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Abstract

In 1940, Lebesgue proved that every 3-polytope contains a 5-vertex for
which the set of degrees of its neighbors is majorized by one of the following
sequences:

(6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11),
(5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17),

(5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27),
(5, 5, 6, 6,∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11),
(5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17),

(5, 5, 5, 10, 14), (5, 5, 5, 11, 13).

In this paper we prove that every 3-polytope without vertices of degree
from 7 to 11 contains a 5-vertex for which the set of degrees of its neighbors
is majorized by one of the following sequences: (5, 5, 6, 6,∞), (5, 6, 6, 6, 15),
(6, 6, 6, 6, 6), where all parameters are tight.
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1. Introduction

By a 3-polytope we mean a finite 3-dimensional convex polytope. As proved
by Steinitz [31], the 3-polytopes are in one to one correspondence with the 3-
connected planar graphs.

The degree d(v) of a vertex v (r(f) of a face f) in a 3-polytope P is the
number of edges incident with it. By ∆ and δ we denote the maximum and
minimum vertex degrees of P , respectively. A k-vertex (k-face) is a vertex (face)
with degree k; a k+-vertex has degree at least k, etc.

The weight of a face in P is the degree sum of its boundary vertices, and
w(P ), or simply w, denotes the minimum weight of 5−-faces in P .

In 1904, Wernicke [32] proved that every 3-polytope with δ = 5 has a 5-vertex
adjacent with a 6−-vertex, which was strengthened by Franklin [15] in 1922, who
proved that every 3-polytope with δ = 5 has a 5-vertex adjacent with two 6−-
vertices. Recently, Borodin and Ivanova [11] proved that every such 3-polytope
has also a vertex of degree at most 6 adjacent to a 5-vertex and another vertex
of degree at most 6, which is tight.

We say that v is a vertex of type (k1, k2, . . .) or simply a (k1, k2, . . .)-vertex
if the set of degrees of the vertices adjacent to v is majorized by the vector
(k1, k2, . . .). If the order of neighbors in the type is not important, then we put
a line over the corresponding degrees. The following description of the neighbor-
hoods of 5-vertices in a 3-polytope with δ = 5 was given by Lebesgue [28, p. 36]
in 1940, which includes the results of Wernicke [32] and Franklin [15].

Theorem 1 (Lebesgue [28]). Every triangulated 3-polytope with minimum degree
5 contains a 5-vertex of one of the following types:

(6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11),
(5, 6, 7, 7, 8), (5, 6, 6, 7, 11), (5, 6, 6, 8, 8),

(5, 6, 6, 9, 7), (5, 7, 6, 6, 12), (5, 8, 6, 6, 10), (5, 6, 6, 6, 17),
(5, 5, 7, 7, 8), (5, 13, 5, 7, 7), (5, 10, 5, 7, 8),
(5, 8, 5, 7, 9), (5, 7, 5, 7, 10), (5, 7, 5, 8, 8),
(5, 5, 7, 6, 12), (5, 5, 8, 6, 10), (5, 6, 5, 7, 12),
(5, 6, 5, 8, 10), (5, 17, 5, 6, 7), (5, 11, 5, 6, 8),

(5, 11, 5, 6, 9), (5, 7, 5, 6, 13), (5, 8, 5, 6, 11), (5, 9, 5, 6, 10), (5, 6, 6, 5,∞),
(5, 5, 7, 5, 41), (5, 5, 8, 5, 23), (5, 5, 9, 5, 17), (5, 5, 10, 5, 14), (5, 5, 11, 5, 13).

Theorem 1, along with other ideas in Lebesgue [28], has many applications to
plane graph coloring problems (first examples of such applications and a recent
survey can be found in [7, 30]). Some parameters of Lebesgue’s Theorem were
improved for narrow classes of plane graphs. For example, in 1963, Kotzig [27]
proved that every plane triangulation with δ = 5 satisfies w ≤ 18 and conjectured
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that w ≤ 17. In 1989, Kotzig’s conjecture was confirmed by Borodin [3] in a more
general form.

Theorem 2 (Borodin [3]). Every 3-polytope with δ = 5 has a (5, 5, 7)-face or a
(5, 6, 6)-face, where all parameters are tight.

