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Abstract

Let G be a simple graph on n vertices. An independent set in a graph
is a set of pairwise non-adjacent vertices. The independence polynomial of
G is the polynomial I(G, x) =

∑n

k=0
s(G, k)xk, where s(G, k) is the number

of independent sets of G with size k and s(G, 0) = 1. A unicyclic graph is
a graph containing exactly one cycle. Let Cn be the cycle on n vertices. In
this paper we study the independence polynomial of unicyclic graphs. We
show that among all connected unicyclic graphs G on n vertices (except two
of them), I(G, t) > I(Cn, t) for sufficiently large t. Finally for every n ≥ 3
we find all connected graphs H such that I(H,x) = I(Cn, x).
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1. Introduction

Throughout this paper we will consider only simple graphs, the graphs with no
loops and multiple edges. Let G = (V (G), E(G)) be a simple graph. The order of
G denotes the number of vertices of G. Let e be an edge of G. By e = uv we mean
that e is an edge between vertices u and v. For every vertex v ∈ V (G), the closed
neighborhood of v denoted by N [v] is defined as {u ∈ V (G) |uv ∈ E(G)} ∪ {v}.
For two graphs G1 = (V1, E1) and G2 = (V2, E2), the disjoint union of G1 and G2

denoted by G1+G2 is the graph with vertex set V1∪V2 and edge set E1∪E2. The
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graph rG denotes the disjoint union of r copies of G. For every vertex v ∈ V (G),
the degree of v is the number of edges incident with v. A pendant vertex is a
vertex of degree one. For a vertex v ∈ V (G), G \ v denotes the graph obtained
from G by removing v. A unicyclic graph is a graph containing exactly one cycle.
We denote the complete graph of order n, the complete bipartite graph with part
sizes m,n, the cycle of order n, and the path of order n, by Kn, Km,n, Cn, and
Pn, respectively. Also K1,n is called a star.

A set S ⊆ V (G) is an independent set if there is no edge between the vertices
of S. If S is an independent set with |S| = k, then S is called a k-independent set.
By s(G, k) we mean the number of k-independent sets of G. The independence
number of G, α(G), is the maximum cardinality of an independent set of G. The

independence polynomial of G, I(G, x), is defined as I(G, x) =
∑α(G)

k=0 s(G, k)xk,
where s(G, k) is the number of independent sets of G of size k and s(G, 0) = 1.
This polynomial was introduced by Gutman and Harary in [10]. For example
for every n ≥ 1, α(Kn) = 1 and s(Kn, 1) = n. Thus I(Kn, x) = 1 + nx. The
independence polynomial has very nice properties, see [5, 6, 13] for more details.
There are many polynomials associated with graphs. For example chromatic
polynomial, clique polynomial, domination polynomial, edge cover polynomial
and matching polynomial, see [1]–[16]. One of the most important problems
related to graph polynomials is the following:

Problem. Which graphs are uniquely determined by their graph polynomials?
In many papers, researchers study the problem defined above for graph poly-

nomials. For example in [3] the authors show that the complete graphs, the cycles
and some complete bipartite graphs are determined by their edge cover polyno-
mials. In [2] it is proved that the cycles are determined by their domination
polynomials. In this paper we study the independence polynomial of unicyclic
graphs. We show that among all connected unicyclic graphs G on n vertices
except the cycle Cn and the graph Dn (see Figure 3), I(G, t) > I(Cn, t) for suffi-
ciently large t. We show that for every n ≥ 4 there is only one connected graph
H such that H ≇ Cn and I(H,x) = I(Cn, x).

2. The Independence Polynomials of Unicyclic Graphs

In this section we study the independence polynomials of unicyclic graphs. We
need the following basic properties of independence polynomials.

Theorem 1 [10, 11]. Let G be a graph with connected components G1, . . . , Gt.
Then I(G, x) =

∏t
i=1 I(Gi, x).

Theorem 2 [10, 11]. Let G be a graph and v be a vertex of G. Then

I(G, x) = I(G \ v, x) + xI(G \N [v], x).
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Remark 3. We remark that by independence polynomials one can find the num-
ber of vertices and the number of edges of graphs. More precisely, if G is a graph
with n vertices and m edges, then n = s(G, 1) and m =

(

n
2

)

− s(G, 2).

