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Abstract

A projection of a vertex x of a graph G over a subset S of vertices is
a vertex of S at minimal distance from x. The study of projections over
quasi-intervals gives rise to a new characterization of quasi-median graphs.
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1. Introduction

All graphs considered in this paper are finite, undirected, without loops or multi-
ple edges. We denote by d(u, v) the length of a shortest (u, v)-path in the graph
G. The interval I(u, v) is the set of vertices of G lying on shortest (u, v)-paths:
I(u, v) = {x : d(u, x)+ d(x, v) = d(u, v)}. The quasi-interval I∗(u, v) is the set of
vertices x such that any shortest (u, x)-path and shortest (x, v)-path have only x
as common vertex. That is, I∗(u, v) = {x : I(u, x) ∩ I(x, v) = {x}}. This notion
was introduced by Nebeský [10]. The projection (introduced by Berrachedi [4])
of a vertex x of a graph G over a subset S of vertices, is a subset of vertices of
S which are at minimal distance from x. It is denoted by P (x, S). A graph G is
Hilbertian if |P (x, I(u, v))| = 1, for all u, v, x ∈ G. A graph G is quasi-Hilbertian
if, for all u, v and x in G, |P (x, I∗(u, v))| = 1. Quasi-median graphs have been
introduced by Mulder [9] as a natural generalization of median graphs, in fact,
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median graphs are just the bipartite quasi-median graphs. Many researchers are
interested in studying this class of graphs. Among prominent examples of median
graphs let us mention hypercubes, trees and grids. Berrachedi [4] proved that a
graph G is median if and only if G is Hilbertian. From the fact that a quasi-
interval is an enlarged interval and in median graphs a quasi-interval is also an
interval, then another generalization of Hilbertian graphs is to consider graphs
which are quasi-Hilbertian. In this paper, our aim is to show that the class of
quasi-median graphs is the same as the class of quasi-Hilbertian graphs.

2. Preliminaries

In this section, we recall some classical definitions and notation following that
of [7, 9]. Then we give a mini-review of some interesting results on median
graphs, and results obtained analogously for quasi-median graphs. A connected
subgraph H of a graph G is called convex if for any two vertices u and v from
H all shortest (u, v)-paths are contained in H. The convex closure of a subgraph
H of G is defined as the smallest convex subgraph of G which contains H. The
Cartesian product G�H of two graphs G and H is the graph with vertex set
V (G) × V (H) and (a, x)(b, y) ∈ E(G�H) whenever ab ∈ E(G) and x = y,
or a = b and xy ∈ E(H). A clique in G is a set of vertices K ⊆ V (G) in
which any two distinct vertices are adjacent. If K is a clique and K = V (G),
then G is the complete graph Kn, where n is the number of vertices of G. The
graph K4 − e is the complete graph on four vertices minus an edge. Kn,m is
the complete bipartite graph, where n and m are the number of vertices of the
first and the second part of the partition. For u ∈ V (G), N(u) is the set of
vertices adjacent to the vertex u. A Cartesian product of complete graphs is
called a Hamming graph, a Cartesian power of the K2 is called a hypercube. A
graph G satisfies the triangle property if for any vertices u, x, y ∈ V (G), where
d(u, x) = d(u, y) = k such that xy ∈ E(G), there exists a common neighbour v
of x and y with d(u, v) = k − 1. A graph G satisfies the quadrangle property if
for any u, x, y, z ∈ V (G) such that d(u, x) = d(u, y) = d(u, z)− 1 and d(x, y) = 2,
with z a common neighbour of x and y, there exists a common neighbour v of
x and y such that d(u, v) = d(u, x) − 1. A graph which fulfils the quadrangle
property and the triangle property is called a weakly modular graph.

2.1. Median graphs

A vertex x is a median of the triple of vertices u, v and w if

1. d(u, x) + d(x, v) = d(u, v);

2. d(v, x) + d(x,w) = d(v, w);
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3. d(w, x) + d(x, u) = d(w, u).

A graph G is a median graph if any three vertices u, v and w in G have
a unique median. Mulder gave the following characterization of median graphs
using the procedure of convex expansions, see [9] for the necessary details.

Theorem 1 (Mulder [9]). A graph G is a median graph if and only if G can be

obtained from K1 by a sequence of convex expansions.

Theorem 2 (Mulder [8]). A graph G is a hypercube if and only if G is a regular

median graph.

A retraction f from a graph G to a subgraph H is a mapping f of the vertex
set V (G) of G onto the vertex set V (H) of H such that for every edge uv in G
the image f(u)f(v) is an edge in H, and f(w) = w for all vertices w of H. Using
retraction, Bandelt [2] characterized hypercubes as median graphs.

