SOME RESULTS ON THE INDEPENDENCE POLYNOMIAL OF UNICYCLIC GRAPHS

Mohammad Reza Oboudi
Department of Mathematics, College of Sciences
Shiraz University, Shiraz, 71457-44776, Iran
and
School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
P.O. Box 19395-5746, Tehran, Iran
e-mail: mr_oboudi@yahoo.com

Abstract

Let G be a simple graph on n vertices. An independent set in a graph is a set of pairwise non-adjacent vertices. The independence polynomial of G is the polynomial $I(G, x)=\sum_{k=0}^{n} s(G, k) x^{k}$, where $s(G, k)$ is the number of independent sets of G with size k and $s(G, 0)=1$. A unicyclic graph is a graph containing exactly one cycle. Let C_{n} be the cycle on n vertices. In this paper we study the independence polynomial of unicyclic graphs. We show that among all connected unicyclic graphs G on n vertices (except two of them), $I(G, t)>I\left(C_{n}, t\right)$ for sufficiently large t. Finally for every $n \geq 3$ we find all connected graphs H such that $I(H, x)=I\left(C_{n}, x\right)$.

Keywords: independence polynomial, independent set, unicyclic graphs.
2010 Mathematics Subject Classification: 05C30, 05C31, 05C38, 05C69.

1. Introduction

Throughout this paper we will consider only simple graphs, the graphs with no loops and multiple edges. Let $G=(V(G), E(G))$ be a simple graph. The order of G denotes the number of vertices of G. Let e be an edge of G. By $e=u v$ we mean that e is an edge between vertices u and v. For every vertex $v \in V(G)$, the closed neighborhood of v denoted by $N[v]$ is defined as $\{u \in V(G) \mid u v \in E(G)\} \cup\{v\}$. For two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, the disjoint union of G_{1} and G_{2} denoted by $G_{1}+G_{2}$ is the graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$. The
graph $r G$ denotes the disjoint union of r copies of G. For every vertex $v \in V(G)$, the degree of v is the number of edges incident with v. A pendant vertex is a vertex of degree one. For a vertex $v \in V(G), G \backslash v$ denotes the graph obtained from G by removing v. A unicyclic graph is a graph containing exactly one cycle. We denote the complete graph of order n, the complete bipartite graph with part sizes m, n, the cycle of order n, and the path of order n, by $K_{n}, K_{m, n}, C_{n}$, and P_{n}, respectively. Also $K_{1, n}$ is called a star.

A set $S \subseteq V(G)$ is an independent set if there is no edge between the vertices of S. If S is an independent set with $|S|=k$, then S is called a k-independent set. By $s(G, k)$ we mean the number of k-independent sets of G. The independence number of $G, \alpha(G)$, is the maximum cardinality of an independent set of G. The independence polynomial of $G, I(G, x)$, is defined as $I(G, x)=\sum_{k=0}^{\alpha(G)} s(G, k) x^{k}$, where $s(G, k)$ is the number of independent sets of G of size k and $s(G, 0)=1$. This polynomial was introduced by Gutman and Harary in [10]. For example for every $n \geq 1, \alpha\left(K_{n}\right)=1$ and $s\left(K_{n}, 1\right)=n$. Thus $I\left(K_{n}, x\right)=1+n x$. The independence polynomial has very nice properties, see $[5,6,13]$ for more details. There are many polynomials associated with graphs. For example chromatic polynomial, clique polynomial, domination polynomial, edge cover polynomial and matching polynomial, see [1]-[16]. One of the most important problems related to graph polynomials is the following:
Problem. Which graphs are uniquely determined by their graph polynomials?
In many papers, researchers study the problem defined above for graph polynomials. For example in [3] the authors show that the complete graphs, the cycles and some complete bipartite graphs are determined by their edge cover polynomials. In [2] it is proved that the cycles are determined by their domination polynomials. In this paper we study the independence polynomial of unicyclic graphs. We show that among all connected unicyclic graphs G on n vertices except the cycle C_{n} and the graph D_{n} (see Figure 3), $I(G, t)>I\left(C_{n}, t\right)$ for sufficiently large t. We show that for every $n \geq 4$ there is only one connected graph H such that $H \not \equiv C_{n}$ and $I(H, x)=I\left(C_{n}, x\right)$.

