ON THE NUMBER OF DISJOINT 4-CYCLES IN REGULAR TOURNAMENTS ${ }^{1}$

Fuhong Ma and Jin Yan ${ }^{2}$
School of Mathematics
Shandong University
Jinan 250100, P.R. China
e-mail: yanj@sdu.edu.cn

Abstract

In this paper, we prove that for an integer $r \geq 1$, every regular tournament T of degree $3 r-1$ contains at least $\frac{21}{16} r-\frac{10}{3}$ disjoint directed 4cycles. Our result is an improvement of Lichiardopol's theorem when taking $q=4$ [Discrete Math. 310 (2010) 2567-2570]: for given integers $q \geq 3$ and $r \geq 1$, a tournament T with minimum out-degree and in-degree both at least $(q-1) r-1$ contains at least r disjoint directed cycles of length q.

Keywords: regular tournament, C_{4}-free, disjoint cycles.
2010 Mathematics Subject Classification: 05C70, 05C38.

1. Introduction

This paper considers only digraphs. For a digraph D, we write $V(D)$ for the vertex set of D, and the order of D is the cardinality of $V(D)$. We write $A(D)$ for the set of the arcs of D. Two or several subgraphs are independent or disjoint if they are pairwise vertex-disjoint.

We say that a vertex y is an out-neighbor (in-neighbor) of a vertex x if (x, y) (respectively (y, x)) is an arc of D. The number of out-neighbors of x is the out-degree $d^{+}(x)$ of x, and the number of in-neighbors of x is the in-degree $d^{-}(x)$ of x. The minimum out-degree $\delta^{+}(D)$ of D is the smallest of the out-degrees of the vertices of D, and the minimum in-degree $\delta^{-}(D)$ of D is the smallest of the in-degrees of the vertices of D.

[^0]A path of length m of a digraph D is a sequence P with $P=\left(x_{1}, \ldots, x_{m+1}\right)$ of distinct vertices of D such that $\left(x_{i}, x_{i+1}\right) \in A(D)$ for $1 \leq i \leq m$. If $\left\{x_{1}, \ldots\right.$, $\left.x_{m+1}\right\}=V(D)$, then P is a Hamiltonian path. A cycle of length m in D is a sequence C with $C=\left(x_{1}, \ldots, x_{m}, x_{1}\right)$ such that the vertices x_{1}, \ldots, x_{m} are distinct, $\left(x_{i}, x_{i+1}\right) \in A(D)$ for $1 \leq i \leq m-1$, and $\left(x_{m}, x_{1}\right) \in A(D)$. If $\left\{x_{1}, \ldots, x_{m}\right\}=V(D)$, then C is a Hamiltonian cycle. A cycle of length 3 is a triangle. A triangle (x, y, z, x) will often be denoted by (x, u, x), where u is the $\operatorname{arc}(y, z)$.

A tournament is a digraph T such that for any two distinct vertices x and y, exactly one of the ordered pairs (x, y) and (y, x) is an arc of T. A regular tournament of degree d is a tournament T such that $d^{+}(x)=d^{-}(x)=d$ for every vertex x. Necessarily the order of T is $2 d+1$. For a subset S of $V(T), T[S]$ denotes the subtournament induced by the vertices of S.

It is well-known (Redei's Theorem) that any tournament contains a Hamiltonian path, and (Camion's Theorem) a tournament is strong if and only if it contains a Hamiltonian cycle. It is also known (Moon's Theorem) that a strong tournament T of order $|T|$ is pancyclic, i.e., it has cycles of all lengths $3, \ldots,|T|$. In particular this means that if C is a q-cycle of T, then the tournament $T[V(C)]$ has cycles of all lengths $3, \ldots, q$. A C_{q}-free tournament is a tournament T without a q-cycle.

