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Abstract

Let D = (V,A) be a digraph; if there is at least one arc between every
pair of distinct vertices of D, then D is a semicomplete digraph. A digraph
D is locally semicomplete if for every vertex x, the out-neighbours of x

induce a semicomplete digraph and the in-neighbours of x induce a semi-
complete digraph. A locally semicomplete digraph without 2-cycle is a local
tournament. In 2012, Bang-Jensen and Huang [J. Combin Theory Ser. B
102 (2012) 701–714] concluded that every 2-arc-strong locally semicomplete
digraph which is not the second power of an even cycle has two arc-disjoint
strong spanning subdigraphs, and proposed the conjecture that every 3-
strong local tournament has two arc-disjoint Hamiltonian cycles. According
to Bang-Jensen, Guo, Gutin and Volkmann, locally semicomplete digraphs
have three subclasses: the round decomposable; the non-round decompos-
able which are not semicomplete; the non-round decomposable which are
semicomplete. In this paper, we prove that every 3-strong round decompos-
able locally semicomplete digraph has two arc-disjoint Hamiltonian cycles,
which implies that the conjecture holds for the round decomposable local
tournaments. Also, we characterize the 2-strong round decomposable local
tournaments each of which contains a Hamiltonian path P and a Hamilto-
nian cycle arc-disjoint from P .
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1. Terminology and Introduction

In this paper, we consider finite digraph without loops and multiple arcs. The
main source for terminology and notation is [1].

For an integer n, [n] will denote the set {1, 2, 3, . . . , n}.
Let D = (V,A) be a digraph; if there is an arc from a vertex x to y, we

say that x dominates y and denote it by x → y. If V1 and V2 are arc-disjoint
subsets of vertices of D such that there is no arc from V2 to V1 and a → b for
all a ∈ V1 and b ∈ V2, then we say that V1 completely dominates V2 and denote
this by V1 ⇒ V2. We shall use the same notation when A and B are subdigraphs
of D. Let N−(x) (respectively, N+(x)) denote the set of vertices dominating
(respectively, dominated by) x in D and say that N−(x) (respectively, N+(x)) is
the in-neighbours of x (respectively, the out-neighbours of x).

Let H be a subdigraph of D; if V (D) = V (H), we say that H is a spanning
subdigraph of D. If every arc of A(D) with both end-vertices in V (H) is in A(H),
we say that H is induced by X = V (H) and denote this by D〈X〉. We also use
the notation D −X, where X ⊆ V , for digraph D〈V (D)\V (X)〉.

Let D1, D2 be two subdigraphs of a digraph D. The union D1 ∪ D2 is the
digraph D with vertex set V (D1) ∪ V (D2) and arc set A(D1) ∪A(D2).

Paths and cycles in a digraph are always directed. Let P be a directed path
of digraph D. If V (P ) = V (D), then P is a Hamiltonian path of D. Similarly, let
C be a directed cycle of digraph D. If V (C) = V (D), then C is a Hamiltonian
cycle of D.

Let P1, P2, . . . , Pq be paths which are pairwise vertex-disjoint. If F= P1 ∪
P2 ∪ · · · ∪ Pq is a spanning subdigraph of D, then F is a q-path factor of D.
Let C1, C2, . . . , Cq be cycles which are pairwise vertex-disjoint. If F= C1 ∪ C2

∪ · · · ∪ Cq is a spanning subdigraph of D, then F is a q-cycle factor of D.
A digraph D = (V,A) is called strongly connected (or just strong) if there

exists a path from x to y and a path from y to x in D for every choice of distinct
vertices x, y of D, and D is k-arc-strong (respectively, k-strong) if D−X is strong
for every subset X ⊆ A (respectively, X ⊆ V ) of size at most k − 1. Note that a
digraph with only one vertex is strong.

A digraph D is semicomplete if, for every pair x, y of vertices of D, either x
dominates y or y dominates x (or both). A digraph D is locally semicomplete if
for every vertex x, the out-neighbours of x induce a semicomplete digraph and
the in-neighbours of x induce a semicomplete digraph. A semicomplete digraph
without 2-cycle is a tournament and a locally semicomplete digraph without 2-
cycle is a local tournament.

