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Abstract

An [1, k]-set S in a graph G is a dominating set such that every vertex not
in S has at most k neighbors in it. If the additional requirement that the set
must be independent is added, the existence of such sets is not guaranteed in
every graph. In this paper we solve some problems previously posed by other
authors about independent [1, 2]-sets. We provide a necessary condition for
a graph to have an independent [1, 2]-set, in terms of spanning trees, and
we prove that this condition is also sufficient for cactus graphs. We follow
the concept of excellent tree and characterize the family of trees such that
any vertex belongs to some independent [1, 2]-set. Finally, we describe a
linear algorithm to decide whether a tree has an independent [1, 2]-set. This
algorithm can be easily modified to obtain the cardinality of a smallest
independent [1, 2]-set of a tree.
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1. Introduction

All graphs considered here are finite, undirected, simple and connected. Unde-
fined basic concepts can be found in introductory graph theory literature as
in [2, 8]. Let G = (V,E) be a graph. The open neighborhood of a vertex
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v ∈ V is the set N(v) = {u |uv ∈ E} of vertices adjacent to v. Each vertex
u ∈ N(v) is called a neighbor of v. The closed neighborhood of a vertex v ∈ V
is the set N [v] = N(v) ∪ {v}. The open neighborhood of a set S ⊆ V of ver-
tices is N(S) =

⋃

v∈S N(v), while the closed neighborhood of a set S is N [S]
=

⋃

v∈S N [v]. A set S is independent if no two vertices in S are adjacent. A
set S is a dominating set of a graph G if N [S] = V , that is, for every v ∈ V ,
either v ∈ S or v ∈ N(u) for some vertex u ∈ S. A dominating set which is also
independent is an independent dominating set.

In [3], Chellali et al. define a subset S ⊆ V in a graph G to be a [j, k]-set if
for every vertex v ∈ V \ S, j ≤ |N(v) ∩ S| ≤ k, that is, every vertex in V \ S is
adjacent to at least j vertices, but not more than k vertices in S. In [4] a similar
definition was introduced with the additional condition of independence, and the
minimum cardinality of an independent [j, k]-set is denoted by i[j,k](G). Note
that the existence of such sets for all j ≤ k is not guaranteed in every graph and
a characterization of trees having an independent [1, k]-set can be found in [4].

In this paper we focus on independent [1, 2]-sets, that is, an independent
dominating set S of a graph G such that every vertex u ∈ V (G) \ S has at most
two neighbors in S. It is pointed out in [4] that [1, 1]-sets are related to single
error-correcting codes and the generalization to independent [1, k]-sets is focused
on that relationship. Thus from this point of view, in cases where independent
[1, 1]-sets are not available, independent [1, 2]-sets could not correct some words,
but they come from one of only two possible code words.

Here we deal with some open problems about this type of domination posed
in [4]. In Section 2 we give a necessary condition for a graph G to have an inde-
pendent [1, 2]-set, in terms of its spanning trees, that is, an answer to Problem
2 in [4]. This necessary condition becomes also sufficient in the class of cactus
graphs, what gives a partial answer to Problem 1 in [4]. In Section 3 we follow
the concept of excellent tree proposed in [6] and we adapt it to the environment
of our study, providing a characterization of trees in which every vertex belongs
to some independent [1, 2]-set, which is not necessarily minimum. The charac-
terization of trees having an independent [1, 2]-set in [4] does not allow to obtain
a polynomial algorithm solving this decision problem, so in Section 4 we present
a linear algorithm to decide whether a tree has an independent [1, 2]-set. This
algorithm can be easily modified to obtain the cardinality of a smallest indepen-
dent [1, 2]-set of a tree, therefore we can compute i[1,2](T ); this solves the part of
Problem 8 in [4] regarding this parameter.

2. A Necessary Condition for Having an Independent [1, 2]-Set

In this section we provide a necessary condition for a graph G to have an indepen-
dent [1, 2]-set, in terms of its spanning trees, which gives an answer to Problem 2
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posed in [4]. Recall that a spanning tree of a connected graph G is an acyclic con-
nected subgraph that includes all the vertices of G. In addition we show that this
condition is also sufficient in the family of cactus graphs, that is, graphs whose
every edge belongs to at most one cycle, or equivalently, every block (maximal
connected induced subgraph with no cut vertices) is a cycle or the path P2. This
result gives a partial answer to Problem 1 in [4].

