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Abstract

In this paper, we prove that for an integer r ≥ 1, every regular tour-
nament T of degree 3r − 1 contains at least 21

16
r − 10

3
disjoint directed 4-

cycles. Our result is an improvement of Lichiardopol’s theorem when taking
q = 4 [Discrete Math. 310 (2010) 2567–2570]: for given integers q ≥ 3 and
r ≥ 1, a tournament T with minimum out-degree and in-degree both at least
(q − 1)r − 1 contains at least r disjoint directed cycles of length q.
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1. Introduction

This paper considers only digraphs. For a digraph D, we write V (D) for the
vertex set of D, and the order of D is the cardinality of V (D). We write A(D)
for the set of the arcs of D. Two or several subgraphs are independent or disjoint

if they are pairwise vertex-disjoint.

We say that a vertex y is an out-neighbor (in-neighbor) of a vertex x if (x, y)
(respectively (y, x)) is an arc of D. The number of out-neighbors of x is the
out-degree d+(x) of x, and the number of in-neighbors of x is the in-degree d−(x)
of x. The minimum out-degree δ+(D) of D is the smallest of the out-degrees of
the vertices of D, and the minimum in-degree δ−(D) of D is the smallest of the
in-degrees of the vertices of D.
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A path of length m of a digraph D is a sequence P with P = (x1, . . . , xm+1)
of distinct vertices of D such that (xi, xi+1) ∈ A(D) for 1 ≤ i ≤ m. If {x1, . . . ,
xm+1} = V (D), then P is a Hamiltonian path. A cycle of length m in D is
a sequence C with C = (x1, . . . , xm, x1) such that the vertices x1, . . . , xm are
distinct, (xi, xi+1) ∈ A(D) for 1 ≤ i ≤ m − 1, and (xm, x1) ∈ A(D). If
{x1, . . . , xm} = V (D), then C is a Hamiltonian cycle. A cycle of length 3 is
a triangle. A triangle (x, y, z, x) will often be denoted by (x, u, x), where u is the
arc (y, z).

A tournament is a digraph T such that for any two distinct vertices x and
y, exactly one of the ordered pairs (x, y) and (y, x) is an arc of T . A regular

tournament of degree d is a tournament T such that d+(x) = d−(x) = d for every
vertex x. Necessarily the order of T is 2d + 1. For a subset S of V (T ), T [S]
denotes the subtournament induced by the vertices of S.

It is well-known (Redei’s Theorem) that any tournament contains a Hamil-
tonian path, and (Camion’s Theorem) a tournament is strong if and only if it
contains a Hamiltonian cycle. It is also known (Moon’s Theorem) that a strong
tournament T of order |T | is pancyclic, i.e., it has cycles of all lengths 3, . . . , |T |.
In particular this means that if C is a q-cycle of T , then the tournament T [V (C)]
has cycles of all lengths 3, . . . , q. A Cq-free tournament is a tournament T without
a q-cycle.

In 1981, Bermond and Thomassen [3] conjectured that for any positive integer
r, any digraph of minimum out-degree at least 2r − 1 contains at least r disjoint
directed cycles. It is trivially true when r = 1. It was proved by Thomassen [8]
when r = 2 in 1983. The case r = 3 was proved by Lichiardopol et al. in [5]. It is
still open for large values of r. In 2014, Bang-Jensen et al. proved the conjecture
for tournaments in [2]. Lichiardopol proposed a conjecture for tournaments [7]: for
given integers q ≥ 3 and r ≥ 1, a tournament T with minimum out-degree at least
(q − 1)r− 1 contains at least r disjoint q-cycles. In 2012, Lichiardopol [6] proved
that for an integer r ≥ 1, every regular tournament T of degree 2r−1 contains at
least 7

6r −
7
3 disjoint directed cycles. By pancyclic property of tournaments, the

following is easy to see.

Theorem 1.1. For an integer r ≥ 1, every regular tournament T of degree 2r−1
contains at least 7

6r −
7
3 disjoint triangles.

