right)=6$, and for $j \geq 4, g_{1}\left(x_{u v}^{i_{j}}\right)=0,3$ or 6 according as $j \equiv 1,2$ or $0(\bmod 3)$. If $h(u v) \equiv 2(\bmod 3)$, then $g_{1}\left(x_{u v}^{i_{1}}\right)=3$, $g_{1}\left(x_{u v}^{i_{2}}\right)=1, g_{1}\left(x_{u v}^{i_{3}}\right)=4, g_{1}\left(x_{u v}^{i_{4}}\right)=6$, and for $j \geq 5, g_{1}\left(x_{u v}^{i_{j}}\right)=0,3$ or 6 according as $j \equiv 2,0$ or $1(\bmod 3)$.

Subcase 7. $g_{1}\left(x_{u v}^{i_{1}}\right)=3, g_{1}\left(x_{u v}^{i_{h(u v)-1}}\right)=7$. Then g_{1} assigns colors to the remaining vertices as follows. If $h(u v) \equiv 0(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{j}}\right)=0,3$ or 7 according as $j \equiv 0,1$ or $2(\bmod 3)$. If $h(u v) \equiv 1(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=3$, $g_{1}\left(x_{u v}^{i_{2}}\right)=1, g_{1}\left(x_{u v}^{i_{3}}\right)=7$, and for $j \geq 4, g_{1}\left(x_{u v}^{i_{j}}\right)=0,3$ or 7 according as $j \equiv 1,2$ or $0(\bmod 3)$. If $h(u v) \equiv 2(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=3, g_{1}\left(x_{u v}^{i_{2}}\right)=1$, $g_{1}\left(x_{u v}^{i_{3}}\right)=4, g_{1}\left(x_{u v}^{i_{4}}\right)=7$, and for $j \geq 5, g_{1}\left(x_{u v}^{i_{j}}\right)=0,3$ or 7 according as $j \equiv 2,0$ or $1(\bmod 3)$.

Subcase 8. $g_{1}\left(x_{u v}^{i_{1}}\right)=4, g_{1}\left(x_{u v}^{i_{h(u v)-1}}\right)=6$. Then g_{1} assigns colors to the remaining vertices as follows. If $h(u v) \equiv 0(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{j}}\right)=0,4$ or 6 according as $j \equiv 0,1$ or $2(\bmod 3)$. If $h(u v) \equiv 1(\bmod 3)$, then $g_{1}\left(x_{u v}^{i_{1}}\right)=4$, $g_{1}\left(x_{u v}^{i_{2}}\right)=1, g_{1}\left(x_{u v}^{i_{3}}\right)=6$, and for $j \geq 4, g_{1}\left(x_{u v}^{i_{j}}\right)=0,4$ or 6 according as $j \equiv 1,2$ or $0(\bmod 3)$. If $h(u v) \equiv 2(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=4, g_{1}\left(x_{u v}^{i_{2}}\right)=1$, $g_{1}\left(x_{u v}^{i_{3}}\right)=3, g_{1}\left(x_{u v}^{i_{4}}\right)=6$, and for $j \geq 5, g_{1}\left(x_{u v}^{i_{j}}\right)=0,4$ or 6 according as
$j \equiv 2,0$ or $1(\bmod 3)$.
Subcase 9. $g_{1}\left(x_{u v}^{i_{1}}\right)=4, g_{1}\left(x_{u v}^{i_{h(u v)-1}}\right)=7$. Then g_{1} assigns colors to the remaining vertices as follows. If $h(u v) \equiv 0(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{j}}\right)=0,4$ or 7 according as $j \equiv 0,1$ or $2(\bmod 3)$. If $h(u v) \equiv 1(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=4$, $g_{1}\left(x_{u v}^{i_{2}}\right)=1, g_{1}\left(x_{u v}^{i_{3}}\right)=7$, and for $j \geq 4, g_{1}\left(x_{u v}^{i_{j}}\right)=0,4$ or 7 according as $j \equiv 1,2$ or $0(\bmod 3)$. If $h(u v) \equiv 2(\bmod 3)$ then $g_{1}\left(x_{u v}^{i_{1}}\right)=4, g_{1}\left(x_{u v}^{i_{2}}\right)=1$, $g_{1}\left(x_{u v}^{i_{3}}\right)=3, g_{1}\left(x_{u v}^{i_{4}}\right)=7$, and for $j \geq 5, g_{1}\left(x_{u v}^{i_{j}}\right)=0,4$ or 7 according as $j \equiv 2,0$ or $1(\bmod 3)$.

Note that the colors of the vertices $x_{u v}^{i_{1}}$ and $x_{u v}^{i_{h(u v)-1}}$ remain unchanged. We reduce g_{1} until we arrive at an irreducible coloring g_{1}^{\prime}. Now we prove that g_{1}^{\prime} is a no hole coloring. Since $f\left(x_{u^{\prime} v^{\prime}}^{1}\right)=f\left(x_{u^{\prime} v^{\prime}}^{2}\right)=1$ we get $g_{1}\left(x_{u^{\prime} v^{\prime}}^{1_{1}}\right)=3$ and $g_{1}\left(x_{u^{\prime} v^{\prime}}^{1_{h(u v)-1}}\right)=6$. Thus $g_{1}\left(x_{u^{\prime} v^{\prime}}^{12}\right)=1$. Since $g_{1}\left(u^{\prime}\right)=0$ and $d\left(x_{u^{\prime} v^{\prime}}^{12}, u^{\prime}\right)=2$, color of the vertex $x_{u^{\prime} v^{\prime}}^{1_{2}}$ cannot be reduced and so $g_{1}^{\prime}\left(x_{u^{\prime} v^{\prime}}^{1_{2}}\right)=1$. A maximum degree vertex is colored with 0 and its neighbors are colored with $2,3,4,5,6$ and 7. Hence g_{1}^{\prime} is an inh-coloring with span 7 .

