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Abstract

A subset S of vertices of a graph G is a dominating set of G if every
vertex not in S has a neighbor in S, while S is a total dominating set
of G if every vertex has a neighbor in S. If S is a dominating set with
the additional property that the subgraph induced by S contains a perfect
matching, then S is a paired-dominating set. The domination number, de-
noted γ(G), is the minimum cardinality of a dominating set of G, while the
minimum cardinalities of a total dominating set and paired-dominating set
are the total domination number, γt(G), and the paired-domination number,
γpr(G), respectively. For k ≥ 2, let G be a connected k-regular graph. It is
known [Schaudt, Total domination versus paired domination, Discuss. Math.
Graph Theory 32 (2012) 435–447] that γpr(G)/γt(G) ≤ (2k)/(k+1). In the
special case when k = 2, we observe that γpr(G)/γt(G) ≤ 4/3, with equality
if and only if G ∼= C5. When k = 3, we show that γpr(G)/γt(G) ≤ 3/2,
with equality if and only if G is the Petersen graph. More generally for
k ≥ 2, if G has girth at least 5 and satisfies γpr(G)/γt(G) = (2k)/(k + 1),
then we show that G is a diameter-2 Moore graph. As a consequence of this
result, we prove that for k ≥ 2 and k 6= 57, if G has girth at least 5, then
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γpr(G)/γt(G) ≤ (2k)/(k+1), with equality if and only if k = 2 and G ∼= C5

or k = 3 and G is the Petersen graph.
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1. Introduction

In this paper we continue the study of total domination and paired-domination
in graphs. Domination and its variations in graphs are now well studied. The
literature on this subject has been surveyed and detailed in the two books by
Haynes, Hedetniemi, and Slater [15, 16].

A vertex v is said to dominate a vertex u in a graph G if u = v or if u and
v are neighbors in G. A dominating set of G is a subset S of vertices of G such
that every vertex outside S is dominated by at least one vertex in S. A total

dominating set, abbreviated TD-set, of G is a set S of vertices of G such that
every vertex in V (G) is adjacent to at least one vertex in S. The total domination

number of G, denoted by γt(G), is the minimum cardinality of a TD-set of G.
We refer to a minimum total dominating set of G as a γt(G)-set. For a recent
book on total domination in graphs we refer the reader to [21]. A survey of total
domination in graphs can also be found in [20].

A set of edges in a graph G is independent if no two edges in it are adjacent in
G; that is, an independent edge set is a set of edges without common vertices. A
matching in a graph G is a set of independent edges in G. The matching number

of a graph G, denoted α′(G), is the maximum cardinality of a matching in G. A
perfect matching M is a matching such that every vertex of G is incident to an
edge of M .

A paired-dominating set of G is a dominating set S of G with the additional
property that the subgraphG[S] induced by S contains a perfect matchingM (not
necessarily induced). The paired-domination number of G, denoted by γpr(G),
is the minimum cardinality of a paired-dominating set in G. Paired-domination
was introduced by Haynes and Slater [17,18] as a model for assigning backups to
guards for security purposes, and is well-studied in graph theory. Recent papers
on paired-domination can be found, for example, in [1, 2, 4–6,8–12,14, 19, 23].

Let S ⊆ V (G) be a subset of vertices in G and for the following definitions
let v be a vertex in S. The open neighborhood of v is the set NG(v) = {u ∈
V (G) |uv ∈ E(G)} and the closed neighborhood of v is NG[v] = {v}∪NG(v). The
open neighborhood of S is the set NG(S) =

⋃

v∈S NG(v) and its closed neighbor-

hood is the set NG[S] = NG(S) ∪ S. If the graph G is clear from the context,
we often omit it in the given expressions. For example, we write V rather than
V (G), and N(v) rather than NG(v).
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The S-external private neighborhood of v, abbreviated epn(v, S), is the set of
all vertices outside S that are adjacent to v but to no other vertex of S; that is,
if w ∈ epn(v, S), then w ∈ V \ S and NG(w) ∩ S = {v}. We define an S-external

private neighbor of v to be a vertex in epn(v, S).
The distance d(u, v) between two vertices u and v in a connected graph G is

the length of a shortest (u, v)-path in G. The maximum distance among all pairs
of vertices of G is the diameter of G, denoted by diam(G). We say that G is a
diameter-2 graph if diam(G) = 2.

