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Abstract

A graph G is a homomorphic preimage of another graph H, or equiva-
lently G is H-colorable, if there exists a graph homomorphism f : G → H. A
geometric graph G is a simple graph G together with a straight line drawing
of G in the plane with the vertices in general position. A geometric homo-
morphism (respectively, isomorphism) G → H is a graph homomorphism
(respectively, isomorphism) that preserves edge crossings (respectively, and
non-crossings). The homomorphism poset G of a graph G is the set of iso-
morphism classes of geometric realizations of G partially ordered by the
existence of injective geometric homomorphisms. A geometric graph G is
H-colorable if G → H for some H ∈ H. In this paper, we provide necessary
and sufficient conditions for G to be Pn-colorable for n ≥ 2. Along the way,
we also provide necessary and sufficient conditions for G to be K2,3-colorable.
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1. Basic Definitions

A graph homomorphism f : G → H is a vertex function such that for all
u, v ∈ V (G), uv ∈ E(G) implies f(u)f(v) ∈ E(H). If such a function exists,
we write G → H and say that G is homomorphic to H, or equivalently, that G
is a homomorphic preimage of H. A proper n-coloring of a graph G is a homo-
morphism G → Kn. Thus, G is n-colorable if and only if G is a homomorphic
preimage of Kn. In 1981, Maurer, Salomaa and Wood [13] generalized this notion
by defining G to be H-colorable if and only if G → H, or equivalently, G is a
homomorphic preimage of H. For a given graph H, the H-coloring problem is
the decision problem, “Is a given graph H-colorable?” In 1990, Hell and Nešetřil
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showed that if χ(H) ≤ 2, then this problem can be solved in polynomial time
and if χ(H) ≥ 3, then it is NP-complete [8].

The concept of H-colorability can be extended to directed graphs. Work has
been done by Hell, Zhu and Zhou in characterizing homomorphic preimages of
certain families of directed graphs, including oriented cycles [9, 12, 14], oriented
paths [11] and local acyclic tournaments [10].

In [1], Boutin and Cockburn generalized the notion of graph homomorphisms
to geometric graphs. A geometric graph G is a simple graph G together with a
straight-line drawing of G in the plane with vertices in general position (no three
vertices are collinear and no three edges intersect except at a common endpoint).
Two edges are said to cross if the interiors of the line segments representing them
have nonempty intersection; in particular, an edge cannot cross itself. A geomet-
ric graph G with underlying abstract graph G is called a geometric realization

of G. The definition below formalizes when two geometric realizations of G are
considered the same.

Definition [1]. A geometric isomorphism f : G → H is a graph isomorphism
such that for all u, v, x, y ∈ V (G) with xy, uv ∈ E(G), xy crosses uv in G if and
only if f(x)f(y) crosses f(u)f(v) in H.

(Note that this definition is weaker than one introduced by Harborth in [6],
requiring that geometric isomorphisms also preserve regions and parts of edges.)
Relaxing the biconditional to an implication gives the following.

Definition [1]. A geometric homomorphism f : G → H is a graph homomor-
phism such that for all u, v, x, y ∈ V (G) with xy, uv ∈ E(G), if xy crosses uv in G,
then f(x)f(y) crosses f(u)f(v) in H. If such a function exists, we write G → H
and say that G is homomorphic to H, or that G is a homomorphic preimage of H.
If G → H and H → G, then we say G and H are homomorphically equivalent.

An obvious consequence of this definition is that no two vertices that are
adjacent or co-crossing (incident to distinct edges that cross each other) in a
geometric graph can have the same image under a geometric homomorphism.

Geometric homomorphisms can be used to define n-colorability for geometric
graphs. One complication, however, is that there are multiple geometric realiza-
tions of the n-clique for n > 3. This can be resolved by taking advantage of some
additional structure.

Definition [1]. Let G and Ĝ be geometric realizations of G. Then set G � Ĝ
if there exists a geometric homomorphism f : G → Ĝ whose underlying map
f : G → G is a graph isomorphism. The set of isomorphism classes of geometric
realizations of G under this partial order, denoted G, is the homomorphism poset

of G.
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Boutin and Cockburn define G to be n-geocolorable if G → Kn for some
Kn ∈ Kn. In [2], it is shown that K3,K4 and K5 are all chains. Thus for
3 ≤ n ≤ 5, G is n-geocolorable if G is homomorphic to the greatest element of
the chain. By contrast, K6 has three maximal elements, so G is 6-geocolorable
if it is homomorphic to any one of these three realizations. As with graphs and
digraphs, the definition of colorability can be broadened.