In 1981, Bermond and Thomassen [3] conjectured that for any positive integer r, any digraph of minimum out-degree at least $2 r-1$ contains at least r disjoint directed cycles. It is trivially true when $r=1$. It was proved by Thomassen [8] when $r=2$ in 1983. The case $r=3$ was proved by Lichiardopol et al. in [5]. It is still open for large values of r. In 2014, Bang-Jensen et al. proved the conjecture for tournaments in [2]. Lichiardopol proposed a conjecture for tournaments [7]: for given integers $q \geq 3$ and $r \geq 1$, a tournament T with minimum out-degree at least $(q-1) r-1$ contains at least r disjoint q-cycles. In 2012, Lichiardopol [6] proved that for an integer $r \geq 1$, every regular tournament T of degree $2 r-1$ contains at least $\frac{7}{6} r-\frac{7}{3}$ disjoint directed cycles. By pancyclic property of tournaments, the following is easy to see.

Theorem 1.1. For an integer $r \geq 1$, every regular tournament T of degree $2 r-1$ contains at least $\frac{7}{6} r-\frac{7}{3}$ disjoint triangles.

We consider the number of 4 -cycles in a regular tournament and prove the following theorem.

Theorem 1.2. For an integer $r \geq 1$, every regular tournament T with degree $3 r-1$ contains at least $\frac{21}{16} r-\frac{10}{3}$ disjoint 4-cycles.

In 2012, Lichiardopol [7] proved the following theorem.

Theorem 1.3 ([7]). For given integers $q \geq 3$ and $r \geq 1$, a tournament T with $\min \left\{\delta^{+}(T), \delta^{-}(T)\right\} \geq(q-1) r-1$ contains at least r disjoint q-cycles.

If we take $q=4$, it is easy to see
Theorem 1.4. For an integer $r \geq 1$, every regular tournament T with degree $3 r-1$ contains at least r disjoint 4 -cycles.

Our result improves this lower bound to $\frac{21}{16} r-\frac{10}{3}$.
There are many analogous results on bipartite tournaments, for example, Bai et al. in [1] proved the following theorem.
Theorem 1.5 ([1]). Let BT be a bipartite tournament with minimum out-degree at least $q r-1$ and let $t_{1}, \ldots, t_{r} \in[4,2 q]$ be any r even integers. Then $B T$ contains r disjoint cycles of length $t_{1}^{\prime}, \ldots, t_{r}^{\prime}$ such that $t_{i}^{\prime}=t_{i}$ for $t_{i}=0(\bmod 4)$ and $t_{i}^{\prime} \in\left\{t_{i}, t_{i}+2\right\}$ for $t_{i}=2(\bmod 4)$, where $1 \leq i \leq r$.

2. Lemma

In this section, we list a lemma to prove Theorem 1.2.
Lemma 2.1. Let M be a proper subset of N with $|N|=n$ and $|M|=m$. Suppose that $T[N]$ is C_{4}-free and $P=\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)$ is a Hamiltonian path of $T[N]$. If $\left\{x_{1}, x_{2}, x_{n-1}, x_{n}\right\} \subseteq M$, then there is a Hamiltonian path $Q=\left(y_{1}, \ldots, y_{m}\right)$ of $T[M]$ such that $y_{1}=x_{1}, y_{m}=x_{n}$.
Proof. We construct Q from P by deleting vertices that are not contained in M by the following two steps.
Step 1. (1) If there exists x_{i} for $i \geq 3$ such that none of $x_{i}, x_{i+1}, \ldots, x_{j}$ belongs to $M(j \geq i+1)$, delete $x_{i}, x_{i+1}, \ldots, x_{j}$ from P.
(2) If there exists x_{i} for $i \geq 3$ such that $x_{i} \notin M, x_{i-1}, x_{i+1} \in M$ and $\left(x_{i-1}, x_{i+1}\right) \in A(T)$, delete x_{i} from P. Do (1) and (2) until there are no such vertices.