To this end we will need the family F2 of trees having an independent [1, 2]-
set that was characterized in Theorem 11 of [4]. For the sake of completeness
we sketch here the construction. As a first step, we define the family of p2-trees
in the following way: let T be a non-trivial tree and let V (T ) = X ∪ Y be the
unique bipartition of the vertex set. T will be a p2-tree if every vertex in one
of the partite sets, say X, has degree at most 2; such a partite set is called a
p2-set. It is clear that if X is a p2-set of T , then Y is an independent [1, 2]-set
of T . Theorem 11 of [4] states that a non-trivial tree T admits an independent
[1, 2]-set if and only if T can be obtained from a family T1, . . . , Tt of p2-trees
adding t− 1 edges where each edge joins vertices in two different sets Xi and Xj .

Such family of trees G(T ) = {T1, . . . , Tt} is a generating family of T and trees
in family F2 are those trees having a generating family. The proof of Theorem 11
of [4] also shows the correspondence between generating families and independent
[1, 2]-sets in a tree T . We recall this relationship in the following definition.

Definition. Let T ∈ F2. The independent [1, 2]-set associated to the generat-
ing family G(T ) = {T1, . . . , Tt} is S =

⋃t
i=1 Yi, where V (Ti) = Xi ∪ Yi is the

bipartition into a p2-set Xi and an independent [1, 2]-set Yi.
Conversely, the generating family associated to an independent [1, 2]-set S is

the family of trees of the forest obtained by removing from T all edges with both
vertices in V (T ) \ S.

The condition of having a generating family for trees that admit independent
[1, 2]-sets can be extended, in some sense, to every graph by means of spanning
trees. To show it, we need the following definition.

Definition. Let G be a graph having a spanning tree T ∈ F2, with a generating
family G(T ) = {T1, . . . , Tt} and let V (Tj) = Xj ∪ Yj be the bipartition into a
p2-set and an independent [1, 2]-set, respectively. Let e = uv be an edge of G
that is not an edge of T .

1. e is called type A for the generating family G(T ) if u, v ∈
⋃t

j=1Xj .

2. e is called type B for the generating family G(T ) if there exists je ∈ {1, . . . , t}
such that u is a leaf of Tje , u ∈ Xje and v ∈ Yje .

Theorem 1. Let G be a graph having an independent [1, 2]-set. Then G has a

spanning tree T ∈ F2 with a generating family G(T ) = {T1, . . . , Tt}, such that

any edge e ∈ E(G) \ E(T ) is type A or type B for G(T ).
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Proof. Let G be a graph having an independent [1, 2]-set S. If G is a tree, then
the conditions are trivially true. Now assume that G has an induced cycle C0.
If there exists an edge e in C0 with both vertices in V (G) \ S, then pick e1 = e
(we call this case A), if each edge of C0 has exactly one vertex in S, take e1 any
edge of C0 (we call this case B). We define G1 = G− e1; if it is not a tree it has
an induced cycle C1. Again either there is an edge e2 = u2v2 in C1 such that
u2, v2 /∈ S (case A) or every edge of C1 has exactly one vertex in S (case B).
For the second case although C0 and C1 could share same edges, we can take e2
an edge of C1 which is not an edge of C0, because C1 is an induced cycle in G1

however vertices of C0 do not induce a cycle in G1.

We repeat this process until we obtain Gk = G − {e1, . . . , ek} a spanning
tree of G, where each edge ei = uivi belongs to an induced cycle Ci−1 of Gi−1 =
G− {e1, . . . , ei−1} and satisfies either ui, vi /∈ S or ei is not an edge of any cycle
Cr, r < i− 1, and every edge in Ci−1 has exactly one vertex in S.

Now note that S is also an independent [1, 2]-set of Gk, because removing
edges from G does not affect independence and both cases A and B ensure that S
dominates Gk. So Gk ∈ F2 and we can take G(Gk) = {T1, . . . , Tt} the generating
family of Gk associated to S. If edge ei = uivi is in case A, then ui, vi ∈ V (Gk) \
S =

⋃t
j=1Xj (type A edge). If ei = uivi is in case B, then every edge of Ci−1

has exactly one vertex in S and note that no other edge of Ci−1 will be removed
in successive steps of the construction of Gk, so ui, vi are connected in Gk by the
path Ci−1 − ei, where each edge has one vertex in S. This means that ui, vi are
in the same connected component of the forest resulting of removing from Gk all
edges with no vertex in S, or equivalently that there exists ji ∈ {1, . . . , t} with
ui, vi ∈ V (Tji). Moreover ui /∈ S and vi ∈ S gives ui ∈ Xji and vi ∈ Yji .

Finally both neighbors of ui in the cycle Ci−1 belong to S, so if ui has any
other neighbor z in G which is not in Ci−1, it is clear that z /∈ S, so edge uiz joins
two different trees of the generating family G(Gk) = {T1, . . . , Tt}. That means ui
is a leaf of Tji (type B edge).

