THE SMALLEST HARMONIC INDEX OF TREES WITH GIVEN MAXIMUM DEGREE

Reza Rasi
AND
Seyed Mahmoud Sheikholeslami
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
e-mail: \{r.rasi;s.m.sheikholeslami\}@azaruniv.edu

Abstract

The harmonic index of a graph G, denoted by $H(G)$, is defined as the sum of weights $2 /[d(u)+d(v)]$ over all edges $u v$ of G, where $d(u)$ denotes the degree of a vertex u. In this paper we establish a lower bound on the harmonic index of a tree T.

Keywords: harmonic index, trees.
2010 Mathematics Subject Classification: 05C12, 92E10.

1. InTRODUCTION

Let G be a simple connected graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of G is denoted by $n=n(G)$ and the size $|E|$ of G is denoted by $m=m(G)$. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G) \mid u v \in E(G)\}$. The degree of a vertex $v \in V$ is $d_{v}=d(v)=d_{G}(v)=|N(v)|$. The minimum degree and the maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. An leaf of a tree T is a vertex of degree 1 , a stem is a vertex adjacent to a leaf, whereas a strong stem is a stem adjacent to at least two leaves. An end stem is a stem whose all neighbors with exception at most one are leaves. For every two vertices x, y of a tree T, we denote the unique (x, y)-path by $x T y$. A path $P=u_{0} u_{1} \cdots u_{k}(k \geq 1)$ in G is called a pendant path if $d_{u_{0}} \geq 3, d_{u_{k}}=1$ and the degree of any other
vertex of the path is 2 . To contract an edge e of a graph G, is to delete the edge and then identify its ends. The resulting graph is denoted by G / e. Let $\mathcal{T}_{n, \Delta}$ be the family of trees T of order n and maximum degree Δ.

A large variety of degree based topological indices has been defined in the mathematical and mathematico-chemical literature; for details we refer the reader to $[4,6]$. Here, we focus on the harmonic index. For a simple graph G, the harmonic index of G, denoted $H(G)$, is defined in [3] as the sum of weights $2 /[d(u)+d(v)]$ of all edges $u v$ of G. That is, $H(G)=\sum_{u v \in E(G)} \frac{2}{d(u)+d(v)}$. For some related works see $[9,17,24-28,30-33]$. Wu et al. [20] established a lower bound on $H(G)$ of a graph with minimum degree two. Favaron et al. [5] investigated the relation between graph eigenvalues of graphs and the harmonic index. Deng et al. [1] considered the relation between $H(G)$ and the chromatic index $\chi(G)$, and proved that $\chi(G) \leq 2 H(G)$. Liu [13] proposed a conjecture concerning the relation between the harmonic index and the diameter of a connected graph, and showed that the conjecture is true for trees. Relationships between the harmonic index and several other topological indices were established in [8, 22, 29]. For additional results on this index, see $[11,12,14-17,21]$.

In this paper we establish a lower bound for the harmonic index of a tree T in terms of its order and maximum degree. Our result is an extension of some well-known lower bound on the harmonic index of a tree T.

2. A Lower Bound on the Harmonic Index of Trees

In this section we prove the following lower bound for the harmonic index of a tree T of order n with maximum degree Δ.

Theorem 1. Let $\Delta \geq 3$ and $T \in \mathcal{T}_{n, \Delta}$. If $n \equiv r(\bmod \Delta-1)$, then