We claim that after Step 1 the remaining vertices can still form a path as the prior order. It is obvious for Step 1(2). For Step 1(1), we can prove that $\left(x_{i-1}, x_{j+1}\right) \in A(T)$. Suppose on the contrary that $\left(x_{j+1}, x_{i-1}\right) \in A(T)$, then $\left\{x_{i-1}, x_{i}, \ldots, x_{j}, x_{j+1}, x_{i-1}\right\}$ is a cycle of length at least 4. By property of pancyclic, it has a 4 -cycle, a contradiction (since $T[N]$ is C_{4}-free). Denote this new path by $Q^{\prime}=\left(z_{1}, \ldots, z_{l}\right)$. Clearly, Q^{\prime} has the following property: if $x_{i} \notin M$ then $x_{i-1}, x_{i+1} \in M$ and $\left(x_{i+1}, x_{i-1}\right) \in A(T)$. Since $\left\{x_{1}, x_{2}, x_{n-1}, x_{n}\right\} \subseteq M$, we have $z_{1}=x_{1}, z_{2}=x_{2}, z_{l-1}=x_{n-1}, z_{l}=x_{n}$.
Step 2. If none of $z_{j}, z_{j+2}, \ldots, z_{j+2 i}$ belongs to $M(i \geq 0)$, but $z_{j-1}, z_{j+2 i+1} \in M$, we delete $z_{j}, z_{j+2}, \ldots, z_{j+2 i}$ from Q^{\prime} and replace the segment $\left(z_{j-2}, \ldots, z_{j+2 i+2}\right)$
by $\left(z_{j-2}, z_{j+2 i+1}, z_{j+2 i-1}, \ldots, z_{j+1}, z_{j-1}, z_{j+2 i+2}\right)$. Repeat the procedure until there are no such vertices.

Since $z_{1}=x_{1}, z_{2}=x_{2}, z_{l-1}=x_{n-1}, z_{l}=x_{n}, j \geq 3$ and $j+2 i \leq l-2$, we have $j-2 \geq 1$ and $j+2 i+2 \leq l$. Denote the path after Step 2 by $Q=\left(y_{1}, \ldots, y_{m}\right)$. Then it is the desired Hamiltonian path.

3. Proof of Theorem 1.2

The proof of this theorem is inspired mainly by the proof of the main theorem in [6]. We begin with a preliminary result. Let (x, y) be an arc of a tournament T of order n with $n \geq 3$. We define:

$$
\begin{aligned}
& B(x, y)=\{z \in V(T):(x, z) \in A(T),(y, z) \in A(T)\}, \\
& E(x, y)=\{z \in V(T):(z, x) \in A(T),(y, z) \in A(T)\}, \\
& F(x, y)=\{z \in V(T):(x, z) \in A(T),(z, y) \in A(T)\} .
\end{aligned}
$$

Observe that $E(x, y)$ is the set of vertices z such that x, y and z form a triangle. We denote by $b(x, y), e(x, y)$ and $f(x, y)$ the respective cardinalities of these three sets. It is easy to see that $d^{+}(x)=b(x, y)+f(x, y)+1$ and $d^{+}(y)=b(x, y)+e(x, y)$. It follows that $e(x, y)=f(x, y)+d^{+}(y)-d^{+}(x)+1$. Hence if T is regular, then we have

$$
\begin{equation*}
e(x, y)=f(x, y)+1 \tag{1}
\end{equation*}
$$

If $u=(x, y)$, then $E(x, y), e(x, y), F(x, y)$ and $f(x, y)$ will also be denoted by $E(u), e(u), F(u)$ and $f(u)$, respectively.

The order of the regular tournament T of degree $3 r-1$ is $6 r-1$. By Theorem 1.4, T contains at least r disjoint 4 -cycles. When $r \leq 10$, it holds that $r \geq \frac{21}{16} r-\frac{10}{3}$, and so Theorem 1.2 holds in this case. So from now on, we suppose $r \geq 11$.