Case 2. In this case we take $r \geq 3$. We give a coloring g_{2} to $G\left(r P_{h}\right)$ as below. For any edge $u v$ of $G, g_{2}\left(x_{u v}^{i_{1}}\right)=g\left(x_{u v}^{i_{1}}\right)$ and $g_{2}\left(x_{u v}^{i_{h(u v)-1}}\right)=g\left(x_{u v}^{i_{2}}\right), 1 \leq i \leq r$. Since $g_{2}\left(x_{u^{\prime} v^{\prime}}^{1_{1}}\right)=3$ and $g_{2}\left(x_{u^{\prime} v^{\prime} v^{\prime}}^{1_{n(u v)}}\right)=3 r$ we take $g_{2}\left(x_{u^{\prime} v^{\prime}}^{1_{2}}\right)=1$. Then we color the remaining vertices greedily in any order. If w is such a vertex, then it has two neighbors and there are two vertices at distance two from it. Hence $g_{2}(w) \leq 8$. Since $r \geq 3$, we get $3 r+1>8$. Thus $\operatorname{span}\left(g_{2}\right)=3 r+1$. We reduce g_{2} until we arrive at an irreducible coloring g_{2}^{\prime}. Now we prove that g_{2}^{\prime} is a no hole coloring. Since $g_{2}\left(x_{u^{\prime} v^{\prime}}^{12}\right)=1, g_{2}\left(u^{\prime}\right)=0$ and $d\left(x_{u^{\prime} v^{\prime}}^{12}, u^{\prime}\right)=2$, color of the vertex $x_{u^{\prime} v^{\prime}}^{1_{2}}$ cannot be reduced and so $g_{2}^{\prime}\left(x_{u^{\prime} v^{\prime}}^{1_{2}}\right)=1$. A maximum degree vertex is colored with 0 and its neighbors are colored with $2,3, \ldots, 3 r+1$. Hence g_{2}^{\prime} is an inh-coloring with span $3 r+1$.

From these two cases we conclude that $G\left(r P_{h}\right)$ is inh-colorable and $\lambda\left(G\left(r P_{h}\right)\right)$ $\leq \lambda_{\text {inh }}\left(G\left(r P_{h}\right)\right) \leq 3 r+1$. Thus from Proposition 4 we get $\lambda_{\text {inh }}\left(G\left(r P_{h}\right)\right)=$ $\lambda\left(G\left(r P_{h}\right)\right)=3 r+1$.

We state the following lemma by Mandal and Panigrahi [13] which will be used in our next few results.

Lemma 23 [13]. Let f be an irreducible coloring of a graph G. Then no two consecutive numbers can be holes in f. Further, if l is a hole in f then every vertex colored with $l+1$ is adjacent to a vertex colored with $l-1$.

Now we consider graphs G with $\Delta(G) \geq 3$. The theorem below gives upper bound to $\lambda_{\text {inh }}\left(G\left(r P_{2}\right)\right)$ which agrees with the upper bound of $\lambda_{i n h}\left(G_{(2)}\right)$ given by Mandal and Panigrahi [13], for $r=1$. If G is either a tree or a non-bipartite graph then the bound agrees with the upper bound of $\lambda\left(G\left(r P_{2}\right)\right)$ given by Lü and Sun [12].

Theorem 24. Let G be a graph with $\Delta(G) \geq 3$. Then for $r \geq 2, G\left(r P_{2}\right)$ is inh-colorable and

$$
\lambda_{\text {inh }}\left(G\left(r P_{2}\right)\right) \leq \begin{cases}\chi(G)+r \chi^{\prime}(G)+3 & \text { if } G \text { is a bipartite graph other than a tree, } \\ \chi(G)+r \chi^{\prime}(G) & \text { otherwise, }\end{cases}
$$

where $\chi(G)$ and $\chi^{\prime}(G)$ are respectively the chromatic number and edge chromatic number of G.

Proof. Let G be a bipartite graph other than a tree. Now let f_{1}^{\prime} be an edge coloring of G starting with color 1 and ending with $\chi^{\prime}(G)$. Mandal and Panigrahi [13] have given an inh-coloring f_{1} to $G_{(2)}$. We describe the coloring f_{1} below.