The following example shows that the converse of Theorem 1 is not true in
general. The graph in Figure 1(a) has no independent [1, 2]-set because all black
vertices should be in such set, so vertex v would be dominated three times. How-
ever, the set of black vertices is an independent [1, 2]-set of the tree in Figure 1(b),
which is the spanning tree of G resulting from removing type B edges e1 and e2.

The key point of this counterexample is that the spanning tree is obtained
from G by removing some edges, such that at least one of them belongs to two
induced cycles, in this example the edge e1. This idea leads us to the family of
cactus graphs, where every edge belong to at most one cycle. In this graph class
the necessary condition to have an independent [1, 2]-set shown in Theorem 1 is
also sufficient.
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v

(a) G has no independent [1, 2]-set.

e1 e2

(b) T is a p2-tree that spans G.

Figure 1. The converse of Theorem 1 is not true in general.

Theorem 2. Let G be a cactus graph. Then G has an independent [1, 2]-set if and
only if it has a spanning tree T ∈ F2 with a generating family G(T ) = {T1, . . . , Tt},
such that any edge e ∈ E(G) \ E(T ) is type A or type B for G(T ).

Proof. We just need to prove the sufficiency. Let S =
⋃t

j=1 Yj be the indepen-
dent [1, 2]-set of T associated to the generating family G(T ) and let us see that it
is also an independent [1, 2]-set of G. The graph G is obtained from the spanning
tree T by adding some edges, so S is also a dominating set of G. Moreover, by
hypothesis no added edge has both vertices in S, therefore S is independent in G.

Now we need to show that S is a [1, 2]-set of G. Let x ∈ V (G) \ S. If every
edge of G incident to x is an edge of T , then NG(x) = NT (x) and x has at most
two neighbors in S. On the contrary suppose that the set of edges incident to x
which are in E(G) \E(T ) is non-empty and denote those edges as e1, . . . , er with
ei = xyi. Using that G is a cactus graph and that removing these edges does
not disconnect the graph, each edge ei belongs to exactly one cycle Ci in G, with
Ci 6= Cj for i 6= j, and x is a common vertex of all of them (see Figure 2(a)).

Firstly assume that all edges e1, . . . , er are of type A, that is, yi ∈
⋃t

j=1Xj =
V (G) \S, for all i = 1, . . . , r. Then the neighbors of x in G other than y1, . . . , yr,
are also neighbors of x in T , so it is clear that x has at most two neighbors in
G belonging to S. On the other hand suppose, without loss of generality, that
e1 = xy1 is type B, so there exists j ∈ {1, . . . , t} such that x is a leaf of Tj , x ∈ Xj

and y1 ∈ Yj . Therefore, x has just one neighbor in Tj , say z1, which is in Yj , and
both y1, z1 are neighbors of x in G belonging to S.

Let w ∈ NG(x)\{y1, z1}. If w ∈ NT (x), then w belongs to a tree Tl 6= Tj , the
edge xw connects two different trees of the forest T1, . . . , Tt, and by construction
w /∈ S. Finally, if w /∈ NT (x), then w ∈ {y2, . . . , yk}, say w = y2. Vertex y2
belongs to cycle C2 in G, different from cycle C1 containing y1, and we denote
the neighbor of x in C2, other than y2, by z2. Using the fact that x is a leaf of Tj

with neighbor z1, which is a vertex of cycle C1, we obtain that z2 6= z1, the edge
xz2 does not belong to Tj and thus z2 /∈ V (Tj). So z2 belongs to a tree of the
forest T1, . . . , Tt different form Tj and y2 belongs to the same one. Therefore,
y2 does not belong to V (Tj) (see Figure 2(b)). This means that edge xy2 must
be of type A and w = y2 /∈ S as desired.
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(a) Cycles sharing vertex x in the cac-
tus graph G.

x

y1

y2

z1

z2

Tj

(b) Edge xz2 connects two trees of
forest T1, . . . , Tt and x is a leaf of Tj .

Figure 2. Some cases of Theorem 2.

3. Excellent Trees

In this section we focus the study of graphs having an independent [1, 2]-set from a
different point of view, characterizing those graphs such that every vertex belongs
one of these sets. This idea leads us to the concept of excellent graph introduced
in [6]. For a graph G = (V,E), let P denote a property of subsets S ⊆ V . We
call a set S with property P having {minimum, maximum} cardinality µ(G) a
µ(G)-set. A vertex is called µ-good if it is contained in some µ(G)-set. A graph G
is called µ-excellent if every vertex in V is µ-good. For instance G is γ-excellent
if every vertex of G belongs to a minimum dominating set. This concept has
been studied in the family of trees for different domination-type properties such
as domination, irredundance and independence [6, 9], restrained domination [7]
and total domination [10].