2. The Independence Polynomials of Unicyclic Graphs

In this section we study the independence polynomials of unicyclic graphs. We need the following basic properties of independence polynomials.
Theorem $1[10,11]$. Let G be a graph with connected components G_{1}, \ldots, G_{t}. Then $I(G, x)=\prod_{i=1}^{t} I\left(G_{i}, x\right)$.
Theorem 2 [10,11]. Let G be a graph and v be a vertex of G. Then

$$
I(G, x)=I(G \backslash v, x)+x I(G \backslash N[v], x) .
$$

Remark 3. We remark that by independence polynomials one can find the number of vertices and the number of edges of graphs. More precisely, if G is a graph with n vertices and m edges, then $n=s(G, 1)$ and $m=\binom{n}{2}-s(G, 2)$.

Lemma 4. Let T be a tree of order n. Then there exists a positive real number r_{n} such that for all $x \geq r_{n}$ we have

$$
I(T, x)> \begin{cases}x^{\left[\frac{n}{2}\right]}, & \text { if } n \text { is odd; } \\ 2 x^{\frac{n}{2}}, & \text { if } n \text { is even. }\end{cases}
$$

Proof. Since T is a tree, T is bipartite. Assume that X and Y are partite sets of $V(T)$. Hence $\alpha(T) \geq|X|,|Y|$. This shows that $\alpha(T) \geq\left\lceil\frac{n}{2}\right\rceil$. First assume that n is odd. Thus for all $x \geq 1, x^{\alpha(T)} \geq x^{\left\lceil\frac{n}{2}\right\rceil}$. This shows that for all $x \geq 1, I(T, x)>x^{\left\lceil\frac{n}{2}\right\rceil}$. Now assume that n is even. If $\alpha(T)=\frac{n}{2}$, then $|X|=|Y|=\frac{n}{2}$. Thus $s\left(T, \frac{n}{2}\right) \geq 2$. Hence for all $x \geq 1, s(T, \alpha(T)) x^{\alpha(T)} \geq 2 x^{\frac{n}{2}}$ and so $I(T, x)>2 x^{\frac{n}{2}}$. Otherwise suppose that $\alpha(T)>\frac{n}{2}$. Thus $I(T, x)-2 x^{\frac{n}{2}}$ is a polynomial with positive leading coefficient. Therefore for sufficiently large x, $I(T, x)-2 x^{\frac{n}{2}}>0$. This completes the proof.

Let G be a graph of order n with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$. Let H_{1}, \ldots, H_{n} be some disjoint graphs. Assume that $u_{1} \in V\left(H_{1}\right), \ldots, u_{n} \in V\left(H_{n}\right)$. By $G\left(H_{1}, \ldots, H_{n} ; u_{1}, \ldots, u_{n}\right)$ we mean the graph that is obtained by identifying the vertices u_{i} and v_{i} for $i=1, \ldots, n$. Note that the order of $G\left(H_{1}, \ldots, H_{n} ; u_{1}, \ldots, u_{n}\right)$ is $\left|V\left(H_{1}\right)\right|+\cdots+\left|V\left(H_{n}\right)\right|$, see Figure 1. In particular, suppose that H_{1}, \ldots, H_{n} are some stars, say $H_{1}=K_{1, m_{1}}, \ldots, H_{n}=K_{1, m_{n}}$, where m_{1}, \ldots, m_{n} are some non-negative integers (by $K_{1,0}$ we mean the single vertex K_{1}). In addition let u_{i} be the vertex of $K_{1, m_{i}}$ with degree m_{i}. Then we use $G\left(m_{1}, \ldots, m_{n}\right)$ instead of $G\left(K_{1, m_{1}}, \ldots, K_{1, m_{n}} ; u_{1}, \ldots, u_{n}\right)$. Note that the order of $G\left(m_{1}, \ldots, m_{n}\right)$ is $m_{1}+\cdots+m_{n}+n$ and $G(0, \ldots, 0) \cong G$. See Figure 2 .