Let y be a vertex in G of degree at least 3 and y_{1}, y_{2}, y_{3} be its neighbors with degree of y_{1} greater than or equal to 2 . Let y_{11} be a neighbor of y_{1} different from y. We give an $L(2,1)$-coloring c_{1} to $G_{(2)}$ as below. $c_{1}(y)=1, c_{1}\left(y_{i}\right)=0$ and $c_{1}\left(x_{y y_{i}}^{1}\right)=i+2$ for $i=1,2,3, c_{1}\left(x_{y_{1} y_{11}}^{1}\right)=2$ and $c_{1}\left(y_{11}\right)=4$. We color all the uncolored vertices in $V(G)$ with the colors 0 and 1 so that $L(2,1)$-coloring constraints are satisfied in $G_{(2)}$ and any vertex in $V(G)$ colored with 1 is at distance 2 in $G_{(2)}$ from a vertex colored with 0 . We color the remaining uncolored vertices of $G_{(2)}$ with the colors $6,7, \ldots, \chi^{\prime}(G)+5$ such that $L(2,1)$-coloring constraints are satisfied. We reduce c_{1} until we arrive at an irreducible coloring f_{1}. Mandal and Panigrahi [13] have proved that f_{1} is an inh-coloring of $G_{(2)}$ with span less than or equal to $\chi(G)+\chi^{\prime}(G)+3$ and greater than 4 such that color of each node is less than or equal to 4 .

Let $\operatorname{span}\left(f_{1}\right)=\lambda_{1}$. Let $S_{1}=V(G) \cup\left\{x_{u v}^{1_{1}}: u v \in E(G)\right\}$ and $S_{1}^{\prime}=$ $V\left(G\left(r P_{2}\right)\right)-S_{1}$. We give an $L(2,1)$-coloring g_{1} to $G\left(r P_{2}\right)$ as below: $g_{1}(u)=f_{1}(u)$ for all $u \in V(G), g_{1}\left(x_{u v}^{1_{1}}\right)=f_{1}\left(x_{u v}^{1}\right)$ for all edges $u v$ of G, and we assign $g_{1}\left(x_{u v}^{i_{1}}\right)=\chi(G)+\chi^{\prime}(G)+3+(i-2) \chi^{\prime}(G)+f_{1}^{\prime}(u v)$ for $2 \leq i \leq r$. Then all the vertices adjacent to a node have different colors. Since colors of nodes are less than 5 and colors of vertices in S_{1}^{\prime} are greater than $5, g_{1}$ is an $L(2,1)$-coloring. We reduce g_{1} until we arrive at an irreducible coloring g_{1}^{\prime}. In this process color of vertices in S_{1}^{\prime} are only reduced. We prove that g_{1}^{\prime} is a no-hole coloring. Let l be a hole in g_{1}^{\prime}. Then $l \geq \lambda_{1}+1 \geq 6$. From Lemma 23, a vertex colored with $l+1$ is adjacent to a vertex colored with $l-1$. A vertex colored with $l+1$ lies in S_{1}^{\prime} and it is adjacent to vertices in $V(G)$ only. Hence $l-1 \leq 4$. This is a contradiction. Hence g_{1}^{\prime} is an inh-coloring with $\operatorname{span}\left(g_{1}^{\prime}\right) \leq \chi(G)+r \chi^{\prime}(G)+3$ and $\lambda_{i n h}\left(G\left(r P_{2}\right)\right) \leq \chi(G)+r \chi^{\prime}(G)+3$.

Next let G be a tree. We take a leaf s of G. Let t be the vertex adjacent to s. We give an $L(2,1)$-coloring g_{2} to $G\left(r P_{2}\right)$ as below. We color the vertex t with color 0 . We color the vertices $x_{t s}^{1_{1}}, x_{t s}^{2_{1}}, \ldots, x_{t s}^{r_{1}}$ and s with colors $2,3, \ldots, r+1$ and $r+3$ respectively. We order the uncolored nodes of $G\left(r P_{2}\right)$ in increasing order of their distances from t and color them greedily. We note that colors 0 and 1 are only used by these nodes. We order the remaining vertices of of $G\left(r P_{2}\right)$ in increasing order of their distance from t and color them greedily. When such a vertex w is colored it is adjacent to two vertices colored with 0 and 1 and there are at most $r \Delta-1$ colored vertices at distance two from it. Thus $g_{2}(w) \leq r \Delta+2$ and so $\operatorname{span}\left(g_{2}\right) \leq r \Delta+2$. Now g_{2} is an irreducible coloring and the only possible hole is $r+2$. But a neighbor of t is colored with $r+2$. Thus g_{2} is an inh-coloring. Since $r \Delta+2=\chi(G)+r \chi^{\prime}(G)$, we get $\lambda_{i n h}\left(G\left(r P_{2}\right)\right) \leq \chi(G)+r \chi^{\prime}(G)$.

Finally, let G be not a bipartite graph. Now let f_{3}^{\prime} be an edge coloring of G starting with color 1 and ending with $\chi^{\prime}(G)$. Mandal and Panigrahi [13] have given an inh-coloring f_{3} to $G_{(2)}$. We describe the coloring f_{3} below.