A graph G is k-regular if every vertex has degree k in G. A regular graph is a
graph that is k-regular for some integer k ≥ 0. We remark that 3-regular graphs
are also called cubic graphs in the literature. The girth, g(G), of a graph G is the
length of a shortest cycle in G. We use the standard notation [k] = {1, 2, . . . , k}.

2. Main Result

Schaudt [23] established the following upper bound on the ratio of the paired-
domination number versus the total domination number.

Theorem 1 ([23]). If G is a graph with no isolated vertex and maximum degree ∆,

then

γpr(G) ≤

(

2∆

∆+ 1

)

γt(G).

As remarked by Schaudt [23], the upper bound of Theorem 1 is tight for all
∆ ≥ 2, as may be seen by letting G be the graph obtained from a star K1,∆ by
subdividing every edge exactly once. Such a graph G satisfies γpr(G) = 2∆ and
γt(G) = ∆+1. We observe that for this extremal family of graphs, the difference
between the maximum and minimum degrees is large. In this paper, our focus is
therefore on regular graphs.

We wish to determine the connected k-regular graphs that achieve equality
in Schaudt’s Theorem 1. We shall prove the following result.

Theorem 2. For k ≥ 2 and k 6= 57, if G is a connected k-regular graph of girth

at least 5, then
γpr(G)
γt(G) ≤ 2k

k+1 , with equality if and only if

(a) k = 2 and G ∼= C5, or

(b) k = 3 and G is the Petersen graph.

3. Preliminary Lemmas

We shall need the following preliminary lemma about the matching number of a
graph.
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Lemma 3. If G is a graph of order n with no isolated vertex and maximum

degree ∆, then α′(G) ≥ n
∆+1 , with equality if and only if every component of G is

isomorphic to K1,∆, or ∆ = 2 and every component of G is isomorphic to K1,2

or K3.

Proof. We proceed by induction on n ≥ ∆ + 1. If n = ∆ + 1, then K1,∆ is
a spanning subgraph of G and α′(G) ≥ 1 = n

∆+1 . Further, if α′(G) = 1, then
G = K1,∆ or G = K3. This establishes the base case. Suppose that n ≥ ∆+ 2,
and that the result is true for all connected graphs of order less than n. Let G be
a graph of order n with no isolated vertex. Further, let δ = δ(G) and ∆ = ∆(G).
By linearity, we may assume that G is connected, for otherwise we can apply the
result to each component of G. If ∆ = 1, then G = K2, contradicting the fact
that n ≥ ∆+ 2 = 3. Hence, ∆ ≥ 2. Among all edges of G, let v1v2 be chosen so
that d(v1) = δ, and, subject to this condition, d(v1) + d(v2) is a minimum.

Let L denote the set of isolated vertices in G− {v1, v2}, and let |L| = ℓ ≥ 0.
Since G has no isolated vertex, every vertex in L is adjacent to at least one
of v1 and v2. If a vertex, say u, in L is adjacent to v1 but not to v2, then
d(u) = 1, implying that δ = 1. However, both u and v2 are neighbors of v1, and
so d(v1) ≥ 2, contradicting the fact that d(v1) = δ. Hence, every vertex in L is
adjacent to v2, implying that L ⊆ N(v2) \ {v1} and ℓ ≤ ∆− 1.

Let G′ be the isolate-free graph obtained from G by deleting v1 and v2,
and deleting the resulting isolated vertices that belong to the set L. Let G′ have
order n′. As observed earlier, G\{v1, v2} contains at most ∆−1 isolated vertices,
and so n′ ≥ n− (∆ + 1). Let ∆′ = ∆(G′), and note that ∆′ ≤ ∆. Applying the
inductive hypothesis to each component of G′, we have that

α′(G) ≥ 1 + α′(G′) ≥ 1 +
n′

∆′ + 1
≥ 1 +

n− (∆ + 1)

∆ + 1
=

n

∆+ 1
.

Suppose that α′(G) = n
∆+1 . Then we must have equality throughout the

above inequality chain. In particular, ℓ = ∆ − 1, implying that d(v2) = ∆ and
N(v2) = L ∪ {v1}. If in this case, a vertex, say w, in L is adjacent to v1, then
d(w) = 2, implying by our choice of the edge v1v2 that d(v2) = ∆ = 2 and
G = K3. Therefore, we may assume that if ℓ = ∆ − 1, then v1 has no neighbor
in L, implying that G = K1,∆. This completes the proof of the lemma.