We consider the number of 4-cycles in a regular tournament and prove the
following theorem.

Theorem 1.2. For an integer r ≥ 1, every regular tournament T with degree

3r − 1 contains at least 21
16r −

10
3 disjoint 4-cycles.

In 2012, Lichiardopol [7] proved the following theorem.
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Theorem 1.3 ([7]). For given integers q ≥ 3 and r ≥ 1, a tournament T with

min {δ+(T ), δ−(T )} ≥ (q − 1)r − 1 contains at least r disjoint q-cycles.

If we take q = 4, it is easy to see

Theorem 1.4. For an integer r ≥ 1, every regular tournament T with degree

3r − 1 contains at least r disjoint 4-cycles.

Our result improves this lower bound to 21
16r −

10
3 .

There are many analogous results on bipartite tournaments, for example, Bai
et al. in [1] proved the following theorem.

Theorem 1.5 ([1]). Let BT be a bipartite tournament with minimum out-degree

at least qr−1 and let t1, . . . , tr ∈ [4, 2q] be any r even integers. Then BT contains

r disjoint cycles of length t′1, . . . , t
′
r such that t′i = ti for ti = 0 (mod 4) and

t′i ∈ {ti, ti + 2} for ti = 2 (mod 4), where 1 ≤ i ≤ r.

2. Lemma

In this section, we list a lemma to prove Theorem 1.2.

Lemma 2.1. Let M be a proper subset of N with |N | = n and |M | = m. Suppose

that T [N ] is C4-free and P = (x1, x2, . . . , xn−1, xn) is a Hamiltonian path of T [N ].
If {x1, x2, xn−1, xn} ⊆ M , then there is a Hamiltonian path Q = (y1, . . . , ym) of

T [M ] such that y1 = x1, ym = xn.

Proof. We construct Q from P by deleting vertices that are not contained in M
by the following two steps.

Step 1. (1) If there exists xi for i ≥ 3 such that none of xi, xi+1, . . . , xj belongs
to M (j ≥ i+ 1), delete xi, xi+1, . . . , xj from P .

(2) If there exists xi for i ≥ 3 such that xi /∈ M,xi−1, xi+1 ∈ M and
(xi−1, xi+1) ∈ A(T ), delete xi from P . Do (1) and (2) until there are no such
vertices.

We claim that after Step 1 the remaining vertices can still form a path as
the prior order. It is obvious for Step 1(2). For Step 1(1), we can prove that
(xi−1, xj+1) ∈ A(T ). Suppose on the contrary that (xj+1, xi−1) ∈ A(T ), then
{xi−1, xi, . . . , xj , xj+1, xi−1} is a cycle of length at least 4. By property of pan-
cyclic, it has a 4-cycle, a contradiction (since T [N ] is C4-free). Denote this new
path by Q′ = (z1, . . . , zl). Clearly, Q′ has the following property: if xi /∈ M then
xi−1, xi+1 ∈ M and (xi+1, xi−1) ∈ A(T ). Since {x1, x2, xn−1, xn} ⊆ M , we have
z1 = x1, z2 = x2, zl−1 = xn−1, zl = xn.

Step 2. If none of zj , zj+2, . . . , zj+2i belongs to M(i ≥ 0), but zj−1, zj+2i+1 ∈ M ,
we delete zj , zj+2, . . . , zj+2i from Q′ and replace the segment (zj−2, . . . , zj+2i+2)
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by (zj−2, zj+2i+1, zj+2i−1, . . . , zj+1, zj−1, zj+2i+2). Repeat the procedure until
there are no such vertices.

Since z1 = x1, z2 = x2, zl−1 = xn−1, zl = xn, j ≥ 3 and j+2i ≤ l−2, we have
j − 2 ≥ 1 and j + 2i+ 2 ≤ l. Denote the path after Step 2 by Q = (y1, . . . , ym).
Then it is the desired Hamiltonian path.