Let c be a proper coloring of G which uses $\chi(G)$ colors starting from 1 such that color of no vertex can be reduced. There is at least one vertex z colored with 1 and adjacent to at least one vertex of every other color class. Let $z_{1}, z_{2}, \ldots, z_{\chi(G)-1}$ be vertices adjacent to z and colored with $2,3, \ldots, \chi(G)$, respectively. From c we construct an $L(2,1)$-coloring c_{3} of $G_{(2)}$ as below. $c_{3}(u)=$ $c(u)-1$ if $u \in V(G)$ and $c_{3}\left(x_{z z_{1}}^{1}\right)=3$. If $\chi(G)=3$ we do not assign color to $x_{z z_{2}}^{1}$ now. If $\chi(G)>3$ then $c_{3}\left(x_{z z_{2}}^{1}\right)=4$. If $\chi(G)=4$ we do not assign color to $x_{z z_{3}}^{1}$ now. If $\chi(G)>4$ then for $3 \leq i \leq \chi(G)-2, c_{3}\left(x_{z z_{i}}^{1}\right)=i+2$ and $c_{3}\left(x_{z z_{\chi(G)-1}}^{1}\right)=2$. For any uncolored vertex z^{\prime} in $G_{(2)}$ we define $c_{3}\left(z^{\prime}\right)=\chi(G)+f^{\prime}\left(e_{z^{\prime}}\right)$, where $e_{z^{\prime}}$ is the edge of G that is subdivided by z. If c_{3} is not irreducible we reduce c_{3} until we arrive at an irreducible coloring f_{3}. Mandal and Panigrahi [13] have proved that f_{3} is an inh-coloring of $G_{(2)}$ with span less than or equal to $\chi(G)+\chi^{\prime}(G)$ and greater than $\chi(G)-1$ such that color of each node is less than or equal to $\chi(G)-1$.

Let $\operatorname{span}\left(f_{3}\right)=\lambda_{3} . \quad$ Let $S_{3}=V(G) \cup\left\{x_{u v}^{1_{1}}: u v \in E(G)\right\}$ and $S_{3}^{\prime}=$ $V\left(G\left(r P_{2}\right)\right)-S_{3}$. We give an $L(2,1)$-coloring g_{3} to $G\left(r P_{2}\right)$ as below: $g_{3}(u)=$ $f_{3}(u)$ for all $u \in V(G), g_{3}\left(x_{u v}^{1_{1}}\right)=f_{3}\left(x_{u v}^{1}\right)$ for all edges $u v$ of $G, g_{3}\left(x_{u v}^{i_{1}}\right)=$ $\chi(G)+(i-1) \chi^{\prime}(G)+f_{3}^{\prime}(u v)$ for $2 \leq i \leq r$. Then g_{3} is an $L(2,1)$-coloring because all the vertices adjacent to a node have different colors, all nodes have colors less than $\chi(G)$, and colors of vertices in S_{3}^{\prime} are greater than $\chi(G)$. We reduce g_{3} until we arrive at an irreducible coloring g_{3}^{\prime}. In this process color of vertices in S_{3}^{\prime} are only reduced. We prove that g_{3}^{\prime} is a no-hole coloring. If l is a hole in g_{3}^{\prime}, then $l \geq \lambda_{3}+1 \geq \chi(G)+1$. From Lemma 23, a vertex colored with $l+1$ is adjacent to a vertex colored with $l-1$. A vertex colored with $l+1$ lies in S_{3}^{\prime} and is adjacent to vertices in $V(G)$ only. Hence $l-1 \leq \chi(G)-1$. This is
a contradiction. Hence g_{3}^{\prime} is an inh-coloring with $\operatorname{span}\left(g_{3}^{\prime}\right) \leq \chi(G)+r \chi^{\prime}(G)$ and $\lambda_{\text {inh }}\left(G\left(r P_{2}\right)\right) \leq \chi(G)+r \chi^{\prime}(G)$.

Theorem 25. Let G be a graph with $\Delta(G) \geq 3, h(e) \geq 2$, and $h(e)=2$ for at least one e but not for all. Then for $r \geq 5, G\left(r P_{h}\right)$ is inh-colorable and $\lambda_{\text {inh }}\left(G\left(r P_{h}\right)\right) \leq 2 r \Delta-r+5$.