Lemma 5. Let $k \geq 3$ be an integer. Let $V\left(C_{k}\right)=\left\{v_{1}, \ldots, v_{k}\right\}$ and $E\left(C_{k}\right)=$ $\left\{v_{1} v_{2}, \ldots, v_{k-1} v_{k}, v_{k} v_{1}\right\}$. Let $G=C_{k}\left(n_{1}, \ldots, n_{k}\right)$ and $n=n_{1}+\cdots+n_{k}+k$, where n_{1}, \ldots, n_{k} are some non-negative integers. If $G \not \not C_{n}$ and $n \geq 5$, then for sufficiently large x we have $I(G, x)>I\left(C_{n}, x\right)$.

Proof. First we note that if $n=3$, then $G \cong C_{3}$. Also if $n=4$, then $G \cong C_{4}$ or $G \cong C_{3}(1,0,0)$. Since $I\left(C_{3}(1,0,0), x\right)=I\left(C_{4}, x\right)=1+4 x+2 x^{2}, I(G, x)=$ $I\left(C_{4}, x\right)$. We note that $C_{k}\left(n_{1}, \ldots, n_{k}\right) \cong C_{n}$ if and only if $n=k$. Now assume that $n \geq 5$ and $G \not \equiv C_{n}\left(G \nsubseteq C_{k}\right)$. We have one of the following cases.
(i) For some $i \in\{1, \ldots, k\}, n_{i} \geq 2$. Without losing the generality assume that $n_{1} \geq 2$. Note that $\alpha(G) \geq n_{1}+\alpha\left(P_{k-1}\left(n_{2}, \ldots, n_{k}\right)\right)$, where $V\left(P_{k-1}\right)=$ $\left\{v_{2}, \ldots, v_{k}\right\}$ and $E\left(P_{k-1}\right)=\left\{v_{2} v_{3}, \ldots, v_{k-1} v_{k}\right\}$. Since $P_{k-1}\left(n_{2}, \ldots, n_{k}\right)$ is a tree
of order $n-n_{1}-1$ (by the proof of Lemma 4), $\alpha\left(P_{k-1}\left(n_{2}, \ldots, n_{k}\right)\right) \geq\left\lceil\frac{n-n_{1}-1}{2}\right\rceil$. Hence

$$
\alpha(G) \geq n_{1}+\left\lceil\frac{n-n_{1}-1}{2}\right\rceil=\left\lceil\frac{n+n_{1}-1}{2}\right\rceil \geq\left\lceil\frac{n+1}{2}\right\rceil>\left\lfloor\frac{n}{2}\right\rfloor=\alpha\left(C_{n}\right) .
$$

Thus $\alpha(G)>\alpha\left(C_{n}\right)$. Since the coefficients of independence polynomials are positive, for sufficiently large x we have $I(G, x)>I\left(C_{n}, x\right)$.