Definition. Let H denote the homomorphism poset of geometric realizations
of a simple graph H. Then G is H-colorable if and only if G → H for some
(maximal) H ∈ H.

In this paper, we provide necessary and sufficient conditions for G to be Pn-
colorable, for all n ≥ 2. Results on the structure of the homomorphism poset Pn

can be found in [2]. We adopt the following notation from that paper: the vertices
of Pn are denoted 1, 2, . . . , n and its edges by ei = {i, i+1} for 1 ≤ i ≤ n−1. It is
shown in [2] that for all n ≥ 3, Pn has a greatest element P̂n, with (n−2)(n−3)/2
edge crossings, where all pairs of edges cross except for the consecutively labeled
ones. Figure 1 shows this greatest element for n = 7. Thus G is Pn-colorable if
and only if G → P̂n.

1 2

3

4

5

6

7

Figure 1. P̂7, the greatest element of P7.

The organization of this paper is as follows. In Section 2, we give some tools
for investigating the edge crossing structure of a geometric graph. In Section 3, we
characterize Pn-colorability for 2 ≤ n ≤ 4. In particular, we relate P4-colorability
to a characterization of C4-colorability (equivalently, K2,2-colorability) from [1].
In Section 4, we characterize P5-colorability and investigate its relationship to
C5-colorability (characterized in [4]) and K2,3-colorability. A general theorem
characterizing Pn-colorability for n ≥ 5 is given in Section 5. We end with some
open questions in Section 6.

2. Edge Crossing Structure

Given a geometric graph G, there are a number of ways of representing its edge
crossing structure.
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Definition [2]. The edge-crossing graph of G, denoted EX(G), is the abstract
graph whose vertices correspond to the edges of G, with adjacency when the
corresponding edges of G cross.

Definition [1]. A thickness edge m-coloring ǫ of G is a coloring of the edges of
G with m colors such that no two edges of the same color cross. The thickness of
G is the minimum number of colors required for a thickness edge coloring of G.

From these two definitions, a thickness edge m-coloring ǫ of G is a graph
homomorphism ǫ : EX(G) → Km, and the thickness of G is the chromatic
number of the edge-crossing graph, χ(EX(G)). (Note that the thickness of an
abstract graph G is the minimum thickness of any geometric realization of G.)

Definition. If ǫ is a thickness edge coloring of G, then the plane subgraph of
G induced by all edges of a given color is called a monochromatic subgraph of
G under ǫ. The monochromatic subgraph corresponding to edge color i is called

the i-subgraph of G under ǫ, and is denoted by G
i
.

We assume from now on that G has no isolated vertices, which implies that
every vertex belongs to at least one monochromatic subgraph under any thickness

edge coloring, i.e., V (G) =
⋃m

i=1
V (G

i
).

Example 1. Figure 2 shows the edge-crossing graph of P̂7. Observe that for
all n ≥ 3, EX(P̂n) is the complement of Pn−1, which has chromatic number
⌈(n−1)/2⌉ = k. To see this, note that the complete subgraph of EX(P̂n) induced
by e1, e3, . . . , e2k−1 requires k different colors. We can complete a proper coloring
of EX(P̂n) by giving e2i the same color as e2i−1 for all 1 ≤ i ≤ k. Throughout
the rest of the paper, we will refer to this as the canonical thickness edge coloring
of P̂n. For 1 ≤ i ≤ k, the i-subgraph is given by

E(P̂ i
n) = {e2i−1, e2i} and V (P̂ i

n) = {2i− 1, 2i, 2i+ 1}

(with the understanding that if n is even, then V (P̂ k
n ) = {2k − 1, 2k}).

Definition [1]. The crossing subgraph ofG is the geometric subgraphG× spanned
by the crossing edges of G. The vertices in this subgraph are called crossing

vertices of G; the remaining vertices of G are called non-crossing.

The following result is obvious.

Lemma 2 [2]. A geometric homomorphism G → H induces

1. a geometric homomorphism G× → H×, and

2. graph homomorphisms G → H and EX(G) → EX(H).
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Figure 2. EX(P̂7).

Less obvious is the fact that neither of these results can be reversed (see [1]).
If H is a plane graph, then EX(H) is an empty graph and thus homomor-

phically equivalent to K1. In this case, we do have a biconditional: G → H if
and only if G → H and G is also a plane graph.

Applying Lemma 2 to geometric paths yields the following.

Corollary 3. If G is Pn-colorable, n ≥ 2, then G is bipartite and G has a

thickness edge k-coloring, where k = ⌈(n− 1)/2⌉.