$$
H(T) \geq \begin{cases}2\left(\frac{n(\Delta-2)}{\Delta^{2}-1}+\frac{\Delta-2}{2 \Delta-2}+\frac{n-(\Delta-1)^{2}}{2 \Delta(\Delta-1)}\right) & \text { if } r=0 \text { and } n>(\Delta-1)(\Delta-2), \\ 2\left(\frac{(\Delta-1)^{2}-n}{(\Delta-1)^{2}}+\frac{n-\Delta+1}{\Delta+1}+\frac{n-\Delta+1}{2(\Delta-1)^{2}}\right) & \text { if } r=0 \text { and } n \leq(\Delta-1)(\Delta-2), \\ 2\left(\frac{n(\Delta-2)+1}{\Delta^{2}-1}+\frac{\Delta-1}{2 \Delta-1}+\frac{n-1-\Delta(\Delta-1)}{2 \Delta(\Delta-1)}\right) & \text { if } r=1 \text { and } n>(\Delta-1)^{2}+1, \\ 2\left(\frac{\Delta(\Delta-1)-n+1}{\Delta(\Delta-1)}+\frac{n-\Delta}{\Delta+1}+\frac{n-\Delta}{(2 \Delta-1)(\Delta-1)}\right) & \text { if } r=1 \text { and } n \leq(\Delta-1)^{2}+1, \\ 2\left(\frac{n(\Delta-2)+2}{\Delta^{2}-1}+\frac{n-\Delta-1}{2 \Delta(\Delta-1)}\right) & \text { if } r=2, \\ 2\left(\frac{n(\Delta-2)+r-\Delta+1}{\Delta^{2}-1}+\frac{r-1}{\Delta+r-1}+\frac{n-(r-1) \Delta-1}{2 \Delta(\Delta-1)}\right) & \text { if } r \geq 3 \text { and } n \geq \Delta(r-1)+1, \\ 2\left(\frac{(r-1) \Delta-n+1}{r(\Delta-1)}+\frac{n-r}{\Delta+1}+\frac{n-r}{(\Delta+r-1)(\Delta-1)}\right) & \text { if } r \geq 3 \text { and } n<\Delta(r-1)+1\end{cases}
$$

For notational convenience, let $h_{\omega}: E(T) \rightarrow \mathbb{R}$ denote a function defined by $h_{\omega}(u v)=1 /[d(u)+d(v)]$. Hence $H(T)=2 \sum_{e \in E(G)} h_{\omega}(e)$. We begin with some lemmas.

Lemma 2. Let $T \in \mathcal{T}_{n, \Delta}$. If u and v are two adjacent vertices each of degree at least two in T with $d_{T}(u)+d_{T}(v) \leq \Delta+1$, then there exists a tree T^{\prime} of order n with maximum degree $\Delta(T)$ such that $H\left(T^{\prime}\right)<H(T)$.

Proof. Let $T^{\prime}:=(T / e)+u p$ be the tree obtained from T by contracting the edge $e=u v$ and adding a pendant edge $u p$. Clearly, T^{\prime} is a tree of order n with $\Delta\left(T^{\prime}\right) \leq \Delta(T)$. By the assumptions and the constriction of T^{\prime}, we have $d_{T}(u) \leq \Delta-1, d_{T}(v) \leq \Delta-1$, and $d_{T^{\prime}}(u) \leq \Delta$. If $w \in V(T)$ is a vertex with maximum degree $\Delta(T)$, then we have $w \notin\{u, v\}$ and $d_{T}(w)=d_{T^{\prime}}(w)$. Hence $\Delta\left(T^{\prime}\right)=\Delta(T)$. Assume that $d(u)=\alpha, d(v)=\beta, N(u)=\left\{x_{1}, \ldots, x_{\alpha-1}, v\right\}$, $N(v)=\left\{y_{1}, \ldots, y_{\beta-1}, u\right\}$ and $S=\{x u \mid x \in N(u)\} \cup\{y v \mid y \in N(v)\}$. Then we have

$$
\frac{1}{2} H(T)=\sum_{e \in E(T)-S} h_{\omega}(e)+\frac{1}{\alpha+\beta}+\sum_{i=1}^{\alpha-1} \frac{1}{d\left(x_{i}\right)+\alpha}+\sum_{i=1}^{\beta-1} \frac{1}{d\left(y_{i}\right)+\beta}
$$

and
$\frac{1}{2} H\left(T^{\prime}\right)=\sum_{e \in E(T)-S} h_{\omega}(e)+\frac{1}{\alpha+\beta}+\sum_{i=1}^{\alpha-1} \frac{1}{d\left(x_{i}\right)+\alpha+\beta-1}+\sum_{i=1}^{\beta-1} \frac{1}{d\left(y_{i}\right)+\alpha+\beta-1}$.
Clearly $H\left(T^{\prime}\right)<H(T)$ and the proof is complete.
Lemma 3. Let $T \in \mathcal{T}_{n, \Delta}$, let u and v be two vertices of T with $d_{T}(u)=\alpha<\beta=$ $d_{T}(v)$ and let $x \in N(u)$ and $y \in N(v)$ such that $x, y \notin u T v$ or $x, y \in u T v$. If $d_{T}(x)<d_{T}(y)$, then there exists a tree T^{\prime} of order n with maximum degree $\Delta(T)$ such that $H\left(T^{\prime}\right)<H(T)$.