Theorem 3 (Bandelt [2]). The retracts of hypercubes are precisely the median

graphs.

Berrachedi in [4] introduced the class of Hilbertian graphs, using projections
over intervals, he showed the following.

Theorem 4 (Berrachedi [4]). Let G be a graph. Then G is Hilbertian if and only

if G is a median graph.

Other characterizations of median graphs using projections over intervals and
convex sets are given by Berrachedi and Mollard in [5].

2.2. Quasi-median graphs

A triple of vertices (x, y, z) is a quasi-median of (u, v, w) if we have:

1. d(u, x) + d(x, y) + d(y, v) = d(u, v);
d(v, y) + d(y, z) + d(z, w) = d(v, w);
d(w, z) + d(z, x) + d(x, u) = d(w, u).

2. d(x, y) = d(y, z) = d(z, x) = k.

3. k is minimal under the two above conditions.

Mulder [9] defines a quasi-median graph G as follows.

(i) Each ordered triple of vertices of G has a unique quasi-median;

(ii) G does not admit K4 − e as induced subgraph;

(iii) Each induced C6 in G has K3�K3 or Q3 as convex closure.

He characterized the quasi-median graphs with the quasi-median expansion
procedure.
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Theorem 5 (Mulder [9]). A graph G is quasi-median if and only if G can be

obtained from K1 by a sequence of quasi-median expansions.

Theorem 6 (Mulder [9]). A graph G is a Hamming graph if and only if G is a

regular quasi-median graph.

Theorem 7 (Wilkeit [11]). The retracts of Hamming graphs are precisely the

quasi-median graphs.

Chung et al. [6], characterized quasi-median graphs as weakly modular
graphs without K4 − e or K2,3 as induced subgraph.

Theorem 8 (Chung et al. [6]). A graph G is quasi-median if and only if G is

weakly modular and does not contain K4 − e or K2,3 as an induced subgraph.

More characterizations of quasi-median graphs can be found in [1, 3, 6, 9, 11].

3. Quasi-Hilbertian Graphs

In this section we shall prove that quasi-Hilbertian graphs are precisely quasi-
median graphs. Chung et al. [6], established a relation between the quasi-median
graphs and weakly modular graphs. We use their relation and some proprieties
of quasi-Hilbertian graphs to prove that quasi-Hilbertian graphs are precisely
quasi-median graphs.

Theorem 9 (the main result). A graph G is a quasi-median graph if and only if

G is a quasi-Hilbertian graph.

This Theorem will be proved using a series of Lemmas that follow.

Lemma 10. A quasi-median graph is quasi-Hilbertian.

Proof. Let u, v, w be three vertices of a quasi-median graph G. We assume
that P (u, I∗(v, w)) contains at least two vertices x and x′. We take the triple
(x, v, w). As known in [9], there exists a unique vertex y in I(x, v) ∩ I(v, w)
with I(x, v) ∩ I(v, w) = I(v, y). Also, with the triple (x, y, w) we get I(x,w) ∩
I(y, w) = I(w, z). In the same way, starting by the triple (x′, v, w), we find
I(x′, v) ∩ I(v, w) = I(v, y′) and I(x′, w) ∩ I(y′, w) = I(w, z′). Thus, (x, y, z) and
(x′, y′, z′) are two quasi-medians of (u, v, w) in G, which is a contradiction.

Lemma 11. A quasi-Hilbertian graph is K2,3-free.

Proof. Let u, v, w, x and y be five vertices that induce a K2,3 in the quasi-
Hilbertian graphG. Let v, w and u be the vertices of degree 2. Consider the quasi-
interval I∗(v, w). Since I(v, u) ∩ I(u,w) ⊇ {u, x, y}, u /∈ I∗(v, w). The vertices
v, w, x and y are in I∗(v, w). As d(u, x) = d(u, y) = 1, P (u, I∗(v, w)) ⊇ {x, y}.
This contradicts the fact that G is a quasi-Hilbertian graph.
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Lemma 12. A quasi-Hilbertian graph is K4 − e-free.

Proof. Let u, v, w and z be four vertices that induce a K4 − e in the quasi-
Hilbertian graph G. Let u and w be the vertices of degree 2. Consider the
quasi-interval I∗(v, w). The vertices v, w and z are in I∗(v, w), but u /∈ I∗(v, w).
As d(u, v) = d(u, z) = 1, P (u, I∗(v, w)) ⊇ {v, z}. This contradicts the fact that
G is a quasi-Hibertian graph.