If G is Pn-colorable, then the fact that G is bipartite means that V (G) can
be partitioned into two independent sets. Throughout this paper, a bipartition of
V (G) into X∪Y will always refer to a bipartition based on vertex adjacency. The
fact that G has a thickness edge k-coloring means G can be broken down into k

monochromatic plane subgraphs, G
1
, G

2
, . . . , G

k
that have no edges in common,

but that may have vertices in common. Thus the vertex adjacency structure and
edge crossing structure determine two ways of breaking down the vertex set,

V (G) = X ∪ Y =
k⋃

i=1

V (G
i
).

Neither of these decompositions need to be unique. A connected bipartite graph
has a unique bipartition of its vertex set, but a bipartite graph with p compo-
nents will have 2p−1 bipartitions. Similarly, different thickness edge k-colorings

will generate different subsets V (G
1
), . . . , V (G

k
). The characterization theorems

in this paper hinge on finding a bipartition and thickness edge coloring with a
particular interrelationship between these two organizations of V (G).

3. Easy Cases: 2 ≤ n ≤ 4

Both posets P2 and P3 consist only of a plane realization, and moreover P3 is
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homomorphically equivalent to P2 = K2. Hence,

G is P3-colorable ⇐⇒ G is P2-colorable ⇐⇒ G is bipartite and plane.

To characterize P4-colorability, we take advantage of the close relationship
between the posets P4 and C4, depicted in Figure 3. A thickness edge 2-coloring of
the crossing subgraph of the greatest element, denoted P̂4 and Ĉ4, respectively,
is shown, with non-crossing edges depicted in grey. Necessary and sufficient
conditions for C4-colorability were originally given by Boutin and Cockburn in
[1]; the rephrasing below by Cockburn appears in [4].

3

1 4

2 3

1 4

2 3

1 4

2 3

1 4

2

Figure 3. The homomorphism posets P4 and C4.

Theorem 4. A geometric graph G is C4-colorable if and only if G is bipartite

and there exists a thickness edge 2-coloring of G× such that the monochromatic

subgraphs G×

1
and G×

2
are vertex-disjoint, i.e., V (G×

1
) ∩ V (G×

2
) = ∅.

The necessary and sufficient condition in this theorem requires a partition of
the crossing vertices into disjoint subsets; a third part consists of the non-crossing
vertices. This part and the bipartition corresponding to the adjacency structure
are represented in the Venn diagram in Figure 4, where the rightmost ellipse
contains the non-crossing vertices of G. Only the shaded areas of the diagram
contain vertices. (Note that this is a set-theoretic representation and does not
reflect the geometric position of the vertices in G.)

V(G  )
1

X

x V(G  )
2
x

Y

Figure 4. Two partitions of V (G) for C4-colorability.

Determining whether a geometric graph H can be decomposed into two plane
subgraphs that are vertex-disjoint can be accomplished as follows. The line graph
L(H) has the same vertex set as the edge-crossing graph EX(H), namely the
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edges of H, with adjacency when two edges share a common endvertex. The
decomposition of L(H) into connected components yields a partition θ on the
common set of vertices,

E(H) = V (EX(H)) = T1 ∪ · · · ∪ Tm.

The quotient of EX(H) by θ is the abstract graph EX(H)/θ on the vertex set
{1, . . . ,m}, with a loop ii if and only if there are two vertices in Ti that are
adjacent in EX(H), and an edge ij if and only if a vertex in Ti is adjacent to a
vertex in Tj in EX(H). (Quotient graphs are discussed in [7].)

Lemma 5. A geometric graph H has a thickness edge 2-coloring such that H
1

and H
2
are vertex-disjoint if and only if EX(H)/θ is bipartite.

Proof. Assume H has a thickness edge 2-coloring such that H
1
and H

2
are

vertex-disjoint. Hence no e1 ∈ E(H
1
) is adjacent to any e2 ∈ E(H

2
) in L(H).

This implies that each Ti lies either entirely in E(H
1
) or entirely in E(H

2
). In

particular, each Ti is an independent set in EX(H) and so the quotient graph

EX(H)/θ has no loops. Assigning color j to vertex i if and only if Ti ⊆ E(H
j
)

gives a proper 2-coloring of EX(H)/θ.
Conversely, assume EX(H)/θ is bipartite. Then there exists a homomor-

phism f : EX(H)/θ → K2. Since all quotients are homomorphic images, there
is another homomorphism g : EX(H) → EX(H)/θ. Define a thickness edge
2-coloring of H by

E
(
H

1
)
= g−1

(
f−1(1)

)
and E

(
H

2
)
= g−1

(
f−1(2)

)
.

