GENERALIZED HAMMING GRAPHS: SOME NEW RESULTS

Amari Bedrane
AND
Berrachedi Abdelhafid
LIFORCE Laboratery
RO Department, USTHB, Algiers, Algeria
e-mail: bedrane.amari@gmail.com

Abstract

A projection of a vertex x of a graph G over a subset S of vertices is a vertex of S at minimal distance from x. The study of projections over quasi-intervals gives rise to a new characterization of quasi-median graphs.

Keywords: generalized median graphs, Hamming graphs, quasi-median graphs, quasi-Hilbertian graphs.
2010 Mathematics Subject Classification: 2010 MSC 05C75, 05C12.

1. Introduction

All graphs considered in this paper are finite, undirected, without loops or multiple edges. We denote by $d(u, v)$ the length of a shortest (u, v)-path in the graph G. The interval $I(u, v)$ is the set of vertices of G lying on shortest (u, v)-paths: $I(u, v)=\{x: d(u, x)+d(x, v)=d(u, v)\}$. The quasi-interval $I^{*}(u, v)$ is the set of vertices x such that any shortest (u, x)-path and shortest (x, v)-path have only x as common vertex. That is, $I^{*}(u, v)=\{x: I(u, x) \cap I(x, v)=\{x\}\}$. This notion was introduced by Nebeský [10]. The projection (introduced by Berrachedi [4]) of a vertex x of a graph G over a subset S of vertices, is a subset of vertices of S which are at minimal distance from x. It is denoted by $P(x, S)$. A graph G is Hilbertian if $|P(x, I(u, v))|=1$, for all $u, v, x \in G$. A graph G is quasi-Hilbertian if, for all u, v and x in $G,\left|P\left(x, I^{*}(u, v)\right)\right|=1$. Quasi-median graphs have been introduced by Mulder [9] as a natural generalization of median graphs, in fact,
median graphs are just the bipartite quasi-median graphs. Many researchers are interested in studying this class of graphs. Among prominent examples of median graphs let us mention hypercubes, trees and grids. Berrachedi [4] proved that a graph G is median if and only if G is Hilbertian. From the fact that a quasiinterval is an enlarged interval and in median graphs a quasi-interval is also an interval, then another generalization of Hilbertian graphs is to consider graphs which are quasi-Hilbertian. In this paper, our aim is to show that the class of quasi-median graphs is the same as the class of quasi-Hilbertian graphs.

2. Preliminaries

In this section, we recall some classical definitions and notation following that of $[7,9]$. Then we give a mini-review of some interesting results on median graphs, and results obtained analogously for quasi-median graphs. A connected subgraph H of a graph G is called convex if for any two vertices u and v from H all shortest (u, v)-paths are contained in H. The convex closure of a subgraph H of G is defined as the smallest convex subgraph of G which contains H. The Cartesian product $G \square H$ of two graphs G and H is the graph with vertex set $V(G) \times V(H)$ and $(a, x)(b, y) \in E(G \square H)$ whenever $a b \in E(G)$ and $x=y$, or $a=b$ and $x y \in E(H)$. A clique in G is a set of vertices $K \subseteq V(G)$ in which any two distinct vertices are adjacent. If K is a clique and $K=V(G)$, then G is the complete graph K_{n}, where n is the number of vertices of G. The graph $K_{4}-e$ is the complete graph on four vertices minus an edge. $K_{n, m}$ is the complete bipartite graph, where n and m are the number of vertices of the first and the second part of the partition. For $u \in V(G), N(u)$ is the set of vertices adjacent to the vertex u. A Cartesian product of complete graphs is called a Hamming graph, a Cartesian power of the K_{2} is called a hypercube. A graph G satisfies the triangle property if for any vertices $u, x, y \in V(G)$, where $d(u, x)=d(u, y)=k$ such that $x y \in E(G)$, there exists a common neighbour v of x and y with $d(u, v)=k-1$. A graph G satisfies the quadrangle property if for any $u, x, y, z \in V(G)$ such that $d(u, x)=d(u, y)=d(u, z)-1$ and $d(x, y)=2$, with z a common neighbour of x and y, there exists a common neighbour v of x and y such that $d(u, v)=d(u, x)-1$. A graph which fulfils the quadrangle property and the triangle property is called a weakly modular graph.

2.1. Median graphs

A vertex x is a median of the triple of vertices u, v and w if

1. $d(u, x)+d(x, v)=d(u, v)$;
2. $d(v, x)+d(x, w)=d(v, w)$;
3. $d(w, x)+d(x, u)=d(w, u)$.