Let s be the maximum number of disjoint 4 -cycles of T. In particular, let $S=\left\{C_{1}, \ldots, C_{s}\right\}$ be a set of s disjoint 4 -cycles with $C_{i}=\left(a_{i}, b_{i}, u_{i}, v_{i}, a_{i}\right)$ for $1 \leq i \leq s$. Let us define $V_{1}=\bigcup_{1 \leq i \leq s} V\left(C_{i}\right)$ and $V_{2}=V(T) \backslash V_{1}$. Let T_{s} be the subtournament of T induced by the vertices of V_{2}. Its vertices can be ordered into a Hamiltonian path $\left(x_{1}, \ldots, x_{t}\right)$ where $t=6 r-1-4 s$. Note that T_{s} is a C_{4}-free tournament by the maximality of s.

Suppose first that $t \leq 20$. This means $6 r-1-4 s \leq 20$, so $s \geq \frac{3}{2} r-\frac{21}{4}$. Since $r \geq 11$ implies $\frac{3}{2} r-\frac{21}{4} \geq \frac{21}{16} r-\frac{10}{3}$, it follows that $s \geq \frac{12}{16} r-\frac{10}{3}$ and Theorem 1.2 holds in this case.

So, from now on, we suppose that $t \geq 21$ (and $r \geq 11$).
Since T_{s} is C_{4}-free, it is easy to see the following.

Claim 3.1. For $1 \leq i \leq t-3, j \geq i+3,\left(x_{i}, x_{j}\right) \in A(T)$.
Since $t \geq 21$, by Claim 3.1, it is easy to see that $\omega_{i}=\left(x_{i}, x_{t+1-i}\right) \in A(T)$ for each $1 \leq i \leq 7$. Denote by Ω_{s} the set of the independent $\operatorname{arcs} \omega_{1}, \ldots, \omega_{7}$.

Claim 3.2. For $1 \leq i \leq 7, f\left(\omega_{i}\right) \geq t-2 i-2, e\left(\omega_{i}\right) \geq t-2 i-1$.
Proof. Since T_{s} is C_{4}-free, by Claim 3.1, there are at most two vertices (they are $\left.x_{i+2}, x_{t-i-1}\right)$ between x_{i} and x_{t+1-i} that do not belong to $F\left(\omega_{i}\right)$. So we get $f\left(\omega_{i}\right) \geq t-2 i-2$. By equation (1), we get $e\left(\omega_{i}\right) \geq t-2 i-1$.

Put $e\left(\Omega_{s}\right)=\sum_{1 \leq i \leq 7} e\left(\omega_{i}\right)$. Then we have
Claim 3.3. $e\left(\Omega_{s}\right) \geq 7 t-63$.
Proof. By Claim 3.2, we get $e\left(\omega_{i}\right) \geq t-2 i-1$. It follows that $e\left(\Omega_{s}\right)=$ $\sum_{1 \leq i \leq 7} e\left(\omega_{i}\right) \geq \sum_{1 \leq i \leq 7}(t-2 i-1)$, so $e\left(\Omega_{s}\right) \geq 7 t-63$.

Let $W=\left\{x_{8}, \ldots, x_{t-7}\right\}$ be the set of vertices between x_{7} and $x_{t-6}, F_{W}\left(\omega_{i}\right)$ denote the vertices in W that belong to $F\left(\omega_{i}\right)$, and $f_{W}\left(\omega_{i}\right)=\left|F_{W}\left(\omega_{i}\right)\right|$. Since $t \geq 21$, there are at least seven vertices between x_{7} and x_{t-6}. Similarly to the proof of Claim 3.2, there are at least five of these vertices in M belonging to $F\left(\omega_{i}\right)$, for each $1 \leq i \leq 7$, i.e., $f_{W}\left(\omega_{i}\right) \geq 5$.

Claim 3.4. For each $1 \leq i \leq 7, E\left(\omega_{i}\right) \cap V_{2}=\emptyset$.
Proof. If $E\left(\omega_{i}\right) \cap V_{2} \neq \emptyset$, then there exists a vertex x_{j} such that $x_{j} \in E\left(\omega_{i}\right) \cap V_{2}$. Since $f_{W}\left(\omega_{i}\right) \geq 5$, there is a vertex x_{k} with $k \neq j$ such that $x_{k} \in F_{W}\left(\omega_{i}\right)$. Thus $\left(x_{i}, x_{k}, x_{t+1-i}, x_{j}, x_{i}\right)$ is a 4-cycle of T_{s}, a contradiction.