Lemma 4. Let T be a tree of order n. Then there exists a positive real number
rn such that for all x ≥ rn we have

I(T, x) >

{

x⌈
n

2
⌉, if n is odd;

2x
n

2 , if n is even.

Proof. Since T is a tree, T is bipartite. Assume that X and Y are partite
sets of V (T ). Hence α(T ) ≥ |X|, |Y |. This shows that α(T ) ≥

⌈

n
2

⌉

. First

assume that n is odd. Thus for all x ≥ 1, xα(T ) ≥ x⌈
n

2
⌉. This shows that for

all x ≥ 1, I(T, x) > x⌈
n

2
⌉. Now assume that n is even. If α(T ) = n

2 , then

|X| = |Y | = n
2 . Thus s(T, n2 ) ≥ 2. Hence for all x ≥ 1, s(T, α(T ))xα(T ) ≥ 2x

n

2

and so I(T, x) > 2x
n

2 . Otherwise suppose that α(T ) > n
2 . Thus I(T, x)− 2x

n

2 is
a polynomial with positive leading coefficient. Therefore for sufficiently large x,
I(T, x)− 2x

n

2 > 0. This completes the proof.

Let G be a graph of order n with vertex set {v1, . . . , vn}. Let H1, . . . , Hn

be some disjoint graphs. Assume that u1 ∈ V (H1), . . . , un ∈ V (Hn). By
G(H1, . . . , Hn;u1, . . . , un) we mean the graph that is obtained by identifying the
vertices ui and vi for i = 1, . . . , n. Note that the order ofG(H1, . . . , Hn;u1, . . . , un)
is |V (H1)|+ · · ·+ |V (Hn)|, see Figure 1. In particular, suppose that H1, . . . , Hn

are some stars, say H1 = K1,m1
, . . . , Hn = K1,mn

, where m1, . . . ,mn are some
non-negative integers ( by K1,0 we mean the single vertex K1). In addition let ui
be the vertex of K1,mi

with degree mi. Then we use G(m1, . . . ,mn) instead
of G(K1,m1

, . . . ,K1,mn
;u1, . . . , un). Note that the order of G(m1, . . . ,mn) is

m1 + · · ·+mn + n and G(0, . . . , 0) ∼= G. See Figure 2.

Lemma 5. Let k ≥ 3 be an integer. Let V (Ck) = {v1, . . . , vk} and E(Ck) =
{v1v2, . . . , vk−1vk, vkv1}. Let G = Ck(n1, . . . , nk) and n = n1 + · · · + nk + k,
where n1, . . . , nk are some non-negative integers. If G ≇ Cn and n ≥ 5, then for
sufficiently large x we have I(G, x) > I(Cn, x).

Proof. First we note that if n = 3, then G ∼= C3. Also if n = 4, then G ∼= C4

or G ∼= C3(1, 0, 0). Since I(C3(1, 0, 0), x) = I(C4, x) = 1 + 4x + 2x2, I(G, x) =
I(C4, x). We note that Ck(n1, . . . , nk) ∼= Cn if and only if n = k. Now assume
that n ≥ 5 and G ≇ Cn (G ≇ Ck). We have one of the following cases.

(i) For some i ∈ {1, . . . , k}, ni ≥ 2. Without losing the generality assume
that n1 ≥ 2. Note that α(G) ≥ n1 + α(Pk−1(n2, . . . , nk)), where V (Pk−1) =
{v2, . . . , vk} and E(Pk−1) = {v2v3, . . . , vk−1vk}. Since Pk−1(n2, . . . , nk) is a tree
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of order n− n1 − 1 (by the proof of Lemma 4), α(Pk−1(n2, . . . , nk)) ≥
⌈

n−n1−1
2

⌉

.
Hence

α(G) ≥ n1 +

⌈

n− n1 − 1

2

⌉

=

⌈

n+ n1 − 1

2

⌉

≥

⌈

n+ 1

2

⌉

>
⌊n

2

⌋

= α(Cn).

Thus α(G) > α(Cn). Since the coefficients of independence polynomials are
positive, for sufficiently large x we have I(G, x) > I(Cn, x).

G

v1

v2

vn−1

vn

H1

u1

Hn

un

G(H1, . . . , Hn;u1, . . . , un)

v1

v2

vn−1

vn

H1

H2

Hn−1

Hn

Figure 1. The graph G(H1, . . . , Hn;u1, . . . , un).