As a consequence of Lemma 3, we have the following relationship between
the paired-domination number and the total domination number of a graph. As
remarked earlier, the upper bound in Lemma 4 is precisely Schaudt’s Theorem 1
obtained in [23]. However, we present here a slightly stronger result and a different
proof of Schaudt’s bound in order to characterize the regular graphs that achieve
equality in this upper bound.
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Lemma 4. If G is a graph with no isolated vertex and maximum degree ∆, then

γpr(G) ≤

(

2∆

∆+ 1

)

γt(G).

Further, if γpr(G) =
(

2∆
∆+1

)

γt(G), then every minimum total dominating set in

G induces a graph whose components are isomorphic to K1,∆.

Proof. Let S be a minimum TD-set in G, and consider the subgraph H of G
induced by S, that is, H = G[S]. We note that H has order n(H) = |S|. Further,
H has no isolated vertex, and ∆(H) ≤ ∆(G) = ∆. Let M be a maximum
matching in H, and let V (M) be the set of vertices incident with an edge of M .
Thus, |M | = α′(H) and |V (M)| = 2|M |. By Lemma 3,

α′(H) ≥
n(H)

∆(H) + 1
≥

|S|

∆+ 1
.

By the maximality of the matching M , the set S \ V (M) is an independent
set. By the minimality of the TD-set S, every vertex, v, in S \ V (M) has a
neighbor, v′, outside S that is adjacent in G to v but to no other vertex of S. We
call such a vertex v′ an external S-private neighbor of v. Let

S′ =
⋃

v∈S\V (M)

{v′},

where the set S′ is chosen in such a way that for each vertex v ∈ S \ V (M)
we choose exactly one external S-private neighbor v′. We now consider the set
D = S ∪ S′. Since S ⊆ D, the set D is a superset of a dominating set of G and
is therefore itself a dominating set of G. Further, since G[D] contains a perfect
matching, the set D is a paired-dominating set of G. Thus,

γpr(G) ≤ |S|+ |S′| = |S|+ (|S| − |V (M)|) = 2|S| − 2α′(H)

≤ 2|S| −
(

2
∆+1

)

|S| =
(

2∆
∆+1

)

|S| =
(

2∆
∆+1

)

γt(G).

Suppose that γpr(G) =
(

2∆
∆+1

)

γt(G). Then, we must have equality through-

out the above inequality chain. In particular, α′(H) = |S|/(∆ + 1). Thus, by
Lemma 3, every component of H is isomorphic to K1,∆, or ∆ = 2 and every com-
ponent of H is isomorphic to K1,2 or K3. If ∆ = 2 and some component, say C,
of H is isomorphic to K3, then the component C is also a component of G. Every
minimum TD-set of G contains exactly two vertices from every K3-component of
G. However, the set S contains all three vertices from the K3-component C, a
contradiction. Hence, every component of G is isomorphic to K1,∆.
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As a special case of Lemma 4, we have the following result.

Lemma 5. For k ≥ 1, if G is a k-regular graph, then

γpr(G)

γt(G)
≤

2k

k + 1
.

Further, if
γpr(G)
γt(G) = 2k

k+1 , then every minimum total dominating set in G induces

a graph whose components are isomorphic to K1,k.

4. Small Values of k

In this section, we wish to determine the connected k-regular graphs achieving
equality in the upper bound of Lemma 5 for small values of k. For k ≥ 1, let G
be a connected k-regular graph. By Lemma 5, γpr(G)/γt(G) ≤ (2k)/(k+ 1). We
wish to characterize such graphs G satisfying γpr(G)/γt(G) = (2k)/(k + 1).

If k = 1, then G = K2 and γpr(G) = γt(G) = 2, and so γpr(G)/γt(G) = 1 =
(2k)/(k + 1). Hence, it is only of interest to consider the case when k ≥ 2.