By Claim 3.4, the set $E\left(\omega_{i}\right)$ does not contain any vertex of T_{s}.
For a vertex $x \in V_{1}$, let $E_{\Omega_{s}}(x)$ denote the set of the $\operatorname{arcs} \omega_{i} \in \Omega_{s}$ such that $x \in E\left(\omega_{i}\right)$, and put $e_{\Omega_{s}}(x)=\left|E_{\Omega_{s}}(x)\right|$. For a 4-cycle C_{i} of S, let $e_{\Omega_{s}}\left(C_{i}\right)=$ $\sum_{x \in V\left(C_{i}\right)} e_{\Omega_{s}}(x)$.

We then get $e\left(\Omega_{s}\right)=\sum_{x \in V_{1}} e_{\Omega_{s}}(x)=\sum_{1 \leq i \leq s} e_{\Omega_{s}}\left(C_{i}\right)$, by double-counting, and interchanging the order of summation. Then we get

Claim 3.5. If a vertex v of a 4-cycle C of S satisfies $e_{\Omega_{s}}(v) \geq 2$, then $e_{\Omega_{s}}(w)=0$ for every vertex w of C distinct from v.

Proof. If $e_{\Omega_{s}}(w)>0$, then there exists an $\operatorname{arc} \omega_{j}$ of Ω_{s} such that $w \in E\left(\omega_{j}\right)$. Since $e_{\Omega_{s}}(v) \geq 2$, there exists an arc ω_{k} of Ω_{s} with $k \neq j$ such that $v \in E\left(\omega_{k}\right)$. Since $f_{W}\left(\omega_{j}\right) \geq 5$ and $f_{W}\left(\omega_{k}\right) \geq 5$, there exist two distinct vertices $x, y \in W$ such that $x \in F_{W}\left(\omega_{j}\right), y \in F_{W}\left(\omega_{k}\right)$. Clearly, $C^{\prime}=\left(w, x_{j}, x, x_{t+1-j}, w\right)$ and $C^{\prime \prime}=\left(v, x_{k}, y, x_{t+1-k}, v\right)$ are two disjoint 4-cycles. Now $(S \backslash\{C\}) \cup\left\{C^{\prime}, C^{\prime \prime}\right\}$ is a collection of $s+1$ disjoint 4-cycles, which is impossible by the maximality of s. So the result is proved.

Let $U_{s}=\left\{x \in V_{1}: e_{\Omega_{s}}(x) \geq 4\right\}$, and let $u_{s}=\left|U_{s}\right|$. Clearly, this claim implies that every 4 -cycle C of S which is disjoint from U_{s}, satisfies $e_{\Omega_{s}}(C) \leq 4$. It implies also that every 4 -cycle of S contains at most one vertex of U_{s}.

Now, we choose S such that u_{s} is as large as possible. Suppose first that $u_{s}=0$. Since $e\left(\Omega_{s}\right)=\sum_{1 \leq i \leq s} e_{\Omega_{s}}\left(C_{i}\right)$, from Claim 3.3 and Claim 3.5, we get $7 t-63 \leq 4 s$. That is $7(6 r-1-4 s)-63 \leq 4 s$, so $32 s \geq 42 r-70$. Hence $s \geq \frac{21}{16} r-\frac{35}{16}>\frac{21}{16} r-\frac{10}{3}$. Therefore, Theorem 1.2 holds in this case.

Suppose now $u_{s}>0$. By Claim 3.5, without loss of generality, we may suppose that the u_{s} vertices of U_{s} are $a_{1}, \ldots, a_{u_{s}}$. We denote $\Delta_{s}=\left\{C_{1}, \ldots, C_{u_{s}}\right\}$. Note that $\Delta_{s} \subset S$ when $u_{s}<s$. For each 4-cycle C_{i} of Δ_{s} we have $e_{\Omega_{s}}\left(C_{i}\right)=$ $e_{\Omega_{s}}\left(a_{i}\right) \leq 7$.