G

H_{1}

H_{n}

$$
G\left(H_{1}, \ldots, H_{n} ; u_{1}, \ldots, u_{n}\right)
$$

Figure 1. The graph $G\left(H_{1}, \ldots, H_{n} ; u_{1}, \ldots, u_{n}\right)$.
(ii) For $i=1, \ldots, k, n_{i} \in\{0,1\}$ and n is odd. Since $G \not \nexists C_{n}$, for some i, $n_{i}=1$. Without losing the generality let $n_{1}=1$. Since n is odd, similar to part (i), $\alpha(G) \geq 1+\left\lceil\frac{n-2}{2}\right\rceil=\left\lceil\frac{n}{2}\right\rceil>\left\lfloor\frac{n}{2}\right\rfloor=\alpha\left(C_{n}\right)$. Thus the result follows.
(iii) For $i=1, \ldots, k, n_{i} \in\{0,1\}$ and n is even. Since $G \nsubseteq C_{n}$, for some $t, n_{t}=1$. First suppose that there is only one i such that $n_{i}=1$. Without losing the generality assume that $n_{1}=\cdots=n_{k-1}=0$ and $n_{k}=1$. Hence $k=n-1$. In other words, $G \cong C_{n-1}(0, \ldots, 0,1)$. Hence $\alpha(G)=\frac{n}{2}$. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E(G)=\left\{v_{1} v_{2}, \ldots, v_{n-2} v_{n-1}, v_{n-1} v_{1}, v_{n-1} v_{n}\right\}$. Since $n \geq 6,\left\{v_{1}, v_{3}, \ldots, v_{n-3}, v_{n}\right\},\left\{v_{1}, v_{3}, \ldots, v_{n-5}, v_{n-2}, v_{n}\right\}$ and $\left\{v_{2}, v_{4}, \ldots, v_{n-2}, v_{n}\right\}$ are three independent sets of G with cardinality $\frac{n}{2}$. Hence $s\left(G, \frac{n}{2}\right) \geq 3$. On the

$$
C_{4}(1,1,2,3)
$$

Figure 2. The graph $C_{4}(1,1,2,3)=G\left(H_{1}, H_{2}, H_{3}, H_{4} ; u_{1}, u_{2}, u_{3}, u_{4}\right)$, where $G=C_{4}$ and u_{1} is the vertex of $H_{1}=K_{1,1}$ of degree one, u_{2} is the vertex of $H_{2}=K_{1,1}$ of degree one, u_{3} is the vertex of $H_{3}=K_{1,2}$ of degree two and u_{4} is the vertex of $H_{4}=K_{1,3}$ of degree three.
other hand, since n is even, $\alpha\left(C_{n}\right)=\frac{n}{2}$ and $s\left(C_{n}, \frac{n}{2}\right)=2$. By the fact that $\alpha(G)=\alpha\left(C_{n}\right)=\frac{n}{2}$ and $s\left(G, \frac{n}{2}\right)>s\left(C_{n}, \frac{n}{2}\right)$, for sufficiently large x we obtain $I(G, x)>I\left(C_{n}, x\right)$. Now assume that there are some $i \neq j$ such that $n_{i}=1$ and $n_{j}=1$. This shows that G has at least two vertices of degree one (G has two pendant vertices). Let u and v be two pendant vertices of G. Applying Theorem 2 for vertex u we obtain $I(G, x)=I(G \backslash u, x)+x I\left(T_{1}, x\right)$, where T_{1} is a tree of order $n-2$. Using Theorem 2 for v and $G \backslash u$ we have

$$
I(G, x)=I(G \backslash\{u, v\}, x)+x I\left(T_{2}, x\right)+x I\left(T_{1}, x\right)
$$

where T_{2} is a tree of order $n-3$. Hence for $x \geq 0, I(G, x)>x I\left(T_{2}, x\right)+x I\left(T_{1}, x\right)$. Using Lemma 4 for trees T_{1} and T_{2} we obtain that for sufficiently large x,

$$
I(G, x)>x x^{\left\lceil\frac{n-3}{2}\right\rceil}+2 x x^{\frac{n-2}{2}}=3 x^{\frac{n}{2}}
$$

On the other hand, $\alpha\left(C_{n}\right)=\frac{n}{2}$ and $s\left(C_{n}, \frac{n}{2}\right)=2$. Hence for sufficiently large x, $3 x^{\frac{n}{2}}>I\left(C_{n}, x\right)$. Thus for sufficiently large $x, I(G, x)>3 x^{\frac{n}{2}}>I\left(C_{n}, x\right)$. The proof is complete.

3. Graphs Whose Independence Polynomials Coincide with Independence Polynomials of Cycles

In this section we study the graphs G such that $I(G, x)=I\left(C_{n}, x\right)$, where $n \geq 3$. We show that there is only one connected graph $G \nsubseteq C_{n}$ satisfying $I(G, x)=I\left(C_{n}, x\right)$. Let $n \geq 4$ be an integer. By D_{n} we mean the graph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}\right\} \cup\left\{v_{n-2} v_{n}\right\}$, see Figure 3 . In addition by D_{3} we mean the cycle C_{3}. The next result shows that the independence polynomials of C_{n} and D_{n} are the same.