We define a similar concept for the independent [1, 2]-domination. Having in
mind that the existence of such sets is a key problem, we relax the conditions in
the following way.

Definition. A graph G is [1, 2]-semiexcellent if every vertex belongs to some
independent [1, 2]-set, not necessarily minimum.

Our target is to characterize the family of trees that are [1, 2]-semiexcellent
and to this end we will again use the concept of p2-tree and the family F2 de-
scribed in Section 2. Firstly we show a necessary condition for a vertex in order
to belong to some independent [1, 2]-set.

Lemma 3. Let T be a tree and let v ∈ V (T ). If there exists an independent

[1, 2]-set Sv containing v, then for each u ∈ N(v), the set N(u) \ {v} contains at

most one leaf.

Proof. If Sv is an independent [1, 2]-set containing v and u ∈ N(v), it is clear
that u /∈ Sv and any leaf in N(u)\{v}must belong to Sv in order to be dominated,
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so N(u) \ {v} can have at most one leaf because u has at most two neighbors
in Sv.

That condition turns out to be sufficient in the family of p2-trees, as the
following lemma shows.

Lemma 4. Let T be a p2-tree with V (T ) = X ∪Y the bipartition into a p2-set X
and an independent [1, 2]-set Y . Let x ∈ X be such that any y ∈ N(x) satisfies

that N(y) \ {x} contains at most one leaf. Then Sx =
(

Y \N(x)
)

∪ L(x) ∪ {x}
is an independent [1, 2]-set of T containing x, where L(x) is the set of leaves at

distance two of x.

Proof. Firstly the set Sx =
(

Y \N(x)
)

∪ L(x) ∪ {x} is independent because Y
is independent and all neighbors of vertices in L(x) ∪ {x} belong to N(x). Let
us see that Sx is a [1, 2]-set. Let y ∈ N(x); it is clear that y is dominated by x
and using the hypothesis that N(y) \ {x} has at most one leaf, there is at most
one vertex in L(x) that dominates y.

On the other hand, if z ∈ V (T ) \ Sx and z ∈ N(y) for some y ∈ N(x), then
it is not a leaf so it has degree 2, because X is p2-set. Therefore, z has a unique
neighbor y′ 6= y and it satisfies y′ ∈ Sx (see Figure 3). Finally, let t ∈ V (T )\Sx be
such that t /∈ N [y] for any y ∈ N(x). Then t ∈ X has no neighbors in L(x)∪{x}
and it has at least one and at most two neighbors in Y \N(x).

x

y

l ∈ L(x)z

y′

Figure 3. Black vertices are in Sx and white vertices are not in Sx.

A strong support vertex is a vertex having at least two leaves in its neighbor-
hood. In any p2-tree it is possible to obtain an independent [1, 2]-set that skips a
fixed pair of non-leaves adjacent vertices, under the condition of having no strong
support vertices.

Lemma 5. Let T be a p2-tree with no strong support vertices, V (T ) = X ∪Y the

bipartition into a p2-set X and an independent [1, 2]-set Y , and let x, y ∈ V (T )
be two adjacent vertices such that none of them is a leaf, x ∈ X and y ∈ Y . Then

there exists an independent [1, 2]-set S(x, y) such that x, y /∈ S(x, y) and x has

just one neighbor in S(x, y).
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Proof. Using the fact that y is not a leaf, the set N(y)\{x} is non-empty. Firstly
assume that N(y) contains a (unique) leaf x1. Then S(x, y) =

(

Y \ {y}
)

∪ {x1}
is an independent [1, 2]-set of T with x, y /∈ S(x, y) and such that x has just one
neighbor in it (see Figure 4(a)).

Let now N(y) contains no leaves and take any vertex x1 ∈ N(y) \ {x}. Then
x1 has degree 2 and let y1 be a neighbor of x1 other than y. If y1 is a leaf or ifN(y1)
contains no leaves, then define S(x, y) =

(

Y \{y, y1}
)

∪{x1} (see Figure 4(b)). If
N(y1) contains a (unique) leaf, say x2, then define S(x, y) =

(

Y \{y, y1}
)

∪{x1, x2}
(see Figure 4(c)). In any case S(x, y) is an independent [1, 2]-set of T with
x, y /∈ S(x, y) and such that x has just one neighbor in it.

x

y

x1

y1

x2

(a)

x

y

x1

y1

x2

(b)

x

y

x1

y1

x2

(c)

Figure 4. Black vertices are in S(x, y).

The last lemma of this section shows that having no strong support vertices
is a sufficient condition for a tree for belonging to the family F2.