If H
1
and H

2
are not vertex-disjoint, then there exist e1 ∈ E(H

1
), e2 ∈ E(H

2
)

with a common endvertex in H. By definition, e1 and e2 belong to the same
component of L(H), so g(e1) = g(e2). This contradicts the assumption that
f(g(e1)) = 1 and f(g(e2)) = 2.

Corollary 6. Deciding whether a geometric graph is C4-colorable can be done in

polynomial time.

We can characterize P4-colorability by adding an extra condition linking the
vertex adjacency and edge crossing structures that forbids (non-crossing) edges

between vertices in X ∩ V (G×

1
) and vertices in Y ∩ V (G×

2
).

Theorem 7. A geometric graph G is P4-colorable if and only if there exists a

bipartition of V (G) = X ∪ Y and a thickness edge 2-coloring of G× such that

1. V (G×

1
) ∩ V (G×

2
) = ∅, and
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2. [X ∩ (V (G×

1
)] ∪ [Y ∩ (V (G×

2
)] is an independent set.

Proof. First note that P̂4 satisfies both conditions 1 and 2, with bipartition
{1, 3} ∪ {2, 4} and the canonical thickness edge 2-coloring given in section 2.
Assume f : G → P̂4. By Lemma 2, this restricts to f : G× → (P̂4)×. We can pull
back this bipartition on V (P̂4) and thickness edge 2-coloring on (P̂4)× to obtain
a bipartition on V (G) and a thickness edge 2-coloring on G×. More precisely,

X = f−1({1, 3}) and Y = f−1({2, 4})

and

E
(
G×

1
)
= f−1(e1) and E

(
G×

2
)
= f−1(e3),

meaning

V
(
G×

1
)
= f−1({1, 2}) and V

(
G×

2
)
= f−1({3, 4}).

Clearly, V (G×

1
) ∩ V (G×

2
) = ∅, so condition 1 is satisfied. Next,

[
X ∩ V

(
G×

1
)]

∪
[
Y ∩ V

(
G×

2
)]

= f−1{1} ∪ f−1{4} = f−1{1, 4}.

Since the preimage of an independent set under any graph homomorphism is
independent, condition 2 is also satisfied.

Conversely, suppose there is a bipartition of V (G) = X ∪ Y and a thickness
edge 2-coloring of G× satisfying conditions 1 and 2. Define f : G → P̂4 by

f(v) =





1, v ∈ X ∩ V (G×

1
),

3, v ∈ X\V (G×

1
),

2, v ∈ Y \V (G×

2
),

4, v ∈ Y ∩ V (G×

2
).

The Venn diagram in Figure 5 shows the two partitions of V (G); the dashed line

indicates that no vertex in X∩V (G×

1
) can be adjacent to a vertex in Y ∩V (G×

2
).

The numbers in each subset indicate the scheme used to define f . By condition
2, no vertex sent to vertex 1 in P̂4 is adjacent to a vertex sent to 4 in P̂4. Thus
f is a graph homomorphism. Moreover, if edge xy crosses edge uv in G, then

without loss of generality xy ∈ E(G×

1
) and uv ∈ E(G×

2
). Assuming x, u ∈ X

and y, v ∈ Y , f(x) = 1, f(y) = 2, f(u) = 3 and f(v) = 4. Since e1 crosses e3 in
P̂4, f is a geometric homomorphism G → P̂4.

By Lemma 5, we can determine in polynomial time whether a given geo-
metric graph G is both bipartite and has a thickness edge 2-coloring satisfying
condition 1 of Theorem 7. However, determining whether G has a bipartition and
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V(G  )
1

X

x V(G  )
2

x

Y

1 3 3

2 24

Figure 5. Two partitions of V (G) for P4-colorability.

a thickness edge 2-coloring that together satisfy condition 2 could take signifi-
cantly longer. If G has p components and EX(G) has q components, then there
are 2p−1 bipartitions and 2q−1 thickness edge 2-colorings. We could therefore
have to check 2p+q−2 different combinations to find a pair satisfying condition 2.
This makes the existence of a polynomial algorithm to determine C4-colorability
unlikely. The same can be said for all subsequent characterization theorems in
this section and the next section.

Example 8. Three geometric realizations of C6 are shown in Figure 6. In each,
a thickness edge 2-coloring of the crossing subgraph is shown, with non-crossing
edges in grey. The vertex labeling on the leftmost one indicates that it is P4-
colorable. The middle one is not, because two adjacent vertices in one monochro-
matic subgraph of the crossing subgraph (namely, the one indicated by solid line
edges) have neighbors in the other; condition (2) of Theorem 7 requires that
in each monochromatic subgraph, only vertices in one bipartition (either X or
Y ) can be adjacent to vertices in the other monochromatic subgraph. However,
since the monochromatic subgraphs are vertex-disjoint, this realization satisfies
Theorem 4 and so is C4-colorable, as the vertex labeling indicates. The rightmost
one is neither P4-colorable nor C4-colorable, because under the only thickness
edge 2-coloring of the crossing subgraph (which is the whole graph), the two
monochromatic subgraphs are not vertex-disjoint. In fact, since any two vertices
of this realization are either adjacent or co-crossing, it is not homomorphic to a
geometric graph of smaller order. This realization is a maximal element in the
poset C6 (see [2]).