3. Proof of Theorem 1.2

The proof of this theorem is inspired mainly by the proof of the main theorem in
[6]. We begin with a preliminary result. Let (x, y) be an arc of a tournament T
of order n with n ≥ 3. We define:

B(x, y) = {z ∈ V (T ) : (x, z) ∈ A(T ), (y, z) ∈ A(T )},

E(x, y) = {z ∈ V (T ) : (z, x) ∈ A(T ), (y, z) ∈ A(T )},

F (x, y) = {z ∈ V (T ) : (x, z) ∈ A(T ), (z, y) ∈ A(T )}.

Observe that E(x, y) is the set of vertices z such that x, y and z form a
triangle. We denote by b(x, y), e(x, y) and f(x, y) the respective cardinalities
of these three sets. It is easy to see that d+(x) = b(x, y) + f(x, y) + 1 and
d+(y) = b(x, y) + e(x, y). It follows that e(x, y) = f(x, y) + d+(y) − d+(x) + 1.
Hence if T is regular, then we have

(1) e(x, y) = f(x, y) + 1.

If u = (x, y), then E(x, y), e(x, y), F (x, y) and f(x, y) will also be denoted by
E(u), e(u), F (u) and f(u), respectively.

The order of the regular tournament T of degree 3r−1 is 6r−1. By Theorem
1.4, T contains at least r disjoint 4-cycles. When r ≤ 10, it holds that r ≥ 21

16r−
10
3 ,

and so Theorem 1.2 holds in this case. So from now on, we suppose r ≥ 11.

Let s be the maximum number of disjoint 4-cycles of T . In particular, let
S = {C1, . . . , Cs} be a set of s disjoint 4-cycles with Ci = (ai, bi, ui, vi, ai) for
1 ≤ i ≤ s. Let us define V1 =

⋃
1≤i≤s V (Ci) and V2 = V (T ) \ V1. Let Ts be the

subtournament of T induced by the vertices of V2. Its vertices can be ordered into
a Hamiltonian path (x1, . . . , xt) where t = 6r − 1− 4s. Note that Ts is a C4-free
tournament by the maximality of s.

Suppose first that t ≤ 20. This means 6r−1−4s ≤ 20, so s ≥ 3
2r−

21
4 . Since

r ≥ 11 implies 3
2r −

21
4 ≥ 21

16r −
10
3 , it follows that s ≥ 12

16r −
10
3 and Theorem 1.2

holds in this case.

So, from now on, we suppose that t ≥ 21 (and r ≥ 11).

Since Ts is C4-free, it is easy to see the following.
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Claim 3.1. For 1 ≤ i ≤ t− 3, j ≥ i+ 3, (xi, xj) ∈ A(T ).

Since t ≥ 21, by Claim 3.1, it is easy to see that ωi = (xi, xt+1−i) ∈ A(T ) for
each 1 ≤ i ≤ 7. Denote by Ωs the set of the independent arcs ω1, . . . , ω7.

Claim 3.2. For 1 ≤ i ≤ 7, f(ωi) ≥ t− 2i− 2, e(ωi) ≥ t− 2i− 1.

Proof. Since Ts is C4-free, by Claim 3.1, there are at most two vertices (they
are xi+2, xt−i−1) between xi and xt+1−i that do not belong to F (ωi). So we get
f(ωi) ≥ t− 2i− 2. By equation (1), we get e(ωi) ≥ t− 2i− 1. 2

Put e(Ωs) =
∑

1≤i≤7 e(ωi). Then we have

Claim 3.3. e(Ωs) ≥ 7t− 63.

Proof. By Claim 3.2, we get e(ωi) ≥ t − 2i − 1. It follows that e(Ωs) =∑
1≤i≤7 e(ωi) ≥

∑
1≤i≤7(t− 2i− 1), so e(Ωs) ≥ 7t− 63. 2

Let W = {x8, . . . , xt−7} be the set of vertices between x7 and xt−6, FW (ωi)
denote the vertices in W that belong to F (ωi), and fW (ωi) = |FW (ωi)|. Since
t ≥ 21, there are at least seven vertices between x7 and xt−6. Similarly to the
proof of Claim 3.2, there are at least five of these vertices in M belonging to
F (ωi), for each 1 ≤ i ≤ 7, i.e., fW (ωi) ≥ 5.