Lemma 6. Let T be a tree with no strong support vertices. Then T ∈ F2.

Proof. We root the tree T in a leaf v and we label the vertices of T as X or
Y with the following rules. First of all we label v as X and its unique neighbor
as Y . All the children of any vertex labeled as Y are labeled as X. If a vertex
with label X has just one child we label it as Y . If a vertex with label X has
two or more children and (just) one of them is a leaf, we label this leaf as Y and
the rest of children as X and finally, if a vertex with label X has two or more
children and none of them is a leaf, we label one of the children as Y and the rest
of children as X.

Removing all edges of T between two vertices labeled as X gives a forest
T1, T2, . . . , Tt and note that each Ti is a p2-tree where vertices labeled as X are
a p2-set and vertices labeled as Y are an independent [1, 2]-set. So we obtain a
generating family for T and T ∈ F2 as desired.

Finally we show the characterization of [1, 2]-semiexcellent trees, as trees
having no strong support vertices with the exception of the path P3.
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Theorem 7. Let T be a tree, T 6= P3. Then T is [1, 2]-semiexcellent if and only

if T has no strong support vertices.

Proof. Suppose that T is [1, 2]-semiexcellent and that v ∈ V (T ) is a strong
support vertex of T . Let u1, u2 ∈ N(v) be two leaves of T . Using the fact that T 6=
P3, there exists w ∈ N(v) \ {u1, u2}. By hypothesis there exists an independent
[1, 2]-set Sw containing w and by Lemma 3 the set N(v) \ {w} contains at most
one leaf, that contradicts the fact u1, u2 ∈ N(v) \ {w}.

Conversely, suppose that T has no strong support vertices and let v ∈ V (T ).
By Lemma 6, T ∈ F2 so let G(T ) = {T1, . . . , Tt} be a generating family for T . If
v ∈ Yi for some i ∈ {1, . . . , t}, then v ∈ Y =

⋃t
j=1 Yj that is an independent [1, 2]-

set of T . So assume that v = x ∈ X =
⋃t

j=1Xj and without loss of generality
consider the case x ∈ X1. We are going to construct an independent [1, 2]-set of
T containing x.

By Lemma 4, the set Sx =
(

Y1\NT1
(x)

)

∪LT1
(x)∪{x} is an independent [1, 2]-

set if T1, so it is clear that S1 = Sx∪
(
⋃t

j=2 Yj
)

is independent and dominates T .

If S1 is a [1, 2]-set we are done. On the contrary, if there exits u ∈ V (T )\S1 with
more than two neighbors in S1 it must be (w.l.o.g.) x2 ∈ X2 with exactly one
neighbor in Sx (by definition of the generating family G(T )) and two neighbors
in Y2, at least one of them, say y2, is not a leaf of T because T has no strong
support vertices. Using Lemma 5, let S2 = S(x2, y2) be an independent [1, 2]-
set of T2 such that x2, y2 /∈ S(x2, y2) and x2 is dominated just once. Now we
define S2 = Sx ∪ S2 ∪

(
⋃t

j=3 Yj
)

. Again S2 is an independent dominating set
of T , and if it is also a [1, 2]-set, then we are done. If it is not the case, there
exists x3 ∈ X3 (w.l.o.g.) with exactly one neighbor in Sx∪S2 (again by definition
of the generating family G(T )) and two neighbors in Y3. We repeat the same
construction in T3 as in T2 (see Figure 5). Iterating the process as many times
as necessary we finally obtain Sr = Sx ∪ S2 ∪ · · · ∪ Sr ∪

(
⋃t

j=r+1 Yj
)

which is an
independent [1, 2]-set of T containing x.

x x2

T1

T2

x3

T3

Figure 5. Black vertices are in the independent [1, 2]-set containing x.
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4. A Linear Algorithm for Trees

The characterization of trees having an independent [1, 2]-set shown in Theorem
11 of [4] does not allow one to devise a polynomial algorithm to solve this deci-
sion problem. In this final section we provide an algorithm for this graph class.
In addition our algorithm can be easily modified to obtain the cardinality of a
smallest independent [1, 2]-set of a tree, which provides an answer to Problem 8
in [4] regarding the parameter i[1,2](T ).

There are several different techniques for constructing a linear algorithm
that computes a domination-like parameter in trees. In [5] Cockayne et al. gave
the first linear-time algorithm for solving the domination problem in trees by a
labeling method, and this method was later used in [14] to solve the k-domination
problem in trees. Also in [13, 15] a labeling algorithm for the edge domination
problem in trees is given and in [11] the same kind of algorithm for the total
domination problem in trees can be found.