4. Intermediate Case: n = 5

The greatest element P̂5 of the poset P5 and its edge-crossing graph are shown in
Figure 7. Like P̂4, this geometric graph is bipartite and thickness-2, but unlike
P̂4, all its edges are crossing edges, i.e., (P̂5)× = P̂5. Also note that under
the canoncial thickness edge 2-coloring, which is the only possible one, the two
monochromatic subgraphs are not vertex-disjoint, as 3 ∈ V (P̂ 1

5 ) ∩ V (P̂ 2
5 ).
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4
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2

1

2

4

3

Figure 6. Three realizations of C6.

Definition. If ǫ is a thickness edge coloring of G, then any vertex belonging to
two monochromatic subgraphs is called bicolored under ǫ. More generally, any
vertex belonging to two or more monochromatic subgraphs is called multicolored

under ǫ.

Bicolored vertices play an important role in the characterization of Pn-
colorability for all n ≥ 5.

1

2

3

4

5
e1

e
3

e2

e4

Figure 7. P̂5 and EX(P̂5).

Theorem 9. A geometric graph G is P5-colorable if and only if there exist a

bipartition of V (G) = X ∪ Y and a thickness edge 2-coloring of G such that

1. all bicolored vertices are in X (i.e., V (G
1
) ∩ V (G

2
) ⊆ X), and

2. no two bicolored vertices are co-crossing.

The set-theoretic relationship between the bipartition and vertices of the
monochromatic subgraphs is shown in the Venn diagram in Figure 8. (Again,
only shaded regions contain vertices.)

Proof. First note that P̂5 satisfies both conditions 1 and 2, with bipartition
{1, 3, 5}∪{2, 4} and the canonical thickness edge 2-coloring. Assume f : G → P̂5.
Pull back this bipartition and thickness edge 2-coloring to obtain a bipartition
on V (G) and a thickness edge 2-coloring on G. Since inverse images commute
with all set operations, condition 1 is satisfied. Next, all bicolored vertices in G
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X

Y

Figure 8. V (G) for P5-colorability.

must be mapped to vertex 3 in P̂5. Since co-crossing vertices cannot have the
same homomorphic image, no two bicolored vertices in G are co-crossing. Thus
condition 2 is satisfied.

Conversely, assume there is a vertex bipartition V (G) = X ∪Y and thickness
edge 2-coloring satisfying conditions 1 and 2. Suppose these conditions are satis-

fied vacuously because there are no bicolored vertices, i.e., V (G
1
) ∩ V (G

2
) = ∅.

Since all edges of G, both crossing and non-crossing, have been colored, no vertex

in V (G
1
) has a neighbor in V (G

2
), and so no vertex in V (G×

1
) has a neighbor

in V (G×

2
). Thus both conditions of Theorem 7 are satisfied, meaning G is P4-

colorable and hence P5-colorable.
Now assume that there are bicolored vertices in G. Define f : G → P̂5 by

f(v) =





1, v ∈ X ∩
[
V (G

1
)\V (G

2
)
]
,

3, v ∈ V (G
1
) ∩ V (G

2
),

5, v ∈ X ∩
[
V (G

2
)\V (G

1
)
]
,

2, v ∈ Y ∩ V (G
1
),

4, v ∈ Y ∩ V (G
2
).

Using the fact each edge in G is either in E(G
1
) or E(G

2
), it is easy to verify

that f preserves adjacency. Next, suppose that uv crosses xy in G. Without

loss of generality assume uv ∈ E(G
1
) and xy ∈ E(G

2
) and that u, x ∈ X. By

construction, f(u) = 1 or 3, f(v) = 2, f(x) = 3 or 5 and f(y) = 4. Since u
and x are co-crossing, by condition 2 they cannot both be bicolored, so at most
one of f(u) and f(x) is 3. Since e1 = 12 crosses both e3 = 34 and e4 = 45, and
e2 = 23 crosses e4 = 45 in P̂5, f preserves crossings and is therefore a geometric
homomorphism.