Lemma 13. In a quasi-Hilbertian graph G, for all vw ∈ E(G) and for all x ∈
I∗(v, w) \ {v, w}, we have d(v, x) = d(w, x) = 1.

Proof. By contrary. Let vw be an edge in a quasi-Hilbertian graph G and
x ∈ I∗(v, w) \ {v, w}. Let us consider the two possible cases.

Case 1. d(v, x) 6= d(w, x). We assume without loss of generality that d(v, x)
< d(w, x), then d(v, x) + 1 ≤ d(w, x), which implies that I(v, x) ⊂ I(w, x). Thus
I(v, x) ∩ I(w, x) = I(v, x), this is a contradiction with x ∈ I∗(v, w) \ {v, w}.

Case 2. d(v, x) = d(w, x) > 1. We suppose that d(v, x) is minimal. Let
x1 be a vertex in I(v, x) ∩ N(v). As I(x1, v) ∩ I(v, x) = {v, x1}, v /∈ I∗(x1, x).
I(x,w) ∩ I(w, x1) 6= {w}, otherwise P (v, I∗(x, x1)) ⊇ {w, x1}. Necessarily, there
exists x2 ∈ I(x,w)∩I(w, x1)\{w} and d(x1, x2) = 1. If v ∈ N(x2) and w /∈ N(x1),
then K4−e will be an induced subgraph. The same result holds if v /∈ N(x2) and
w ∈ N(x1). If v ∈ N(x2) and w ∈ N(x1), then P (v, I∗(x, x1)) ⊇ {x1, x2} and
P (w, I∗(x, x1)) ⊇ {x1, x2}. Thus d(v, x2) = d(w, x1) = 2. From the minimality
of d(v, x), we have d(x, x1) = d(x, x2) = 1, so that P (x1, I

∗(v, w)) ⊇ {v, x}.
Contradiction with the fact that G is a quasi-Hilbertian graph. Consequently, we
have d(v, x) = d(w, x) = 1, for all x ∈ I∗(v, w) \ {v, w} with vw ∈ E(G).

Lemma 14. For every two adjacent vertices v and w of a quasi-Hilbertian graph

G, the quasi-interval I∗(v, w) induces a complete subgraph.

Proof. Let I∗(v, w) be the quasi-interval such that d(v, w) = 1, and x, y ∈
I∗(v, w) such that x 6= y. From Lemma 13, we have

{

d(v, x) = d(w, x) = d(v, w) = 1,

d(v, y) = d(w, y) = d(v, w) = 1.

If x = v or x = w, then d(x, y) = 1. The same result hold if y = v or y = w.
Else, if d(x, y) 6= 1, then the vertices v, w, x and y induce a forbidden K4 − e.

Lemma 15. A quasi-Hilbertian graph satisfies the triangle property.
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Proof. Consider three vertices u, v and w of a quasi-Hilbertian graph such that
d(u, v) = d(u,w) = k and d(w, v) = 1. If k = 1, we have the triangle property.
Suppose that k ≥ 2. Since I∗(w, v) induce a complete subgraph, u is not in
I∗(w, v). So, there exists x in I(w, u) ∩ I(u, v) \ {u} such that x ∈ I∗(w, v).
Hence, d(x, v) = d(w, x) = 1 and d(u, x) = k − 1.

Lemma 16. A quasi-Hilbertian graph satisfies the quadrangle property.

Proof. Let u, v, w and z be four vertices in a quasi-Hilbertian graph such that
d(u, v) = d(u, z) = d(u,w)− 1 = k, d(z, v) = 2, and w ∈ I(v, z).

Consider the quasi-interval I∗(u, z). If k = 1, we have the quadrangle prop-
erty. Suppose that k ≥ 2. I(u, v) ∩ I(v, z) 6= {v}, otherwise P (w, I∗(u, z)) ⊇
{z, v}. Necessarily, there exists x ∈ I(z, v)∩I(v, u)\{v}, then d(z, x) = d(v, x) =
1 and d(u, x) = k − 1.

Proof of Theorem 9. From Lemma 10, a quasi-median graph is quasi-Hilber-
tian. As a quasi-Hilbertian graph is weakly modular (Lemmas 15 and 16), and
does not contain K2,3 or K4 − e as an induced subgraph, it is a quasi-median
graph (Theorem 8).

Theorems 9 and 6 give a new characterization of Hamming graphs.

Theorem 17. A graph G is a Hamming graph if and only if

{

G is regular,

for all u, v, w ∈ G we have |P (w, I∗(u, v)| = 1.
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