Suppose that k = 2 and that the connected k-regular graph G has order n.
In this case, G ∼= Cn and by Lemma 5, γpr(G)/γt(G) ≤ (2k)/(k + 1) = 4/3.
Suppose that γpr(G)/γt(G) = 4/3. By Lemma 5, every minimum TD-set in the
cycle G induces a graph whose components are isomorphic to K1,2. However, this
is only the case when G ∼= C5, since if G ∼= Cn and n 6= 5, then we can always
find a minimum TD-set in G that induces a graph with at least one component
isomorphic to K2. We state this formally as follows.

Theorem 6. If G is a 2-regular connected graph, then

γpr(G)

γt(G)
≤

4

3
, with equality if and only if G ∼= C5.

We next consider the case when k ≥ 3. For this purpose, we shall need the
following two results on the paired-domination number of a cubic graph.

Theorem 7 ( [4]). If G is a cubic graph of order n, then γpr(G) ≤ 3
5n.

Theorem 8 ([14]). If G is a connected cubic graph of order n satisfying γpr(G) =
3
5n, then G is the Petersen graph (illustrated in Figure 1).

We shall prove the following result.

Theorem 9. If G is a connected cubic graph, then

γpr(G)

γt(G)
≤

3

2
, with equality if and only if G is the Petersen graph.
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Figure 1. The Petersen graph.

Proof. If G is a cubic graph, then by Lemma 5, γpr(G)/γt(G) ≤ 3/2. If G
is the Petersen graph, then γpr(G) = 6 and γt(G) = 4, and so the Petersen
graph achieves the 3/2-ratio for the paired-domination number versus the total
domination number. It suffices for us to prove that the Petersen graph is the
unique such graph.

Suppose that G is a connected cubic graph of order n satisfying γpr(G)/γt(G)
= 3/2. By Lemma 5, every minimum TD-set in G induces a graph whose com-
ponents are isomorphic to K1,3. Let S be a minimum TD-set in G. Thus, G[S] is
the disjoint union of copies of K1,3; that is, G[S] = ℓK1,3 for some integer ℓ ≥ 1.
We proceed further with the following claim.

Claim A. G[S] = K1,3.

Proof. We wish to show that ℓ = 1. Suppose, to the contrary, that ℓ ≥ 2.
Let G1, G2, . . . , Gℓ be the components of G[S], and so Gi

∼= K1,3 for all i ∈ [ℓ].
Further, let V (Gi) = {vi, vi1, vi2, vi3}, where vi is the central vertex of the star
Gi. By the minimality of the TD-set S, every vertex vij , where i ∈ [ℓ] and j ∈ [3],
has an S-external private neighbor; that is, epn(vij , S) 6= ∅. For each such vertex
vij , let v

′
ij ∈ epn(vij , S). Thus, v

′
ij ∈ V (G) \ S and N(v′ij) ∩ S = {vij}.

Let P be a shortest path in G that joins a vertex from one component of
G[S] to a vertex from another component of G[S]. Renaming components and
vertices of G[S] if necessary, we may assume that P is a (v11, v21)-path. Thus, if
P ′ is an arbitrary path in G that starts at a vertex in V (Gi) and ends at a vertex
in V (Gj), where 1 ≤ i, j ≤ ℓ and i 6= j, then P ′ has length at least that of P . By
the minimality of the path P , every internal vertex of P belongs to V (G) \ S.

The path P has length at least 2, since vertices in different components of
G[S] are not adjacent. We show that the path P has length 2 or 3. Suppose,
to the contrary, that P has length at least 4. Let v11xy be the subpath of P
consisting of the first three vertices on P . By supposition, y 6= v21. Since S is a
TD-set of G, there is a vertex z ∈ S that is adjacent to y in G. If z ∈ V (G1), then
the path zy followed by the subpath of P from y to v21 is a shorter path than
P joining vertices from different components of G[S], a contradiction. Hence,
z /∈ V (G1), and so v11xyz is a path of length 3 joining vertices from different
components of G[S], contradicting our choice of the path P . Therefore, P has
length 2 or 3.
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Let X = NG(v11) \ {v1} = {x1, x2}, where x1 is the neighbor of v11 on the
path P . We note that |X| = 2 and X ⊂ V (G) \ S. Further, no vertex in X is
adjacent to a vertex vj for any j ∈ [ℓ]. If P has length 2, let x∗1 = x1, while if P
has length 3, let x∗1 be the common neighbor of x1 and v21 on the path P . In both
cases, we note that v21x

∗
1 is an edge of G. We now build a paired-dominating set

S∗ of G as follows.
Initially, we let S∗ be obtained from S by removing the ℓ−1 vertices v2, . . . , vℓ,

removing the vertex v11, and adding the vertex x∗1; that is, S
∗ = (S \{v11, v2, . . . ,

vℓ}) ∪ {x∗1}.