A digraph R on r vertices is round if we can label its vertices x1, x2, . . . , xr

so that for each i, we have N+
R (xi) =

{
xi+1, xi+2, . . . , xi+d+

R
(xi)

}
and N−

R (xi) ={
x
i−d−

R
(xi)

, . . . , xi−1

}
(all subscripts are taken modulo r). Note that every round
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digraph is locally semicomplete, a round digraph without 2-cycle is a local tour-
nament. If a local tournament R is round then there exists a unique (up to cyclic
permutations) labeling of vertices of R which satisfies the properties in the defini-
tion. We refer to this as the round labeling of R. See Figure 1(a) for an example
of a round digraph R. Observe that the ordering x1, x2, . . . , x6 is a round labeling
of R. The second power of a cycle Cn, denoted by C2

n, is the digraph obtained
from Cn by adding the arcs {xixi+2 : i ∈ [n]}, where Cn = x1x2 · · ·xnx1 and
subscripts are modulo n. See Figure 1(b) for the second power of an 8-cycle.
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Figure 1. A round digraph and the second power of an 8-cycle.

Let R be a digraph with vertex set {xi : i ∈ [r]}, and let D1, D2, . . . , Dr be
digraphs which are pairwise vertex-disjoint. Let D = R[D1, D2, . . . , Dr], r ≥ 2,
be the new digraph obtained from R by replacing xi with Di and adding arc
from every vertex of Di to every vertex of Dj if and only if xi → xj in R. If
R is a round digraph and each Di is a strong semicomplete digraph, it is easy
to see that D = R[D1, D2, . . . , Dr] is a locally semicomplete digraph. We call D
a round decomposable locally semicomplete digraph. If a round decomposable
locally semicomplete digraph D = R[D1, D2, . . . , Dr] has no 2-cycle (i.e., the
round digraph R has no 2-cycle and each Di, i ∈ [r], is a strong tournament or a
single vertex), then we say that D is a round decomposable local tournament.

Locally semicomplete digraphs were introduced in 1990 by Bang-Jensen [2].
The following theorem, due to Bang-Jensen, Guo, Gutin and Volkmann, states a
full classification of locally semicomplete digraphs.

Theorem 1.1 [3]. Let D be a locally semicomplete digraph. Then exactly one of

the following possibilities holds.

(a) D is round decomposable with a unique round decomposition R[D1, D2, . . . ,

Dr], where R is a round locally semicomplete on r ≥ 2 vertices and Di is a

strong semicomplete digraph for i = 1, 2, . . . , r;
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(b) D is not round decomposable and not semicomplete;

(c) D is a semicomplete digraph which is not round decomposable.

In [3], Bang-Jensen et al. also characterized the structure of locally semi-
complete digraph which is not round decomposable and not semicomplete. If D
is restricted to a local tournament, we have the following result.

Corollary 1.2. Let D be a local tournament. Then exactly one of the following

possibilities holds.

(a) D is round decomposable with a unique round decomposition R[D1, D2, . . . ,

Dr], where R is a round local tournament on r ≥ 2 vertices and Di is a

strong tournament for i = 1, 2, . . . , r;

(b) D is not round decomposable and not a tournament;

(c) D is a tournament which is not round decomposable.

According to the classification of locally semicomplete digraphs, many nice
properties of semicomplete digraphs (tournaments) are generalized to locally
semicomplete digraphs (local tournaments), see [5–8]. Recently, some new prob-
lems on locally semicomplete digraphs, such as the out-arc pancyclicity, the num-
ber of Hamiltonian cycles, the kings, the H-force set and so on, were studied in
[9–13]. In particular, Bang-Jensen and Huang investigated the decomposition of
locally semicomplete digraphs and proved the theorem below.

Theorem 1.3 [4]. A 2-arc-strong locally semicomplete digraph D has two arc-

disjoint strong spanning subdigraphs if and only if D is not the second power of

an even cycle.

Meanwhile, they proposed the following conjecture.

Conjecture 1.4 [4]. Every 3-strong local tournament has two arc-disjoint Hamil-

tonian cycles.

In this paper, we prove the following theorem in Section 3 which implies that
the conjecture holds for the subclass of local tournaments—the round decompos-
able local tournaments.

Theorem 1.5. Every 3-strong round decomposable locally semicomplete digraph

has two arc-disjoint Hamiltonian cycles.

Also, in the following theorem, we give a characterization of the 2-strong
round decomposable local tournaments each of which contains a Hamiltonian
path P and a Hamiltonian cycle arc-disjoint from P . This theorem will be proved
in Section 4.
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Theorem 1.6. Every 2-strong round decomposable local tournament has a Hamil-

tonian path and a Hamiltonian cycle which are arc-disjoint if and only if it is not

the second power of an even cycle.

To show the main results, we introduce the following definition and theorem
due to Thomassen. A tournament is called transitive if it contains no cycle. It is
easy to see that, for a transitive tournament T , there is a unique vertex ordering
v1, v2, . . . , vn of T , such that vi → vj for all 1 ≤ i < j ≤ n. A tournament is
almost transitive if it is obtained from the transitive tournament T by reversing
the arc v1vn.

