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Faculty of Technical Sciences

University of Novi Sad, Novi Sad, Serbia

e-mail: ftndean@uns.ac.rs

and

Milan Pantić
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Abstract

We continue our research in the enumeration of Hamiltonian cycles (HCs)
on thin cylinder grid graphs Cm × Pn+1 by studying a triangular variant of
the problem. There are two types of HCs, distinguished by whether they
wrap around the cylinder. Using two characterizations of these HCs, we
prove that, for fixed m, the number of HCs of both types satisfy some linear
recurrence relations. For small m, computational results reveal that the two
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numbers are asymptotically the same. We conjecture that this is true for all
m ≥ 2.

Keywords: contractible Hamiltonian cycles, generating functions, thin tri-
angular grid cylinder graph.
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1. Introduction

A Hamiltonian cycle (HC) on a simple graph is a cycle that visits every vertex
exactly once. While it is an intensely studied topic in mathematics, physicists
and chemists also find many applications of Hamiltonian cycles in their own fields
of study, especially in polymer physics, which refer to the protein folding problem
and a mathematical idealization of polymer melts (see [1] or [8] and references in
them for a brief overview). For example, the number of Hamiltonian cycles on a
graph corresponds to the entropy of a polymer system. The entropy per site is

S

N
=

1

N
lnCN,P ,

where CN,P is the number of Hamiltonian cycles in a N -point lattice with pe-
riphery P (see Section 7).

Many efforts have been devoted to the enumeration of Hamiltonian cycles and
related problems in a rectangular grid graph Pm × Pn+1. They are documented
in, among others, [1, 4, 7, 8, 10, 13, 14, 15, 19, 20]. The transfer matrix method
[5, 18] provides a powerful tool in this regard. Simply put, for each fixed m,
we analyze how a Hamiltonian cycle grows or evolves as n increases. By taking
a snapshot of how each column within the Hamiltonian cycle may look like, we
compile a list of possible configurations. A transfer matrix is used to record
the transition between these configurations, which allows us to determine the
generating function for the number of Hamiltonian cycles. Since m is fixed, and
n increases, we call the underlying graphs “thin” rectangular grids.

We have extended the research in two different directions. By adding a
diagonal in every cell within a rectangular grid graph, a triangular grid graph
[11, 16] is formed. We studied its enumeration problem in [2]. It is obvious that
the analysis is much more involved than that in a rectangular grid. Another
direction is to study the thin grid cylinder graph Cm × Pn+1. This time, the
difficulty arose from the existence of two kinds of Hamiltonian cycles, each with
its own distinctive properties. In brief, the first kind perches on or wraps around
the cylindrical surface, while the second kind can be viewed as being pasted onto
the surface. In topological language, one can call the first ones non-contractible
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(as Jordan curves) HCs, and the second ones contractible HCs (see Figure 1).
Our findings were reported in [3].

In contrast to the approach in [1, 10] that encodes the vertices of the grid
graph, in this paper and [2, 3], we encode the cells (regions) in the grid graph.
Despite the fact that all three research projects utilize the same idea of k-SIST
equivalence relation (which was first used in [4] and independently in [19]), the
structure of each of these grid graphs calls for separate and different analyzes in
each of them.

M N

HC
nc

HCc

M N

Figure 1. Two types of Hamiltonian cycles that either wrap around or paste over the
cylindrical surface.

In this paper, we turn our attention to thin triangular grid cylinder graphs.
They are constructed from Cm×Pn+1 by adding a diagonal in each of itsmn cells.
Hence, it is a combination of the two problems mentioned above. We are inter-
ested in finding, for each fixedm, the two sequences

{

tncm (n)
}

n≥1
and

{

tcm(n)
}

n≥1
,

where tncm (n) and tcm(n) denote the number of the two kinds of Hamiltonian cycles.
We find that their generating functions share the same denominator. Therefore,
we deduce that both sequences satisfy the same linear homogeneous recurrence
relation with constant coefficients. For each fixed integer m between 2 and 10
and large enough n, our computational data suggest that tncm (n) and tcm(n) have
the same number of digits, and they start with the same sequence of digits. For
example, both tnc10(100) and t

c
10(100) have 317 digits, and their first 42 digits are

identical:

tnc

10 (100) = 29541325547739865748760695712116856906987138327043766840204699707132734529503

70111606790388076319166684434881063957523018605396387981249770232501418805856

07555417279066725118755722729324466018114034925704723685759861382100376732544

15139629469076663727821620099362674509865967533731845108111045536894454961185

280514412,

tc10(100) = 29541325547739865748760695712116856906987144469131024454604817779444574404809

40913152104701011428875734820268980902509826717812647883260183410677184902133

51595462908315981369994050584970194195508986614554879420849416039022546437778

76364579211617435764301636879113571545058380645738453856434545900864852297920

078985300.
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It appears that tncm (n) ∼ tcm(n) for each fixed integer m between 2 and 10. This
prompts the questions whether it is true for all integers m ≥ 2, and why is this
happening.

2. Preliminaries

The graph Cm×Pn+1 can be represented as a rectangular grid cylinder with mn
cells. Let its vertices be labeled (i, j), where 1 ≤ i ≤ m, and 1 ≤ j ≤ n+ 1. For
each i ≤ m and j ≤ n, adding a diagonal that joins the vertex (i, j) to the vertex
((i+1) mod m, j+1) produces two subregions that we shall call windows, as they
were referred to in some literature [2, 3, 4]. The window lying above the diagonal
is called the up-window, and denoted ui,j . Likewise, the down-window di,j is the
one that lies below the diagonal. If the position is not our primary concern, we
will simply denote a window wi,j . We call the resulting graph a triangular grid

cylinder graph, and denote it by Tm,n. Obviously, each column of Tm,n contains
2m windows.