Figure 3. The graph D_{n}.
Lemma 6. Let $n \geq 4$ be an integer. Then
(i) $I\left(C_{n}, x\right)=I\left(C_{n-1}, x\right)+x I\left(C_{n-2}, x\right)$, where C_{2} is the path P_{2}.
(ii) $I\left(C_{n}, x\right)=I\left(D_{n}, x\right)$.

Proof. It is easy to check the result for $n=4$. Thus let $n \geq 5$. Using Theorem 2 for one of the vertices of C_{n} we obtain that

$$
\begin{equation*}
I\left(C_{n}, x\right)=I\left(P_{n-1}, x\right)+x I\left(P_{n-3}, x\right) \tag{1}
\end{equation*}
$$

On the other hand, by Theorem 2 for one of the pendant vertices of P_{t} we have

$$
\begin{equation*}
I\left(P_{t}, x\right)=I\left(P_{t-1}, x\right)+x I\left(P_{t-2}, x\right), \text { for } t \geq 2, \text { where } I\left(P_{0}, x\right)=1 \tag{2}
\end{equation*}
$$

Using equations (1) and (2) one can see that

$$
I\left(C_{n}, x\right)=I\left(P_{n-2}, x\right)+x I\left(P_{n-4}, x\right)+x\left(I\left(P_{n-3}, x\right)+x I\left(P_{n-5}, x\right)\right)
$$

So by equation (1) the first part is proved. Now we prove the second part. Using Theorem 2 for the vertex v_{n} of D_{n} (see Figure 3) we obtain that $I\left(D_{n}, x\right)=$ $I\left(P_{n-1}, x\right)+x I\left(P_{n-3}, x\right)$. Hence by equation $(1), I\left(D_{n}, x\right)=I\left(C_{n}, x\right)$. The proof is complete.

We recall that a unicyclic graph is a graph with exactly one cycle. The next result shows that among all connected unicyclic graphs the cycles have the smallest independence polynomials.

Theorem 7. Let G be a connected unicyclic graph of order n. Assume that $G \not \equiv C_{n}$ and $G \not \equiv D_{n}$. Then for sufficiently large x we have $I(G, x)>I\left(C_{n}, x\right)$.

Proof. Assume that H is a connected unicyclic graph of order n. Thus $n \geq 3$. If $n=3$, then $H \cong C_{3}$. If $n=4$, then $H \cong C_{4}$ or $H \cong D_{4}$. If $n=5$, then $H \cong C_{5}$ or $H \cong D_{5}$ or $H \cong C_{4}(1,0,0,0)$ or $H \cong C_{3}(2,0,0)$ or $H \cong$ $C_{3}(1,1,0)$. So by the fact that G is unicyclic and $G \nsubseteq C_{n}$ and $G \nsupseteq D_{n}$ we obtain that $n \geq 5$. We use induction on n to prove the result. If $n=5$, then $G \cong C_{4}(1,0,0,0)$ or $G \cong C_{3}(2,0,0)$ or $G \cong C_{3}(1,1,0)$. One can see that $I\left(C_{4}(1,0,0,0), x\right)=1+5 x+5 x^{2}+x^{3}, I\left(C_{3}(2,0,0), x\right)=1+5 x+5 x^{2}+2 x^{3}$ and
$I\left(C_{3}(1,1,0), x\right)=1+5 x+5 x^{2}+x^{3}$. On the other hand $I\left(C_{5}, x\right)=1+5 x+5 x^{2}$. Thus the result holds for $n=5$.

