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Abstract

In this paper, we prove that for an integer r > 1, every regular tour-
nament 7' of degree 3r — 1 contains at least %r — 13—0 disjoint directed 4-
cycles. Our result is an improvement of Lichiardopol’s theorem when taking
g = 4 [Discrete Math. 310 (2010) 2567-2570]: for given integers ¢ > 3 and
r > 1, a tournament 7" with minimum out-degree and in-degree both at least
(¢ — 1)r — 1 contains at least r disjoint directed cycles of length g.
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1. INTRODUCTION

This paper considers only digraphs. For a digraph D, we write V(D) for the
vertex set of D, and the order of D is the cardinality of V(D). We write A(D)
for the set of the arcs of D. Two or several subgraphs are independent or disjoint
if they are pairwise vertex-disjoint.

We say that a vertex y is an out-neighbor (in-neighbor) of a vertex x if (x,y)
(respectively (y,z)) is an arc of D. The number of out-neighbors of x is the
out-degree d* (z) of x, and the number of in-neighbors of z is the in-degree d~ (z)
of z. The minimum out-degree 6T (D) of D is the smallest of the out-degrees of
the vertices of D, and the minimum in-degree §~ (D) of D is the smallest of the
in-degrees of the vertices of D.
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A path of length m of a digraph D is a sequence P with P = (z1,...,Zm+1)
of distinct vertices of D such that (z;,x;41) € A(D) for 1 < i < m. If {z1,...,
Tma1} = V(D), then P is a Hamiltonian path. A cycle of length m in D is
a sequence C with C' = (x1,...,%m,x1) such that the vertices x1,...,x,, are
distinct, (zj,zit1) € A(D) for 1 < i < m — 1, and (zp,21) € A(D). If
{z1,...,2m} = V(D), then C is a Hamiltonian cycle. A cycle of length 3 is
a triangle. A triangle (z,y, z, x) will often be denoted by (z,u, z), where u is the
arc (y, z).

A tournament is a digraph T such that for any two distinct vertices x and
y, exactly one of the ordered pairs (x,y) and (y,z) is an arc of T. A regular
tournament of degree d is a tournament T' such that d*(z) = d™ (x) = d for every
vertex x. Necessarily the order of T'is 2d + 1. For a subset S of V(T'), T[S]
denotes the subtournament induced by the vertices of S.

It is well-known (Redei’s Theorem) that any tournament contains a Hamil-
tonian path, and (Camion’s Theorem) a tournament is strong if and only if it
contains a Hamiltonian cycle. It is also known (Moon’s Theorem) that a strong
tournament 7' of order |T'| is pancyclic, i.e., it has cycles of all lengths 3,...,|T].
In particular this means that if C'is a g-cycle of T', then the tournament TV (C')]
has cycles of all lengths 3,...,q. A Cy-free tournament is a tournament 7' without
a g-cycle.

In 1981, Bermond and Thomassen [3] conjectured that for any positive integer
r, any digraph of minimum out-degree at least 2r — 1 contains at least r disjoint
directed cycles. It is trivially true when r = 1. It was proved by Thomassen |[§]
when r = 2 in 1983. The case r = 3 was proved by Lichiardopol et al. in [5]. It is
still open for large values of r. In 2014, Bang-Jensen et al. proved the conjecture
for tournaments in [2]. Lichiardopol proposed a conjecture for tournaments [7]: for
given integers ¢ > 3 and r > 1, a tournament 7" with minimum out-degree at least
(¢ — 1)r — 1 contains at least r disjoint g-cycles. In 2012, Lichiardopol [6] proved
that for an integer r > 1, every regular tournament 7" of degree 2r — 1 contains at
least %7’ — % disjoint directed cycles. By pancyclic property of tournaments, the
following is easy to see.

Theorem 1.1. For an integer r > 1, every reqular tournament T of degree 2r — 1
contains at least %r — % disjoint triangles.

We consider the number of 4-cycles in a regular tournament and prove the
following theorem.

Theorem 1.2. For an integer v > 1, every reqular tournament T with degree
3r — 1 contains at least %r — 1—30 disjoint 4-cycles.

In 2012, Lichiardopol [7] proved the following theorem.
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Theorem 1.3 ([7]). For given integers ¢ > 3 and r > 1, a tournament T with
min {61(T),6(T)} > (¢ — 1)r — 1 contains at least r disjoint q-cycles.

If we take ¢ = 4, it is easy to see

Theorem 1.4. For an integer v > 1, every reqular tournament T with degree
3r — 1 contains at least r disjoint 4-cycles.

Our result improves this lower bound to %T‘ — 1—30.

There are many analogous results on bipartite tournaments, for example, Bai
et al. in [1] proved the following theorem.