Example 10. The geometric graph C12 in Figure 9 is obtained by identifying
endpoints of three copies of P̂5. Two different thickness edge 2-colorings are
shown. Under the one on the left, the bicolored vertices are {1, 3, 5, 7, 9, 11},
while under the one on the right, the bicolored vertices are {3, 5, 7, 11}. It is easy
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to verify that 3, 7 and 11 are bicolored under any thickness edge 2-coloring of
C12; in addition, either one or all of 1, 5 or 9 must be also be bicolored. All
bicolored vertices will be in the same ‘odd’ partite, but there will always be a
pair of co-crossing bicolored vertices. Hence C12 is not P5-colorable.

1

3

5

24

6

7 8

9

11

12

10

1

3

5

24

6

7 8

9

11

12

10

Figure 9. Two thickness edge 2-colorings of C12.

In Section 3, we noted the close relationship between our characterizations
of P4-colorability and C4-colorability. There is no analogous relationship between
characterizations P5-colorability and C5-colorability. From [2], the homomor-
phism poset C5 is a chain with greatest element Ĉ5 shown in Figure 10, which has
the property that EX(Ĉ5) = C5. Hence if G is C5-colorable, then by Lemma 2,
both G and EX(G) are C5-colorable. A homomorphism EX(G) → C5 is called
a thickness edge C5-coloring of G. Intuitively, it assigns colors 1 through 5 to the
edges of G so that colors assigned to edges that cross each other must be consec-
utive mod 5. For a full discussion of C5-colorability, see [4]; the main theorem is
given below.

1

2

3

4

5

e1

e
3

e2

e4

e5

Figure 10. Ĉ5 and EX(Ĉ5).

Theorem 11 [4]. A geometric graph G is C5-colorable if and only if there exists

thickness edge C5-coloring of G such that

1. if |i− j| = 1 mod 5, then V (G
i
) ∩ V (G

j
) = ∅;
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2. for each 1 ≤ i ≤ 5, there exists a bipartition V (G
i
) = Xi ∪ Y i such that

V (G
i
) ∩ V (G

i+2
) ⊆ Xi and V (G

i
) ∩ V (G

i+3
) ⊆ Y i.

However, viewing C4 as K2,2, the relationship between P5-colorability and
K2,3-colorability is as nice as that between P4-colorability and K2,2-colorability.
From [1, 5], the homomorphism poset of K2,3 is a chain with greatest element

K̂2,3 (see Figure 11). Thus G is K2,3-colorable if and only if G → K̂2,3. Our
theorem characterizing K2,3-colorability differs from Theorem 9 only in that the
thickness edge coloring condition is on G×, rather than on G.

1

2

31

2
3

1

2

3

1

2

3

4

5

4

4 4

5

55

Figure 11. The homomorphism poset K2,3.

Theorem 12. A geometric graph G is K2,3-colorable if and only if there exists a

bipartition of V (G) = X ∪ Y and a thickness edge 2-coloring of G× such that

1. all bicolored crossing vertices are in X (i.e., V (G
1

×
) ∩ V (G

2

×
) ⊆ X), and

2. no two bicolored crossing vertices are co-crossing.

Proof. Note that K̂2,3 satisfies both conditions with bipartition {1, 3, 5}∪{2, 4}

and the thickness edge 2-coloring on (K̂2,3)× = P̂5 being the canonical one. If

G → K̂2,3, then the pulled-back bipartition on V (G) and thickness edge 2-coloring
on G× will also satisfy conditions 1 and 2.

Conversely, suppose there exists a bipartition of V (G) and thickness edge
2-coloring on G× satisfying conditions 1 and 2. Restricting the bipartition to
V (G×), by Theorem 9 there is a geometric homomorphism f : G× → P̂5. As
noted earlier, geometric homomorphisms between crossing subgraphs cannot in
general be extended to the parent geometric graphs. However, in this case we
have the extra information that G is bipartite and that K2,3 is complete bipartite.
We can extend f by sending every non-crossing vertex in X to 1 and every non-
crossing vertex in Y to 4.

5. General Case: n ≥ 5

We focus first on the case n = 6. By Corollary 3, P̂6 is thickness-3. Although
there are now three monochromatic subgraphs, no vertices belong to more than
two of them, i.e., all multicolored vertices are in fact bicolored vertices. All
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bicolored vertices still belong to the same partite, but now they are co-crossing.
Some new terminology will prove useful.

Definition. The co-crossing closure of a geometric graph G is the abstract graph
obtained from G by adding an edge between any pair of co-crossing vertices. More
generally, if W ⊆ V (G), then the co-crossing closure of W in G is the abstract
graph with vertex set W and edges between any two vertices of W that are either
adjacent or co-crossing in G.