(ii) For i = 1, . . . , k, ni ∈ {0, 1} and n is odd. Since G ≇ Cn, for some i,
ni = 1. Without losing the generality let n1 = 1. Since n is odd, similar to part
(i), α(G) ≥ 1 +

⌈

n−2
2

⌉

=
⌈

n
2

⌉

>
⌊

n
2

⌋

= α(Cn). Thus the result follows.

(iii) For i = 1, . . . , k, ni ∈ {0, 1} and n is even. Since G ≇ Cn, for some
t, nt = 1. First suppose that there is only one i such that ni = 1. Without
losing the generality assume that n1 = · · · = nk−1 = 0 and nk = 1. Hence
k = n − 1. In other words, G ∼= Cn−1(0, . . . , 0, 1). Hence α(G) = n

2 . Let
V (G) = {v1, . . . , vn} and E(G) = {v1v2, . . . , vn−2vn−1, vn−1v1, vn−1vn}. Since
n ≥ 6, {v1, v3, . . . , vn−3, vn}, {v1, v3, . . . , vn−5, vn−2, vn} and {v2, v4, . . . , vn−2, vn}
are three independent sets of G with cardinality n

2 . Hence s(G, n2 ) ≥ 3. On the
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C4(1, 1, 2, 3)

Figure 2. The graph C4(1, 1, 2, 3) = G(H1, H2, H3, H4;u1, u2, u3, u4), where G = C4 and
u1 is the vertex of H1 = K1,1 of degree one, u2 is the vertex of H2 = K1,1 of degree one,
u3 is the vertex of H3 = K1,2 of degree two and u4 is the vertex of H4 = K1,3 of degree
three.

other hand, since n is even, α(Cn) = n
2 and s(Cn,

n
2 ) = 2. By the fact that

α(G) = α(Cn) = n
2 and s(G, n2 ) > s(Cn,

n
2 ), for sufficiently large x we obtain

I(G, x) > I(Cn, x). Now assume that there are some i 6= j such that ni = 1
and nj = 1. This shows that G has at least two vertices of degree one (G has
two pendant vertices). Let u and v be two pendant vertices of G. Applying
Theorem 2 for vertex u we obtain I(G, x) = I(G \ u, x) + xI(T1, x), where T1 is
a tree of order n− 2. Using Theorem 2 for v and G \ u we have

I(G, x) = I(G \ {u, v}, x) + xI(T2, x) + xI(T1, x),

where T2 is a tree of order n−3. Hence for x ≥ 0, I(G, x) > xI(T2, x)+xI(T1, x).
Using Lemma 4 for trees T1 and T2 we obtain that for sufficiently large x,

I(G, x) > xx⌈
n−3

2
⌉ + 2xx

n−2

2 = 3x
n

2 .

On the other hand, α(Cn) =
n
2 and s(Cn,

n
2 ) = 2. Hence for sufficiently large x,

3x
n

2 > I(Cn, x). Thus for sufficiently large x, I(G, x) > 3x
n

2 > I(Cn, x). The
proof is complete.

3. Graphs Whose Independence Polynomials Coincide with

Independence Polynomials of Cycles

In this section we study the graphs G such that I(G, x) = I(Cn, x), where
n ≥ 3. We show that there is only one connected graph G ≇ Cn satisfying
I(G, x) = I(Cn, x). Let n ≥ 4 be an integer. By Dn we mean the graph with
vertex set {v1, . . . , vn} and edge set {v1v2, v2v3, . . . , vn−1vn} ∪ {vn−2vn}, see Fig-
ure 3. In addition by D3 we mean the cycle C3. The next result shows that the
independence polynomials of Cn and Dn are the same.
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Dn

vn

vn−1

vn−2v2v1

Figure 3. The graph Dn.

Lemma 6. Let n ≥ 4 be an integer. Then

(i) I(Cn, x) = I(Cn−1, x) + xI(Cn−2, x), where C2 is the path P2.

(ii) I(Cn, x) = I(Dn, x).

Proof. It is easy to check the result for n = 4. Thus let n ≥ 5. Using Theorem 2
for one of the vertices of Cn we obtain that

(1) I(Cn, x) = I(Pn−1, x) + xI(Pn−3, x).

On the other hand, by Theorem 2 for one of the pendant vertices of Pt we have

(2) I(Pt, x) = I(Pt−1, x) + xI(Pt−2, x), for t ≥ 2, where I(P0, x) = 1.