Theorem 1.7 [11]. Every tournament which is strong and which is not an almost

transitive tournament of odd order has two arc-disjoint Hamiltonian paths with

distinct initial vertices and distinct terminal vertices.

We also use the following facts several times.

Theorem 1.8 [1]. Every strong semicomplete digraph is vertex-pancyclic.

Theorem 1.9 [7]. A tournament is strong if and only if it has a Hamiltonian

cycle.

2. Preliminaries

In this section we start with the following three lemmas which imply that every
strong semicomplete digraph with at least 3 vertices contains a Hamiltonian path
Q and a 2-path-factor P ′ ∪P ′′ arc-disjoint from Q such that the paths Q,P ′ and
P ′′ have distinct initial vertices and distinct terminal vertices.

Lemma 2.1. Let D be a strong semicomplete digraph with at least 3 vertices.

Then D contains a spanning subdigraph which is a strong tournament.

Proof. By Theorem 1.8, assume that C is a Hamiltonian cycle of D. Notice that
at most one arc of each 2-cycle of D is in C. For each 2-cycle of D, by deleting
exactly one arc which is not in C, we obtain a tournament T which is a spanning
subdigraph of D and contains a Hamiltonian cycle. Note that a tournament is
strong if and only if it has a Hamiltonian cycle. The proof is complete.

Lemma 2.2. Let T be a strong tournament which is not an almost transitive

tournament of odd order. Then T contains a Hamiltonian path Q and a 2-path-
factor P ′∪P ′′ arc-disjoint from Q such that the paths Q,P ′ and P ′′ have distinct

initial vertices and distinct terminal vertices.
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Proof. Let |V (T )| = n. Since T is a strong tournament which is not an almost
transitive tournament of odd order, if n = 3, then T is an almost transitive
tournament of odd order. So n ≥ 4. By Theorem 1.7, T contains a pair of
arc-disjoint Hamiltonian paths P and Q such that P and Q have distinct initial
vertices and distinct terminal vertices. Denote P = v1v2 · · · vn, Q = u1u2 · · ·un.
Then v1 6= u1, vn 6= un. Let the vertex u1 of Q correspond to the vertex vi of P ,
and the vertex un of Q correspond to the vertex vj of P . Note that i > 1, j < n

and i 6= j. Now we will construct a 2-path-factor P ′∪P ′′ arc-disjoint from Q such
that Q,P ′ and P ′′ have distinct initial vertices and distinct terminal vertices.

Case 1. i < j. Let P ′ = v1v2 · · · vi and P ′′ = vi+1vi+2 · · · vn.

Case 2. i > j, j 6= 1. Let P ′ = v1v2 · · · vj−1 and P ′′ = vjvj+1 · · · vn.

Case 3. i > j, j = 1 and i 6= n. Let P ′ = v1v2 · · · vi and P ′′ = vi+1vi+2 · · · vn.

Case 4. i > j, j = 1 and i = n. Let P ′ = v1v2 and P ′′ = v3v4 · · · vn.

Figure 2 shows the construction of the Hamiltonian path Q and the 2-path
factor P ′ ∪ P ′′ in the four cases. Notice that in all cases the paths Q,P ′ and P ′′

have distinct initial vertices and distinct terminal vertices, respectively, i.e., T
contains a Hamiltonian path Q and a 2-path factor P ′ ∪ P ′′ arc-disjoint from Q

such that Q,P ′ and P ′′ have distinct initial vertices and distinct terminal vertices.
We are done.

q q q q q. . . . . . . . .- - - - -
v1 vj(un)vi(u1) vi+1 vn

P ′ P ′′

q q q q q. . . . . . . . .- - - - -
v1 vi(u1)vj−1 vj(un) vn

P ′ P ′′

q q qq. . . . . .- - - - -
v1(un) vi(u1) vi+1 vn

P ′ P ′′

q q qq . . .- - --
v1(un) v2 v3 vn(u1)

P ′ P ′′

(d)

(c)

(b)

(a)

Figure 2. The 2-path factor constructed in the proof of Lemma 2.2.
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Lemma 2.3. Let T be a strong tournament which is an almost transitive tour-

nament of odd order. Then T contains a Hamiltonian path Q and a 2-path factor

P ′∪P ′′ arc-disjoint from Q such that the paths Q,P ′ and P ′′ have distinct initial

vertices and distinct terminal vertices.