Proof. Let T^{\prime} be the tree obtained from T by removing the edges $u x, v y$ and adding new edges $v x$, uy (see Figure 1). Clearly, T^{\prime} is a connected graph of order n with $n-1$ edges and so T^{\prime} is a tree. Also, we have $d_{T}(z)=d_{T^{\prime}}(z)$ for each $z \in V(T)$ and hence $\Delta\left(T^{\prime}\right)=\Delta(T)$. Let $S=\{u x, v y\}$. Then we have

$$
\frac{1}{2} H(T)=\sum_{e \in E(T) \backslash S} h_{\omega}(e)+\frac{1}{\alpha+d_{T}(x)}+\frac{1}{\beta+d_{T}(y)}
$$

and

$$
\frac{1}{2} H\left(T^{\prime}\right)=\sum_{e \in E(T) \backslash S} h_{\omega}(e)+\frac{1}{\beta+d_{T}(x)}+\frac{1}{\alpha+d_{T}(y)} .
$$

It follows from $\alpha<\beta$ and $d_{T}(x)<d_{T}(y)$ that $H\left(T^{\prime}\right)<H(T)$.

Figure 1. The switching process used in the proof of Lemma 3.
Lemma 4. Let $T \in \mathcal{T}_{n, \Delta}$ be an extremal tree with the minimum harmonic index in $\mathcal{T}_{n, \Delta}$. If u and v are two vertices of T of degree α with $2 \leq \alpha \leq \Delta-1$, then there exists an extremal tree T^{*} with the minimum harmonic index in $\mathcal{T}_{n, \Delta}$ such that $V\left(T^{*}\right)=V(T), d_{T}(z)=d_{T^{*}}(z)$ for each $z \in V(T)$, and $d_{T^{*}}(x) \geq d_{T^{*}}(y)$ for each $x \in N_{T^{*}}(u)-V(u T v)$ and $y \in N_{T^{*}}(v)-V(u T v)$.
Proof. If $d_{T}(x) \geq d_{T}(y)$ for each $x \in N_{T}(u)-V(u T v)$ and $y \in N_{T}(v)-V(u T v)$, then we are done. Let $d_{T}(x)<d_{T}(y)$ for some $x \in N_{T}(u)-V(u T v)$ and some $y \in N_{T}(v)-V(u T v)$. Assume T_{1} to be the tree obtained from T by deleting the edges $u x, v y$ and adding new edges $u y, v x$. Clearly, $V\left(T_{1}\right)=V(T)$ and $d_{T}(z)=$ $d_{T_{1}}(z)$ for each $z \in V(T)$ and hence $T_{1} \in \mathcal{T}_{n, \Delta}$. Since $d_{T_{1}}(u)=d_{T_{1}}(v)=\alpha$, it is easy to verify that $H(T)=H\left(T_{1}\right)$. Thus T_{1} is a extremal tree with the minimum harmonic index in $\mathcal{T}_{n, \Delta}$. By repeating this process, we obtain a desired tree T^{*}.

Lemma 5. If $T \in \mathcal{T}_{n, \Delta}$ is an extremal tree with the minimum harmonic index in $\mathcal{T}_{n, \Delta}$, then T has at most one vertex of degree $1<t<\Delta$.
Proof. Assume, to the contrary, that T has two distinct vertices u and v such that $1<d(u)=\alpha \leq \beta=d(v)<\Delta$. Also, suppose that among two vertices with this property we choose two distinct vertices u, v such that $d(u, v)$ is as small as possible. Let $N(u)=\left\{x_{1}, \ldots, x_{\alpha}\right\}, N(v)=\left\{y_{1}, \ldots, y_{\beta}\right\}, S=\{x u \mid x \in$ $N(u)\} \cup\{y v \mid y \in N(v)\}$ and $K=\sum_{e \in E(T)-S} h_{\omega}(e)$. Assume that $x_{1}, y_{1} \in u T v$, $d_{x_{\alpha}} \geq \cdots \geq d_{x_{2}}$ and $d_{y_{\beta}} \geq \cdots \geq d_{y_{2}}$. By Lemmas 3 and 4 , we may suppose that $d_{x_{\alpha}} \geq \cdots \geq d_{x_{2}} \geq d_{y_{\beta}} \geq \cdots \geq d_{y_{2}}$. Let $T^{\prime}:=T-u x_{2}+v x_{2}$ be the tree obtained from T by removing the edge $u x_{2}$ and adding a new edge $v x_{2}$ (see Figure 2). We show that $H\left(T^{\prime}\right)<H(T)$. Consider four cases.