Using equations (1) and (2) one can see that

I(Cn, x) = I(Pn−2, x) + xI(Pn−4, x) + x(I(Pn−3, x) + xI(Pn−5, x)).

So by equation (1) the first part is proved. Now we prove the second part. Using
Theorem 2 for the vertex vn of Dn (see Figure 3) we obtain that I(Dn, x) =
I(Pn−1, x)+xI(Pn−3, x). Hence by equation (1), I(Dn, x) = I(Cn, x). The proof
is complete.

We recall that a unicyclic graph is a graph with exactly one cycle. The
next result shows that among all connected unicyclic graphs the cycles have the
smallest independence polynomials.

Theorem 7. Let G be a connected unicyclic graph of order n. Assume that
G ≇ Cn and G ≇ Dn. Then for sufficiently large x we have I(G, x) > I(Cn, x).

Proof. Assume that H is a connected unicyclic graph of order n. Thus n ≥ 3.
If n = 3, then H ∼= C3. If n = 4, then H ∼= C4 or H ∼= D4. If n = 5,
then H ∼= C5 or H ∼= D5 or H ∼= C4(1, 0, 0, 0) or H ∼= C3(2, 0, 0) or H ∼=
C3(1, 1, 0). So by the fact that G is unicyclic and G ≇ Cn and G ≇ Dn we
obtain that n ≥ 5. We use induction on n to prove the result. If n = 5,
then G ∼= C4(1, 0, 0, 0) or G ∼= C3(2, 0, 0) or G ∼= C3(1, 1, 0). One can see that
I(C4(1, 0, 0, 0), x) = 1+ 5x+ 5x2 + x3, I(C3(2, 0, 0), x) = 1+ 5x+ 5x2 + 2x3 and
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I(C3(1, 1, 0), x) = 1+ 5x+5x2 + x3. On the other hand I(C5, x) = 1+ 5x+5x2.
Thus the result holds for n = 5.

Now assume that n ≥ 6. Suppose that the length of the unique cycle of G
is k. Assume that v1, . . . , vk are the vertices of this cycle. Since G is unicyclic
there are some trees T1, . . . , Tk such that G = Ck(T1, . . . , Tk; v1, . . . , vk). If each
tree T1, . . . , Tk is a star, then by Lemma 5 the result follows. Now without losing
the generality assume that T1 is not a star. Let u1 be a pendant vertex of T1

which has the maximum distance from v1 among all pendant vertices of T1. We
consider the three following cases for G \ u1.

(i) Assume that G \ u1 is the cycle Cn−1. Hence G = Cn−1(1, 0, . . . , 0) and
T1 = P2, a contradiction ( since T1 is not a star). Thus this case does not happen.

(ii) Assume that G \ u1 is the graph Dn−1. Hence G ∼= Dn or G ∼= H, where
H is obtained by identifying the pendant vertex of Dn−2 with the non-pendant
vertex of P3. Thus it suffices to check the result for H. Let z be a pendant vertex
of H. Thus H \ z ∼= Dn−1 and H \N [z] ∼= Dn−3+K1. Hence by Theorems 1 and
2, I(H,x) = I(H \ z, x) + xI(H \N [z], x) = I(Dn−1, x) + x(1+ x)I(Dn−3, x). So
by the second part of Lemma 6 we obtain

(3) I(H,x) = I(Cn−1, x) + x(1 + x)I(Cn−3, x).

On the other hand, by the first part of Lemma 6 for n ≥ 7, I(Cn−3, x) =
I(Cn−4, x) + xI(Cn−5, x). This shows that for x > 0, I(Cn−3, x) > I(Cn−4, x)
( this inequality also holds for n = 6, where C2 is the path P2). Hence for x > 0,
xI(Cn−3, x) > xI(Cn−4, x). Thus for every x > 0 we have

(1 + x)I(Cn−3, x) = I(Cn−3, x) + xI(Cn−3, x) > I(Cn−3, x) + xI(Cn−4, x).

Therefore by the first part of Lemma 6 we obtain that

(4) for x > 0, (1 + x)I(Cn−3, x) > I(Cn−2, x).

The equations (3) and (4) show that for x > 0, I(H,x) > I(Cn−1, x)+xI(Cn−2, x).
Hence by the first part of Lemma 6 for every x > 0, I(H,x) > I(Cn, x).