Proof. Let |V (T )| = n and V (T ) = {v1, v2, . . . , vn}. Obviously, n ≥ 3. Since T is
an almost transitive tournament of odd order, assume without loss of generality
that vi → vj for all 1 ≤ i < j ≤ n except for vn → v1. Hence, for arbitrary
i ≤ n− 2, we must have vi → vi+1 and vi → vi+2.

Case 1. n = 3. Let P ′ = v2v3, P
′′ = v1, Q = v3v1v2. It is clear that P ′ ∪ P ′′

is a 2-path factor of T which is arc-disjoint from Q. And the paths Q,P ′ and P ′′

have distinct initial vertices and distinct terminal vertices.

Case 2. n > 3. Let n = 2k + 1. Suppose that P ′ = v1v3 · · · v2k−1v2k+1, P
′′ =

v2v4 · · · v2k−2v2k, Q = v3v4 · · · vnv1v2. Obviously, P ′ ∪ P ′′ is a 2-path-factor of T
which is arc-disjoint from Q. The paths Q,P ′ and P ′′ have distinct initial vertices
and distinct terminal vertices, respectively.

Figure 3 shows the construction of the Hamiltonian path Q and the 2-path
factor P ′ ∪ P ′′ in the two cases of the proof.

r r r r r r
v1 v2 v3 v1 v2 v3

�

- -

P ′ ∪ P ′′ Q

(a)

r r r r r r r r r r- - -

�-- -

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

P ′ ∪ P ′′ Q

(b)

Figure 3. The arc-disjoint 2-path factor P ′ ∪ P ′′ and the Hamiltonian path Q in an
almost transitive tournament. In (a), P ′ = v2v3, P

′′ = v1, Q = v3v1v2. In (b), P ′ =
v1v3v5, P

′′ = v2v4, Q = v3v4v5v1v2.

The following lemma is also useful in our proof of main results.

Lemma 2.4. Every 2-strong semicomplete digraph with at least 3 vertices con-

tains two arc-disjoint Hamiltonian paths with distinct initial vertices and distinct

terminal vertices.
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Proof. Let D be a 2-strong semicomplete digraph. By Lemma 2.1, D contains
a strong tournament T as a spanning subdigraph. If T is not an almost transi-
tive tournament of odd order, by Lemma 1.7, we are done. Otherwise, T is an
almost transitive tournament of odd order. Assume without loss of generality
that V (T ) = {v1, v2, . . . , vn} and vi → vj for all 1 ≤ i < j ≤ n except vn → v1
in T . In the following, we will construct two arc-disjoint Hamiltonian paths with
distinct initial vertices and distinct terminal vertices in D.

Since D is 2-strong, there must exist some arc of the form vjvi, i < j besides
vnv1 in D. For all arcs of the form vjvi, i < j except for vnv1 in D, we shall
consider the following two cases.

Case 1. There is one arc of the form vjvi, j > i + 1 besides vnv1 in D. Let
vjvi, j > i + 1, which is not vnv1, be an arc of D. Now we replace the arc vivj
with vjvi in T . Then we can get a tournament T ′ which is a spanning subdigraph
of D. Recall that T is an almost transitive tournament of odd order. Then T ′ is
not an almost transitive tournament of odd order. Notice that C = v1v2 · · · vn is
still a Hamiltonian cycle of T ′. So T ′ is a strong tournament. By Theorem 1.7,
we are done.

Case 2. There is no arc of the form vjvi, j > i + 1 besides vnv1 in D. This
means that if vjvi, j > i is an arc of D, then j = i + 1. Note that there must
exist two arc-disjoint paths from vn to v1 in D since D is 2-strong. Then we have
vk+1vk ∈ D for any k ∈ [n − 1] since otherwise there exists only one path from
vn to v1 in D, a contradiction. Obviously, v1v2 · · · vn and vnvn−1 · · · v1 are two
arc-disjoint Hamiltonian paths with distinct initial vertices and distinct terminal
vertices.

For 3-strong round decomposable locally semicomplete digraphs, the follow-
ing result is clear.

Lemma 2.5. Let D be a 3-strong round decomposable locally semicomplete di-

graph. D = R[D1, D2, . . . , Dr], r ≥ 2 is the round decomposition of D, where R is

a round digraph and for each i ∈ [r], Di is either a strong semicomplete digraph

or a single vertex. Then

(a) when r = 2, we have D1 ⇒ D2 ⇒ D1;

(b) when r ≥ 3, for any i ∈ [r] with |V (Di)| ≤ 2, we have Di−1 ⇒ Di+1

(subscripts are modulo r).

For 2-strong round decomposable local tournaments, we have the similar
result.