Clearly, a geometric homomorphism f : G → H induces a graph homomor-
phism on the co-crossing closures of G and H. More generally, if W ⊆ V (G),
then f induces a graph homomorphism from the co-crossing closure of W in G
to the co-crossing closure of f(W ) in H. In our characterization result below,
we consider the co-crossing closure not just of the bicolored vertices, but of the
entire partite containing the bicolored vertices.

1 2

3

4

5 e1

e3

e2

e5

6
e4

Figure 12. P̂6 and EX(P̂6).

Theorem 13. A geometric graph G is P6-colorable if and only if there exists a

bipartition of V (G) = X ∪ Y and a thickness edge 3-coloring of G such that

1. all multicolored vertices are in X;

2. the co-crossing closure of X is 3-colorable with color classes S1, S3, S5 satis-

fying

(a) X ∩ V (G
i
) ⊆ S2i−1 ∪ S2i+1 for i ∈ {1, 2},

(b) X ∩ V (G
3
) ⊆ S5.

Condition 2 is illustrated by the Venn diagram in Figure 13; the shaded

ellipses correspond to the intersection of X with V (G
1
), V (G

2
) and V (G

3
) and

the rounded rectangles correspond to the color classes S1, S3 and S5 of the co-
crossing closure of X. (Only shaded regions contain vertices.) Note that in
particular, condition 2 implies that any multicolored vertex is bicolored.

Proof. In P̂6, we have the bipartition {1, 3, 5} ∪ {2, 4, 6}. Under the canonical
thickness edge 3-coloring,

V (P̂ 1
6 ) = {1, 2, 3}, V (P̂ 2

6 ) = {3, 4, 5} and V (P̂ 3
6 ) = {5, 6}.
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V (G  )
1

X

S1 S3 S5

V (G  )
2

V (G  )
3

Figure 13. Condition 2 on X.

Clearly, V (P̂ 1
6 ) ∩ V (P̂ 3

6 ) = ∅. The vertices in the partite {1, 3, 5} are mutually
co-crossing, so the co-crossing closure is K3. Setting S1 = {1}, S3 = {3} and
S5 = {5} satisfies (a), (b) and (c) of condition 2.

Assume f : G → P̂6. Pull back the vertex bipartition and the thickness edge
3-coloring on P̂6 to G. As remarked earlier, f induces a graph homomorphism on
the co-crossing closure of X ⊆ V (G) to that of {1, 3, 5} ⊆ V (P̂6), so we can also
pull back color classes S1, S3 and S5. Because inverse images commute with all
set operations, this vertex bipartition, thickness edge 3-coloring and set of color
classes on the co-crossing closure of X on G together satisfy conditions 1 and 2.

Conversely, suppose there is a bipartition V (G) = X ∪Y , a thickness edge 3-
coloring on G and 3-coloring of the co-crossing closure of X satisfying conditions
1 and 2. Define f : G → P̂6 by

f(v) =

{
j, v ∈ Sj ,

2i, v ∈ Y ∩ V (G
i
).

Suppose u ∈ X is adjacent to v ∈ Y , with edge uv ∈ E(G
i
). Then f(v) = 2i

and by conditions 2(b) and 2(c), f(u) ∈ {2i − 1, 2i + 1} (if i = 3, then 2i + 1 =
7 /∈ V (P̂6), so in fact f(u) = 5). Thus f(u) and f(v) are consecutive numbers in
{1, . . . , 6} and hence must be adjacent vertices in P̂6.

Next, suppose that in G, edge uv crosses edge xy, with uv ∈ E(G
i
) and

xy ∈ E(G
j
), where i 6= j. Without loss of generality, u, x ∈ X and v, y ∈ Y .

Hence f(v) = 2i and f(y) = 2j, so f(v) 6= f(y) in the ‘even’ partite of P̂6. Since
u and x are co-crossing, by condition 2, f(u) 6= f(v) in the ‘odd’ partite of P̂6.
Any pair of nonadjacent edges crosses in P̂6, so we are done.

We now provide a characterization of Pn-colorability for all n ≥ 5. It is
easy to see that it is a generalization of our characterization of P6-colorability,
the only difference being that condition 2(c) splits into two cases. It is also a
generalization of our characterization of P5-colorability; conditions 1 and 2 of
Theorem 9 are captured by conditions 1 and 2(a) of Theorem 14.
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Theorem 14. Assume n ≥ 5; let k = ⌈(n − 1)/2⌉ and ℓ = n − k. A geometric

graph G is Pn-colorable if and only if there exists a bipartition of V (G) = X ∪ Y
and a thickness edge k-coloring of G such that

1. all multicolored vertices are in X;

2. the co-crossing closure of X is ℓ-colorable, with color classes S1, S3, . . . , S2ℓ−1

satisfying

(a) X ∩ V (G
i
) ⊆ S2i−1 ∪ S2i+1 for all 1 ≤ i < k,

(b) X ∩ V (G
k
) ⊆

{
S2k−1, n even,

S2k−1 ∪ S2k+1, n odd.