We distinguish two types of HCs: those that divide the cylindrical surface
(imagine it as being extended indefinitely to both left and right) into two infinite
regions, and those that divide the surface into one finite (bounded) and one in-
finite region (see Figure 1). The first type wraps around the cylindrical surface,
hence divides the cylindrical surface into the left half and the right half, it re-
sembles a bracelet around an arm. The second type encloses a finite region (the
interior region) and leaves an infinite region on the outside. One could imagine it
being pasted onto the cylindrical surface. Geometrically, the second kind can be
contracted, but the first kind cannot. Hence, we call them type NC and type C,
and, abbreviate them as HCnc and HCc, respectively. We use tncm (n) and tcm(n) to
indicate the number of HCncs and HCcs. Their respective generating functions
are written as T nc

m (x) and T c
m(x).

Here is an another way to look at the differences between these two types of
HCs. Let us “cut open” the cylindrical surface of Tm,n along the line MN (see
Figure 1), then “flatten” it and line up infinitely many copies of the obtained
picture of our graph as shown in Figure 2. By doing so we form an infinite tri-
angular lattice of width n. The subgraph of it produced from a HCnc (Figure 2
left) represents an infinite broken line (curve consisting of countably many con-
nected line segments) which divides the plane into two regions: one on the left,
the other on the right, of the HC. We call them the zero region and the positive

region, respectively. In the case of a HCc (Figure 2 right), the subgraph consists
of countably many closed polygonal lines on the plane. Each polygon encloses a
region that we shall call the positive region, and the region outside the polygons
will be called the zero region. The region on the cylindrical surface determined
by the HC under consideration is called positive (respectively zero) region if and
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only if it corresponds to the positive (respectively zero) region/regions in the flat
surface.
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Figure 2. Products of flattening and replication.

To distinguish one HC from another, we encode the windows with 0 and 1, in
the following manner. For a HCnc, the 1-windows are those in the positive region
(the region on the right of the HC), and the 0-windows are those in the zero
region (the one on the left of the HC). See Figure 3. For a HCc, the windows in
the positive (interior) region are the 1-windows, those outside are the 0-windows.
For a reason that will become clear, we also call the 1-windows positive windows.
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Figure 3. The first characterization of HCnc and HCc.

A Hamiltonian cycle is the boundary of regions, each of which consists of
windows of the same type. This observation suggests that we could study the
dual graph of Tm,n. The dual graph Wm,n comprises of vertices corresponding to
the windows of Tm,n, and two vertices in the dual are adjacent if their respective
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windows in Tm,n share a common edge (see Figure 4). The vertices in Wm,n are
also labeled as ui,j and di,j , and, in general, wi,j if we disregard its position.

(1,1) (1, n+1)

(m+1, n+1)(m+1,1)
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Figure 4. a) A Hamiltonian cycle of type C on T5,7. Notice how it is “pasted” onto the
grid cylinder. b) The unique interior tree for the HCc in the dual graph W5,7 is colored
dark gray. The exterior forest is in light gray. Only one ET (the split tree) has both left
and right roots.

The vertices in Wm,n are called 0- and 1-vertices, depending on whether they
represent 0- or 1-windows in Tm,n. The 1-vertices inWm,n form a forest of positive
trees (PTs). In the case of a HCc, the forest has only one component. Since it
is found in the interior of the HC, we also call it the interior tree. Note that,
in contrast, the forest formed by 1-vertices on a HCnc may have more than just
one component, but that every such tree has exactly one vertex corresponding
to an up-window from the last column. We call that vertex the right root of this
tree. The 0-vertices form a forest of zero trees (ZTs) for both types of HCs. For
a HCnc, every zero tree has exactly one vertex corresponding to a down-window
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from the first column. We call it the left root. For example, the HCnc in Figure 3
has two zero trees with left roots d2,1 and d4,1, and two positive trees with right
roots u3,7, and u5,7.

For a HCc, we also call the zero trees its exterior trees (abbreviated ETs). An
up-window in the first column belonging to an ET is called its left root. Similarly,
a down-window in the last column belonging to an ET is called its right root.

Because a HCc has only one exterior region (which extends to both left and
right sides of Tm,n on the cylindrical surface) and only one interior (bounded)
region, there is exactly one ET with both left and right roots. We call it the split
tree of the HC. Every ET different from a split tree has either exactly one left
root and no right roots or exactly one right root and no left roots. For example,
the HCc in Figure 3 has a split tree with the left root d4,1 and the right root u4,7,
and one ET with the left root d2,1.

Let tm(n) be the number of HCs in Tm,n, where n ≥ 1. Obviously, tm(n) =
tncm (n) + tcm(n) for each n ≥ 1. Our main objective is to find the generating
function Tm(x) =

∑

n≥0 tm(n+1)xn, which is the sum of the generating functions
T nc
m (x) =

∑

n≥0 t
nc
m (n+ 1)xn and T c

m(x) =
∑

n≥0 t
c
m(n+ 1)xn.

In the next two sections, we describe two different methods of characterizing
Hamiltonian cycles. In Section 5, we discuss how to use the second characteriza-
tion to obtain the generating functions. The results are presented in Section 6.
In Section 7, we study the asymptotic values of tcm(n) and tncm (n) as n approaches
infinity, and propose an open problem for further investigation.

To facilitate our discussion in Section 4, we need a few more definitions.

Definition. Given a nonnegative integer word d1d2 · · · d2m, its support is defined
as the word d̄1d̄2 · · · d̄2m, where

d̄i =

{

1 if di > 0,
0 if di = 0.

The support of a nonnegative integer matrix [di,j ] is defined in a similar manner.

Definition. The subword u of a word v is called a b-factor if it is a block of
consecutive letters all of which equal to b. A b-factor of v is said to be maximal

if it is not a proper factor of another b-factor of v.