Lemma 2.6. Let D be a 2-strong round decomposable local tournament. D =
R[D1, D2, . . . , Dr], r ≥ 2 is the round decomposition of D, where R is a round



Arc-Disjoint Hamiltonian Cycles in Round Decomposable Locally ...485

digraph and for each i ∈ [r], Di is either a strong tournament or a single ver-

tex. Then r ≥ 3 and for any i ∈ [r] with |V (Di)| = 1, we have Di−1 ⇒ Di+1

(subscripts are modulo r).

3. Proof of Theorem 1.5

Let D be a 3-strong round decomposition locally semicomplete digraph, and let
D = R[D1, D2, . . . , Dr] be the round decomposition of D. In this section, we
shall prove Theorem 1.5 in three classes: there exists at least one component Di

that has more than 2 vertices; each component Di for i ∈ [r] is either a 2-cycle
or a single vertex and there exists at least one component Di that is a 2-cycle;
each component Di for i ∈ [r] is a single vertex.

Theorem 3.1. Let D be a 3-strong round decomposable locally semicomplete

digraph. D = R[D1, D2, . . . , Dr] is the round decomposition of D, where R is a

round digraph and for each i ∈ [r], Di is either a strong semicomplete digraph or

a single vertex. If there is a component Di that has more than 2 vertices, then D

contains two arc-disjoint Hamiltonian cycles.

Proof. Suppose that x1, x2, . . . , xr is a round labeling of R. When |V (Di)| ≥ 3,
by Lemma 2.1, Di contains a spanning subdigraph Ti which is a strong tourna-
ment. Combining Lemma 2.2 and Lemma 2.3, we know that Di contains a Hamil-
tonian path Qi and a 2-path-factor P ′

i ∪P ′′

i arc-disjoint from Qi such that Qi, P
′

i

and P ′′

i have distinct initial vertices and distinct terminal vertices. Let ui, u
′

i, u
′′

i

be the initial vertices of Qi, P
′

i , P
′′

i and vi, v
′

i, v
′′

i be the terminal vertices of
Qi, P

′

i , P
′′

i , respectively. When |V (Di)| = 2, let Qi = uivi, P
′

i = P ′′

i = viui. When
|V (Di)| = 1, suppose that ui is the only vertex in Di. Let Qi = P ′

i = P ′′

i = ui.
We will consider two cases below.

Case 1. r = 2. By Lemma 2.5, we know thatD1 ⇒ D2 ⇒ D1. Without loss of
generality, assume that |V (D1)| ≥ 3. When |V (D2)| ≥ 3, let C1 = Q1Q2u1, C2 =
P ′

1P
′

2P
′′

1 P
′′

2 u
′

1. When |V (D2)| = 2, let C1 = Q1Q2u1, C2 = P ′

1u2P
′′

1 v2u
′

1. When
|V (D2)| = 1, notice that D1 is a 2-strong semicomplete digraph since D1 = D−u1
and D is 3-strong. By Lemma 2.4, assume that P̂1 and Q̂1 are two arc-disjoint
Hamiltonian paths with distinct initial vertices and distinct terminal vertices.
Let C1 = u2Q̂1u2, C2 = u2P̂1u2. It is easy to check that C1 and C2 are two
arc-disjoint Hamiltonian cycles of D.

Case 2. r ≥ 3. We can easily obtain a Hamiltonian cycle C1 = Q1Q2 · · ·Qru1.
An example is shown in Figure 4(a), where C1 = Q1Q2Q3Q4Q5Q6u1. In the
following, we shall find the other Hamiltonian cycle C2 such that C1 and C2 are
arc-disjoint.
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Step 1. Build a 2-cycle factor C ′ ∪ C ′′ of D.

Let C ′ = P ′

1P
′

2 · · ·P
′

ru
′

1, C
′′ = P ′′

1 P
′′

2 · · ·P ′′

r u
′′

1.
If |V (Di)| ≥ 3 for each i ∈ [r], then C ′ ∪ C ′′ is a 2-cycle factor of D. We are

done.
If there exist several subscripts k’s such that |V (Dk)| ≤ 2, then C ′ ∪ C ′′

is not a 2-cycle factor. We will obtain the desired 2-cycle factor by modifying
C ′∪C ′′. For convenience, if there exist i, j satisfying |V (Di)| ≥ 3, |V (Dj)| ≥ 3 and
|V (Dk)| ≤ 2 for each i < k < j (possibly, Di = Dj), we call Di+1Di+2 · · ·Dj−1

a maximal singular segment. Here and below the subscripts are taken modulo r.
For every pair of i, j such that Di+1Di+2 · · ·Dj−1 is a maximal singular segment,
we do the following:

If j − i ≡ 0(mod 2), denote j = i + 2k. In C ′, replace v′iP
′

i+1P
′

i+2 · · ·
P ′

i+(2k−1)u
′

i+2k with v′iP
′

i+1P
′

i+3 · · · P
′

i+(2k−1)u
′

i+2k. In C ′′, replace v′′i P
′′

i+1P
′′

i+2 · · ·

P ′′

i+(2k−1)u
′′

i+2k with v′′i P
′′

i+2P
′′

i+4 · · ·P
′′

i+(2k−2)u
′′

i+2k. If j−i ≡ 1(mod 2), denote j =

i+2k+1. In C ′, replace v′iP
′

i+1P
′

i+2 · · ·P
′

i+(2k−1)u
′

i+2k with v′iP
′

i+1P
′

i+3 · · ·P
′

i+(2k−1)

u′
i+(2k+1). In C ′′, replace v′′i P

′′

i+1P
′′

i+2 · · ·P
′′

i+(2k−1)u
′′

i+2k with v′′i P
′′

i+2 P
′′

i+4 · · ·P
′′

i+(2k)

u′′
i+(2k+1). See Figure 4(b), D2 and D4D5 are all maximal singular segments of

D. Replace v′1u2u
′

3 with v′1u2u
′

3, v
′′

1u2u
′′

3 with v′′1u
′′

3, v
′

3v4u4u5u
′

6 with v′3v4u4u
′

6,
and v′′3v4u4u5u

′′

6 with v′′3u5u
′′

6, respectively. Hence, C ′ = P ′

1u2P
′

3u4P
′

6u
′

1, C
′′ =

P ′′

1 P
′′

3 u5P
′′

6 u
′′

1. Clearly, C
′ ∪ C ′′ is a 2-cycle factor of D.

Step 2. Build a 2-path factor P ′ ∪ P ′′ based on the 2-cycle factor C ′ ∪ C ′′.

Since there is a component Di that has more than 2 vertices for some i ∈ [r],
without loss of generality, assume that |V (Dr)| ≥ 3. Let w′ be the successor
of v′r in C ′, and w′′ be successor of v′′r in C ′′. By the construction process of
C ′ ∪ C ′′, if |V (D1)| ≤ 2, we have w′ ∈ D1, w

′′ ∈ D2, and if |V (D1)| ≥ 3 we have
w′, w′′ ∈ D1. We obtain P ′, P ′′ by deleting arc v′rw

′, v′′rw
′′ of C ′, C ′′, respectively.

It is easy to check that P ′ ∪ P ′′ is a 2-path factor of D. See Figure 4(c). We
obtain P ′ = P ′

1u2P
′

3v4u4P
′

6 by deleting arc v′6u
′

1 of C ′, and P ′′ = P ′′

1 P
′′

3 u5P
′′

6 by
deleting v′′6u

′′

1.

Step 3. Build a Hamiltonian cycle C2 based on the 2-path factor P ′ ∪ P ′′.

If |V (D1)| ≤ 2, then we have w′ ∈ D1 and w′′ ∈ D2. By Lemma 2.5, sinceD is
3-strong, Dr must completely dominate D2. This implies that there exist the arcs
v′rw

′′ and v′′rw
′. If |V (D1)| ≥ 3, then we have w′, w′′ ∈ D1. Since Dr completely

dominates D1, there also exist the arcs v′rw
′′ and v′′rw

′. Now the initial vertices
of P ′, P ′′ are w′, w′′, respectively. The terminal vertices of P ′, P ′′ are v′r, v

′′

r ,
respectively. Hence, add the arcs v′rw

′′ and v′′rw
′ into the 2-path factor P ′ ∪ P ′′,

and we obtain the Hamiltonian cycle C2 = P ′P ′′w′. It is easy to check that C1

is arc-disjoint from C2. See Figure 4(d). C2 = P ′

1u2P
′

3v4u4P
′

6P
′′

1 P
′′

3 u5P
′′

6 u
′

1 is a
Hamiltonian cycle arc-disjoint from C1.
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(b) C ′ ∪ C ′′
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Figure 4. (a) The Hamiltonian cycle C1. (b) The 2-cycle factor C ′ ∪C ′′. (c) The 2-path
factor P ′ ∪ P ′′. (d) The Hamiltonian cycle C2.

Theorem 3.2. Let D be a 3-strong round decomposable locally semicomplete

digraph. D = R[D1, D2, . . . , Dr] is the round decomposition of D, where R is

a round digraph and for each i ∈ [r], Di is either a 2-cycle or a single vertex.

If there is a component Di that is a 2-cycle, then D contains two arc-disjoint

Hamiltonian cycles.