By a minor k-star S
(m)
k we mean a star with k rays centered at a 5−-vertex.

The Lebesgue’s description [28, p.36] of the neighborhoods of 5-vertices in 3-
polytopes with minimum degree 5, P5, shows that there is a 5-vertex with
three 8−-neighbors. Another corollary of Lebesgue’s description [28] is that

w
(

S
(m)
3

)

≤ 24, which was improved in 1996 by Jendrol’ and Madaras [23] to

the sharp bound w
(

S
(m)
3

)

≤ 23. Furthermore, Jendrol’ and Madaras [23] gave a

precise description of minor 3-stars in P5: there is a (6, 6, 6)- or (5, 6, 7)-star.

Also, Lebesgue [28] proved that w
(

S
(m)
4

)

≤ 31, which was strengthened

by Borodin and Woodall [13] to the sharp bound w
(

S
(m)
4

)

≤ 30. Note that

w
(

S
(m)
3

)

≤ 23 easily implies w
(

S
(m)
2

)

≤ 17 and immediately follows from

w
(

S
(m)
4

)

≤ 30 (in both cases, it suffices to delete a vertex of maximum degree

from a minor star of minimum weight). In [9], Borodin and Ivanova obtained a
tight description of minor 4-stars in P5.

As for minor 5-stars in P5, it follows from Lebesgue [28, p. 36] that if there

are no minor (5, 5, 6, 6)-stars, then w
(

S
(m)
5

)

≤ 68 and h
(

S
(m)
5

)

≤ 41. Borodin,

Ivanova, and Jensen [10] showed that the presence of minor (5, 5, 6, 6)-stars can

make w
(

S
(m)
5

)

arbitrarily large and otherwise lowered Lebesgue’s bounds to

w
(

S
(m)
5

)

≤ 55 and h
(

S
(m)
5

)

≤ 28. On the other hand, a construction in [10]

shows that w(S
(m)
5 ) ≥ 48 and h

(

S
(m)
5

)

≥ 20. Recently, Borodin and Ivanova [12]

proved that w
(

S
(m)
5

)

≤ 51 and h
(

S
(m)
5

)

≤ 23.

More results on the structure of edges and higher stars in various classes of
3-polytopes can be found in [1, 2, 4–6, 8, 9, 14, 16, 19–22, 24–26], with a detailed
summary in [12].

In [28] Lebesgue did not give a proof of Theorem 1 and only gave its idea.
In 2013, Ivanova and Nikiforov [17] gave a full proof of Theorem 1 and corrected
the following imprecisions in its statement:

(1) in the type (5, 11, 5, 6, 8) there should be 15 instead of 11;

(2) in the type (5, 17, 5, 6, 7) there should be 27 instead of 17;

(3) in the type (6, 6, 6, 6, 11) the line is not needed;

(4) instead of type (5, 6, 7, 7, 8) there should be (5, 8, 6, 7, 7) and (5, 7, 6, 8, 7);
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(5) the type (5, 6, 6, 9, 7) is redundant;

(6) instead of (5, 5, 7, 7, 8) it suffices to write (5, 5, 7, 7, 8).

Later on, Ivanova and Nikiforov [18, 29] improved the corrected version of
Theorem 1 by replacing 41 and 23 in the types (5, 5, 7, 5, 41) and (5, 5, 8, 5, 23) to
31 and 22, respectively.

Theorem 3 (Ivanova, Nikiforov [17, 18, 29]). Every 3-polytope with minimum
degree 5 contains a 5-vertex of one of the following types:

(6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11),
(5, 8, 6, 7, 7), (5, 7, 6, 8, 7), (5, 6, 6, 7, 11), (5, 6, 6, 8, 8),

(5, 7, 6, 6, 12), (5, 8, 6, 6, 10), (5, 6, 6, 6, 17),
(5, 5, 7, 7, 8), (5, 13, 5, 7, 7), (5, 10, 5, 7, 8), (5, 8, 5, 7, 9),
(5, 7, 5, 7, 10),(5, 7, 5, 8, 8), (5, 5, 7, 6, 12), (5, 5, 8, 6, 10),
(5, 6, 5, 7, 12), (5, 6, 5, 8, 10), (5, 27, 5, 6, 7), (5, 15, 5, 6, 8),
(5, 11, 5, 6, 9), (5, 7, 5, 6, 13), (5, 8, 5, 6, 11), (5, 9, 5, 6, 10),

(5, 6, 6, 5,∞),
(5, 5, 7, 5, 31), (5, 5, 8, 5, 22), (5, 5, 9, 5, 17), (5, 5, 10, 5, 14), (5, 5, 11, 5, 13).