Theorem 1.5 (|1]). Let BT be a bipartite tournament with minimum out-degree
at least qr—1 and let ty, ..., t,. € [4,2q] be any r even integers. Then BT contains
r disjoint cycles of length t),...,t,. such that t; = t; for t; = 0 (mod 4) and
th e {ti,t; + 2} fort; =2 (mod 4), where 1 <i <r.

2. LEMMA

In this section, we list a lemma to prove Theorem 1.2.

Lemma 2.1. Let M be a proper subset of N with |[N| =n and |M| = m. Suppose
that T[N is Cy-free and P = (x1,x2,...,Tn_1,%y) is a Hamiltonian path of T[N].
If {z1,22,2p_1,2,} C M, then there is a Hamiltonian path Q = (yi,...,Ym) of
T[M] such that y1 = 1, Ym = Tn.

Proof. We construct @ from P by deleting vertices that are not contained in M
by the following two steps.

Step 1. (1) If there exists x; for ¢ > 3 such that none of z;, zj11,...,z; belongs
to M (j >i+1), delete z, zi41,...,2; from P.

(2) If there exists x; for ¢« > 3 such that x; ¢ M,z;_1,z,41 € M and
(zi—1,211) € A(T), delete x; from P. Do (1) and (2) until there are no such
vertices.

We claim that after Step 1 the remaining vertices can still form a path as
the prior order. It is obvious for Step 1(2). For Step 1(1), we can prove that
(xi—1,2j41) € A(T). Suppose on the contrary that (z;i1,2z;—1) € A(T), then
{i—1, @i, ..., xj,xj41, 21} is a cycle of length at least 4. By property of pan-
cyclic, it has a 4-cycle, a contradiction (since T'[N] is Cy-free). Denote this new
path by Q" = (z1,..., 2). Clearly, @ has the following property: if 2; ¢ M then
Zi—1,xiy1 € M and (xi41,2i-1) € A(T). Since {z1,x2,p—1,2n} C M, we have
21 =X1,22 = X2, 2—1 = Tn—1,4 = Tn.

Step 2. If none of zj, zj12, ..., zj42; belongs to M (i > 0), but z;_1, zj42i41 € M,
we delete zj,zj12, ..., 242 from @’ and replace the segment (z;j_2, ..., 2zjt2i+2)
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by (Zj_z, Zj42i41s Zj42i—1y- -5 25415 Zj—1, Zj+2i+2). Repeat the procedure until
there are no such vertices.

Since z1 = 1,29 = T9,2]_1 = Tpn_1,2] = Tp, j > 3 and j+2¢ < [ —2, we have
j—2>1and j+ 2i+ 2 <. Denote the path after Step 2 by @ = (y1,.-.,Ym)-
Then it is the desired Hamiltonian path. [

3. PROOF OF THEOREM 1.2

The proof of this theorem is inspired mainly by the proof of the main theorem in
[6]. We begin with a preliminary result. Let (x,y) be an arc of a tournament T
of order n with n > 3. We define:

B(z,y) ={z € V(T): (z,2) € A(T), (y,2) € AT},
E(z,y) ={2 € V(T) : (z,2) € A(T), (y,2) € A(T)},
F(z,y) ={z€V(T): (z,2) € A(T),(z,y) € A(T)}.

Observe that E(z,y) is the set of vertices z such that z,y and z form a
triangle. We denote by b(x,y),e(z,y) and f(z,y) the respective cardinalities
of these three sets. It is easy to see that d*(z) = b(z,y) + f(z,y) + 1 and
dt(y) = b(z,y) + e(z,y). It follows that e(z,y) = f(z,y) + d"(y) — d"(z) + 1.
Hence if T is regular, then we have

(1) e(:r,y):f(x,y)—i-l

If u = (z,y), then E(z,y),e(z,y), F(z,y) and f(x,y) will also be denoted by
E(u), e(u), F(u) and f(u), respectively.

The order of the regular tournament 7" of degree 3r —1 is 6r— 1. By Theorem
1.4, T contains at least r disjoint 4-cycles. When 7 < 10, it holds that r > 2 r—%,
and so Theorem 1.2 holds in this case. So from now on, we suppose r > 11

Let s be the maximum number of disjoint 4-cycles of T. In particular, let
S = {C1,...,Cs} be a set of s disjoint 4-cycles with C; = (a4, b;, u;, vi, a;) for
1 <i<s. Let us define Vi = (J;<;<, V(Ci) and Vo = V(T') \ V4. Let T be the
subtournament of 7" induced by the vertices of Va. Its vertices can be ordered into
a Hamiltonian path (z1,...,x;) where t = 6r — 1 — 4s. Note that T is a Cy-free
tournament by the maximality of s.