A graph G is a median graph if any three vertices u, v and w in G have a unique median. Mulder gave the following characterization of median graphs using the procedure of convex expansions, see [9] for the necessary details.

Theorem 1 (Mulder [9]). A graph G is a median graph if and only if G can be obtained from K_{1} by a sequence of convex expansions.

Theorem 2 (Mulder [8]). A graph G is a hypercube if and only if G is a regular median graph.

A retraction f from a graph G to a subgraph H is a mapping f of the vertex set $V(G)$ of G onto the vertex set $V(H)$ of H such that for every edge $u v$ in G the image $f(u) f(v)$ is an edge in H, and $f(w)=w$ for all vertices w of H. Using retraction, Bandelt [2] characterized hypercubes as median graphs.

Theorem 3 (Bandelt [2]). The retracts of hypercubes are precisely the median graphs.

Berrachedi in [4] introduced the class of Hilbertian graphs, using projections over intervals, he showed the following.

Theorem 4 (Berrachedi [4]). Let G be a graph. Then G is Hilbertian if and only if G is a median graph.

Other characterizations of median graphs using projections over intervals and convex sets are given by Berrachedi and Mollard in [5].

2.2. Quasi-median graphs

A triple of vertices (x, y, z) is a quasi-median of (u, v, w) if we have:

1. $d(u, x)+d(x, y)+d(y, v)=d(u, v)$;
$d(v, y)+d(y, z)+d(z, w)=d(v, w) ;$
$d(w, z)+d(z, x)+d(x, u)=d(w, u)$.
2. $d(x, y)=d(y, z)=d(z, x)=k$.
3. k is minimal under the two above conditions.

Mulder [9] defines a quasi-median graph G as follows.
(i) Each ordered triple of vertices of G has a unique quasi-median;
(ii) G does not admit $K_{4}-e$ as induced subgraph;
(iii) Each induced C_{6} in G has $K_{3} \square K_{3}$ or Q_{3} as convex closure.

He characterized the quasi-median graphs with the quasi-median expansion procedure.

Theorem 5 (Mulder [9]). A graph G is quasi-median if and only if G can be obtained from K_{1} by a sequence of quasi-median expansions.

Theorem 6 (Mulder [9]). A graph G is a Hamming graph if and only if G is a regular quasi-median graph.

Theorem 7 (Wilkeit [11]). The retracts of Hamming graphs are precisely the quasi-median graphs.

Chung et al. [6], characterized quasi-median graphs as weakly modular graphs without $K_{4}-e$ or $K_{2,3}$ as induced subgraph.
Theorem 8 (Chung et al. [6]). A graph G is quasi-median if and only if G is weakly modular and does not contain $K_{4}-e$ or $K_{2,3}$ as an induced subgraph.

More characterizations of quasi-median graphs can be found in $[1,3,6,9,11]$.

3. Quasi-Hilbertian Graphs

In this section we shall prove that quasi-Hilbertian graphs are precisely quasimedian graphs. Chung et al. [6], established a relation between the quasi-median graphs and weakly modular graphs. We use their relation and some proprieties of quasi-Hilbertian graphs to prove that quasi-Hilbertian graphs are precisely quasi-median graphs.

Theorem 9 (the main result). A graph G is a quasi-median graph if and only if G is a quasi-Hilbertian graph.

This Theorem will be proved using a series of Lemmas that follow.
Lemma 10. A quasi-median graph is quasi-Hilbertian.
Proof. Let u, v, w be three vertices of a quasi-median graph G. We assume that $P\left(u, I^{*}(v, w)\right)$ contains at least two vertices x and x^{\prime}. We take the triple (x, v, w). As known in [9], there exists a unique vertex y in $I(x, v) \cap I(v, w)$ with $I(x, v) \cap I(v, w)=I(v, y)$. Also, with the triple (x, y, w) we get $I(x, w) \cap$ $I(y, w)=I(w, z)$. In the same way, starting by the triple $\left(x^{\prime}, v, w\right)$, we find $I\left(x^{\prime}, v\right) \cap I(v, w)=I\left(v, y^{\prime}\right)$ and $I\left(x^{\prime}, w\right) \cap I\left(y^{\prime}, w\right)=I\left(w, z^{\prime}\right)$. Thus, (x, y, z) and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ are two quasi-medians of (u, v, w) in G, which is a contradiction.