We denote $U_{s}^{\prime}=\bigcup_{1 \leq i \leq u_{s}}\left\{b_{i}, u_{i}, v_{i}\right\}$ (where $V\left(C_{i}\right)=\left\{a_{i}, b_{i}, u_{i}, v_{i}\right\}$) and $V_{s}^{\prime}=$ $V_{2} \cup U_{s}^{\prime}$. Clearly, $\left|V_{s}^{\prime}\right|=\overline{3} u_{s}+t$.

Claim 3.6. The subtournament induced by the set V_{s}^{\prime} is C_{4}-free.
Proof. On the contrary, let C^{\prime} be a 4-cycle of $T\left[V_{s}^{\prime}\right]$ with $C^{\prime}=(w, x, y, z, w)$. Since $T\left[V_{2}\right]$ is C_{4}-free, two cases are possible.

Case 1. C^{\prime} contains exactly one vertex of U_{s}^{\prime}. Let w be this vertex; there exists i with $1 \leq i \leq u_{s}$ such that $w \in V\left(C_{i}\right)$, and $w \neq a_{i}$. Since $e_{\Omega_{s}}\left(a_{i}\right) \geq 4$, there exists an arc ω_{j} of $E_{\Omega_{s}}\left(a_{i}\right)$ disjoint from x, y, z. Since $f_{W}\left(\omega_{j}\right) \geq 5$, there exists a vertex $a \in W$ distinct from x, y, z such that $a \in F_{W}\left(\omega_{j}\right)$. Clearly, C^{\prime} and $C^{\prime \prime}$, where $C^{\prime \prime}=\left(a_{i}, x_{j}, a, x_{t+1-j}, a_{i}\right)$, are disjoint 4-cycles. Now $\left(S \backslash\left\{C_{i}\right\}\right) \cup\left\{C^{\prime}, C^{\prime \prime}\right\}$ is a collection of $s+1$ disjoint 4 -cycles, a contraction.

Case 2. C^{\prime} contains at least two vertices of U_{s}^{\prime}. Denote the set of these vertices by Γ. Then $2 \leq|\Gamma| \leq 4$. Let m be the number of the 4 -cycles of Δ_{s} containing at least one vertex of Γ. Then $1 \leq m \leq|\Gamma| \leq 4$. Without loss of generality, we may suppose that C_{1}, \ldots, C_{m} with $C_{i}=\left(a_{i}, b_{i}, u_{i}, v_{i}, a_{i}\right)$ for $1 \leq i \leq m$ are these 4 -cycles. Note that $a_{i} \in U_{s}$. Since $e_{\Omega_{s}}\left(a_{i}\right) \geq 4$, there exist m independent arcs, say $\omega_{1}, \ldots, \omega_{m}$, of Ω_{s} which are disjoint with $V\left(C^{\prime}\right) \backslash \Gamma$, such that $\omega_{i} \in e_{\Omega_{s}}\left(a_{i}\right)$ for each $1 \leq i \leq m$. Since $f_{W}\left(\omega_{i}\right) \geq 5$ (for each $1 \leq i \leq m$), there exist m vertices $\gamma_{1}, \ldots, \gamma_{m}$ of W distinct from the vertices of $V\left(C^{\prime}\right) \backslash \Gamma$ such that $\gamma_{i} \in F_{W}\left(\omega_{i}\right)$. Clearly, $C^{i}=\left(a_{i}, x_{i}, \gamma_{i}, x_{t+1-i}, a_{i}\right), 1 \leq i \leq m$, and C^{\prime} are $m+1$ disjoint 4-cycles. Now $\left(S \backslash\left\{C_{1}, \ldots, C_{m}\right\}\right) \cup\left\{C^{\prime}, C^{1}, \ldots, C^{m}\right\}$ is a collection of $s+1$ disjoint 4-cycles, a contraction.