Case 1. $u v \in E(T)$ and $d_{u}=d_{v}=\alpha$. Then $x_{1}=v$ and $y_{1}=u$. By definition we have

$$
\frac{1}{2} H(T)=K+\frac{1}{2 \alpha}+\frac{1}{d_{x_{2}}+\alpha}+\sum_{i=3}^{\alpha} \frac{1}{d_{x_{i}}+\alpha}+\sum_{i=2}^{\alpha} \frac{1}{d_{y_{i}}+\alpha}
$$

and

$$
\frac{1}{2} H\left(T^{\prime}\right)=K+\frac{1}{2 \alpha}+\frac{1}{d_{x_{2}}+\alpha+1}+\sum_{i=3}^{\alpha} \frac{1}{d_{x_{i}}+\alpha-1}+\sum_{i=2}^{\alpha} \frac{1}{d_{y_{i}}+\alpha+1} .
$$

Now, we have

$$
\begin{aligned}
& \frac{1}{2}\left(H\left(T^{\prime}\right)-H(T)\right) \\
& =\sum_{i=3}^{\alpha} \frac{1}{\left(d_{x_{i}}+\alpha\right)\left(d_{x_{i}}+\alpha-1\right)}+\sum_{i=2}^{\alpha} \frac{-1}{\left(d_{y_{i}}+\alpha\right)\left(d_{y_{i}}+\alpha+1\right)} \\
& +\frac{-1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha+1\right)} \\
& =\sum_{i=3}^{\alpha}\left(\frac{1}{\left(d_{x_{i}}+\alpha\right)\left(d_{x_{i}}+\alpha-1\right)}-\frac{1}{\left(d_{y_{i}}+\alpha\right)\left(d_{y_{i}}+\alpha+1\right)}\right) \\
& +\left(\frac{-1}{\left(d_{y_{2}}+\alpha\right)\left(d_{y_{2}}+\alpha+1\right)}+\frac{-1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha+1\right)}\right) \\
& \leq \sum_{i=3}^{\alpha}\left(\frac{1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)}-\frac{1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha+1\right)}\right) \\
& +\left(\frac{-1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha+1\right)}+\frac{-1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha+1\right)}\right) \\
& \leq \sum_{i=3}^{\alpha}\left(\frac{2}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\alpha+1\right)}\right)+\frac{-2}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha+1\right)} \\
& \leq \frac{2(\alpha-2)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\alpha+1\right)}+\frac{-2}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha+1\right)} \\
& =\frac{-2 d_{x_{2}}-2}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\alpha+1\right)}<0 .
\end{aligned}
$$

T

T^{\prime}

Figure 2. The switching process used in the proof of Lemma 5.
Case 2. $u v \in E(T), d_{u}=\alpha<\beta=d_{v}$. As above $x_{1}=v$ and $y_{1}=u$. By definition we have

$$
\frac{1}{2} H(T)=K+\frac{1}{\alpha+\beta}+\frac{1}{d_{x_{2}}+\alpha}+\frac{1}{d_{y_{2}}+\beta}+\sum_{i=3}^{\alpha} \frac{1}{d_{x_{i}}+\alpha}+\sum_{i=3}^{\beta} \frac{1}{d_{y_{i}}+\beta}
$$

and

$$
\begin{aligned}
\frac{1}{2} H\left(T^{\prime}\right) & =K+\frac{1}{\alpha+\beta}+\frac{1}{d_{x_{2}}+\beta+1}+\frac{1}{d_{y_{2}}+\beta+1} \\
& +\sum_{i=3}^{\alpha} \frac{1}{d_{x_{i}}+\alpha-1}+\sum_{i=3}^{\beta} \frac{1}{d_{y_{i}}+\beta+1}
\end{aligned}
$$