Theorem 1 subject to the corrections (1)–(6) implies the following fact.

Corollary 4. Every 3-polytope with minimum degree 5 contains a 5-vertex of
one of the following types:

(6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11),
(5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17),

(5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27),
(5, 5, 6, 6,∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11),

(5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13).

We can see already from Theorem 1 that if vertices of degree from 7 to 11 are
forbidden, then there is a 5-vertex of one of the following types: (5, 5, 6, 6,∞),
(5, 6, 6, 6, 17), (6, 6, 6, 6, 6).

The purpose of this note is to obtain a precise description of 5-stars in this
subclass of P5.

Theorem 5. Every 3-polytope with minimum degree 5 and without vertices of
degree from 7 to 11 contains a 5-vertex of one of the following types: (5, 5, 6, 6,∞),
(5, 6, 6, 6, 15), (6, 6, 6, 6, 6), where all parameters are tight.

2. Proving Theorem 5

All parameters in Theorem 5 are best possible. Indeed, the following construction
confirming the tightness of the type (5, 5, 6, 6,∞) appears in [10]. Take three
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concentric n-cycles Ci = vi1 · · · v
i
n, where n is not limited and 1 ≤ i ≤ 3, and join

C2 with C1 by edges v2j v
1
j and v2j v

1
j+1, where 1 ≤ j ≤ n (addition modulo n).

Then do the same with C2 and C3. Finally, join all vertices of C1 with a new
n-vertex, and do the same for C3.

The tightness of (6, 6, 6, 6, 6) is confirmed by putting a 5-vertex in each face
of the dodecahedron.

To confirm the tightness of (5, 6, 6, 6, 15), we take the dodecahedron and
insert the fragment shown in Figure 1 into each face. As a result, we have a
3-polytope with only (5, 6, 6, 6, 15)-vertices.

Figure 1. The insert in each face of the dodecahedron to produce a 3-polytope with
5-vertices only of type (5, 6, 6, 6, 15).

Now suppose a 3-polytope P ′ is a counterexample to Theorem 5. Let P be a
counterexample on the same number of vertices with maximum possible number
of edges.

Remark 6. In P , each 4+-face f = v1 · · · vd(f) with d(v1) = 5 or d(v1) ≥ 15
satisfies d(vi) ≥ 6 whenever 3 ≤ i ≤ d(f)−1. Otherwise, we could put a diagonal
v1vi, which contradicts the maximality of P .

Corollary 7. In P , each 4+-face has at most two vertices with degree 5 and/or at
least 15. Moreover, if there are precisely two such vertices, then they are adjacent
to each other.
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2.1. Discharging

The sets of vertices, edges, and faces of P are denoted by V , E, and F , respec-
tively. Euler’s formula |V | − |E|+ |F | = 2 for P implies

∑

v∈V

(d(v)− 6) +
∑

f∈F

(2r(f)− 6) = −12.(1)

We assign an initial charge µ(v) = d(v) − 6 to every vertex v and µ(f) =
2d(f)−6 to every face f , so that only 5−-vertices have negative charge. Using the
properties of P as a counterexample, we define a local redistribution of charges,
preserving their sum, such that the new charge µ′(x) is non-negative whenever
x ∈ V ∪ F . This will contradict the fact that the sum of the new charges is, by
(1), equal to −12. The technique of discharging is often used in solving structural
and coloring problems on plane graphs.

Let v1, . . . , vd(v) denote the neighbors of a vertex v in a cyclic order round v,
and let f1, . . . , fd(v) be the faces incident with v in the same order.

We use the following rules of discharging (see Figure 2).
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Figure 2. Rules of discharging.

R1. Every 4+-face gives 1 to every incident 5-vertex.