3. First Characterization of HC

Any fixed HC on Tm,n induces an encoding of its 2mn cells with 0 and 1 (see
Figure 3). We can summarize the encoding with a (0, 1)-matrix A = [a∗i,j ]2m×n,
where

a∗i,j =







au⌈i/2⌉,j if i is odd,

ad⌈i/2⌉,j if i is even,
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such that adi,j and a
u
i,j are 0 or 1, depending on whether the respective windows di,j

and ui,j are 0- or 1-windows. For the sake of brevity, we encode the jth column
as a binary word au1,ja

d
1,ja

u
2,ja

d
2,j · · · aum,ja

d
m,j . The following result (in which we

adopt the convention a∗m+1,j = a∗1,j) is easy to verify.

Theorem 1. The matrix A = [a∗i,j ]2m×n satisfies the following conditions.

A1. The first column (FC) condition: For 1 ≤ i ≤ m, if adi,1 = adi+1,1, then
aui+1,1 = 1.

A2. The hexagonal neighborhood (HN) condition: For 1 ≤ i ≤ m and 1 ≤ j < n,
the binary cyclic word adi,ja

u
i,ja

d
i,j+1a

u
i+1,j+1a

d
i+1,j+1a

u
i+1,j formed by the six

windows around the vertex (i+1, j+1) (which are represented by a hexagon

in Wm,n) contains exactly one sequence of consecutive 0s and exactly one

sequence of consecutive 1s.

A3. The Tree-Root (TR) condition: The subgraphs of Wm,n induced by the 1-
vertices form a forest and

• For type NC: Every positive tree has exactly one up window in the last

column of Wm,n.

• For type C: There is exactly one positive tree.

A4. The last column (LC) condition:

• For type NC: For 1 ≤ i ≤ m, if aui,n = aui+1,n, then a
d
i,n = 0.

• For type C: For 1 ≤ i ≤ m, if aui,n = aui+1,n, then a
d
i,n = 1.

It is clear that every HC determines exactly one matrix A described above.
More importantly, the converse is also true.

Theorem 2. Every matrix A = [a∗i,j ]2m×n that satisfies the FC, HN, TR, and
LC conditions determines a unique HC in Tm,n.

Proof. The 1-windows form a collection of regions whose boundaries, according
to the three conditions FC, HN, and LC, produce a 2-factor (that is, a spanning
2-regular subgraph) in Tm,n. The TR condition asserts that the 2-factor has only
one component, hence is a HC, which is uniquely determined by the 1-windows.

We note that the TR condition can be replaced by a similar condition on the
0-windows, whose corresponding vertices form a forest in Wm,n.

A3′. The zero tree (ZT) condition:

• For type NC: Each component of Wm,n induced by 0-windows is a tree

with exactly one down-window from the first column of Wm,n (the root of

the ZT).

• For type C: Each component of Wm,n induced by 0-windows is a tree (an
exterior tree) with exactly one window that is either an up-window from



Hamiltonian Cycles on Thin Triangular Grid Cylinder Graphs 413

the last column of Wm,n or a down-window from the first column of Wm,n

(the root of the ET) except for the unique tree (split tree) that has both

unique up-window from the last column of Wm,n and unique down-window

from the first column of Wm,n.

4. Second Characterization of HC

There are only a limited number of possible configurations that a column within
a HCnc or HCc can take on. The characterization of HCs to be introduced in
this section allows us to encode the columns of Tm,n for any HCnc or HCc in a
way that the connections between tncm (n) and tncm (n+1), or tcm(n) and tcm(n+1),
can be obtained by studying the transfer matrix relating the configurations that
could possibly occur. This leads to the generating functions T nc

m (x) and T c
m(x),

and consequently the recurrence relation for tncm (n) and tcm(n).

In a way, we are observing how a HC develops, one column at a time, from
left to right. The first k columns in a partially formed HC tell us what could
happen in the next column, the (k + 1)st column. By analyzing the number
of ways a HC can grow from the first column to the last column, we are able
to enumerate them. In this regard, the characterization in Section 3 does not
provide an effective tool for enumeration. Whether two columns are adjacent
depends not only on their configurations, but also the columns before them.

From the perspective of Wm,n, the 1-vertices form a union of the trees with
right roots in the case of a HCnc, or a tree in the case of a HCc. The 1-vertices
in the first k columns form a forest. On a HCc, this forest may not evolve into
a tree until the very last column. Hence, some of the 1-vertices in the first j
columns that appear to be disconnected may become connected later in column
ℓ for some integer ℓ > j. This prompts us to define the notion of two 1-windows
being k-joined.

Definition. Two 1-windows wi,r and wj,s in Tm,n (likewise, two 1-vertices in
Wm,n), where r, s ≤ k, are said to be joined at the kth column, or simply k-
joined, if their corresponding vertices in Wm,n belong to the same component in
the subgraph formed by the 1-vertices in the first k columns.

For example, in Figure 4a, the windows u1,1 and d3,1 are 3-joined but not 1-
joined and 2-joined, and the windows u3,4 and d4,4 are 5-joined but not 4-joined.
It is obvious that if two windows are k-joined, then they are ℓ-joined for any
ℓ ≥ k.

Within a HC, for each fixed k, being k-joined is an equivalence relation on
the set of 1-windows in the first k columns, and it has at most m equivalence
classes. For example, in Figure 5 left, within column 2, the relation 2-joined
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has two equivalence classes. We number these equivalence classes, from top to
bottom, 2, 3, . . . . Accordingly, we can label the 1-windows within a column of
a HC with these numbers to indicate the component they belong to. Call the
new labels b∗i,j . For example, the labels in column 2 for the considered HCnc

form the word 2202203300. It has six maximal b-factors, where b = 2, 0, 2, 0, 3, 0,
respectively.
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Figure 5. The second characterization of HCnc and HCc.