Proof. Let $u v$ be an edge in G with $h(u v)>2$ and $\operatorname{deg}(u) \geq \operatorname{deg}(v)$. We give a coloring f to vertices in $G\left(r P_{h}\right)$ as below: $f(u)=f(v)=0$, and uncolored nodes of $G\left(r P_{h}\right)$ are colored greedily using Algorithm 9 in any order. Let c be the maximum color used by f till now. When a node is colored it has no colored neighbor and there are most Δ colored vertices at distance two from it. Also there exist at least two nodes distance two apart from each other. Hence $1 \leq c \leq \Delta$. We color the vertex $x_{u v}^{1_{1}}$ greedily and get $f\left(x_{u v}^{1_{1}}\right)=2$. If $c=1$ then the maximum color used till now is 2 and no hole is created. If $c>1$ then there is a vertex y_{1} in $V(G)$ colored with $c-1$. Since the coloring is obtained greedily, y_{1} is at distance two from at least $c-1$ vertices in $V(G)$, say, $z_{1}, z_{2}, \ldots, z_{c-1}$ colored with $0,1, \ldots, c-2$, respectively. We color the vertices $x_{y_{1} z_{1}}^{1_{1}}, x_{y_{1} z_{2}}^{1_{1}}, \ldots, x_{y_{1} z_{c-1}}^{1}$ greedily in the order they are listed. Then the colors $c-2, c-1, c, f\left(x_{y_{1} z_{1}}^{1_{1}}\right), f\left(x_{y_{1} z_{2}}^{1_{1}}\right), \ldots, f\left(x_{y_{1} z_{c-2}}^{1_{1}}\right)$, and $f\left(x_{y_{1} z_{c-1}}^{1_{1}}\right)$ are all distinct and one of them is $c+1$. Therefore, $c+1$ is not a hole. Hence the maximum color used till now is at least $c+1$ and no hole is created. Let $V_{1}=\left\{x_{u_{1} v_{1}}^{i_{1}}\right.$: $\left.h\left(u_{1} v_{1}\right)=2,1 \leq i \leq r\right\}$. We color the vertices in V_{1} greedily in any order. No hole is created till now. We color the vertices $x_{u v}^{i_{1}}, 2 \leq i \leq r$, greedily in any order. We choose a maximum degree vertex w of G, where $w \neq v$. This is possible since $\operatorname{deg}(u) \geq \operatorname{deg}(v)$. We color the uncolored vertices adjacent to w greedily in any order. No hole is created till now and the maximum color used so far is at least $r \Delta+1$, since w is a maximum degree vertex. Let $V_{2}=$ $\left\{x_{u v}^{1_{1}}\right\} \cup\left\{x_{w v_{2}}^{1_{1}}: h\left(w v_{2}\right)>2\right\} \cup\left\{x_{u_{3} v_{3}}^{1_{1}}: h\left(u_{3} v_{3}\right)>2, x_{u_{3} v_{3}}^{1_{h}\left(u_{3} v_{3}\right)-1} \notin V_{2}\right\}$ and $V_{3}=$ $\left\{x_{u_{3} v_{3}}^{i_{1}}: x_{u_{3} v_{3}}^{1_{1}} \in V_{2}, 1 \leq i \leq r\right\}$. We color the uncolored vertices in V_{3} greedily in any order. Let c_{1} be the maximum color used by vertices in V_{3}. No hole is created till now. Let $V_{4}=\left\{x_{u_{3} v_{3}}^{i_{h\left(u_{3} v_{3}\right)-1}}: f\left(x_{u_{3} v_{3}}^{i_{1}}\right)=c_{1}, x_{u_{3} v_{3}}^{i_{1}} \in V_{3}\right\}$ and $V_{5}=$ $\left\{x_{u_{3} v_{3}}^{i_{h\left(u_{3} v_{3}\right)-1}}: x_{u_{3} v_{3}}^{i_{1}} \in V_{3}\right\}$. We color the vertices in V_{4} greedily in any order. When a vertex $x_{u_{3} v_{3}}^{i_{h\left(u_{3} v_{3}\right)-1}}$ in V_{4} is colored it can use any color other than $f\left(v_{3}\right), f\left(v_{3}\right) \pm$ $1, f\left(u_{3}\right), f\left(x_{u_{3} v_{3}}^{i_{1}}\right), f\left(x_{u_{3} v_{3}}^{i_{1}}\right) \pm 1$ and the colors of at most $r \Delta-r$ colored neighbors of v_{3}. Hence $f\left(x_{u_{3} v_{3}}^{i_{h\left(u_{3} v_{3}-1\right.}}\right) \leq r \Delta-r+7 \leq r \Delta+2$. No hole is created since $c_{1} \geq r \Delta+1$. We color the remaining vertices in V_{5} greedily in any order. No hole is created so far. Finally, we color all the remaining vertices greedily in any order. Let $x_{u_{4} v_{4}}^{i_{j}}$ be such a vertex. Number of vertices adjacent to $X_{u_{4} v_{4}}^{i_{j}}$ is 2 and
number of vertices at distance two from $x_{u_{4} v_{4}}^{i_{j}}$ is also 2. Thus color of $x_{u_{4} v_{4}}^{i_{j}}$ is at most 8. Hence f is an inh-coloring of $G\left(r P_{h}\right)$ and $G\left(r P_{h}\right)$ is inh-colorable.

We prove that $\operatorname{span}(f) \leq 2 r \Delta-r+5$. Color of a node is less than $\Delta+1$. Let $x_{u_{5} v_{5}}^{i_{1}}$ be a vertex such that $h\left(u_{5} v_{5}\right)=2$. Then u_{5} and v_{5} have at most $r \Delta$ neighbors each, of which r neighbors are common. Thus u_{5} and v_{5} have at most $2 r \Delta-r$ neighbors in total. Hence number of vertices adjacent to $x_{u_{5} v_{5}}^{i_{1}}$ is 2 and number of vertices at distance two from it is at most $2 r \Delta-r-1$. Thus color of $x_{u_{5} v_{5}}^{i_{1}}$ is at most $2 r \Delta-r+5$. Let $x_{u_{6} v_{6}}^{i_{1}}$ be a vertex such that $h\left(u_{6} v_{6}\right)>2$. Number of vertices adjacent to $x_{u_{6} v_{6}}^{i_{1}}$ is 2 and number of vertices at distance two from it is at most $r \Delta$. Thus color of $x_{y_{6} v_{6}}^{i_{1}}$ is at most $r \Delta+6$. Let $x_{u_{7} v_{7}}^{i_{j}}$ be a vertex not adjacent to u_{7} or v_{7}. Number of vertices adjacent to $x_{i_{j}}^{i_{j}}{ }_{v_{7}}$ is 2 and number of vertices at distance two from $x_{u_{7} v_{7}}^{i_{j}}$ is 2 . Thus color of $x_{u_{7} v_{7}}^{i_{j}}$ is at most 8. Therefore $\operatorname{span}(f) \leq 2 r \Delta-r+5$ and hence the result follows.