Since the subtournament $T\left[V_{s}^{\prime}\right]$ is C_{4}-free, let $\left(\alpha_{1}, \ldots, \alpha_{\gamma_{s}}\right)$ be a Hamiltonian path of $T\left[V_{s}^{\prime}\right]$, where $\gamma_{s}=3 u_{s}+t=\left|V_{s}^{\prime}\right|$.
Claim 3.7. There exists a set S^{\prime} of s disjoint 4 -cycles such that $\left\{\alpha_{1}, \alpha_{2}, \alpha_{\gamma_{s}-1}\right.$, $\left.\alpha_{\gamma_{s}}\right\} \subseteq V\left(T_{s^{\prime}}\right)$.
Proof. Let p be the number of the vertices of $\alpha_{1}, \alpha_{2}, \alpha_{\gamma_{s}-1}, \alpha_{\gamma_{s}}$ which are in U_{s}^{\prime}. When $p=0$, we take $S^{\prime}=S$ and clearly the result is proved. Now suppose
that $p \geq 1$ and let m be the number of the 4 -cycles of Δ_{s} containing at least one vertex of $\alpha_{1}, \alpha_{2}, \alpha_{\gamma_{s}-1}, \alpha_{\gamma_{s}}$. Without loss of generality, we may suppose that $C_{1}, C_{2}, \ldots, C_{m}$ (with $\left.C_{i}=\left(a_{i}, b_{i}, u_{i}, v_{i}, a_{i}\right), 1 \leq i \leq m\right)$ are these 4 -cycles. Note that $a_{i} \in U_{s}$ for each $1 \leq i \leq m$. We have $1 \leq m \leq p \leq 4$ with $m \geq 2$ when $p=4$. Since $e_{\Omega_{s}}\left(a_{i}\right) \geq 4$ for each $1 \leq i \leq m$, there exist m independent arcs, without loss of generality, say $\omega_{1}, \ldots, \omega_{m}$, of Ω_{s} with $\omega_{i} \in E_{\Omega_{s}}\left(a_{i}\right)$ for each $1 \leq i \leq m$. Since $f_{W}\left(\omega_{i}\right) \geq 5$, there exist m distinct vertices $y_{i} \in W$ for each $1 \leq i \leq m$. This yields m disjoint 4 -cycles $C_{i}^{\prime}=\left(a_{i}, x_{i}, y_{i}, x_{t+1-i}, a_{i}\right)$ for each $1 \leq i \leq m$, and these 4 -cycles do not contain any vertex of $\alpha_{1}, \alpha_{2}, \alpha_{\gamma_{s}-1}, \alpha_{\gamma_{s}}$. Then $S^{\prime}=\left(S \backslash\left\{C_{1}, \ldots, C_{m}\right\}\right) \cup\left\{C_{1}^{\prime}, \ldots, C_{m}^{\prime}\right\}$ is a set of s disjoint 4 -cycles. The vertices $\alpha_{1}, \alpha_{2}, \alpha_{\gamma_{s}-1}, \alpha_{\gamma_{s}}$ are in $T_{s^{\prime}}$, and the vertices of $V\left(T_{s^{\prime}}\right)$ are vertices of $T\left[V_{s}^{\prime}\right]$.

Recall that T_{s} is the C_{4}-free subtournament induced by the vertices of T not contained in a 4 -cycle of S, and that the vertices of T_{s} can be ordered into a Hamiltonian path which we denote here by $\left(x_{1}^{S}, \ldots, x_{t}^{S}\right)$. Clearly, this notation (and the other using S as subscript or superscript) is valid for every set of s disjoint 4-cycles.

Let $N=V_{s}^{\prime}, M=V\left(T_{s^{\prime}}\right), P=\left(\alpha_{1}, \ldots, \alpha_{\gamma_{s}}\right)$, by Claim 3.7 and Lemma 2.1, it is easy to see that
Claim 3.8. There exists a set S^{\prime} of s disjoint 4 -cycles such that $x_{1}^{S^{\prime}}=\alpha_{1}$, $x_{t}^{S^{\prime}}=\alpha_{\gamma_{s}}$.