Lemma 11. A quasi-Hilbertian graph is $K_{2,3}$-free.
Proof. Let u, v, w, x and y be five vertices that induce a $K_{2,3}$ in the quasiHilbertian graph G. Let v, w and u be the vertices of degree 2. Consider the quasiinterval $I^{*}(v, w)$. Since $I(v, u) \cap I(u, w) \supseteq\{u, x, y\}, u \notin I^{*}(v, w)$. The vertices v, w, x and y are in $I^{*}(v, w)$. As $d(u, x)=d(u, y)=1, P\left(u, I^{*}(v, w)\right) \supseteq\{x, y\}$. This contradicts the fact that G is a quasi-Hilbertian graph.

Lemma 12. A quasi-Hilbertian graph is $K_{4}-e$-free.
Proof. Let u, v, w and z be four vertices that induce a $K_{4}-e$ in the quasiHilbertian graph G. Let u and w be the vertices of degree 2. Consider the quasi-interval $I^{*}(v, w)$. The vertices v, w and z are in $I^{*}(v, w)$, but $u \notin I^{*}(v, w)$. As $d(u, v)=d(u, z)=1, P\left(u, I^{*}(v, w)\right) \supseteq\{v, z\}$. This contradicts the fact that G is a quasi-Hibertian graph.

Lemma 13. In a quasi-Hilbertian graph G, for all $v w \in E(G)$ and for all $x \in$ $I^{*}(v, w) \backslash\{v, w\}$, we have $d(v, x)=d(w, x)=1$.

Proof. By contrary. Let $v w$ be an edge in a quasi-Hilbertian graph G and $x \in I^{*}(v, w) \backslash\{v, w\}$. Let us consider the two possible cases.

Case 1. $d(v, x) \neq d(w, x)$. We assume without loss of generality that $d(v, x)$ $<d(w, x)$, then $d(v, x)+1 \leq d(w, x)$, which implies that $I(v, x) \subset I(w, x)$. Thus $I(v, x) \cap I(w, x)=I(v, x)$, this is a contradiction with $x \in I^{*}(v, w) \backslash\{v, w\}$.

Case 2. $d(v, x)=d(w, x)>1$. We suppose that $d(v, x)$ is minimal. Let x_{1} be a vertex in $I(v, x) \cap N(v)$. As $I\left(x_{1}, v\right) \cap I(v, x)=\left\{v, x_{1}\right\}, v \notin I^{*}\left(x_{1}, x\right)$. $I(x, w) \cap I\left(w, x_{1}\right) \neq\{w\}$, otherwise $P\left(v, I^{*}\left(x, x_{1}\right)\right) \supseteq\left\{w, x_{1}\right\}$. Necessarily, there exists $x_{2} \in I(x, w) \cap I\left(w, x_{1}\right) \backslash\{w\}$ and $d\left(x_{1}, x_{2}\right)=1$. If $v \in N\left(x_{2}\right)$ and $w \notin N\left(x_{1}\right)$, then $K_{4}-e$ will be an induced subgraph. The same result holds if $v \notin N\left(x_{2}\right)$ and $w \in N\left(x_{1}\right)$. If $v \in N\left(x_{2}\right)$ and $w \in N\left(x_{1}\right)$, then $P\left(v, I^{*}\left(x, x_{1}\right)\right) \supseteq\left\{x_{1}, x_{2}\right\}$ and $P\left(w, I^{*}\left(x, x_{1}\right)\right) \supseteq\left\{x_{1}, x_{2}\right\}$. Thus $d\left(v, x_{2}\right)=d\left(w, x_{1}\right)=2$. From the minimality of $d(v, x)$, we have $d\left(x, x_{1}\right)=d\left(x, x_{2}\right)=1$, so that $P\left(x_{1}, I^{*}(v, w)\right) \supseteq\{v, x\}$. Contradiction with the fact that G is a quasi-Hilbertian graph. Consequently, we have $d(v, x)=d(w, x)=1$, for all $x \in I^{*}(v, w) \backslash\{v, w\}$ with $v w \in E(G)$.

Lemma 14. For every two adjacent vertices v and w of a quasi-Hilbertian graph G, the quasi-interval $I^{*}(v, w)$ induces a complete subgraph.