Finally, we consider graphs having maximum degree at least 4. In the theorem below we obtain an upper bound of $\lambda_{i n h}\left(G\left(r P_{3}\right)\right), r \geq 2$, which agrees with the upper bound of $\lambda_{\text {inh }}\left(G_{(3)}\right)$ given by Mandal and Panigrahi [13], for $r=1$. Moreover, we find the exact value of $\lambda_{\text {inh }}\left(G\left(r P_{3}\right)\right)$ if $\Delta(G)$ is at least four times the minimum degree of G.
Theorem 26. If G is a graph with $\Delta \geq 4$, then for $r \geq 2, G\left(r P_{3}\right)$ is inh-colorable and $\lambda_{\text {inh }}\left(G\left(r P_{3}\right)\right) \leq r \Delta+2$. Further, if $\Delta \geq 4 \delta$ then $\lambda_{\text {inh }}\left(G\left(r P_{3}\right)\right)=r \Delta+1$, where δ is the minimum degree in G.
Proof. Let G_{1} be the subgraph of $G\left(r P_{3}\right)$ induced on the vertex set $V(G) \cup\left\{x_{u v}^{1_{j}}\right.$: $j \in\{1,2\}, u v \in E(G)\}$. Then G_{1} is isomorphic to $G_{(3)}$. According to Proposition 3 we get a λ-perfect labeling f of G_{1}. We note that 1 is the only hole in f because nodes are colored with 0 , vertices adjacent to a maximum degree vertex are colored with $2,3, \ldots, \Delta+1$ and every vertex is either a node or adjacent to a node. Now we use f to construct an $L(2,1)$-coloring g of $G\left(r P_{3}\right)$ with span $r \Delta+1$ as below: $g(w)=f(w)$ if $w \in V\left(G_{1}\right)$, for all edges $u v$ of $G, 2 \leq i \leq r$ and $1 \leq j \leq 2, g\left(x_{u v}^{i_{j}}\right)=g\left(x_{u v}^{1_{j}}\right)+(i-1) \Delta$. We check that g is an $L(2,1)$-coloring with span $r \Delta+1$ and having a hole at 1 . A maximum degree vertex in $G\left(r P_{3}\right)$ is colored with 0 and its neighbors are colored with $2,3, \ldots, r \Delta+1$. Thus 1 is the only hole in g. Let u^{\prime} be a minimum degree vertex of G. Let y be a vertex having the maximum color among the neighbors of u^{\prime} in $G\left(r P_{3}\right)$. Then $y=x_{u^{\prime} v^{\prime}}^{r_{1}}$ for some neighbor v^{\prime} of u^{\prime} in G. Thus $(r-1) \Delta+2 \leq g\left(x_{u^{\prime} v^{\prime}}^{r_{1}}\right) \leq r \Delta+1$ and $(r-1) \Delta+2 \leq g\left(x_{u^{\prime} v^{\prime}}^{r_{2}}\right) \leq r \Delta+1$. We give another $L(2,1)$-coloring g^{\prime} to $G\left(r P_{3}\right)$ where $g^{\prime}(z)=g(z)$ if $z \neq u^{\prime}, x_{u^{\prime} v^{\prime}}^{r_{1}}$ and $g^{\prime}\left(x_{u^{\prime} v^{\prime}}^{r_{1}}\right)=1$. Since no vertex adjacent to $x_{u^{\prime} v^{\prime}}^{r_{1}}$ is colored with 0 or $2, L(2,1)$-coloring constraints are satisfied. Next, u^{\prime} is colored with the least available color such that $L(2,1)$-coloring constraints are satisfied by g^{\prime}. Since no vertex adjacent to u^{\prime} is colored with $r \Delta+1, g^{\prime}\left(u^{\prime}\right) \leq r \Delta+2$
and thus $\operatorname{span}\left(g^{\prime}\right) \leq r \Delta+2$. Again, the number of vertices adjacent to u^{\prime} is $r \delta$ and the number of vertices at distance two from u^{\prime} is also $r \delta$. Hence the number of colors not available for u^{\prime} is at most $4 r \delta$ and so $g^{\prime}\left(u^{\prime}\right) \leq 4 r \delta$. Therefore, if $\Delta \geq 4 \delta$ then $g^{\prime}\left(u^{\prime}\right) \leq r \Delta+1$ and so $\operatorname{span}\left(g^{\prime}\right)=r \Delta+1$. Now we reduce g^{\prime} until we arrive at an irreducible coloring $g^{\prime \prime}$. Since $g^{\prime}\left(x_{u^{\prime} v^{\prime}}^{r_{1}}\right)=1, g^{\prime}\left(v^{\prime}\right)=0$ and $d\left(x_{u^{\prime} v^{\prime}}^{r_{1}}, v^{\prime}\right)=2$, color of $x_{u^{\prime} v^{\prime}}^{r_{1}}$ cannot be reduced and so $g^{\prime \prime}\left(x_{u^{\prime} v^{\prime}}^{r_{1}}\right)=1$. There is a maximum degree vertex in $G\left(r P_{3}\right)$ colored with 0 and its neighbors are colored with $2,3, \ldots, r \Delta+1$ by $g^{\prime \prime}$. Thus $g^{\prime \prime}$ is an inh-coloring of $G\left(r P_{3}\right)$ and $\lambda_{i n h}\left(G\left(r P_{3}\right)\right) \leq r \Delta+2$. Further, by Proposition 4 if $\Delta \geq 4 \delta$ then $\lambda_{\text {inh }}\left(G\left(r P_{3}\right)\right)=r \Delta+1$.