R2. Every 12+-vertex v gives a simplicial 5-vertex v2 the following charge through
a face f = v2vv3 :

(a) 1
4 if d(v3) = 5,
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(b) 1
2 if d(v3) ≥ 6,

with the following exception.

(e) If d(v) ≥ 16, d(v1) = 5, d(v3) = d(x) = d(y) = 6, where v2 is incident to
face v2xy, then v gives 2

3 to v2 through face v2vv3 and 1
3 through face v1vv2.

R3. Suppose a simplicial 5-vertex v is adjacent to a 16-vertex v1, simplicial 5-
vertices v2 and v5, and v2 is surrounded by v1, v, v3, x, y, where d(v3) = d(x) =
d(y) = 6, (consequently d(v4) ≥ 12), while v5 is surrounded by v1, v, v4, w, z,
where d(z) ≥ 6. Then v gives 1

4 to v1.

2.2. Proving µ′(x) ≥ 0 whenever x ∈ V ∪ F

First consider a face f in P . If d(f) = 3, then f does not participate in dis-
charging, and so µ′(v) = µ(f) = 2 × 3 − 6 = 0. Note that every 4+-face is inci-
dent with at most two 5-vertices due to Corollary 7, which implies that µ′(v) =
2d(f)− 6− 2× 1 ≥ 0 by R1.

Now let v be a vertex in P .

Case 1. d(v) = 5. If v is incident with a 4+-face, then µ′(v) ≥ 5− 6 + 1 = 0
due to R1. In what follows we can assume that v is simplicial.

Subcase 1.1. v is incident only with 6+-vertices. Then there is at least one vi
with d(vi) ≥ 12 due to the absence of (6, 6, 6, 6, 6)-vertices in P . Hence, µ′(v) ≥
−1 + 2× 1

2 = 0 by R2(b).

Subcase 1.2. v is incident with precisely one 5-vertex. Since there is no (5, 6, 6,
6, 15)-vertex in P , we can assume that v has either at least two 12+-neighbors,
or precisely one 16+-neighbor. So we have either µ′(v) ≥ −1 + 2× 1

2 + 2× 1
4 > 0

by R2(a),(b), or µ′(v) = −1 + 2
3 + 1

3 = 0 by R2(e), respectively.

Subcase 1.3. v is incident with at least two 5-vertices. Note that now R2(e)
is not applicable to v. Also note that v cannot be incident with more than three
5-vertices due to the absence of (5, 5, 6, 6,∞)-vertices in P , which implies that v
has at least two 12+-neighbors. If v is incident with precisely three 5-vertices,
then we have µ′(v) ≥ −1 + 4× 1

4 = 0 by R2(a),(b).
Suppose v is incident with precisely two 5-vertices. If v does not participate

in R3, then µ′(v) ≥ −1+3× 1
4+

1
2 > 0 by R2(a),(b). Note that if v participates in

R3, then it gives 1
4 only to one 16-neighbor, hence µ′(v) ≥ −1+3× 1

4 +
1
2 −

1
4 = 0.

Case 2. d(v) = 6. Since v does not participate in discharging, we have
µ′(v) = µ′(v) = 6− 6 = 0.

Case 3. 12 ≤ d(v) ≤ 15. Now R2(e) is not applicable to v, so v sends at most
1
2 through each face by R2(a),(b), which implies that µ′(v) ≥ d(v)−6−d(v)× 1

2 =
d(v)−12

2 ≥ 0.
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Case 4. 16 ≤ d(v) ≤ 17. Note that v gives at most 2
3 through each 3-face

and only to a simplicial 5-vertex. If v gives nothing through at least one incident
face, then µ′(v) ≥ 16− 6− 15× 2

3 = 0 by R1, R2. Further, we can assume that v
is simplicial and each face takes away some positive charge from v, which implies
that each face at v is incident with a 5-vertex, and all 5-vertices adjacent to v

are simplicial. Thus, µ′(v) ≥ d(v) − 6 − d(v) × 2
3 = d(v)−18

3 , and we have the
deficiency 1

3 for a 17-vertex and 2
3 for a 16-vertex with respect to donating 2

3 per
face.