Proof. Let $I^{*}(v, w)$ be the quasi-interval such that $d(v, w)=1$, and $x, y \in$ $I^{*}(v, w)$ such that $x \neq y$. From Lemma 13, we have

$$
\left\{\begin{array}{l}
d(v, x)=d(w, x)=d(v, w)=1 \\
d(v, y)=d(w, y)=d(v, w)=1
\end{array}\right.
$$

If $x=v$ or $x=w$, then $d(x, y)=1$. The same result hold if $y=v$ or $y=w$. Else, if $d(x, y) \neq 1$, then the vertices v, w, x and y induce a forbidden $K_{4}-e$.

Lemma 15. A quasi-Hilbertian graph satisfies the triangle property.

Proof. Consider three vertices u, v and w of a quasi-Hilbertian graph such that $d(u, v)=d(u, w)=k$ and $d(w, v)=1$. If $k=1$, we have the triangle property. Suppose that $k \geq 2$. Since $I^{*}(w, v)$ induce a complete subgraph, u is not in $I^{*}(w, v)$. So, there exists x in $I(w, u) \cap I(u, v) \backslash\{u\}$ such that $x \in I^{*}(w, v)$. Hence, $d(x, v)=d(w, x)=1$ and $d(u, x)=k-1$.

Lemma 16. A quasi-Hilbertian graph satisfies the quadrangle property.
Proof. Let u, v, w and z be four vertices in a quasi-Hilbertian graph such that $d(u, v)=d(u, z)=d(u, w)-1=k, d(z, v)=2$, and $w \in I(v, z)$.

Consider the quasi-interval $I^{*}(u, z)$. If $k=1$, we have the quadrangle property. Suppose that $k \geq 2$. $I(u, v) \cap I(v, z) \neq\{v\}$, otherwise $P\left(w, I^{*}(u, z)\right) \supseteq$ $\{z, v\}$. Necessarily, there exists $x \in I(z, v) \cap I(v, u) \backslash\{v\}$, then $d(z, x)=d(v, x)=$ 1 and $d(u, x)=k-1$.

Proof of Theorem 9. From Lemma 10, a quasi-median graph is quasi-Hilbertian. As a quasi-Hilbertian graph is weakly modular (Lemmas 15 and 16), and does not contain $K_{2,3}$ or $K_{4}-e$ as an induced subgraph, it is a quasi-median graph (Theorem 8).

Theorems 9 and 6 give a new characterization of Hamming graphs.
Theorem 17. A graph G is a Hamming graph if and only if

$$
\left\{\begin{array}{l}
G \text { is regular, } \\
\text { for all } u, v, w \in G \text { we have } \mid P\left(w, I^{*}(u, v) \mid=1\right.
\end{array}\right.
$$

References

[1] N. Badji and A. Berrachedi, Generalized median graphs, in: Actes du Colloque sur l'opt. et les sys. d'infor., COSI'04 (UMM Tizi Ouzou, Algerie, 2004) 216-225.
[2] H.J. Bandelt, Retracts of hypercubes, J. Graph Theory 8 (1984) 501-510. doi:10.1002/jgt. 3190080407
[3] H.J. Bandelt, H.M. Mulder and E. Wilkeit, Quasi-median graphs and algebras, J. Graph Theory 18 (1994) 681-703. doi:10.1002/jgt. 3190180705
[4] A. Berrachedi, A new characterization of median graphs, Discrete Math. 128 (1994) 385-387. doi:10.1016/0012-365X(94)90128-7
[5] A. Berrachedi and M. Mollard, Median graphs and hypercubes, some new characterizations, Discrete Math. 208/209 (1999) 71-75.
doi:10.1016/S0012-365X(99)00063-1
[6] F.R.K. Chung, R.L. Graham and M.E. Saks, A dynamic location problem for graphs, Combinatorica 9 (1989) 111-131.
doi:10.1007/BF02124674
[7] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley \& Sons, New York, 2000).
[8] H.M. Mulder, n-cubes and median graphs, J. Graph Theory 4 (1980) 107-110. doi:10.1002/jgt. 3190040112
[9] H.M. Mulder, The Interval Function of a Graph (Mathematical Centre Tracks 132, Mathematish Centrum, Amesterdam, 1980).
[10] L. Nebeský, Algebraic properties of Husimi trees, Časopis Pešt. Math. 107 (1982) 116-123.
[11] E. Wilkeit, The retracts of Hamming graphs, Discrete Math. 102 (1992) 197-218. doi:10.1016/0012-365X(92)90054-J

Received 13 June 2016
Revised 16 January 2017
Accepted 16 January 2017