Lü and Sun [12] have found the exact value of $\lambda\left(G\left(r P_{3}\right)\right), r \geq 2$, when $\Delta(G)$ is even. In the corollary below we find the same when $\Delta(G)$ is odd.

Corollary 27. If G is a graph with $\Delta(G) \geq 5, \Delta(G)$ odd, then for $r \geq 2$, $\lambda\left(G\left(r P_{3}\right)\right)=r \Delta+1$.
Proof. In the proof of Theorem 26 we have given an $L(2,1)$-coloring g to $G\left(r P_{3}\right)$ with span $r \Delta+1$. Thus from Proposition 4 we get $\lambda\left(G\left(r P_{3}\right)\right)=r \Delta+1$.

In Theorem 28 below we find the exact value of span and inh-span of $G\left(r P_{h}\right)$ (with some restrictions on h) which coincide with span and inh-span of $G_{(h)}$, for $r=1$, given by Chang et al. [1] and Mandal and Panigrahi [13], respectively. In particular, for $\Delta(G)$ odd we get the exact value of $\lambda\left(G\left(r P_{4}\right)\right)$ which was not found by Lü and Sun [12].

Theorem 28. If G is a graph with $\Delta(G) \geq 4, r \geq 2$, and $h(e) \geq 3$ with strict inequality for at least one e, then $\lambda_{\text {inh }}\left(G\left(r P_{h}\right)\right)=\bar{\lambda}\left(G\left(r P_{h}\right)\right)=r \Delta+1$.

Proof. Here we consider the same $L(2,1)$-coloring g of $G\left(r P_{3}\right)$ that appears in the proof of Theorem 26. Note that span of g is $r \Delta+1$ and g assigns color 0 to all nodes. Let $u^{\prime} v^{\prime}$ be an edge in G such that $h\left(u^{\prime} v^{\prime}\right)>3$. Then we give an $L(2,1)$-coloring g^{\prime} to $G\left(r P_{h}\right)$ as below. For any edge $u v$ in G and for $1 \leq i \leq r$, $g^{\prime}\left(x_{u v}^{i_{1}}\right)=g\left(x_{u v}^{i_{1}}\right), g^{\prime}\left(x_{u v}^{i_{h(u v)-1}}\right)=g\left(x_{u v}^{i_{2}}\right)$, and $g^{\prime}\left(x_{u^{\prime} v^{\prime}}^{2_{2}}\right)=1$ (this is possible since $g^{\prime}\left(x_{u^{\prime} v^{\prime}}^{2}\right)>\Delta+1$ and $g^{\prime}\left(x_{u^{\prime} v^{\prime}}^{2 h\left(u^{\prime} v^{\prime}\right)-1}\right)>\Delta+1$). We color the remaining vertices greedily in any order applying Algorithm 9. When such a vertex w is colored it is adjacent to two vertices and there are two vertices at distance two from it. Hence $g^{\prime}(w) \leq 8$. Since $r \geq 2$ and $\Delta \geq 4, g^{\prime}(w) \leq r \Delta+1$. Thus $\operatorname{span}\left(g^{\prime}\right)=r \Delta+1$. Now we reduce g^{\prime} until we arrive at an irreducible coloring $g^{\prime \prime}$. We prove that $g^{\prime \prime}$ is a no-hole coloring. Since $g^{\prime}\left(x_{u^{\prime} v^{\prime}}^{22}\right)=1, g^{\prime}\left(u^{\prime}\right)=0$ and $d\left(x_{u^{\prime} v^{\prime}}^{22}, u^{\prime}\right)=1$, the color of $x_{u^{\prime} v^{\prime}}^{22}$ cannot be reduced and thus $g^{\prime \prime}\left(x_{u^{\prime} v^{\prime}}^{22}\right)=$ 1. A maximum degree vertex is colored with 0 and its neighbors are colored with $2,3, \ldots, r \Delta+1$ by $g^{\prime \prime}$. Hence $g^{\prime \prime}$ is an inh-coloring with span $r \Delta+1$.

Thus $\lambda\left(G\left(r P_{h}\right)\right) \leq \lambda_{\text {inh }}\left(G\left(r P_{h}\right)\right) \leq r \Delta+1$. Now from Proposition 4 we get $\lambda_{i n h}\left(G\left(r P_{h}\right)\right)=\lambda\left(G\left(r P_{h}\right)\right)=r \Delta+1$.