Since the vertices in Wm,n are labeled with the alphabet

C = {0, 2, 3, . . . ,m+ 1},

a window is said to be a positive-window if its label is positive. By replacing
the matrix A = [a∗i,j ]2m×n with the matrix B = [b∗i,j ]2m×n, we find an alternate
characterization of HCs. We adopt the convention b∗m+1,j = b∗1,j and b∗0,j = b∗m,j

for 1 ≤ j ≤ n.

Theorem 3. The matrix B = [b∗i,j ]2m×n satisfies the following properties.

B1. The support matrix (BM) condition: The support of the matrix, that is, the

matrix A = [a∗i,j ]2m×n satisfies conditions FC, HN, and LC.

B2. The kth column (KC) condition: For 1 ≤ k ≤ n, the kth column of B
satisfies these subconditions

(a) For 1 ≤ i ≤ m, if bdi,k > 0, then bui,k, b
u
i+1,k ∈ {bdi,k, 0}.

For 1 ≤ i ≤ m, if bui,k > 0, then bdi−1,k, b
d
i,k ∈ {bui,k, 0}.

(b) The positive letters within any column of B, when read from top to

bottom and discarding repetitions, form the sequence 2, 3, . . . , ℓ for some

integer ℓ.
For any two different maximal b1-factor and b2-factor within the first

column of B, where b1, b2 > 0, we must have b1 6= b2.

• For type NC: In the nth column, there is at most one k-factor for

each k > 1.
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• For type C: The factors in the nth column are either 0-factors or

2-factors.

(c) For k ≥ 2 and 1 ≤ i < j ≤ m, if bui,k−1 = buj,k−1, and adi,k = adj,k =

aui,k−1 = auj,k−1 = 1, then bdi,k = bdj,k.

(d) For k ≥ 2 and 1 ≤ i < j ≤ m, if bui,k−1 = buj,k−1, b
d
i,k = bdj,k = b ∈ C+ =

C \ {0}, and aui,k−1 = adi,k = 1, then bdi,k and bdj,k must appear on two

different b-factors.

(e) If k ≥ 2, and if v and u are two different maximal b-factors in the

kth column for some b > 0, then there is exactly one sequence v =
v1, v2, . . . , vp = u of p > 1 different maximal b-factors in the kth column

which satisfies the following condition: for every i, where 1 ≤ i <
p, in the (k − 1)th column, there exists exactly one letter buji,k−1 with

auji,k−1 = adji,k = 1 for which bdji,k ∈ vi, and there exists exactly one

letter busi+1,k−1 with ausi+1,k−1 = adsi+1,k
= 1 for which bdsi+1,k

∈ vi+1 and

buji,k−1 = busi+1,k−1; and ji 6= si for 1 < i < p.

(f) For k ≥ 2 and for each b ∈ C+ that appears in column k−1, there exists

i, where 1 ≤ i ≤ m, for which bui,k−1 = b and bdi,k > 0.

(g) Every column must contain both positive and zero entries.

Proof. Because of the encoding method we use to construct B, it must satisfy
conditions BM and KC(b). The k-joined relation implies that conditions KC(a),
KC(c), and KC(e) must be met. The property KC(e) corresponds to the tree
property that any two nodes are connected by a unique path. If condition KC(f)
is not true, then the subgraph of Wm,n induced by the 1-windows would have
more than one component (impossible for HCc) or have a tree without right root
(impossible for HCnc). We need condition KC(d) because a cycle will be formed
amongst the 1-vertices in Wm,n if this is not true. Further, the occurrence of a
column with no zero window or with no positive window would imply that the
corresponding subgraph in Tm,n is not connected, which is impossible. So, the
condition KC(g) is valid.

Theorem 4. Every matrix B = [b∗i,j ]2m×n that satisfies the conditions BM and

KC determines a unique HC in Tm,n.

Proof. It suffices to show that the support of B (which could be either Bnc

or Bc) satisfies conditions FC, HN, TR and LC in Theorem 1. Since condition
BM implies that conditions FC, HN, and LC are met, we only need to show
that condition TR is also met. The conditions KC(a) and KC(c) ensure that
all the 1-windows in the same column belonging to the same equivalence class
of the equivalence relation of being k-joined are labeled by the same number.
Properties KC(d) and KC(e) yield the forest structure for the subgraph of Wm,n
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induced by positive windows (since no cycle can occur). The properties KC(f),
KC(b) and BM (LC) for type NC Hamiltonian cycles assert that every positive
tree in Wm,n has exactly one right root. For type C Hamiltonian cycles, the
property KC(f) implies that for every positive window there exists a path starting
from this window and finishing in the last column of Wm,n, and the property
KC(b) guarantees that the subgraph of Wm,n induced by the positive windows is
connected.

5. Technique for Enumerating Hamiltonian Cycles

Let m ≥ 2 be a fixed integer. There are only a finite number of integer words
b1b1 · · · b2m from the alphabet C that may appear in a column within the ma-
trix B. Represent them as vertices of a digraph Dm. Hence, V (Dm) consists
of all the possible columns that may appear within the encoding of any HC.
For practical purposes, instead of writing the vertices of Dm in the form of
(b1, b2, . . . , b2m−1, b2m), we record them as (u1-d1, u2-d2, . . . , um-dm) to empha-
size the coding of the up and down windows. Using an argument similar to the
one used in [2, 3], we obtain the following bound on |V (Dm)|.

Theorem 5. Let Cm and Mm denote the mth Catalan and Motzkin number,

respectively. Then

|V (Dm)| ≤ 2

m
∑

k=1

(

2m

2k

)

Ck = 2(M2m − 1).