Claim 3.4. For each 1 ≤ i ≤ 7, E(ωi) ∩ V2 = ∅.

Proof. If E(ωi)∩V2 6= ∅, then there exists a vertex xj such that xj ∈ E(ωi)∩V2.
Since fW (ωi) ≥ 5, there is a vertex xk with k 6= j such that xk ∈ FW (ωi). Thus
(xi, xk, xt+1−i, xj , xi) is a 4-cycle of Ts, a contradiction. 2

By Claim 3.4, the set E(ωi) does not contain any vertex of Ts.
For a vertex x ∈ V1, let EΩs

(x) denote the set of the arcs ωi ∈ Ωs such that
x ∈ E(ωi), and put eΩs

(x) = |EΩs
(x)|. For a 4-cycle Ci of S, let eΩs

(Ci) =∑
x∈V (Ci)

eΩs
(x).

We then get e(Ωs) =
∑

x∈V1
eΩs

(x) =
∑

1≤i≤s eΩs
(Ci), by double-counting,

and interchanging the order of summation. Then we get

Claim 3.5. If a vertex v of a 4-cycle C of S satisfies eΩs
(v) ≥ 2, then eΩs

(w) = 0
for every vertex w of C distinct from v.

Proof. If eΩs
(w) > 0, then there exists an arc ωj of Ωs such that w ∈ E(ωj).

Since eΩs
(v) ≥ 2, there exists an arc ωk of Ωs with k 6= j such that v ∈ E(ωk).

Since fW (ωj) ≥ 5 and fW (ωk) ≥ 5, there exist two distinct vertices x, y ∈ W
such that x ∈ FW (ωj), y ∈ FW (ωk). Clearly, C ′ = (w, xj , x, xt+1−j , w) and
C ′′ = (v, xk, y, xt+1−k, v) are two disjoint 4-cycles. Now (S \ {C})∪ {C ′, C ′′} is a
collection of s + 1 disjoint 4-cycles, which is impossible by the maximality of s.
So the result is proved. 2
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Let Us = {x ∈ V1 : eΩs
(x) ≥ 4}, and let us = |Us|. Clearly, this claim implies

that every 4-cycle C of S which is disjoint from Us, satisfies eΩs
(C) ≤ 4. It implies

also that every 4-cycle of S contains at most one vertex of Us.
Now, we choose S such that us is as large as possible. Suppose first that

us = 0. Since e(Ωs) =
∑

1≤i≤s eΩs
(Ci), from Claim 3.3 and Claim 3.5, we get

7t − 63 ≤ 4s. That is 7(6r − 1 − 4s) − 63 ≤ 4s, so 32s ≥ 42r − 70. Hence
s ≥ 21

16r −
35
16 > 21

16r −
10
3 . Therefore, Theorem 1.2 holds in this case.

Suppose now us > 0. By Claim 3.5, without loss of generality, we may
suppose that the us vertices of Us are a1, . . . , aus

. We denote ∆s = {C1, . . . , Cus
}.

Note that ∆s ⊂ S when us < s. For each 4-cycle Ci of ∆s we have eΩs
(Ci) =

eΩs
(ai) ≤ 7.
We denote U ′

s =
⋃

1≤i≤us
{bi, ui, vi} (where V (Ci) = {ai, bi, ui, vi}) and V ′

s =
V2 ∪ U ′

s. Clearly, |V ′
s | = 3us + t.

Claim 3.6. The subtournament induced by the set V ′
s is C4-free.

Proof. On the contrary, let C ′ be a 4-cycle of T [V ′
s ] with C ′ = (w, x, y, z, w).

Since T [V2] is C4-free, two cases are possible.