V(G  )
1

V(G  )2 V(G  )
3

X

S1

...

V(G    )
k-1

V(G  )
k

S3 S5 S2k-3 S2k-1

Figure 14. Condition 2 on X, n even.

V(G  )
1

V(G  )2 V(G  )
3

X

S1

...

V(G    )
k-1

V(G  )
k

S3 S5 S2k-3 S2k-1 S2k+1

Figure 15. Condition 2 on X, n odd.

Proof. The bipartition of V (P̂n) has the set of odd-labeled vertices as one partite
and the set of even-labeled vertices as the other. Under the canonical thickness
edge k-coloring,

V (P̂ i
n) = {2i− 1, 2i, 2i+ 1}, for all 1 ≤ i < k,

V (P̂ k
n ) =

{
{2k − 1, 2k, 2k + 1}, n odd,

{2k − 1, 2k}, n even.

Next let S2i−1 = {2i−1} for 1 ≤ i ≤ k; if n is odd, let S2ℓ−1 = S2k+1. It is easy to
verify that this bipartition, thickness edge k-coloring and set of color classes on
X of P̂n together satisfy conditions 1 and 2. If f : G → P̂n, then pull everything
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back to obtain a bipartition and thickness edge k-coloring on G and a set of color
classes on the co-crossing closure of X that satisfy conditions 1 and 2.

Conversely, suppose there is a bipartition of V (G) = X ∪Y , a thickness edge
k-coloring on E(G) and a k-coloring on the co-crossing closure of X that together
satisfy conditions 1 and 2. Again, we define f : G → P̂n by

f(v) =

{
j, v ∈ Sj ,

2i, v ∈ Y ∩ V (G
i
).

From here, the proof is identical to that of Theorem 13.

Note that determining whether G has a thickness edge k-coloring is equiv-
alent to determining whether EX(G) is k-colorable, which is an NP-complete
problem for k ≥ 3. For this reason, this characterization result does not lead to
a polynomial algorithm for deciding whether a geometric graph is Pn-colorable
for n ≥ 6.

Condition 2 can be phrased in terms of list colorings. Assign any bicolored

vertex in V (G
i
) ∩ V (G

j
) with the singleton list {i + j}; in effect, the bicolored

vertices are pre-colored. If n is even, then also pre-color any vertex in X ∩V (G
k
)

with 2k−1. Any ‘unicolored’ vertex inX∩V (G
i
) is assigned the list {2i−1, 2i+1}.

Condition 2 says that there will be an ℓ-coloring of the co-crossing closure of X
such that any vertex will be assigned a color from its list.

Intuitively, this theorem states that a geometric graph is Pn-colorable if and
only if it is bipartite and we can decompose its edges into a stack of plane graph
‘layers’ such that consecutive layers are ‘attached’ (via shared vertices) in a special
way: all attaching vertices lie within one partite, and no two vertices attaching
the same two layers can be co-crossing.

6. Open Questions

1. We showed that P4- and C4-colorability (equivalently, K2,2-colorability) are
closely related. Although the characterization of P5-colorability is not very sim-
ilar to that of C5-colorability, it is closely related to the characterizations of
K2,3-colorability. Can we characterize preimages of general geometric cycles and
complete bipartite graphs? Determining necessary and sufficient conditions for
C6-colorability is complicated by the fact that C6 has two maximal elements; see
[2]. The structure of Cn for n ≥ 7 has not yet been determined. As for complete
bipartite graphs, the posets K2,n for all n and K3,3 have been determined; nei-
ther are chains, but both have a greatest element (see [5] and [3]). However, the
structure of Km,n for m ≥ 3 in general has not been determined.
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2. An obstruction result characterizing H-colorability is a biconditional of the
form G 6→ H if and only if J → G for some graph J . A classic example is König’s
theorem, which can be phrased as: G 6→ K2 if and only if Cℓ → G for some
odd integer ℓ ≥ 3. In [12], Hell and Zhu characterize preimages of oriented paths
with the following obstruction result: if P is an oriented path, then a digraph
D satisfies D 6→ P if and only if there exists an oriented path W such that
W → D and W 6→ P . Can preimages of geometric paths be characterized with
an obstruction result?

The author is grateful for useful insights from the referees, which helped
improve the quality of the final manuscript.
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