Subclaim A.1. The vertex x2 is not dominated by S∗.

Proof. Suppose that x2 is dominated by S∗. In this case, we add to S∗ the
vertices v′ij for all i and j, where i ∈ [ℓ], j ∈ [3], and (i, j) /∈ {(1, 1), (1, 2), (2, 1)}.
The resulting set S∗ is a paired-dominating set of G, with v1 and v12 paired,
v21 and x∗1 paired, and with vij and v′ij paired for all i and j, where i ∈ [ℓ],
j ∈ [3], and (i, j) /∈ {(1, 1), (1, 2), (2, 1)}. Further, |S∗| = 6ℓ − 2, implying that
γpr(G) ≤ |S∗| < 6ℓ. Recall that γt(G) = 4ℓ. Thus, γpr(G)/γt(G) < 6ℓ/4ℓ = 3/2,
a contradiction.

By Subclaim A.1, the vertex x2 is not dominated by S∗. Let x∗2 be a neighbor
of x2 different from v11 and x1. Since x2 is not dominated by S∗, we note that
x∗2 /∈ S∗. Since S is a TD-set of G and x∗2 /∈ X, there is a vertex in S \ {v11} that
is adjacent to x∗2.

Subclaim A.2. The vertex v21 is not adjacent to x∗2.

Proof. Suppose that v21 is adjacent to x∗2, and so N(v21) = {v2, x
∗
1, x

∗
2}. If x1x2

is an edge, then we note that x∗1 6= x1, since x2 is not dominated by S∗. Thus,
P is the path v11x1x

∗
1v21. The set S′ = (S \ {v11, v21}) ∪ {x1, x2} is a minimum

TD-set in G that induces a graph with at least one component (namely the com-
ponent containing the edge x1x2) that is not isomorphic to K1,3, a contradiction.
Therefore, x1x2 is not an edge. Thus the third neighbor of x2, say x∗∗2 , that is
different from v11 and x∗2, is not the vertex x1. Since x2 is not dominated by S∗,
we note that x∗∗2 /∈ S∗. Thus there is a vertex in S \{v11} that is adjacent to x∗∗2 .
Let vst be such a vertex in S \ {v11}. Since x∗∗2 is not adjacent to v21, we note
that (s, t) /∈ {(1, 1), (2, 1)}. We now add the vertex x∗∗2 to S∗.

If (s, t) ∈ {(1, 2), (1, 3)}, say (s, t) = (1, 2), then we add to S∗ the vertex v′ij
for all i and j, where i ∈ [ℓ] \ {1}, j ∈ [3], and (i, j) 6= (2, 1). The resulting set
S∗ is a paired-dominating set of G, with v1 and v13 paired, v12 and x∗∗2 paired,
v21 and x∗1 paired, and with vij and v′ij paired for all i and j, where i ∈ [ℓ] \ {1},
j ∈ [3], and (i, j) 6= (2, 1). Further, |S∗| = 6ℓ − 2, implying that γpr(G) < 6ℓ.
Thus, γpr(G)/γt(G) < 6ℓ/4ℓ = 3/2, a contradiction.
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If (s, t) /∈ {(1, 2), (1, 3)}, then we add to S∗ the vertices v′ij for all i and j,
where i ∈ [ℓ], s ∈ [3], and (i, j) /∈ {(1, 1), (1, 2), (2, 1), (s, t)}. The resulting set
S∗ is a paired-dominating set of G, with v1 and v12 paired, v21 and x∗1 paired,
vst and x∗∗2 paired, and with vij and v′ij paired for all i and j, where i ∈ [ℓ],
s ∈ [3], and (i, j) /∈ {(1, 1), (1, 2), (2, 1), (s, t)}. Further, |S∗| = 6ℓ − 2, implying
that γpr(G) < 6ℓ. Thus, γpr(G)/γt(G) < 6ℓ/4ℓ = 3/2, a contradiction.