Now assume that $n \geq 6$. Suppose that the length of the unique cycle of G is k. Assume that v_{1}, \ldots, v_{k} are the vertices of this cycle. Since G is unicyclic there are some trees T_{1}, \ldots, T_{k} such that $G=C_{k}\left(T_{1}, \ldots, T_{k} ; v_{1}, \ldots, v_{k}\right)$. If each tree T_{1}, \ldots, T_{k} is a star, then by Lemma 5 the result follows. Now without losing the generality assume that T_{1} is not a star. Let u_{1} be a pendant vertex of T_{1} which has the maximum distance from v_{1} among all pendant vertices of T_{1}. We consider the three following cases for $G \backslash u_{1}$.
(i) Assume that $G \backslash u_{1}$ is the cycle C_{n-1}. Hence $G=C_{n-1}(1,0, \ldots, 0)$ and $T_{1}=P_{2}$, a contradiction (since T_{1} is not a star). Thus this case does not happen.
(ii) Assume that $G \backslash u_{1}$ is the graph D_{n-1}. Hence $G \cong D_{n}$ or $G \cong H$, where H is obtained by identifying the pendant vertex of D_{n-2} with the non-pendant vertex of P_{3}. Thus it suffices to check the result for H. Let z be a pendant vertex of H. Thus $H \backslash z \cong D_{n-1}$ and $H \backslash N[z] \cong D_{n-3}+K_{1}$. Hence by Theorems 1 and $2, I(H, x)=I(H \backslash z, x)+x I(H \backslash N[z], x)=I\left(D_{n-1}, x\right)+x(1+x) I\left(D_{n-3}, x\right)$. So by the second part of Lemma 6 we obtain

$$
\begin{equation*}
I(H, x)=I\left(C_{n-1}, x\right)+x(1+x) I\left(C_{n-3}, x\right) \tag{3}
\end{equation*}
$$

On the other hand, by the first part of Lemma 6 for $n \geq 7, I\left(C_{n-3}, x\right)=$ $I\left(C_{n-4}, x\right)+x I\left(C_{n-5}, x\right)$. This shows that for $x>0, I\left(C_{n-3}, x\right)>I\left(C_{n-4}, x\right)$ (this inequality also holds for $n=6$, where C_{2} is the path P_{2}). Hence for $x>0$, $x I\left(C_{n-3}, x\right)>x I\left(C_{n-4}, x\right)$. Thus for every $x>0$ we have

$$
(1+x) I\left(C_{n-3}, x\right)=I\left(C_{n-3}, x\right)+x I\left(C_{n-3}, x\right)>I\left(C_{n-3}, x\right)+x I\left(C_{n-4}, x\right)
$$

Therefore by the first part of Lemma 6 we obtain that

$$
\begin{equation*}
\text { for } x>0,(1+x) I\left(C_{n-3}, x\right)>I\left(C_{n-2}, x\right) \tag{4}
\end{equation*}
$$

The equations (3) and (4) show that for $x>0, I(H, x)>I\left(C_{n-1}, x\right)+x I\left(C_{n-2}, x\right)$. Hence by the first part of Lemma 6 for every $x>0, I(H, x)>I\left(C_{n}, x\right)$.
(iii) Suppose that $G \backslash u_{1} \not \not C_{n-1}$ and $G \backslash u_{1} \not \not D_{n-1}$. Since $G \backslash u_{1}$ is a connected unicyclic graph of order $n-1$, by the induction hypothesis for sufficiently large x, $I\left(G \backslash u_{1}, x\right)>I\left(C_{n-1}, x\right)$. As we defined above, u_{1} is a pendant vertex of T_{1} which has the maximum distance from v_{1} among all pendant vertices of T_{1}. Assume that w_{1} is the neighbor of u_{1}. Since T_{1} is not a star, $d\left(u_{1}, v_{1}\right) \geq 2$. We note that $w_{1} \neq v_{1}$. Let $\operatorname{deg}\left(w_{1}\right)=t+1$. Thus $t \geq 1$. By the definition of u_{1}, exactly t neighbors of w_{1} have degree one. Hence $G \backslash N\left[u_{1}\right]$ is the union of a unicyclic graph of order $n-t-1$, say L, with exactly $t-1$ isolated vertices. In other words, $G \backslash N\left[u_{1}\right]=L+(t-1) K_{1}$. Hence by Theorem $1, I\left(G \backslash N\left[u_{1}\right], x\right)=I(L, x)(1+x)^{t-1}$. On the other hand, by the induction hypothesis for sufficiently large $x, I(L, x) \geq$
$I\left(C_{n-t-1}, x\right)$ (if $L \neq C_{n-t-1}$ and $L \neq D_{n-t-1}, I(L, x)>I\left(C_{n-t-1}, x\right)$ for large $x)$. Since $n \geq t+4$, similar to the previous part one can see that for $x>0$, $(1+x) I\left(C_{n-t-1}, x\right)>I\left(C_{n-t}, x\right)$. Hence for $x>0,(1+x)^{2} I\left(C_{n-t-1}, x\right)>$ $(1+x) I\left(C_{n-t}, x\right)$. Similarly for $x>0,(1+x) I\left(C_{n-t}, x\right)>I\left(C_{n-t+1}\right)$. By applying this method $t-1$ times, we obtain that if $t \geq 2$, then