The directed lines in Dm are constructed as follows. Join the vertex v to
the vertex u if and only if the column represented by v may appear immediately
before the column represented by the vertex u in a HC. Consequently, the two
words represented by v and u satisfy conditions B1 and B2. The subset of V (Dm)
that consists of all possible first columns in the matrix B is represented by Fm.
The subset of V (Dm) consisting of all possible last columns in the matrix B is
denoted Lnc

m or Lc
m depending on whether the HC is of type NC or type C.

The problem of enumerating HCnc or HCc on Tm,n now becomes the problem
of enumerating oriented walks of length n− 1 in the digraph Dm with the initial
vertices in the set Fm, and the final vertices in the set Lnc

m or Lc
m. We note that

Faase [6] used a similar method to enumerate spanning subgraphs of G×Pn that
meet specific conditions.

Because of the rotational symmetry of Tm,n and using similar observations
like the ones make in [2], we can further simplify the digraph Dm by identifying
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some of its vertices. This produces a multidigraphD∗
m, whose adjacency (transfer)

matrix T ∗
m is smaller than the original adjacency matrix Tm.

In closing, we would like to remark that there exist other coding schemes for
similar problems that are computational more efficient than the ones we propose
here. For example, Jensen [9] used a vertex-based coding method. The order of
the number of states in Jensen’s method is roughly 4m, while ours is approxi-
mately 9m. Nevertheless, using our method, we are able to enumerate the two
types of HCs (HCnc and HCc) separately.

The situation is similar in the enumeration of HCs on triangular grids (graphs
obtained from the rectangular grids by adding a diagonal in every window). The
theoretic bound for the number of states in [2] (which used window-coding) is
expressed in terms of Motzkin’s numbers, and the bound in [11] (using vertex-
coding) is in terms of Catalan numbers. This makes the theoretic bounds in [2]
much higher. However, when we look at the order of the reduced transfer matrix
(the order of the reduced multigraph), the numbers of states are comparable, and
indeed almost identical. The same can be said when we compare the bounds from
[3] and [10] or [1] concerning thin grid cylinder graphs.

6. Computational Results

We implemented the discussion in Section 5 with Pascal programs. Some of the
data are collected in Table 1.

m 2 3 4 5 6 7 8 9 10

|V (Dm)| 5 31 169 851 4185 20553 101745 — —

|Fm| 5 16 49 151 452 1331 3873 — —

|Lnc
m | 5 16 49 151 452 1331 3873 — —

|Lc
m| 4 15 48 150 451 1330 3872 — —

|V (D∗
m)| 2 5 16 49 177 619 2338 8917 35065

|F∗
m| 2 4 8 16 38 82 194 447 1055

|Lnc∗
m | 2 3 5 7 13 19 35 59 107

|Lc∗
m | 1 2 4 6 12 18 34 58 106

order for tncm & tcm 1 4 12 31 83 226 — — —

order for tm 1 2 7 16 43 116 — — —

Table 1. The numbers of vertices for the graphs Dm and D∗

m
, the numbers of the first

and the last vertices for both types and for both graphs, and the orders of the recurrence
relations for tnc

m
(and tc

m
) and tm for 2 ≤ m ≤ 10.

Note that |Fm| = |Lnc
m | = |Lc

m| + 1 because we include the isolated vertex
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v∗ = (2-0, 3-0, . . . , (m + 1)-0) in the set V (Dm). Although it is used only in the
computation of tncm (1) and tm(1), we nevertheless include it in V (Dm) to simplify
our computation. If it is omitted, it is not difficult to establish a bijection between
Fm \ {v∗} and Lnc

m \ {v∗}, and with Lc
m \ {v∗}.

We adopt the following notations for the generating functions:

T nc
m (x) =

∞
∑

n=0

tncm (n+ 1)xn, T c
m(x) =

∞
∑

n=0

tcm(n+ 1)xn,

Tm(x) = T nc
m (x) + T c

m(x) =
∞
∑

n=0

tm(n+ 1)xn.

Let qncm (x), qcm(x), and qm(x) denote their denominators, respectively. Note that
qncm (x) = qcm(x) because of the common transfer matrix for both types of HCs.
Interestingly, for 2 ≤ m ≤ 10, we find that qncm (x) is a multiple of qm(x). Upon
further investigation, we conclude that it is helpful to introduce the rational
function

Km(x) = T nc
m (x)− T c

m(x),

such that

T nc
m (x) =

1

2
(Tm(x) +Km(x)) , T c

m(x) =
1

2
(Tm(x)−Km(x)) .

Since they are rational functions, we can express them as

Tm(x) = T m(x) +
pm(x)

qm(x)
, Km(x) = Km(x) +

rm(x)

sm(x)
,

for some polynomials T m(x), Km(x), pm(x), qm(x), rm(x) and sm(x), where
deg(pm) < deg(qm), and deg(rm) < deg(sm).

6.1. Thin triangular grid cylinder for m = 2

For n = 2, V (D2) = F2 = Lnc
2 = {v1, v2, . . . , v5}, Lc

2 = {v1, v2, v3, v5}, V (D∗
2) =

F2 = Lnc∗
2 = {v1, v4}, Lc∗

2 = {v1}, and

T2 =













1 0 1 0 0
1 0 1 0 0
0 1 0 0 1
0 0 0 0 0
0 1 0 0 1













,

v1 = (0-0, 2-2),
v2 = (0-2, 2-0),
v3 = (2-0, 0-2),
v4 = (2-0, 3-0),
v5 = (2-2, 0-0),

T ∗
2 =

[

2 0
0 0

]

.

We find tnc2 (1) = 5, tc2(1) = 4, t2(1) = 9, and tnc2 (n) = tc2(n) = 2n+1, for n ≥ 2.
Consequently, t2(n) = 2n+2 for n ≥ 2. The generating functions are

T nc
2 (x) =

5− 2x

1− 2x
= 1 +

4

1− 2x
, T c

2 (x) =
4

1− 2x
,
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T2(x) =
9− 2x

1− 2x
= 1 +

8

1− 2x
, K2(x) = 1.