Case 1. C ′ contains exactly one vertex of U ′
s. Let w be this vertex; there

exists i with 1 ≤ i ≤ us such that w ∈ V (Ci), and w 6= ai. Since eΩs
(ai) ≥ 4, there

exists an arc ωj of EΩs
(ai) disjoint from x, y, z. Since fW (ωj) ≥ 5, there exists

a vertex a ∈ W distinct from x, y, z such that a ∈ FW (ωj). Clearly, C ′ and C ′′,
where C ′′ = (ai, xj , a, xt+1−j , ai), are disjoint 4-cycles. Now (S \ {Ci})∪{C ′, C ′′}
is a collection of s+ 1 disjoint 4-cycles, a contraction.

Case 2. C ′ contains at least two vertices of U ′
s. Denote the set of these verti-

ces by Γ. Then 2 ≤ |Γ| ≤ 4. Let m be the number of the 4-cycles of ∆s containing
at least one vertex of Γ. Then 1 ≤ m ≤ |Γ| ≤ 4. Without loss of generality, we
may suppose that C1, . . . , Cm with Ci = (ai, bi, ui, vi, ai) for 1 ≤ i ≤ m are these
4-cycles. Note that ai ∈ Us. Since eΩs

(ai) ≥ 4, there exist m independent arcs,
say ω1, . . . , ωm, of Ωs which are disjoint with V (C ′)\Γ, such that ωi ∈ eΩs

(ai) for
each 1 ≤ i ≤ m. Since fW (ωi) ≥ 5 (for each 1 ≤ i ≤ m), there exist m vertices
γ1, . . . , γm of W distinct from the vertices of V (C ′) \ Γ such that γi ∈ FW (ωi).
Clearly, Ci = (ai, xi, γi, xt+1−i, ai), 1 ≤ i ≤ m, and C ′ are m+1 disjoint 4-cycles.
Now (S\{C1, . . . , Cm})∪{C ′, C1, . . . , Cm} is a collection of s+1 disjoint 4-cycles,
a contraction. 2

Since the subtournament T [V ′
s ] is C4-free, let (α1, . . . , αγs) be a Hamiltonian

path of T [V ′
s ], where γs = 3us + t = |V ′

s |.

Claim 3.7. There exists a set S′ of s disjoint 4-cycles such that {α1, α2, αγs−1,
αγs} ⊆ V (Ts′).

Proof. Let p be the number of the vertices of α1, α2, αγs−1, αγs which are in
U ′
s. When p = 0, we take S′ = S and clearly the result is proved. Now suppose
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that p ≥ 1 and let m be the number of the 4-cycles of ∆s containing at least
one vertex of α1, α2, αγs−1, αγs . Without loss of generality, we may suppose that
C1, C2, . . . , Cm (with Ci = (ai, bi, ui, vi, ai), 1 ≤ i ≤ m) are these 4-cycles. Note
that ai ∈ Us for each 1 ≤ i ≤ m. We have 1 ≤ m ≤ p ≤ 4 with m ≥ 2
when p = 4. Since eΩs

(ai) ≥ 4 for each 1 ≤ i ≤ m, there exist m independent
arcs, without loss of generality, say ω1, . . . , ωm, of Ωs with ωi ∈ EΩs

(ai) for each
1 ≤ i ≤ m. Since fW (ωi) ≥ 5, there exist m distinct vertices yi ∈ W for each
1 ≤ i ≤ m. This yields m disjoint 4-cycles C ′

i = (ai, xi, yi, xt+1−i, ai) for each
1 ≤ i ≤ m, and these 4-cycles do not contain any vertex of α1, α2, αγs−1, αγs .
Then S′ = (S \ {C1, . . . , Cm}) ∪ {C ′

1, . . . , C
′
m} is a set of s disjoint 4-cycles. The

vertices α1, α2, αγs−1, αγs are in Ts′ , and the vertices of V (Ts′) are vertices of
T [V ′

s ]. 2

Recall that Ts is the C4-free subtournament induced by the vertices of T not
contained in a 4-cycle of S, and that the vertices of Ts can be ordered into a
Hamiltonian path which we denote here by (xS1 , . . . , x

S
t ). Clearly, this notation

(and the other using S as subscript or superscript) is valid for every set of s
disjoint 4-cycles.