Suppose ﬁrst that ¢ < 20. ThlS means 6r —1 —4s < 20 so s > 2r — 22, Since
r>11 1rnphes 5T — 2 >3 21 , it follows that s > — 5 and Theorem 1.2
holds in this case.

167”

So, from now on, we suppose that ¢ > 21 (and r > 11).
Since Ty is Cy-free, it is easy to see the following.
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Claim 3.1. For 1 <i<t—3,j>i+3, (z;,2;) € A(T).

Since t > 21, by Claim 3.1, it is easy to see that w; = (z;, v441-i) € A(T) for
each 1 <4 < 7. Denote by €, the set of the independent arcs wi, ..., wr.

Claim 3.2. For1 <i<7, f(w;)) >t—2i—2, e(w;) >t—2i— 1.

Proof. Since Ts is Cy-free, by Claim 3.1, there are at most two vertices (they
are Tji2,%i—;—1) between x; and x;y1—; that do not belong to F'(w;). So we get
f(wi) >t —2i— 2. By equation (1), we get e(w;) >t —2i — 1. O

Put e(€2s) = 3 ;<7 e(w;). Then we have

Claim 3.3. e(Q,) > 7t — 63.

Proof. By Claim 3.2, we get e(w;) > t —2i — 1. It follows that e(Qs) =
21957 e(w;) > 21957(25 —2i—1),s0 e(Qs) > Tt —63. O

Let W = {zs,...,z;_7} be the set of vertices between z7 and z;_¢, Fyy(w;)
denote the vertices in W that belong to F(w;), and fi(w;) = |Fw(w;)|. Since
t > 21, there are at least seven vertices between x7 and x;_g. Similarly to the

proof of Claim 3.2, there are at least five of these vertices in M belonging to
F(w;), for each 1 <7 <7, ie., fiy(w;) > 5.

Claim 3.4. For each 1 <i <7, E(w;) NV, = 0.

Proof. If E(w;) NV, # 0, then there exists a vertex x; such that z; € E(w;) N Va.
Since fw (w;) > 5, there is a vertex xy with k # j such that xp € Fyy(w;). Thus
(@i, Tk, Tey1—i, T4, 2;) is a 4-cycle of Ty, a contradiction. O

By Claim 3.4, the set E(w;) does not contain any vertex of T.

For a vertex x € V1, let Eq_(x) denote the set of the arcs w; € €5 such that
x € E(w;), and put eq, (z) = |Eq,(x)|. For a 4-cycle C; of S, let eq,(C;) =
ZxEV(C’i) €Qs (.T)

We then get e(Q2s) = >y, €a,(z) = X2 i €q,(Ci), by double-counting,
and interchanging the order of summation. Then we get

Claim 3.5. If a vertex v of a 4-cycle C of S satisfies eq (v) > 2, then eq, (w) =0
for every vertex w of C' distinct from v.

Proof. 1If eq (w) > 0, then there exists an arc w; of Q, such that w € E(wj).
Since eq, (v) > 2, there exists an arc wy of Qg with k& # j such that v € E(wy).
Since fw(w;) > 5 and fiy(wg) > 5, there exist two distinct vertices z,y € W
such that * € Fy(wj),y € Fw(wg). Clearly, " = (w,zj,z,x441-j,w) and
C" = (v, xk, Yy, Te41-k, v) are two disjoint 4-cycles. Now (S\{C})U{C",C"} is a
collection of s + 1 disjoint 4-cycles, which is impossible by the maximality of s.
So the result is proved. O
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Let Us = {x € Vi : eq,(x) > 4}, and let ug = |Us|. Clearly, this claim implies
that every 4-cycle C of S which is disjoint from Us, satisfies eq (C) < 4. It implies
also that every 4-cycle of S contains at most one vertex of Us.

Now, we choose S such that ug is as large as possible. Suppose first that
us = 0. Since e(Qs) = > ;< €0.(Ci), from Claim 3.3 and Claim 3.5, we get
Tt — 63 < 4s. That is 7(6r — 1 — 4s) — 63 < 4s, so 32s > 42r — 70. Hence
s> %r — :13—2 > %r — 1—3?. Therefore, Theorem 1.2 holds in this case.

Suppose now ug > 0. By Claim 3.5, without loss of generality, we may
suppose that the us vertices of U are ay, ..., a, . We denote Ay = {C1,...,Cy,}.
Note that Ay C S when us < s. For each 4-cycle C; of As we have eq (C;) =
eq,(a;) <T.

We denote Ug = J; ;< i, i, vi} (where V(C;) = {ai, bi, u;,v;}) and V| =
Vo UU!. Clearly, |V!| = 3us + t.

Claim 3.6. The subtournament induced by the set V! is Cy-free.

Proof. On the contrary, let C’ be a 4-cycle of T[V!] with C" = (w,z,y, z,w).
Since T[V3] is Cy-free, two cases are possible.