6.2. Thin triangular grid cylinder for m = 3

For n = 3, we have V (D∗
3) = {v1, v2, . . . , v5}, F∗

3 = {v1, v2, v3, v4}, Lnc∗
3 =

{v1, v2, v4}, Lc∗
3 = {v3, v5},

v1 = (0-0, 0-2, 2-2),
v2 = (0-0, 2-0, 3-3),
v3 = (0-0, 2-2, 2-2),
v4 = (2-0, 3-0, 4-0),
v5 = (0-0, 2-2, 0-2),

T ∗
3 =













2 2 4 0 0
1 0 2 0 0
4 0 2 0 2
0 0 0 0 0
2 0 1 0 0













.

We find

T
nc

3 (x) =
2(1− x− x

2)(5 + 6x+ 6x2)

(1 + 2x+ 2x2)(1− 6x− 6x2)
=

8− 3x− 3x2

1− 6x− 6x2
+

2 + x+ x
2

1 + 2x+ 2x2
,

T
c

3 (x) =
6(1 + 2x)2

(1 + 2x+ 2x2)(1− 6x− 6x2)
=

8− 3x− 3x2

1− 6x− 6x2
−

2 + x+ x
2

1 + 2x+ 2x2
,

T3(x) =
2(8− 3x− 3x2)

1− 6x− 6x2
= 1 +

15

1− 6x− 6x2
, K3(x) =

2(2 + x+ x
2)

1 + 2x+ 2x2
= 1 +

3

1 + 2x+ 2x2
.

The values of tnc3 (n) and tc3(n) for 1 ≤ n ≤ 12 are listed in Table 2.

n tnc3 (n) tc3(n) t3(n)

1 10 6 16

2 42 48 90

3 318 312 630

4 2160 2160 4320

5 14844 14856 29700

6 102072 102048 204120

7 701448 701472 1402920

8 4821120 4821120 9642240

9 33135504 33135456 66270960

10 227739552 227739648 455479200

11 1565250528 1565250432 3130500960

12 10757940480 10757940480 21515880960

Table 2. The first twelve values of tnc3 (n), tc3(n), and t3(n).
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6.3. Thin triangular grid cylinder for m = 4

For m = 4, we find T4(x) = 1 + p4(x)
q4(x)

, and K4(x) = 1 + r4(x)
s4(x)

, where

p4(x) = 4
(

7− 10x− 37x2 − 14x3 + 12x4 + 20x5 + 8x6
)

,

q4(x) = 1− 13x− 36x2 + 26x3 + 32x4 + 40x5 − 8x6 − 16x7,

r4(x) = 4
(

3− 4x+ 9x2 + 6x3 − 4x4
)

,

s4(x) = 1 + 5x+ 24x2 − 6x3 − 4x4 + 8x5.

The first twelve values of tnc4 (n) and tc4(n) are displayed in Table 3.

n tnc4 (n) tc4(n) t4(n)

1 21 8 29

2 124 200 324

3 2600 2472 5072

4 39048 37768 76816

5 581016 590912 1171928

6 8938144 8919016 17857160

7 136155464 136004800 272160264

8 2073272720 2074540392 4147813112

9 31608656296 31605868928 63214525224

10 481716934736 481699387784 963416322520

11 7341358680776 7341520468768 14682879149544

12 111886891169136 111886492907816 223773384076952

Table 3. The first twelve values of tnc4 (n), tc4(n), and t4(n).

6.4. Thin triangular grid cylinder for m = 5

For m = 5, we obtain

T5(x) = 1 +
p5(x)

q5(x)
and K5(x) = 1 +

r5(x)

s5(x)
,

where

p5(x) = 5(11− 15x− 784x2 − 2881x3 + 2585x4 + 23968x5 + 18106x6

− 35922x7 − 38000x8 + 7644x9 − 42856x10 + 7728x11

+ 4416x12 − 4256x13 + 1600x14),
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q5(x) = 1− 25x− 280x2 − 195x3 + 3471x4 + 15072x5 − 11066x6 − 75742x7

− 42208x8 + 111124x9 − 26872x10 + 52208x11 + 39328x12

− 11520x13 + 5600x14 + 160x15 − 1600x16,

r5(x) = 5(7− 63x+ 418x2 − 1453x3 + 3399x4 − 6568x5 + 8842x6

− 10410x7 + 9420x8 − 6956x9 + 4144x10 − 1904x11

+ 608x12 − 96x13),

s5(x) = 1 + 3x+ 114x2 − 687x3 + 2133x4 − 5012x5 + 7394x6 − 11870x7

+ 11388x8 − 12684x9 + 9600x10 − 4288x11 + 1792x12

− 480x13 + 224x14 − 160x15.

The first twelve values of tnc5 (n) and tc5(n) are displayed in Table 4.

n tnc5 (n) tc5(n) t5(n)

1 46 10 56
2 440 860 1300
3 21670 22310 43980
4 763200 696620 1459820
5 24206220 24679200 48885420
6 814333680 819906100 1634239780
7 27386225460 27270802520 54657027980
8 913828130440 914005834580 1827833965020
9 30556142950580 30571254345280 61127397295860
10 1022200379372200 1022046470657460 2044246850029660
11 34182723306352380 34181854253180560 68364577559532940
12 1143123749538226400 1143153291450632580 2286277040988858980

Table 4. The first twelve values of tnc5 (n), tc5(n), and t5(n).