Proof. When |V (Di)| = 2, let Qi = uivi, Pi = viui. When |V (Di)| = 1, suppose
that ui is the only vertex inDi. LetQi = Pi = ui. Obviously, C1 = Q1Q2 · · ·Qru1
is a Hamiltonian cycle of D. Assume without loss of generality that |V (D1)| = 2.
If r is even, then let C2 = v1P3P5 · · ·Pr−1u1P2P4 · · ·Prv1. If r is odd, then let
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C2 = P1P3 · · ·PrP2P4 · · ·Pr−1v1. It is easy to check that C1 and C2 are two
arc-disjoint Hamiltonian cycles.

Theorem 3.3. Let R be a 3-strong round digraph. Then R contains two arc-

disjoint Hamiltonian cycles.

Proof. Let x1, x2, . . . , xr be the unique (up to cyclic permutations) round label-
ing of R. Since R is 3-strong round digraph, the vertex xi dominates the vertices
xi+1, xi+2 and xi+3 for each i ∈ [r] (subscripts are modulo r).

If r is odd, denote r = 2k+1. Then R contains two arc-disjoint Hamiltonian
cycles C1 = x1x2x3 · · ·x2k+1x1 and C2 = x1x3 · · ·x2k+1x2x4 · · ·x2kx1.

If r is even, we consider two cases, r = 4m+ 2 or r = 4m.

Case 1. r = 4m + 2. R contains two arc-disjoint Hamiltonian cycles C1 =
x1x2x4x6 · · ·x4m+2x3x5x7 · · ·x4m+1x1 and C2 = x1x4x5x8x9 · · ·x4m−4x4m−3x4m
x4m+1x2x3x6x7 · · ·x4m−6x4m−5x4m−2x4m−1x4m+2x1.

Case 2. r = 4m. If r = 4m, R contains two arc-disjoint Hamiltonian cycles
C1 = x1x2x4x6 · · · x4mx3x5x7 · · ·x4m−1x1 and C2 = x1x3x4x7x8 · · ·x4m−3x4m−1

x4mx2x5x6x9x10 · · ·x4m−7x4m−6x4m−3x4m−2x1.

The theorem holds.

Combining with Theorem 3.1, Theorem 3.2 and Theorem 3.3, the proof of
Theorem 1.5 is complete.

4. Proof of Theorem 1.6

Let D be a 2-strong round decomposable local tournament, and let D = R[D1,

D2, . . . , Dr] be the round decomposition of D, where R is a round digraph and
for each i ∈ [r], Di is either a strong tournament or a single vertex. We prove
Theorem 1.6 by dividing into two cases: there is a strong component Di that is
not a single vertex; each strong component Di for i ∈ [r] is a single vertex, i.e.,
D = R is a round diraph.

In the proof of Theorem 3.1, the condition that D is 3-strong is necessary
only when r = 2 or when r ≥ 3 and |V (Di)| = 2 for some i ∈ [r]. In other cases,
the condition that D is 2-strong is sufficient. When D = R[D1, D2, . . . , Dr] is a
round decomposable local tournament, we always have r ≥ 3 and |V (Di)| 6= 2 for
each i ∈ [r]. Thus the proof of Theorem 3.1 can be used to prove the following
theorem.

Theorem 4.1. Let D be a 2-strong round decomposable local tournament, and

let D = R[D1, D2, . . . , Dr] be the round decomposition of D, where R is a round

digraph and for each i ∈ [r], Di is either a strong tournament or a single vertex.
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If there is a component Di that is not a single vertex, then D contains two arc-

disjoint Hamiltonian cycles.

Theorem 4.2. Let R be a 2-strong round digraph. Then R contains a Hamilto-

nian cycle and a Hamiltonian path which are arc-disjoint if and only if R is not

the second power of an even cycle.

Proof. Firstly, we show the ‘only if’ part. Let R be a digraph with the vertex
set {x1, x2, . . . , xr} and the ordering x1, x2, . . . , xr be the unique (up to cyclic
permutations) round labeling of vertices of R. Suppose to the contrary that R

is the second power of an even cycle. Obviously, C = x1x2 · · ·xrx1 is the unique
Hamiltonian cycle of R. We obtain two vertex-disjoint r

2 -cycles by deleting arcs
of C from R. Hence, R will not contain a Hamiltonian path P arc-disjoint from
the Hamiltonian cycle C, a contradiction. Thus R is not the second power of an
even cycle.

To show the ‘if’ part, let R be a 2-strong round digraph. This means that xi
dominates xi+1 and xi+2 for each i ∈ [r] (all subscripts are modulo r). Then R

contains C2
r as a spanning subdigraph of R. Since R is not the second power of

an even cycle, we discuss two cases below.