By Subclaim A.2, the vertex v21 is not adjacent to x∗2. Let vi′j′ be the vertex
in S \ {v11, v21} that is adjacent to x∗2. Thus, (i

′, j′) /∈ {(1, 1), (2, 1)}.
If (i′, j′) ∈ {(1, 2), (1, 3)}, say (i′, j′) = (1, 2), then we add to S∗ the vertex

v′ij for all i and j, where i ∈ [ℓ] \ {1}, j ∈ [3], and (i, j) 6= (2, 1). The resulting
set S∗ is a paired-dominating set of G, with v1 and v13 paired, v12 and x∗2 paired,
v21 and x∗1 paired, and with vij and v′ij paired for all i and j, where i ∈ [ℓ] \ {1},
j ∈ [3], and (i, j) 6= (2, 1). Further, |S∗| = 6ℓ − 2, implying that γpr(G) < 6ℓ.
Thus, γpr(G)/γt(G) < 6ℓ/4ℓ = 3/2, a contradiction.

If (i′, j′) /∈ {(1, 2), (1, 3)}, then we add to S∗ the vertices v′ij for all i and j,
where i ∈ [ℓ], s ∈ [3], and (i, j) /∈ {(1, 1), (1, 2), (2, 1), (i′, j′)}. The resulting set
S∗ is a paired-dominating set of G, with v1 and v12 paired, v21 and x∗1 paired,
vi′j′ and x∗2 paired, and with vij and v′ij paired for all i and j, where i ∈ [ℓ],
s ∈ [3], and (i, j) /∈ {(1, 1), (1, 2), (2, 1), (i′, j′)}. Further, |S∗| = 6ℓ − 2, implying
that γpr(G) < 6ℓ. Thus, γpr(G)/γt(G) < 6ℓ/4ℓ = 3/2, a contradiction. This
completes the proof of Claim A.

By Claim A, G[S] = K1,3. In particular, we note that γt(G) = 4. Since
γpr(G)/γt(G) = 3/2, this implies that γpr(G) = 6. Recall that S = {v1, v11, v12,
v13}, where v1 is the central vertex of the star G1 = G[S]. Since G is a connected,
cubic graph of order n, and every vertex in G is within distance 2 from v1, we
note that n ≤ 10. By Theorem 7 and the fact that n ≤ 10, we get

6 = γpr(G) ≤ 3n/5 ≤ 6.

We must have equality throughout this inequality chain. In particular, γpr(G) =
3n/5. Thus, by Theorem 8, G is the Petersen graph. This completes the proof
of Theorem 9.

5. General Values of k

In this section, we wish to determine the connected k-regular graphs that achieve
equality in the upper bound of Lemma 5 for general values of k, given the re-
quirement that the girth of the graph is at least 5.

In order to state our next result, we recall that the diameter-2 graphs of
girth 5 are precisely the diameter-2 Moore graphs. It is shown (see [22, 25])
that Moore graphs are k-regular and that diameter-2 Moore graphs have order
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n = k2 + 1 and exist for k = 2, 3, 7 and possibly 57, but for no other degrees. (It
is currently unknown whether there exists such a Moore graph for k = 57). The
diameter-2 Moore graphs for the first three values of k are unique, namely
• the 5-cycle (2-regular graph on n = 5 vertices),

• the Petersen graph (3-regular graph on n = 10 vertices),

• the Hoffman-Singleton graph (7-regular graph on n = 50 vertices).
We show next that if we impose a girth condition, then every connected,

regular graph achieving equality in the upper bound of Lemma 5 is a diameter-2
Moore graph.

Theorem 10. For k ≥ 2, if G is a connected k-regular graph of girth at least 5

satisfying
γpr(G)
γt(G) = 2k

k+1 , then G is a diameter-2 Moore graph.

Proof. When k = 2 and k = 3, the result follows from Theorem 6 and Theorem 9,
respectively (even without the girth condition). Hence, we may assume in what
follows that k ≥ 4. By Lemma 4, every minimum TD-set in G induces a graph
whose components are isomorphic to K1,k. Let S be a minimum TD-set in G.
Thus, G[S] is the disjoint union of copies of K1,k; that is, G[S] = ℓK1,k for some
integer ℓ ≥ 1. We show that ℓ = 1; that is, G[S] = K1,k.