6.5. Thin triangular grid cylinder for m = 6

For m = 5, we obtain T6(x) = 1 + p6(x)/q6(x) and K6(x) = 1 + r6(x)/s6(x),
where

p6(x) = 109− 486x− 70398x2 − 604300x3 + 3981101x4 + 47357417x5 − 40612034x6 − 1079490063x7

+445126377x8 + 9733218408x9 − 26382950380x10 − 35367412003x11 + 404178532344x12

+44326233178x13 − 2315741889369x14 + 429752200895x15 + 8946566512706x16

− 4388013042258x17 − 28866348311064x18 + 21817331539356x19 + 64308720113996x20

− 57142690397896x21 − 84689046977044x22 + 78856910152692x23 + 67278727083152x24

− 67734193731296x25 − 33596755915712x26 + 38399443856480x27 + 7518542677696x28

− 11347076361376x29 + 118083530848x30 + 302884127360x31 − 411678931200x32

+879052011520x33 + 66583990016x34 − 228599377408x35 − 22927906816x36

+24795945984x37+ 3540401664x38+ 89636864x39− 238178304x40− 90902528x41− 3194880x42,
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q6(x) = 1−50x− 1632x2 − 3256x3 + 195793x4 + 1340389x5 − 7988940x6− 67894229x7+119798781x8

+ 1062782154x9 − 2235428110x10 − 3262969067x11 + 37596694328x12 − 37252689872x13

− 297562909349x14 + 236210791031x15 + 1340218677244x16 − 1251017551720x17

− 4074480131076x18 + 5117424381228x19 + 9751997894756x20 − 13887779309408x21

− 17317172529164x22 + 23032611039284x23 + 21391658508296x24 − 25887837535464x25

− 16642696145344x26 + 21644490331056x27 + 5293706788512x28 − 9977388037824x29

+ 626565257952x30 + 1008822592320x31 − 170655245632x32 + 626889876736x33

− 136651670784x34 − 200545743872x35 + 23315666944x36 + 24227677184x37 + 3305501184x38

− 710127616x39 − 924273664x40 − 28921856x41 + 41058304x42 + 1597440x43,

r6(x) = 85− 2203x+ 35439x2 − 392325x3 + 2421300x4 − 13948455x5 + 52614679x6 − 181382946x7

+ 457889661x8 − 1051922025x9 + 1785351655x10 − 4053888558x11 + 4573499148x12

− 14264848622x13 + 12026937315x14 − 36446441384x15 + 18329034236x16 − 57637177788x17

− 16153664292x18 − 24803139708x19 − 99171922408x20 + 30377348160x21

− 70760629468x22 + 14910670192x23 − 19424170912x24 − 52979205872x25 + 29465417632x26

− 31307164896x27 + 9736432704x28 − 6425231264x29 − 955152128x30 − 2233139072x31

− 1234877568x32 − 152301824x33 − 221951232x34 − 56185344x35 − 9267200x36

− 1609216x37 + 973824x38 + 12288x39,

s6(x) = 1− 3x+ 509x2 − 11751x3 + 89334x4 − 701193x5 + 2868499x6 − 12775076x7 + 35485215x8

− 97834113x9 + 213752857x10 − 428760104x11 + 579275658x12 − 1899415958x13

+ 1130367475x14 − 7258329632x15 + 1356473226x16 − 15324003064x17 − 10351491120x18

− 30185827716x19 − 31847892184x20 − 17529900952x21 − 39250822876x22

− 9524944368x23 − 9711493464x24 − 7661892288x25 − 18553132432x26 − 18319877120x27

+ 10033361376x28 − 3049287584x29 − 2018893696x30 − 1822695616x31 − 453180800x32

− 238571264x33 − 296170496x34 − 52508160x35 − 14921216x36 − 5137920x37

− 406528x38 − 500736x39 − 6144x40.

Since deg(q6) = 43, we deduce that t6(n) satisfies a linear homogeneous
recurrence relation of order 43. Similarly, tnc6 (n) and tc6(n) are both of order 83,
their first twelve values of tnc6 (n) and tc6(n) are listed in Table 5.

6.6. Thin triangular grid cylinder for 7 ≤ m ≤ 10

For m = 7, we find q7(x) divides qnc7 (x) = qc7(x). Since deg(q7) = 116, and
deg(qnc7 ) = 226, we conclude that t7(n) satisfies a linear homogeneous recurrence
relation of order 116, and tncm (n) and tcm(n) are of order 226.

Due to their complexity, we shall not display the generating functions for
m ≥ 7. We compile the first twelve values of tncm (n) and tcm(n) for 6 ≤ m ≤ 8 in
Table 5, and the first ten values for 9 ≤ m ≤ 10 in Table 6.

6.7. Validation of the computational results

The results presented above have been confirmed by an independent computation
of the sum tncm (n) + tcm(n) (2 ≤ m ≤ 10) using the standard method (see, for
example, [11]) of enumerating HC over the vertices of a graph.
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n tnc6 (n) tc6(n)

1 98 12
2 1508 3456
3 171010 184680
4 13596692 12039660
5 922336108 938770020
6 67099253228 67882044840
7 4909187089576 4885209856092
8 355376976496136 355241907635520
9 25770442378940944 25788868513221612
10 1870551473132732576 1870339903143995736
11 135715037935252222288 135706060688950237656
12 9846357494694583886300 9846648051804937904760

n tnc7 (n) tc7(n)

1 211 14
2 5054 13580
3 1313578 1487206
4 232545922 198694720
5 33189410002 33768467110
6 5153607780202 5241320047852
7 809663908291714 804827198825846
8 125424684761724236 125307843823985732
9 19460412645062644976 19479748508044269704
10 3023935942411311584398 3023653167447605305452
11 469636123603097988647768 469584019968079409562498
12 72931387395038191118319024 72934049510581997949471988

n tnc8 (n) tc8(n)