Suppose Sk = v1, . . . , vk is a sequence of neighbors of v with d(v1) ≥ 6,
d(vk) ≥ 6, while d(vi) = 5 whenever 2 ≤ i ≤ k−1 and k ≥ 3, and f1, . . . , fk−1 are
the corresponding faces. (It is not excluded that Sk = Sd(v), which happens when
v has precisely one 6+-neighbor.) We say that the sequence of faces f1, . . . , fk−1

saves ε with respect to the level of 2
3 if these faces take away the total of (k −

1)× 2
3 − ε from v.

Remark 8. Only v2 and vk−1 in Sk can receive the charge 2
3 from v by R2(e),

while each of the other 5-vertices vi receives precisely 1
4 from v through each

incident face. So, if k ≥ 5, then v2 receives at most 1, and v3 receives 1
2 from v

through incident faces.

Remark 9. If v is completely surrounded by 5-vertices, then µ′(v) ≥ d(v)− 6−
d(v)
2 = d(v)−12

2 > 0, and hence we can assume from now on that the neighborhood
of v is partitioned into Sks.

(P1) If k = 3, then ε = 1
3 . Indeed, here v2 receives 1

2 through each of the faces
v1vv2 and v2vv3 by R2(b), whence ε = 2× 2

3 − 2× 1
2 = 1

3 .

(P2) If k = 4, then ε = 0. Now each of v2 and v3 receives at most 1 from v by
Remark 8, so ε = 3× 2

3 − 2 = 0.

(P3) If k = 5, then ε = 2
3 . Suppose w1, . . . , w4 are the neighbors of v1, . . . , v5

such that there are the faces viwivi+1, where 1 ≤ i ≤ 4.

If v2 receives 1 by R2(e), then d(w1) = d(w2) = 6. Hence, d(w3) ≥ 12 due
to the absence of a (5, 5, 6, 6,∞)-vertex in P , which implies that v4 is adjacent
to two 12+-vertices, whence it receives 1

2 from v through f4 and 1
4 through f3.

Moreover, v3 gives 1
4 to v by R3. Hence, ε = 4× 2

3 − 1− 1
2 − 3

4 + 1
4 = 2

3 .

If R2(e) is not applicable to v, then ε = 4× 2
3 − 4× 1

2 = 2
3 .

(P4) If k = 6, then ε = 1
3 . Here, each of v2 and v5 receives at most 1, while each

of v3 and v4 receives 1
2 from v by Remark 8, so ε = 5× 2

3 − 2× 1− 2× 1
2 = 1

3 .

(P5) If k = 7, then ε = 1
2 . Now we have ε = 6 × 2

3 − 2 × 1 − 3 × 1
2 = 1

2 by
Remark 8.



Describing Neighborhoods of 5-Vertices in 3-Polytopes ... 623

(P6) If k ≥ 8, then ε ≥ 2
3 . Now we have ε = (k − 1)× 2

3 − 2× 1− (k − 4)× 1
2 =

k−4
6 ≥ 2

3 .

If d(v) = 17, then it suffices to assume that the neighborhood of v consists of
pairs of 5-vertices separated from each other by 6+-vertices by (P1)–(P6) (since
otherwise we pay off the deficiency), which is impossible due to the fact that 17
is not divisible by 3.

Suppose that d(v) = 16 and µ′(v) < 0. As follows from (P1)–(P6), the
neighborhood of v can have at most one of the paths St+2 of t vertices of degree
5, where t ∈ {1, 4, 5}, while all other vertices are partitioned into pairs of 5-
vertices separated from each other by 6-vertices. Indeed, if there are either two
paths with t ∈ {1, 4, 5}, or at least one path with t = 3 or t ≥ 6, then we can pay
off the deficiency 2

3 , a contradiction. But none of these cases is possible due to
the divisibility by 3. Namely, if t = 1 we have 16−2 = 14 faces to be divided into
triplets of faces with a sequence S4 of neighbors of v as in (P2), or 16 − 5 = 11
and 16− 6 = 10 faces for t = 4 and t = 5, respectively; a contradiction.

Case 6. d(v) ≥ 18. Now µ′(v) ≥ d(v)− 6− d(v)× 2
3 = d(v)−18

3 ≥ 0 by R2.

Thus we have proved µ′(x) ≥ 0 for every x ∈ V ∪ F , which contradicts (1)
and completes the proof of Theorem 5.
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