Let N = V ′
s ,M = V (Ts′), P = (α1, . . . , αγs), by Claim 3.7 and Lemma 2.1, it

is easy to see that

Claim 3.8. There exists a set S′ of s disjoint 4-cycles such that xS
′

1 = α1,

xS
′

t = αγs .

Now we can achieve the proof of Theorem 1.2. We work on the set S′ of s
disjoint 4-cycles constructed in Claim 3.7. Here Ωs′ is the set of the independent
arcs ωS′

i with ωS′

i = (xS
′

i , xS
′

t+1−i) for each 1 ≤ i ≤ 7.

First, since e(ωS′

1 ) ≥ t+ 3us − 3, we have e(Ωs′) ≥ 7t− 63 + 3us.
On the other hand, since eΩ

s′
(C) ≤ 7 when C is a 4-cycle of ∆s′ , and eΩ

s′
≤ 4

when C is not a 4-cycle of ∆s′ (by Claim 3.5), we deduce e(Ωs′) ≤ 7us′+4(s−us′).
It follows that 7t− 63 + 3us ≤ 3us′ + 4s.

As us′ ≤ us (by the maximality of us), it follows that 7t−63+3us ≤ 3us+4s.
Hence 7t − 63 ≤ 4s, which gives s ≥ 21

16r −
35
16 > 21

16r −
10
3 . So Theorem 1.2 is

proved.

Acknowledgment

The authors are indebted to anonymous referees for their valuable comments and
suggestions.

References

[1] Y. Bai, B. Li and H. Li, Vertex-disjoint cycles in bipartite tournaments, Discrete
Math. 338 (2015) 1307–1309.
doi:10.1016/j.disc.2015.02.012

http://dx.doi.org/10.1016/j.disc.2015.02.012


498 F. Ma and J. Yan

[2] J. Bang-Jensen, S. Bessy and S. Thomasse, Disjoint 3-cycles in tournaments: a

Proof of the Bermond-Thomassen conjecture for tournaments, J. Graph Theory 75

(2014) 284–302.
doi:10.1002/jgt.21740

[3] J.C. Bermond and C. Thomassen, Cycles in digraphs-a survey, J. Graph Theory 5

(1981) 1–43.
doi:10.1002/jgt.3190050102

[4] S. Bessy, N. Lichiardopol and J.S. Sereni, Two proofs of the Bermond-Thomassen

conjecture for tournaments with bounded minimum in-degree, Discrete Math. 310

(2010) 557–560.
doi:10.1016/j.disc.2009.03.039

[5] N. Lichiardopol, A. Pór and J.S. Sereni, A step toward the Bermond-Thomassen

conjecture about disjoint cycles in digraphs, SIAM J. Discrete Math. 23 (2009)
979–992.
doi:10.1137/080715792

[6] N. Lichiardopol, Vertex-disjoint cycles in regular tournaments, Discrete Math. 312

(2012) 1927–1930.
doi:10.1016/j.disc.2012.03.009

[7] N. Lichiardopol, Vertex-disjoint directed cycles of prescribed length in tournaments

with given minimum out-degree and in-degree, Discrete Math. 310 (2010) 2567–2570.
doi:10.1016/j.disc.2010.06.024

[8] C. Thomassen, Disjoint cycles in digraphs, Combinatorica 3 (1983) 393–396.
doi:10.1007/BF02579195

Received 30 June 2016
Revised 2 January 2017

Accepted 3 January 2017

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1002/jgt.21740
http://dx.doi.org/10.1002/jgt.3190050102
http://dx.doi.org/10.1016/j.disc.2009.03.039
http://dx.doi.org/10.1137/080715792
http://dx.doi.org/10.1016/j.disc.2012.03.009
http://dx.doi.org/10.1016/j.disc.2010.06.024
http://dx.doi.org/10.1007/BF02579195
http://www.tcpdf.org