1 453 16
2 17156 52224
3 9997336 11775328
4 3896059336 3223417488
5 1167155913080 1185621756624
6 384798689792288 393135995007392
7 129111358349224728 128238416460839040
8 42595006909351408208 42531816124977363184
9 14071165745328257792040 14088190273380013246144
10 4657567370179792834264272 4657291086796792759487616
11 1540753295054499621095480664 1540521771845487850011448176
12 509619452751384459772745689008 509639518558056304253948981168

Table 5. The first twelve values of tnc
m
(n) and tc

m
(n) for 6 ≤ m ≤ 8.
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n tnc9 (n) tc9(n)

1 973 18
2 58056 197712
3 75624978 91604862
4 64223715600 51409628640
5 40221958446966 40802612538942
6 28065440384956200 28782720220289760
7 20031451724331532734 19877438499197428566
8 14021060961928795626528 13993475718821332020048
9 9826062975710517676318602 9839825848777598512393806
10 6902704293045726186844650096 6902426210533756839116417196

n tnc10(n) tc10(n)

1 2090 20
2 196288 739280
3 570206046 704216720
4 1048198919132 809477044320
5 1367718687127664 1384316446458200
6 2013931487585742288 2072057339935694660
7 304885554511519754829 3021870581641678162000
8 4514966409171605952717452 4503652523011415867218000
9 6694060137695157532017399784 6704544346009821140767285260
10 9952972682436734575332405583708 9952625171775890838486704218360

Table 6. The first ten values of tnc
m
(n) and tc

m
(n) for 9 ≤ m ≤ 10.

7. Asymptotic Relations and an Open Problem

We can write

T nc
m (x) = T nc

m(x) +
uncm (x)

wm(x)
and T c

m(x) = T c
m(x) +

ucm(x)

wm(x)
,

for some polynomials T nc
m(x), T c

m(x), ucm(x), uncm (x) and wm(x), such that
deg(uncm ), deg(ucm) < deg(wm). Obviously, wm(x) = qm(x)sm(x). Valuable in-
formation about tncm (n) and tcm(n) can be obtained from the rational functions
uncm (x)/wm(x) and ucm(x)/wm(x). For example, both sequences satisfy a linear re-
currence relation whose characteristic polynomial is ψm(t) = tδmwm(1/t), where
δm = deg(wm). Let the roots of ψm(t) be λm,i, where 1 ≤ i ≤ δm. If they are
distinct, then

uncm (x)

wm(x)
=

δm
∏

i=1

αi

1− λm,ix
,
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where αi = −λm,iu
nc
m (λ−1

m,i)/w
′
m(λ−1

m,i). Hence, for sufficiently large n,

tncm (n+ 1) =

δm
∑

i=1

αiλ
n
m,i.

The solution is more complicated if some of the λm,is are repeated roots. Nonethe-
less, if one of the roots, say λm,1, is a simple positive root which is greater than
the moduli of all other roots, then λm,1 is the dominant root, and

tncm (n+ 1) ∼ α1λ
n
m,1,

in which the formula for α1 given above still holds. We find that such a dominant
root exists for 2 ≤ m ≤ 7. Is it always true? We believe it is. To support our
argument, let us study the matrix T ∗

m.
Note that the λm,is are the characteristic roots of the transfer matrix T ∗

m.
Let T

∗
m be the matrix obtained from T ∗

m by deleting the row and the column
corresponding to the isolated vertex v∗. We find that, for 2 ≤ m ≤ 7, the
matrix T

∗
m + (T

∗
m)2 + (T

∗
m)3 + (T

∗
m)4 is positive. Therefore, the multidigraph

D∗
m − v∗ is strongly connected; in other words, T

∗
m is irreducible. In addition,

loops exist in D∗
m − v∗, because, for instance, the first two columns of B could

be the word (2-2, 0-0, 3-3, 0-0, . . . , (ℓ+ 1)-(ℓ+ 1), 0-0) when m = 2ℓ, or the word
(2-2, 0-0, 3-3, 0-0, . . . , (ℓ+1)-(ℓ+1), 0-0, 0-2) when m = 2ℓ+1. We conclude that
T
∗
m is primitive (see, for example, [12]). It follows from the Perron-Frobenius

Theory that T
∗
m has a positive eigenvalue θm (what we called λm,1 above) such

that θm > |µ| for any other eigenvalue µ. Then

tncm (n+ 1) ∼ amθ
n
m,

for some positive number am. In fact, am = −θmuncm (θ−1
m )/w′

m(θ−1
m ). Likewise,

tcm(n+ 1) ∼ bmθ
n
m,

where bm = −θmucm(θ−1
m )/w′

m(θ−1
m ). Numerical data confirm that am = bm for

2 ≤ m ≤ 7. See Table 7, in which we also list the entropy (see Section 1) per site:

lim
n→∞

ln tm(n)

m(n+ 1)
= ln m

√

θm.

The observation that am = bm for 2 ≤ m ≤ 7 leads to the following conjecture.

Conjecture 6. For each integer m ≥ 2, limn→∞ tncm (n)/tcm(n) = 1.

There are many other related problems that one can explore. If these two
numbers tncm (n) and tcm(n) are indeed asymptotically equal, can we identify, based
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on the homotopy, the subsets of these two types of HCs that are equinumerous
asymptotically. Alternatively, can we characterize the homotopic structures of
those HCs that make tncm (n) 6= tcm(n)? Can such a difference be linked to the
critical indices (or critical exponents) studied in theoretical physics?

m θm am = bm
m
√
θm

2 2.000000 4.000000 1.414214

3 6.872983 6.654738 1.901290

4 15.240430 10.859483 1.975829

5 33.442423 19.535467 2.017714

6 72.555179 33.568305 2.042262

7 155.304851 57.529046 2.056016

Table 7. The approximate values of θm, am and m

√
θm.
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