(iii) Suppose thatG\u1 ≇ Cn−1 andG\u1 ≇ Dn−1. SinceG\u1 is a connected
unicyclic graph of order n−1, by the induction hypothesis for sufficiently large x,
I(G\u1, x) > I(Cn−1, x). As we defined above, u1 is a pendant vertex of T1 which
has the maximum distance from v1 among all pendant vertices of T1. Assume
that w1 is the neighbor of u1. Since T1 is not a star, d(u1, v1) ≥ 2. We note
that w1 6= v1. Let deg(w1) = t+ 1. Thus t ≥ 1. By the definition of u1, exactly
t neighbors of w1 have degree one. Hence G \ N [u1] is the union of a unicyclic
graph of order n−t−1, say L, with exactly t−1 isolated vertices. In other words,
G\N [u1] = L+(t−1)K1. Hence by Theorem 1, I(G\N [u1], x) = I(L, x)(1+x)t−1.
On the other hand, by the induction hypothesis for sufficiently large x, I(L, x) ≥
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I(Cn−t−1, x) ( if L 6= Cn−t−1 and L 6= Dn−t−1, I(L, x) > I(Cn−t−1, x) for large
x). Since n ≥ t + 4, similar to the previous part one can see that for x > 0,
(1 + x)I(Cn−t−1, x) > I(Cn−t, x). Hence for x > 0, (1 + x)2I(Cn−t−1, x) >

(1 + x)I(Cn−t, x). Similarly for x > 0, (1 + x)I(Cn−t, x) > I(Cn−t+1). By
applying this method t− 1 times, we obtain that if t ≥ 2, then

(5) for x > 0, (1 + x)t−1I(Cn−t−1, x) > I(Cn−2, x).

Hence for t ≥ 1 we conclude that

(6) for x > 0, (1 + x)t−1I(Cn−t−1, x) ≥ I(Cn−2, x).

The equation (6) shows that for sufficiently large x,

I(G \N [u1], x) = I(L, x)(1 + x)t−1 ≥ (1 + x)t−1I(Cn−t−1, x) ≥ I(Cn−2, x).

Since for large x, I(G \ u1, x) > I(Cn−1, x), by Theorem 2, the equation (5) and
the first part of Lemma 6, we find that for large x,

I(G, x) = I(G \ u1, x) + xI(G \N [u1], x) > I(Cn−1, x) + xI(Cn−2, x) = I(Cn, x).

The proof is complete.

Now we are in a position to prove the main result of this section.

Theorem 8. Let n ≥ 3 be an integer. Assume that G is a connected graph such
that I(G, x) = I(Cn, x). Then G ∼= Cn or G ∼= Dn.

Proof. Since I(G, x) = I(Cn, x) and Cn has n vertices and n edges, by Remark 3
we find that G has exactly n vertices and n edges. Since the number of vertices
and the number of edges of G are the same and G is connected, G is unicyclic. If
G ≇ Cn or G ≇ Dn, then by Theorem 7 for large x we have I(G, x) > I(Cn, x),
a contradiction. This completes the proof.

Let n ≥ 3 be an integer. One might ask whether there is a disconnected
graph G satisfying I(G, x) = I(Cn, x). We check this question for n ≤ 9.

Remark 9. Let 3 ≤ n ≤ 9 and G be a graph of order n. Assume that I(G, x) =
I(Cn, x). We find that if n ∈ {3, 4, 5, 7, 8}, then G ∼= Cn or G ∼= Dn ( see
Theorem 8). We obtain that I(G, x) = I(C6, x) if and only if G ∈ {C6, D6,K2 +
K4 \ e}, where e is an edge of K4. We find that I(G, x) = I(C9, x) if and only if
G ∈ {C9, D9, H1, H2, H3}, where H1, H2 and H3 have been shown in Figure 4. In
fact I(C6, x) = 1+6x+9x2+2x3 = (1+4x+x2)(1+2x) = I(K4\e, x)I(K2, x) and
I(C9, x) = 1+9x+27x2+30x3+9x4 = (1+6x+9x2+3x3)(1+3x). These examples
show that the structure of all non-connected graphs G with I(G, x) = I(Cm, x)
is not clear, where m ≥ 10.
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H1 H2 H3

Figure 4. All non-connected graphs G such that I(G, x) = I(C9, x).

We finish the paper by the following problem.

Problem. Let n ≥ 10 be an integer. Find all non-connected graphs G such that
I(G, x) = I(Cn, x).
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