$$
\begin{equation*}
\text { for } x>0,(1+x)^{t-1} I\left(C_{n-t-1}, x\right)>I\left(C_{n-2}, x\right) \tag{5}
\end{equation*}
$$

Hence for $t \geq 1$ we conclude that

$$
\begin{equation*}
\text { for } x>0,(1+x)^{t-1} I\left(C_{n-t-1}, x\right) \geq I\left(C_{n-2}, x\right) \tag{6}
\end{equation*}
$$

The equation (6) shows that for sufficiently large x,

$$
I\left(G \backslash N\left[u_{1}\right], x\right)=I(L, x)(1+x)^{t-1} \geq(1+x)^{t-1} I\left(C_{n-t-1}, x\right) \geq I\left(C_{n-2}, x\right)
$$

Since for large $x, I\left(G \backslash u_{1}, x\right)>I\left(C_{n-1}, x\right)$, by Theorem 2, the equation (5) and the first part of Lemma 6 , we find that for large x,
$I(G, x)=I\left(G \backslash u_{1}, x\right)+x I\left(G \backslash N\left[u_{1}\right], x\right)>I\left(C_{n-1}, x\right)+x I\left(C_{n-2}, x\right)=I\left(C_{n}, x\right)$.
The proof is complete.
Now we are in a position to prove the main result of this section.
Theorem 8. Let $n \geq 3$ be an integer. Assume that G is a connected graph such that $I(G, x)=I\left(C_{n}, x\right)$. Then $G \cong C_{n}$ or $G \cong D_{n}$.

Proof. Since $I(G, x)=I\left(C_{n}, x\right)$ and C_{n} has n vertices and n edges, by Remark 3 we find that G has exactly n vertices and n edges. Since the number of vertices and the number of edges of G are the same and G is connected, G is unicyclic. If $G \nexists C_{n}$ or $G \not \equiv D_{n}$, then by Theorem 7 for large x we have $I(G, x)>I\left(C_{n}, x\right)$, a contradiction. This completes the proof.

Let $n \geq 3$ be an integer. One might ask whether there is a disconnected graph G satisfying $I(G, x)=I\left(C_{n}, x\right)$. We check this question for $n \leq 9$.

Remark 9. Let $3 \leq n \leq 9$ and G be a graph of order n. Assume that $I(G, x)=$ $I\left(C_{n}, x\right)$. We find that if $n \in\{3,4,5,7,8\}$, then $G \cong C_{n}$ or $G \cong D_{n}$ (see Theorem 8). We obtain that $I(G, x)=I\left(C_{6}, x\right)$ if and only if $G \in\left\{C_{6}, D_{6}, K_{2}+\right.$ $\left.K_{4} \backslash e\right\}$, where e is an edge of K_{4}. We find that $I(G, x)=I\left(C_{9}, x\right)$ if and only if $G \in\left\{C_{9}, D_{9}, H_{1}, H_{2}, H_{3}\right\}$, where H_{1}, H_{2} and H_{3} have been shown in Figure 4. In fact $I\left(C_{6}, x\right)=1+6 x+9 x^{2}+2 x^{3}=\left(1+4 x+x^{2}\right)(1+2 x)=I\left(K_{4} \backslash e, x\right) I\left(K_{2}, x\right)$ and $I\left(C_{9}, x\right)=1+9 x+27 x^{2}+30 x^{3}+9 x^{4}=\left(1+6 x+9 x^{2}+3 x^{3}\right)(1+3 x)$. These examples show that the structure of all non-connected graphs G with $I(G, x)=I\left(C_{m}, x\right)$ is not clear, where $m \geq 10$.