Now, we have

$$
\left.\begin{array}{l}
\frac{1}{2}\left(H\left(T^{\prime}\right)-H(T)\right) \\
=\sum_{i=3}^{\alpha}\left(\frac{1}{\left(d_{x_{i}}+\alpha\right)\left(d_{x_{i}}+\alpha-1\right)}-\frac{1}{\left(d_{y_{i}}+\beta\right)\left(d_{y_{i}}+\beta+1\right)}\right) \\
+\sum_{i=\alpha+1}^{\beta} \frac{-1}{\left(d_{y_{i}}+\beta\right)\left(d_{y_{i}}+\beta+1\right)}+\left(\frac{\alpha-\beta-1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta+1\right)}+\frac{-1}{\left(d_{y_{2}}+\beta\right)\left(d_{y_{2}}+\beta+1\right)}\right) \\
\leq \sum_{i=3}^{\alpha}\left(\frac{1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)}-\frac{1}{\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)}\right) \\
+\sum_{i=\alpha+1}^{\beta} \frac{-1}{\left(d_{y_{i}}+\beta\right)\left(d_{y_{i}}+\beta+1\right)}+\left(\frac{\alpha-\beta-1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta+1\right)}+\frac{-1}{\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)}\right) \\
=\sum_{i=3}^{\alpha}\left(\frac{1}{\beta-\alpha+1)\left(\alpha+\beta+2 d_{x_{2}}\right)}\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)\right.
\end{array}\right) \quad \begin{aligned}
& \quad \sum_{i=\alpha+1}^{\beta} \frac{-1}{\left(d_{y_{i}}+\beta\right)\left(d_{y_{i}}+\beta+1\right)}+\frac{(\alpha-\beta)\left(d_{x_{2}}+\beta\right)-\left(\alpha+\beta+2 d_{x_{2}}\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)} \\
& \leq \frac{(\alpha-2)(\beta-\alpha+1)\left(\alpha+\beta+2 d_{x_{2}}\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)} \\
& +\frac{\alpha-\beta}{\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)}+\frac{(\alpha-\beta)\left(d_{x_{2}}+\beta\right)-\left(\alpha+\beta+2 d_{x_{2}}\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)} \\
& =\frac{(\alpha-2)(\beta-\alpha+1)\left(\alpha+\beta+2 d_{x_{2}}\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)} \\
& +\frac{(\alpha-\beta)\left(d_{x_{2}}+\alpha\right)+(\alpha-\beta)\left(d_{x_{2}}+\beta\right)-\left(\alpha+\beta+2 d_{x_{2}}\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)} \\
& =\frac{(\alpha-2)(\beta-\alpha+1)\left(\alpha+\beta+2 d_{x_{2}}\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)}+\frac{(\alpha-\beta-1)\left(\alpha+\beta+2 d_{x_{2}}\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(\alpha-2)(\beta-\alpha+1)\left(\alpha+\beta+2 d_{x_{2}}\right)+(\alpha-\beta-1)\left(d_{x_{2}}+\alpha-1\right)\left(\alpha+\beta+2 d_{x_{2}}\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)\left(d_{x_{2}}+\alpha-1\right)} \\
& =\frac{(\beta-\alpha+1)\left(\alpha+\beta+2 d_{x_{2}}\right)\left(-d_{x_{2}}-1\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)\left(d_{x_{2}}+\alpha-1\right)}<0
\end{aligned}
$$

Case 3. $u v \notin E(T)$ and $d_{u}=d_{v}=\alpha$. By the choice of u, v, we may assume that $d_{x_{1}}=d_{y_{1}}=\Delta$. We have
$\frac{1}{2} H(T)=K+\frac{1}{\alpha+\Delta}+\frac{1}{\alpha+\Delta}+\frac{1}{d_{x_{2}}+\alpha}+\frac{1}{d_{y_{2}}+\alpha}+\sum_{i=3}^{\alpha} \frac{1}{d_{x_{i}}+\alpha}+\sum_{i=3}^{\beta} \frac{1}{d_{y_{i}}+\alpha}$
and