Suppose, to the contrary, that ℓ ≥ 2. Let G1, G2, . . . , Gℓ be the components
of G[S], and so Gi

∼= K1,k for all i ∈ [ℓ]. Further, let V (Gi) = {vi, vi1, vi2, . . . , vik},
where vi is the central vertex of the star Gi. By the minimality of the TD-set S,
every vertex vij , where i ∈ [ℓ] and j ∈ [k], has an S-external private neighbor;
that is, epn(vij , S) 6= ∅. For each such vertex vij , let v′ij ∈ epn(vij , S). Thus,
v′ij ∈ V (G) \ S and N(v′ij) ∩ S = {vij}.

Let P be a shortest path in G that joins a vertex from one component of G[S]
to a vertex from another component of G[S]. Renaming components and vertices
of G[S] if necessary, we may assume that P is a (v11, v21)-path. Analogously as
in the proof of Theorem 9, the path P has length 2 or 3.

Let X = NG(v11) \ {v1} = {x1, x2, . . . , xk−1}, where x1 is the neighbor of v11
on the path P . We note that |X| = k − 1 and that X ⊂ V (G) \ S. Further,
the girth condition and the choice of the path P implies that no vertex in X is
adjacent to a vertex in V (G1), except for the vertex v11.

If P has length 2, let x∗1 = x1, while if P has length 3, let x∗1 be the common
neighbor of x1 and v21 on the path P . In both cases, we note that v21x

∗
1 is

an edge of G. Let y∗1 = v21. We now build a paired-dominating set S∗ of
G as follows. Initially, we let S∗ be obtained from S by removing the ℓ − 1
vertices v2, . . . , vℓ, removing the vertex v11, and adding the vertex x∗1; that is,
S∗ = (S \ {v11, v2, . . . , vℓ}) ∪ {x∗1}.

We now consider the vertices x2, x3, . . . , xk−1 in turn. For i ∈ [k−1], let Ni be
the set of k−1 neighbors of xi different from v11, and soNi = NG(xi)\{v11}. Since
G has girth at least 5, we note that Ni is an independent set and Ni∩V (G1) = ∅.
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Further, Ni ∩Nj = ∅ for i, j ∈ [k] and i 6= j.

If x2 is dominated by S∗, then we add no new vertex to S∗ associated with
x2, and we consider the next vertex x3 in the list. If x2 is not dominated by S∗,
then we consider the set N2. Since G has girth at least 5, at most one vertex in
N2 is a neighbor of y∗1. Let x

∗
2 be a vertex in N2 that is not adjacent to y∗1. Since

x2 is not dominated by S∗, we note that x∗2 /∈ S∗. Let y∗2 be a vertex in S that is
adjacent to x∗2. We note that y∗1 6= y∗2. We now add the vertex x∗2 to the set S∗.

Next, we consider the vertex x3. If x3 is dominated by S∗, then we add no
new vertex to S∗ associated with x3, and we consider the next vertex x4 in the
list. If x3 is not dominated by S∗, then we consider the set N3. Since G has girth
at least 5, at most one vertex in N3 is a neighbor of y∗1 and at most one vertex
in N3 is a neighbor of y∗2, if y

∗
2 exists. Hence, since |N3| = k − 1 > 2, there is a

vertex x∗3 in N2 that is not adjacent to y∗1 and is not adjacent to y∗2, if it exists.
Since x3 is not dominated by S∗, we note that x∗3 /∈ S∗. Let y∗3 be a vertex in S
that is adjacent to x∗3. We note that y∗1, y

∗
2 and y∗3 are distinct vertices, if they

exists. We now add the vertex x∗3 to the set S∗.

We continue in the fashion until finally we consider the last vertex on the list,
namely the vertex xk−1. If xk−1 is dominated by S∗, then we add no new vertex
to S∗ associated with xk−1. If xk−1 is not dominated by S∗, then we consider the
set Nk−1. Since G has girth at least 5 and |Nk−1| = k − 1 > k − 2, and since at
most k−2 vertices y∗1, y

∗
2, . . . , y

∗
k−2 have been identified with the previous vertices

x1, x2, . . . , xk−2 on the list, there is a vertex x∗k−1 in Nk−1 that is not adjacent to
any previously defined vertex y∗j , where j ∈ [k − 2]. Since xk−1 is not dominated
by S∗, we note that x∗k−1 /∈ S∗. Let y∗k−1 be a vertex in S that is adjacent to
x∗k−1. We now add the vertex x∗k−1 to the set S∗.