Now we can achieve the proof of Theorem 1.2. We work on the set S^{\prime} of s disjoint 4-cycles constructed in Claim 3.7. Here $\Omega_{s^{\prime}}$ is the set of the independent $\operatorname{arcs} \omega_{i}^{S^{\prime}}$ with $\omega_{i}^{S^{\prime}}=\left(x_{i}^{S^{\prime}}, x_{t+1-i}^{S^{\prime}}\right)$ for each $1 \leq i \leq 7$.

First, since $e\left(\omega_{1}^{S^{\prime}}\right) \geq t+3 u_{s}-3$, we have $e\left(\Omega_{s^{\prime}}\right) \geq 7 t-63+3 u_{s}$.
On the other hand, since $e_{\Omega_{s^{\prime}}}(C) \leq 7$ when C is a 4 -cycle of $\Delta_{s^{\prime}}$, and $e_{\Omega_{s^{\prime}}} \leq 4$ when C is not a 4 -cycle of $\Delta_{s^{\prime}}$ (by Claim 3.5), we deduce $e\left(\Omega_{s^{\prime}}\right) \leq 7 u_{s^{\prime}}+4\left(s-u_{s^{\prime}}\right)$. It follows that $7 t-63+3 u_{s} \leq 3 u_{s^{\prime}}+4 s$.

As $u_{s^{\prime}} \leq u_{s}$ (by the maximality of u_{s}), it follows that $7 t-63+3 u_{s} \leq 3 u_{s}+4 s$. Hence $7 t-63 \leq 4 s$, which gives $s \geq \frac{21}{16} r-\frac{35}{16}>\frac{21}{16} r-\frac{10}{3}$. So Theorem 1.2 is proved.

Acknowledgment

The authors are indebted to anonymous referees for their valuable comments and suggestions.

References

[1] Y. Bai, B. Li and H. Li, Vertex-disjoint cycles in bipartite tournaments, Discrete Math. 338 (2015) 1307-1309.
doi:10.1016/j.disc.2015.02.012
[2] J. Bang-Jensen, S. Bessy and S. Thomasse, Disjoint 3-cycles in tournaments: a Proof of the Bermond-Thomassen conjecture for tournaments, J. Graph Theory 75 (2014) 284-302.
doi:10.1002/jgt. 21740
[3] J.C. Bermond and C. Thomassen, Cycles in digraphs-a survey, J. Graph Theory 5 (1981) 1-43. doi:10.1002/jgt. 3190050102
[4] S. Bessy, N. Lichiardopol and J.S. Sereni, Two proofs of the Bermond-Thomassen conjecture for tournaments with bounded minimum in-degree, Discrete Math. 310 (2010) 557-560.
doi:10.1016/j.disc.2009.03.039
[5] N. Lichiardopol, A. Pór and J.S. Sereni, A step toward the Bermond-Thomassen conjecture about disjoint cycles in digraphs, SIAM J. Discrete Math. 23 (2009) 979-992.
doi:10.1137/080715792
[6] N. Lichiardopol, Vertex-disjoint cycles in regular tournaments, Discrete Math. 312 (2012) 1927-1930. doi:10.1016/j.disc.2012.03.009
[7] N. Lichiardopol, Vertex-disjoint directed cycles of prescribed length in tournaments with given minimum out-degree and in-degree, Discrete Math. 310 (2010) 2567-2570. doi:10.1016/j.disc.2010.06.024
[8] C. Thomassen, Disjoint cycles in digraphs, Combinatorica 3 (1983) 393-396. doi:10.1007/BF02579195

Received 30 June 2016
Revised 2 January 2017
Accepted 3 January 2017

[^0]: ${ }^{1}$ The author's work is supported by NNSF of China (No. 11271230, 11671232).
 ${ }^{2}$ Corresponding author.