On the other hand, a number of algorithms using dynamic programming
techniques also show that this method is useful in domination-like problems. As
examples, in [1] the independent domination problem in trees is solved by this
technique and in [12] a solution for weighted domination in trees is provided.

In all cases above the existence of a particular dominating set is guaranteed
in every graph. This is not the case with independent [1, 2]-sets and we adapt the
ideas of the first technique to construct our algorithm that decides if an arbitrary
tree has an independent [1, 2]-set. We begin with the following definition.

Definition. Let G be a graph with at least two vertices, and let v ∈ V (G). An
independent set S ⊆ V (G) is of type I for v if every vertex u ∈ V (G) \ (S ∪ {v})
has one or two neighbors in S and, in addition, one of the following conditions
holds:

1. v ∈ S, or

2. v /∈ S and it has at most two neighbors in S.

Let I(v,G) denote the family of type I sets for v in G. Given S ∈ I(v,G) we
define the following labeling of v.

LS(v) =































0 if v ∈ S,
k if v /∈ S and v has k neighbors in S, 1 ≤ k ≤ 2,

−1 if N [v] ∩ S = ∅ and every neighbor of v has exactly one
neighbor in S,

−2 if N [v] ∩ S = ∅ and there exists a neighbor of v having
two neighbors in S.

Remark 8. Note that any independent [1, 2]-set of G is of type I for every
vertex in G. It is also clear from the definition that if there exists R ∈ I(v,G)
with LR(v) = −1, then S = R ∪ {v} satisfies S ∈ I(v,G) and LS(v) = 0.
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The following lemma is straightforward.

Lemma 9. Let K1,r be the star with x1, . . . , xr (r ≥ 1) leaves and center v. If

r ≥ 3, then the unique type I set for v is S = {v} and LS(v) = 0. If r = 2,
then S = {v} and S′ = {x1, x2} are the unique type I sets for v and they satisfy

LS(v) = 0, LS′(v) = 2. If r = 1, then S = {v} and S′ = {x1} are the unique type

I sets for v and they satisfy LS(v) = 0, LS′(v) = 1.

In the following lemma we add one new vertex and just one edge to a graph
and we show how to obtain all type I sets for the new vertex.

Lemma 10. Let G be a graph with at least two vertices and let v ∈ V (G). Let

G′ be the graph obtained from G and a new vertex v′ by adding edge vv′ and let

S′ ⊆ V (G′). Then

1. S′ ∈ I(v′, G′) and LS′(v′) = −2 if and only if S′ ∈ I(v,G) and LS′(v) = 2.

2. S′ ∈ I(v′, G′) and LS′(v′) = −1 if and only if S′ ∈ I(v,G) and LS′(v) = 1.

3. S′ ∈ I(v′, G′) and LS′(v′) = 0 if and only if S′ = S ∪ {v′}, S ∈ I(v,G) and

LS(v) ∈ {−2,−1, 1}.

4. S′ ∈ I(v′, G′) and LS′(v′) = 1 if and only if S′ ∈ I(v,G) and LS′(v) = 0.
As a particular case, if there exists R ∈ I(v,G) with LR(v) = −1, then

S = R ∪ {v} satisfies S ∈ I(v′, G′) with LS(v
′) = 1.

Proof. First and second statements are clear by the definition of type I set.
Now assume that S′ ∈ I(v′, G′) and LS′(v′) = 0, then v′ ∈ S′ and we define
S = S′ \ {v′} which is a type I set for v in G. If v has two neighbors in S′, then
LS(v) = 1. If v′ is the unique neighbor of v in S′ and any other neighbor of v in
G is dominated just once by vertices in S′, then LS(v) = −1. If v′ is the unique
neighbor of v in S′ and there is a neighbor of v in G which is dominated twice
by vertices in S′, then LS(v)=−2. The converse is trivial by definition of type I
set.

To prove the last statement, just by definition, S′ ∈ I(v′, G′) and LS′(v′) = 1
if and only if S′ ∈ I(v,G) and LS′(v) = 0. The additional implication comes
from Remark 8.

Remark 11. In addition to characterize sets S′ ∈ I(v′, G′), Lemma 10 also
ensures that from any S ∈ I(v,G) at least one S′ ∈ I(v′, G′) can be obtained and
it shows the labeling LS′(v′) in each case.

In the next lemma we join two graphs with one new edge and we show how
to obtain all type I sets for one vertex of this edge.

Lemma 12. Let G,G′ be two graphs with at least two vertices and let v ∈
V (G), v′ ∈ V (G′). Let G′′ be the graph obtained from G and G′ by adding edge

vv′. Then
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1. S′′ ∈ I(v′, G′′) and LS′′(v′) = −2 if and only if S′′ = S ∪ S′, S ∈ I(v,G),
S′ ∈ I(v′, G′) and (LS(v), LS′(v′)) ∈ {(1,−2), (2,−2), (2,−1)}.