Let Y be the set of all vertices y∗j defined previously for j ∈ [k− 1]. We note
that y∗1 ∈ Y , and so |Y | ≥ 1. Further, at most k − 1 such vertices y∗j exists, and
so |Y | ≤ k−1. We note that if y∗j exists for some j ∈ [k−1], then x∗jy

∗
j is an edge

of G. Since the vertex y∗1 = v21 is associated with the vertex x1, and since at
most k−2 vertices in the set {v12, v13, . . . , v1k} (of cardinality k−1) are identified
with the remaining k− 2 vertices in X \ {x1}, we may assume, renaming vertices
if necessary, that v12 is not identified with any vertex in X.

For each vertex vij where i ∈ [ℓ] and j ∈ [k], and where vij /∈ Y ∪ {v11, v12},
we add to S∗ the vertex v′ij . The resulting set S∗ is a paired-dominating set of
G, with v1 and v12 paired, with each vertex y∗j ∈ Y paired with the vertex x∗j ,
and with vij and v′ij paired for all i and j, where i ∈ [ℓ] and j ∈ [k], and where
vij /∈ Y ∪{v11, v12}. Further, |S

∗| = (ℓ·2k)−2, implying that γpr(G) ≤ |S∗| < ℓ·2k.
Recall that γt(G) = ℓ(k+1). Thus, γpr(G)/γt(G) < (2k)/(k+1), a contradiction.
Therefore, ℓ = 1.

Since G[S] = K1,k, we note that γt(G) = k+1. Further, S = {v1, v11, v12, . . . ,
v1k}, where v1 is the central vertex of the star G1 = G[S]. Since G is a k-regular
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graph of girth at least 5, and since every vertex in G is within distance 2 from v1,
we note that n = k2 +1. This in turn, together with the girth and the regularity
conditions, imply that every vertex in G has k neighbors and exactly k(k − 1)
vertices at distance exactly 2 from it, and that G has girth 5. Therefore, G is a
diameter-2 Moore graph.

As shown by Robertson [24] (see also Bondy and Murty [3], p. 239), the
Hoffman-Singleton graph can be constructed from the five 5-cycles P1, P2, . . . , P5

and the 5-cycles Q1, Q2, . . . , Q5 illustrated in Figure 2 with vertex i of the 5-cycle
Pj joined to vertex (i + jk) (mod 5) of the 5-cycle Qk. We call each cycle Pj ,
j ∈ [5], a P -cycle and each cycle Qk, k ∈ [5], a Q-cycle.

2
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Figure 2. The Hoffman-Singleton graph, where vertex i in Pj is joined to vertex i +
jk (mod 5) in Qk.

As observed by Goddard [13], there is a perfect matching between each P -
cycle and eachQ-cycle. Further, the vertices of any P -cycle andQ-cycle combined
dominate the graph, and induce a graph that contains a perfect matching. Thus,
V (Pj) ∪ V (Qk) is a paired-dominating set of G for any j ∈ [5] and k ∈ [5].
For example, V (P3) ∪ V (Q3) is a paired-dominating set of G, with the vertices
0, 1, 2, 3, 4 in P3 paired with the vertices 4, 0, 1, 2, 3, respectively, in Q3. Thus,
the Hoffman-Singleton graph G satisfies γpr(G) ≤ 10. It is known [7] that the
Hoffman-Singleton graph G satisfies γt(G) = 8. We state this formally as follows.

Remark 11. If G is the Hoffman-Singleton graph, then
γpr(G)
γt(G) ≤ 5

4 < 7
4 = 2k

k+1 ,
where here k = 7.

Theorem 2 is an immediate consequence of Theorem 10 and Remark 11.

6. Closing Conjecture

We believe the girth condition can be dropped in Theorem 2 and pose the fol-
lowing conjecture that we have yet to settle.
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Conjecture 12. For k ≥ 2 and k 6= 57, if G is a connected k-regular graph, then
γpr(G)
γt(G) ≤ 2k

k+1 , with equality if and only if

(a) k = 2 and G ∼= C5, or

(b) k = 3 and G is the Petersen graph.
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