5. Concluding Remarks

In this paper we show that for any graph G with $h(e) \geq 3$ and $r \geq 2, G\left(r P_{h}\right)$ is inh-colorable and for $\Delta(G) \geq 2, G\left(r P_{2}\right)$ is inh-colorable. We also prove that if G is a graph with $\Delta(G) \geq 2, h(e) \geq 2$ for all e in $E(G)$ and $h(e)=2$ for at least one e but not for all, and $r \geq 2$, then $G\left(r P_{h}\right)$ is inh-colorable except possibly the following cases: $\Delta(G)=2, r=2$; and $\Delta(G) \geq 3,2 \leq r \leq 4$. We have found the exact value of $\lambda_{i n h}\left(G\left(r P_{h}\right)\right)$ in several cases and given upper bounds in the remaining. However, some of the upper bounds given in the paper may not be sharp. So the following problems remain open.

1. Is $G\left(2 P_{h}\right)$ inh-colorable for any G with $\Delta=2, h(e) \geq 2$ for all edges and equality for at least one but not for all?
2. Is $G\left(r P_{h}\right)$ inh-colorable for any graph G with $\Delta \geq 3, h(e) \geq 2$ for all edges and equality for at least one but not for all, and $2 \leq r \leq 4$?
3. Can the upper bound of $\lambda_{i n h}\left(G\left(r P_{h}\right)\right)$, when $\Delta(G)=2, r \geq 2$ and $h(e) \geq 2$ with equality for at least one e but not for all (Theorems 12 and 16) be improved?
4. Can the upper bound of $\lambda_{i n h}\left(G\left(r P_{h}\right)\right)$, when $\Delta(G) \geq 3, r \geq 5$ and $h(e) \geq 2$ with equality for at least one e but not for all (Theorem 25) be improved?
5. Whether $\lambda_{i n h}\left(G\left(r P_{3}\right)\right)=r \Delta+1$, for every graph G with $\Delta \geq 3$ and $r \geq 2$ (Theorems 21 and 26)?
6. Is the upper bound 6 for $\lambda_{\text {inh }}\left(C_{m}\left(2 P_{3}\right)\right), m \geq 4$ (Theorem 17) sharp?
7. Can the upper bound for $\lambda_{i n h}\left(C_{m}\left(r P_{2}\right)\right)$ given in Theorem 15 be improved?

Acknowledgements

We are thankful to the referees for their valuable comments and suggestions which improved the presentation of the paper.

References

[1] F.-H. Chang, M.-L. Chia, D. Kuo, S.-C. Liaw and M.-H. Tsai, L(2, 1)-labelings of subdivisions of graphs, Discrete Math. 338 (2015) 248-255. doi:10.1016/j.disc.2014.09.006
[2] G.J. Chang and C. Lu, Distance-two labelings of graphs, European J. Combin. 24 (2003) 53-58.
doi:10.1016/S0195-6698(02)00134-8
[3] P.C. Fishburn and F.S. Roberts, No-hole L(2,1)-colorings, Discrete Appl. Math. 130 (2003) 513-519.
doi:10.1016/S0166-218X(03)00329-9
[4] J.R. Griggs and R.K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586-595.
doi:10.1137/0405048
[5] F. Havet and M.-L. Yu, ($p, 1$)-total labelling of graphs, Technical Report 4650, INRIA (2002).
[6] F. Havet and M.-L. Yu, ($p, 1$)-total labelling of graphs, Discrete Math. 308 (2008) 496-513.
doi:10.1016/j.disc.2007.03.034
[7] J. Jacob, R. Laskar and J.Villalpando, On the irreducible no-hole $L(2,1)$ coloring of bipartite graphs and Cartesian products, J. Combin. Math. Combin. Comput. 78 (2011) 49-64.
[8] N. Karst, J. Oehrlein, D.S. Troxell and J. Zhu, L(d,1)-labelings of the edge-pathreplacement by factorization of graphs, J. Comb. Optim. 30 (2015) 34-41. doi:10.1007/s10878-013-9632-x
[9] R.C. Laskar, G.L. Matthews, B. Novick and J. Villalpando, On irreducible no-hole $L(2,1)$-coloring of trees, Networks 53 (2009) 206-211. doi:10.1002/net. 20286
[10] R.C. Laskar and J.J. Villalpando, Irreducibility of $L(2,1)$-coloring and inh-colorablity of unicyclic and hex graphs, Util. Math. 69 (2006) 65-83.
[11] D. Lü, L(2,1)-labelings of the edge-path-replacement of a graph, J. Comb. Optim. 26 (2013) 385-392. doi:10.1007/s10878-012-9470-2
[12] D. Lü and J. Sun, L(2,1)-labelings of the edge-multiplicity-paths-replacement of a graph, J. Comb. Optim. 31 (2016) 396-404. doi:10.1007/s10878-014-9761-x
[13] N. Mandal and P. Panigrahi, On irreducible no-hole $L(2,1)$-coloring of subdivision of graphs, J. Comb. Optim. 33 (2017) 1421-1442. doi:10.1007/s10878-016-0047-3
[14] D.B. West, Introduction to Graph Theory (New Delhi, Prentice-Hall, 2003).
[15] M.A. Whittlesey, J.P. Georges and D.W. Mauro, On the λ-number of Q_{n} and related graphs, SIAM J. Discrete Math. 8 (1995) 499-506.
doi:10.1137/S0895480192242821