2. S′′ ∈ I(v′, G′′) and LS′′(v′) = −1 if and only if S′′ = S ∪ S′, S ∈ I(v,G),
S′ ∈ I(v′, G′) and (LS(v), LS′(v′)) = (1,−1).

3. S′′ ∈ I(v′, G′′) and LS′′(v′) = 0 if and only if S′′ = S ∪ S′, S ∈ I(v,G),
S′ ∈ I(v′, G′) and (LS(v), LS′(v′)) ∈ {(−2, 0), (−1, 0), (1, 0)}.
As a particular case, if there exists R′ ∈ I(v′, G′) with LR′(v′) = −1, then
S′′ = S ∪ (R′ ∪ {v′}), where S ∈ I(v,G) and LS(v) ∈ {−2,−1, 1}, satisfies
S′′ ∈ I(v′, G′′) and LS′′(v′) = 0.

4. S′′ ∈ I(v′, G′′) and LS′′(v′) = 1 if and only if S′′ = S ∪ S′, S ∈ I(v,G),
S′ ∈ I(v′, G′) and (LS(v), LS′(v′)) ∈ {(0,−2), (0,−1), (1, 1), (2, 1)}. As a

particular case, if there exists R ∈ I(v,G) with LR(v) = −1, then S′′ =
(R ∪ {v}) ∪ S′, where S′ ∈ I(v′, G′) and LS′(v′) ∈ {−2,−1}, satisfies S′′ ∈
I(v′, G′′) and LS′′(v′) = 1.

5. S′′ ∈ I(v′, G′′) and LS′′(v′) = 2 if and only if S′′ = S ∪S′, S ∈ I(v,G), S′ ∈
I(v′, G′) and (LS(v), LS′(v′)) ∈ {(0, 1), (1, 2), (2, 2)}. Furthermore suppose

that there exists R ∈ I(v,G) with LR(v) = −1, then the set S′′ = (R ∪
{v}) ∪ S′, where S′ ∈ I(v′, G′) and LS′(v′) = 1, satisfies S′′ ∈ I(v′, G′′) and

LS′′(v′) = 2.

Proof. The sufficient implication of each equivalence is trivial using the definition
of type I set so we just prove the necessity. To this end let S′′ ∈ I(v′, G′′) and
denote by S = S′′ ∩ V (G) and S′ = S′′ ∩ V (G′). Using that each graph has at
least two vertices, S and S′ are non-empty sets and it is clear that S ∈ I(v,G)
and S′ ∈ I(v′, G′).

1. If LS′′(v′) = −2, then v′ has no neighbors in S′′ so v /∈ S′′ and LS(v) 6= 0.
If v has just one neighbor z in S′′, then z ∈ V (G) and LS(v) = 1 and using the
fact that LS′′(v′) = −2, there exists a neighbor of v′ in G′ with two neighbors in
S′′ so LS′(v′) = −2. If v has two neighbors in S′′, then both of them belong to
V (G) and LS(v) = 2. Moreover, the neighbors of v′ in G′ could have one or two
neighbors in S′′, so LS′(v′) ∈ {−2,−1}.

2. If LS′′(v′) = −1, then by hypothesis every neighbor of v′ in G′′ has just
one neighbor in S′′ and this easily implies that LS(v) = 1 and LS′(v′) = −1.

3. If LS′′(v′) = 0, then v′ ∈ S′ so LS′(v′) = 0. If v has two neighbors in S′′,
then LS(v) = 1 and if v′ is the unique neighbor of v in S′′, then LS(v) ∈ {−2,−1}.
The additional implication comes from Remark 8.

4. If LS′′(v′) = 1, then there are two cases. If v ∈ S′′, then LS(v) = 0 and
LS′(v′) ∈ {−2,−1} and if v /∈ S′′, then LS(v) ∈ {1, 2} and LS′(v′) = 1. The
additional implication comes from Remark 8.
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5. If LS′′(v′) = 2, then there are two cases. If v ∈ S′′, then LS(v) = 0 and
LS′(v′) = 1 and if v /∈ S′′, then LS(v) ∈ {1, 2} and LS′(v′) = 2. The additional
implication comes from Remark 8.