Case 1. r = 2k+1. It is obvious that C2
2k+1 can be decomposed into two arc-

disjoint Hamiltonian cycles C1 = x1x2x3 · · ·x2kx2k+1x1 and C2 = x1x3x5 · · ·x2k+1

x2x4x6 · · ·x2kx1. It is certain that R contains a Hamiltonian cycle and a Hamil-
tonian path which are arc-disjoint.

Case 2. r = 2k. Since R is not the second power of an even cycle, there
exists a vertex xi dominating xi+3. Without loss of generality, assume that x1
dominates x4. Thus R can be decomposed into a Hamiltonian cycle C1 = x1x2x3
· · ·x2k−1x2kx1 and a Hamiltonian path P2 = x3x5x7 · · ·x2k−1x1x4x6 · · ·x2kx2.

Combining with Theorem 4.1 and Theorem 4.2, the proof of Theorem 1.6 is
complete.

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications
(Springer Monographs in Mathematics, Spring-Verlag, London, 2009).
doi:10.1007/978-1-84800-998-1

[2] J. Bang-Jensen, Locally semicomplete digraph: A generalization of tournaments , J.
Graph Theory 14 (1990) 371–390.
doi:10.1002/jgt.3190140310

[3] J. Bang-Jensen, Y. Guo, G. Gutin and L. Volkmann, A classification of locally

semicomplete digraphs , Discrete Math. 167-168 (1997) 101–114.
doi:10.1016/S0012-365X(96)00219-1

http://dx.doi.org/10.1007/978-1-84800-998-1
http://dx.doi.org/10.1002/jgt.3190140310
http://dx.doi.org/10.1016/S0012-365X\(96\)00219-1


490 R. Li and T. Han

[4] J. Bang-Jensen and J. Huang, Decomposing locally semicomplete digraphs into strong

spanning subdigraphs , J. Combin. Theory Ser. B 102 (2012) 701–714.
doi:10.1016/j.jctb.2011.09.001

[5] Y. Guo, Locally Semicomplete Digraphs (Ph.D. Thesis, RWTH Aachen University,
1995).

[6] Y. Guo, Strongly Hamiltonian-connected locally semicomplet digraphs , J. Graph
Theory 21 (1996) 65–73.
doi:10.1002/(SICI)1097-0118(199605)22:1〈65::AID-JGT9〉3.0.CO;2-J

[7] F. Harary and L. Moser, The theory of round robin tournaments , Amer. Math.
Monthly 73 (1966) 231–246.
doi:10.2307/2315334

[8] J. Huang, On the structure of local tournaments , J. Combin. Theory Ser. B 63

(1995) 200–221.
doi:10.1006/jctb.1995.1016

[9] S. Li, W. Meng, Y. Guo and G. Xu, A local tournament contains a vertex whose

out-arc are pseudo-girth-pancyclic, J. Graph Theory 62 (2009) 346–361.
doi:10.1002/jgt.20404

[10] D. Meierling, Local tournaments with the minimum number of Hamiltonian cycles

or cycles of length three, Discrete Math. 310 (2010) 1940–1948.
doi:10.1016/j.disc.2010.03.003

[11] C. Thomassen, Edge-disjoint Hamiltonian paths and cycles in tournaments , Proc.
Lond. Math. Soc. (3) 45 (1982) 151–168.
doi:10.1112/plms/s3-45.1.151

[12] R. Wang, A. Yang and S. Wang, Kings in locally semicomplete digraphs , J. Graph
Theory 63 (2010) 279–283.
doi:10.1002/jgt.20426

[13] X.H. Zhang, R.J. Li and S.J. Li, H-force sets of locally semicomplete digraphs , Dis-
crete Appl. Math. 160 (2012) 2491–2496.
doi:10.1016/j.dam.2012.06.014

Received 17 August 2016
Revised 1 November 2016

Accepted 23 December 2016

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1016/j.jctb.2011.09.001
http://dx.doi.org/10.1002/\(SICI\)1097-0118\(199605\)22:1<65::AID-JGT9>3.0.CO;2-J
http://dx.doi.org/10.2307/2315334
http://dx.doi.org/10.1006/jctb.1995.1016
http://dx.doi.org/10.1002/jgt.20404
http://dx.doi.org/10.1016/j.disc.2010.03.003
http://dx.doi.org/10.1112/plms/s3-45.1.151
http://dx.doi.org/10.1002/jgt.20426
http://dx.doi.org/10.1016/j.dam.2012.06.014
http://www.tcpdf.org