Case 1. C' contains exactly one vertex of U.. Let w be this vertex; there
exists 7 with 1 < ¢ < u, such that w € V(C;), and w # a;. Since eq, (a;) > 4, there
exists an arc w; of Fq (a;) disjoint from z,y, z. Since fyy(w;) > 5, there exists
a vertex a € W distinct from x,y, z such that a € Fy(w;). Clearly, C' and C”,
where C" = (a;,xj,a, 1114, a;), are disjoint 4-cycles. Now (S'\ {C;})U{C’,C"}
is a collection of s + 1 disjoint 4-cycles, a contraction.

Case 2. C' contains at least two vertices of U.. Denote the set of these verti-
ces by I'. Then 2 < |T'| < 4. Let m be the number of the 4-cycles of A4 containing
at least one vertex of I'. Then 1 < m < |T'| < 4. Without loss of generality, we
may suppose that Ci,...,Cy, with C; = (a;, b;, ui, v, a;) for 1 <i < m are these
4-cycles. Note that a; € Us. Since eq,(a;) > 4, there exist m independent arcs,
say wi, . .., wm, of Qg which are disjoint with V/(C")\ T, such that w; € eq,(a;) for
each 1 < i < m. Since fyy(w;) > 5 (for each 1 < i < m), there exist m vertices
M-« Ym of W distinct from the vertices of V(C”) \ T such that v; € Fy(w;).
Clearly, C* = (a;, zi, Vi, Tr41-i,a;), 1 <i < m, and C' are m + 1 disjoint 4-cycles.
Now (S\{C1,...,CnHU{C’,C*,...,C™} is a collection of s+ 1 disjoint 4-cycles,
a contraction. O

Since the subtournament T'[VY] is Cy-free, let (a1, ..., an,) be a Hamiltonian

path of T[V]], where 75 = 3us +t = |V/|.

Claim 3.7. There exists a set S’ of s disjoint 4-cycles such that {aq, oz, 0y, —1,
Oé%} Q V(TS/).

Proof. Let p be the number of the vertices of ay, a2, o, _1,a,, which are in
U!. When p = 0, we take S’ = S and clearly the result is proved. Now suppose
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that p > 1 and let m be the number of the 4-cycles of A; containing at least
one vertex of oy, ag, oy, 1, . Without loss of generality, we may suppose that
C1,Cq,...,Cp (with C; = (a4, bi,ui,vi,a;), 1 <i < m) are these 4-cycles. Note
that a; € Ug for each 1 < 7 < m. We have 1 < m < p < 4 with m > 2
when p = 4. Since eq_(a;) > 4 for each 1 < i < m, there exist m independent
arcs, without loss of generality, say w1, ...,wn, of Qg with w; € Eq_(a;) for each
1 <i < m. Since fiy(w;) > 5, there exist m distinct vertices y; € W for each
1 < i < m. This yields m disjoint 4-cycles C! = (a;, z;,Yi, Tt+1-i,a;) for each
1 < ¢ < m, and these 4-cycles do not contain any vertex of a1, ag, oy, —1,0,.
Then S = (S\ {C1,...,Cn}) U{CY,...,Cl,} is a set of s disjoint 4-cycles. The
vertices o, g, ay,—1, ay, are in Ty, and the vertices of V(Ty) are vertices of
T[V]]. O

S

Recall that T} is the Cy-free subtournament induced by the vertices of T not
contained in a 4-cycle of S, and that the vertices of Ts can be ordered into a
Hamiltonian path which we denote here by (m*lg yee ,xf ). Clearly, this notation
(and the other using S as subscript or superscript) is valid for every set of s
disjoint 4-cycles.

Let N =V M =V (Ty),P = (a1, ..., ), by Claim 3.7 and Lemma 2.1, it

is easy to see that

Claim 3.8. There exists a set S’ of s disjoint 4-cycles such that :):f/ = o,
S/
"'Ut — Ot-ys .

Now we can achieve the proof of Theorem 1.2. We work on the set S” of s
disjoint 4-cycles constructed in Claim 3.7. Here €2y is the set of the independent
arcs w? with w¥’ = (xf/,xfilfi) for each 1 <¢ < 7.

First, since e(wy’) > t + 3us — 3, we have e(Qy) > 7t — 63 + 3u,.

On the other hand, since eq , (C') < 7 when C'is a 4-cycle of Ay, and eq , < 4
when C is not a 4-cycle of Ay (by Claim 3.5), we deduce e(Qy) < Tug +4(s—uy).
It follows that 7t — 63 + 3us < 3uy + 4s.

As ug < ug (by the maximality of us), it follows that 7t —63 4 3us < 3us+4s.
Hence 7t — 63 < 4s, which gives s > %r — % > %r — %. So Theorem 1.2 is
proved. [
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