Remark 13. In addition to characterizing sets S′′ ∈ I(v′, G′′), Lemma 12 also en-
sures that from sets S ∈ I(v,G) and S′ ∈ I(v′, G′) at least one S′′ ∈ I(v′, G′′) can
be obtained if and only if (LS(v), LS′(v′))∈{(1,−2), (2,−2), (2,−1), (1,−1), (−2,0),
(−1, 0), (1,0), (−2,−1), (−1,−1), (0,−2), (0,−1), (1,1), (2, 1), (−1,−2), (0, 1), (1, 2),
(2, 2), (−1, 1)} and it shows LS′′(v′) in each case. As a consequence, it is not
possible to obtain S′′ ∈ I(v′, G′′) containing S and S′ in the remaining cases
(LS(v), LS′(v′)) ∈ {(−2,−2), (−2, 1), (−2, 2), (−1, 2), (0, 0), (0, 2), (2, 0)}.

Finally, we present a linear algorithm that decides whether or not a tree T
has an independent [1, 2]-set. The algorithm defines an order in the set of non-leaf
vertices and proceeds bottom up in the tree. We denote by Tv the subtree rooted
in any non-leaf vertex v. At any moment of the execution, the list R(v) contains
all the possible labels LS(v), where S ∈ I(v, Tv).

There are three key steps in the algorithm that deserve special attention.
When v is a support vertex, Lemma 9 is applied to the star with v as center and
its descendant leaves to actualize R(v), so it just contains the labels LS(v) for
all possible type I sets of that star. For a non-leaf descendant u of v, Lemma 10
allows to actualize R(v), so it just contains the labels LS(v) of all possible type
I sets of the tree obtained from Tu and vertex {v}, by adding edge uv. Finally,
Lemma 12 also allows to actualize R(v), so it just contains the labels LS(v) for
all possible type I sets of the tree obtained from Tu and Tv by adding edge uv.

Algorithm TREE-INDEPENDENT [1,2]-SET

Input: A tree T with n internal vertices.

Output: Whether or not T admits an independent [1, 2]-set.

determine the leaves and the support vertices of the tree;

choose a non-leaf vertex as the root;

label all non-leaf vertices with different labels, and in such a

way that if u is a descendant of v, then i(u) < i(v);

initialize a list for each vertex as R(u) := {};

for i := 1 to n do

let v be the vertex with label i, i.e. i(v) = i;

if v is a support vertex, then apply Lemma 9 to the star with

v as center and its descendant leaves to actualize R(v);

for each non-leaf descendant u of v

apply Lemma 12 and actualize R(v);

if v is not a support vertex, then

pick one of its descendant u and apply Lemma 10 for
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actualizing R(v);

for the rest of its descendant u of v

apply Lemma 12 and actualize R(v);

if R(v) = ∅, then answer NO and end;

od;

if R(v) ∩ {0, 1, 2} = ∅ for the root v, then answer NO

otherwise answer YES;

end.

Theorem 14. Let T be a tree with n vertices. Algorithm TREE-INDEPENDENT

[1, 2]-SET decides in O(n) time whether or not T has an independent [1, 2]-set.

Proof. At any moment of the execution, the list R(v) associated with the non-
leaf vertex v contains all the possible labels LS(v), where S ∈ I(v, Tv) and Tv is
the subtree rooted in v.

Note that if S is an independent [1, 2]-set of T , then S ∩ V (Tv) ∈ I(v, Tv)
for each non-leaf vertex v, so if R(v) = ∅ for some v, then T has no independent
[1, 2]-set. Moreover at the end, there is a independent [1, 2]-set if and only if
R(v) ∩ {0, 1, 2} 6= ∅, where v is the root.

Regarding the complexity, both determining the leaves and the support ver-
tices of the tree, and the initial labeling of non-leaf vertices can be done in linear
time. In the rest of the algorithm, every vertex different from the root and the
leaves is considered twice and the operations over it, are done in constant time.
Hence, the final complexity is in O(n).
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(a) Final step on the algorithm with
labels in any non-leaf vertex.
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(b) Final step on the algorithm with
no suitable label for the root.

Figure 6. Two examples of the algorithm answering YES and NO.

Although we have preferred to introduce the algorithm in its present form
for the sake of simplicity, it would not be difficult to modify it in order to keep
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track of the minimum cardinality of the possible sets associated to a label in any
vertex. Then we obtain a linear algorithm for computing the parameter i[1,2](T ),
solving part of Problem 8 posed in [4].

We finally present two examples showing how the algorithm works. In Figure
6 there is a tree having an independent [1, 2]-set and another one that has no
such set. The vertex indices appear inside the circles. Figure 6(a) shows a tree
and the final assignment of labels to every non-leaf vertex. The root v satisfies
R(v) = {2}, so the tree has an independent [1, 2]-set. On the other hand, in
Figure 6(b) we show a different tree such that the root has no suitable label at
the end of the algorithm, therefore the tree has no independent [1, 2]-set.
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