Figure 4. All non-connected graphs G such that $I(G, x)=I\left(C_{9}, x\right)$.

We finish the paper by the following problem.
Problem. Let $n \geq 10$ be an integer. Find all non-connected graphs G such that $I(G, x)=I\left(C_{n}, x\right)$.

Acknowledgements

The author is grateful to the referees for their helpful comments. This research was in part supported by a grant (No. 96050011) from School of Mathematics, Institute for Research in Fundamental Sciences (IPM).

References

[1] S. Akbari, S. Alikhani, M.R. Oboudi and Y.H. Peng, On the zeros of domination polynomial of a graph, Combin. Graphs 531 (2010) 109-115. doi:10.1090/conm/531/10460
[2] S. Akbari and M.R. Oboudi, Cycles are determined by their domination polynomials, Ars Combin. 116 (2014) 353-358.
[3] S. Akbari and M.R. Oboudi, On the edge cover polynomial of a graph, European J. Combin. 34 (2013) 297-321. doi:10.1016/j.ejc.2012.05.005
[4] S. Akbari, M.R. Oboudi and S. Qajar, On the rational independence roots, Combin. Graphs 531 (2010) 149-157. doi:10.1090/conm/531/10464
[5] J.I. Brown, C.A. Hickman and R.J. Nowakowski, On the location of roots of independence polynomials, J. Algebraic Combin. 19 (2004) 273-282. doi:10.1023/B:JACO.0000030703.39946.70
[6] M. Chudnovsky and P. Seymour, The roots of the independence polynomial of a claw free graph, J. Combin. Theory Ser. B 97 (2007) 350-357. doi:10.1016/j.jctb.2006.06.001
[7] P. Csikvári and M.R. Oboudi, On the roots of edge cover polynomials of graphs, European J. Combin. 32 (2011) 1407-1416.
doi:10.1016/j.ejc.2011.06.009
[8] T. Derikvand and M.R. Oboudi, On the number of maximum independent sets of graphs, Trans. Combin. 3 (2014) 29-36.
[9] I. Gutman, Some analytical properties of the independence and matching polynomials, MATCH Commun. Math. Comput. Chem. 28 (1992) 139-150.
[10] I. Gutman and F. Harary, Generalizations of the matching polynomial, Util. Math. 24 (1983) 97-106.
[11] C. Hoede and X. Li, Clique polynomials and independent set polynomials of graphs, Discrete Math. 125 (1994) 219-228. doi:10.1016/0012-365X(94)90163-5
[12] T. Kotek, J. Preen and P. Tittmann, Domination polynomials of graph products. arXiv:1305.1475v2.
[13] V.E. Levit and E. Mandrescu, The independence polynomial of a graph $-A$ survey, Proceedings of the 1st International Conference on Algebraic Informatics (Aristotle Univ. Thessaloniki, Thessaloniki, 2005) 233-254.
[14] J.A. Makowsky, E.V. Ravve and N.K. Blanchard, On the location of roots of graph polynomials, European J. Combin. 41 (2014) 1-19. doi:10.1016/j.ejc.2014.03.003
[15] M.R. Oboudi, On the largest real root of independence polynomials of trees, Ars Combin., to appear.
[16] M.R. Oboudi, On the roots of domination polynomial of graphs, Discrete Appl. Math. 205 (2016) 126-131. doi:10.1016/j.dam.2015.12.010