$$
\begin{aligned}
\frac{1}{2} H\left(T^{\prime}\right) & =K+\frac{1}{\alpha+\Delta-1}+\frac{1}{\alpha+\Delta+1}+\frac{1}{d_{x_{2}}+\alpha+1}+\frac{1}{d_{y_{2}}+\alpha+1} \\
& +\sum_{i=3}^{\alpha} \frac{1}{d_{x_{i}}+\alpha-1}+\sum_{i=3}^{\beta} \frac{1}{d_{y_{i}}+\alpha+1} .
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
& \frac{1}{2}\left(H\left(T^{\prime}\right)-H(T)\right) \\
& =\sum_{i=3}^{\alpha} \frac{1}{\left(d_{x_{i}}+\alpha\right)\left(d_{x_{i}}+\alpha-1\right)}+\sum_{i=3}^{\alpha} \frac{-1}{\left(d_{y_{i}}+\alpha\right)\left(d_{y_{i}}+\alpha+1\right)} \\
& +\frac{2}{(\alpha+\Delta)(\alpha+\Delta-1)(\alpha+\Delta+1)}+\frac{-1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha+1\right)}+\frac{-1}{\left(d_{y_{2}}+\alpha\right)\left(d_{y_{2}}+\alpha+1\right)} \\
& \leq \sum_{i=3}^{\alpha}\left(\frac{1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)}-\frac{1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha+1\right)}\right) \\
& +\frac{2}{(\alpha+\Delta)(\alpha+\Delta-1)(\alpha+\Delta+1)}-\frac{2}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha+1\right)} \\
& =\frac{2(\alpha-2)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\alpha+1\right)}+\frac{2}{(\alpha+\Delta)(\alpha+\Delta-1)(\alpha+\Delta+1)} \\
& -\frac{2}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha+1\right)} \\
& =\frac{2(\alpha-2)-2\left(d_{x_{2}}+\alpha-1\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\alpha+1\right)}+\frac{-2 d_{x_{2}}-2}{(\alpha+\Delta)(\alpha+\Delta-1)(\alpha+\Delta+1)} \\
& =\frac{2}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\alpha+1\right)}+\frac{2}{(\alpha+\Delta)(\alpha+\Delta-1)(\alpha+\Delta+1)}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{-2 d_{x_{2}}-2}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\alpha+1\right)}+\frac{2}{\left(\alpha+d_{x_{2}}\right)\left(\alpha+d_{x_{2}}-1\right)\left(\alpha+d_{x_{2}}+1\right)} \\
& \leq \frac{-2 d_{x_{2}}}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\alpha+1\right)}<0 .
\end{aligned}
$$

Case 4. uv $\notin E(T)$ and $d_{u}=\alpha<\beta=d_{v}$. As in Case 3, we may assume that $d_{x_{1}}=d_{y_{1}}=\Delta$. By definition we have
$\frac{1}{2} H(T)=K+\sum_{i=3}^{\alpha} \frac{1}{d_{x_{i}}+\alpha}+\sum_{i=3}^{\beta} \frac{1}{d_{y_{i}}+\beta}+\frac{1}{\alpha+\Delta}+\frac{1}{\beta+\Delta}+\frac{1}{d_{x_{2}}+\alpha}+\frac{1}{d_{y_{2}}+\beta}$
and

$$
\begin{aligned}
\frac{1}{2} H\left(T^{\prime}\right) & =K+\sum_{i=3}^{\alpha} \frac{1}{d_{x_{i}}+\alpha-1}+\sum_{i=3}^{\beta} \frac{1}{d_{y_{i}}+\beta+1}+\frac{1}{\alpha+\Delta-1}+\frac{1}{\beta+\Delta+1} \\
& +\frac{1}{d_{x_{2}}+\beta+1}+\frac{1}{d_{y_{2}}+\beta+1}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \frac{1}{2}\left(H\left(T^{\prime}\right)-H(T)\right) \\
& =\sum_{i=3}^{\alpha} \frac{1}{\left(d_{x_{i}}+\alpha\right)\left(d_{x_{i}}+\alpha-1\right)}+\sum_{i=3}^{\beta} \frac{-1}{\left(d_{y_{i}}+\beta\right)\left(d_{y_{i}}+\beta+1\right)}+\frac{1}{(\alpha+\Delta)(\alpha+\Delta-1)} \\
& +\frac{-1}{(\beta+\Delta)(\beta+\Delta+1)}+\frac{\alpha-\beta-1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta+1\right)}+\frac{1}{\left(d_{y_{2}}+\beta\right)\left(d_{y_{2}}+\beta+1\right)} \\
& \leq \sum_{i=3}^{\alpha}\left(\frac{1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)}-\frac{1}{\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)}\right) \\
& +\sum_{i=\alpha+1}^{\beta} \frac{-1}{\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)}+\frac{1}{(\alpha+\Delta)(\alpha+\Delta-1)} \\
& +\frac{-1}{(\beta+\Delta)(\beta+\Delta+1)}+\frac{\alpha-\beta-1}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta+1\right)}+\frac{1}{\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)} \\
& =\frac{(\alpha-2)\left(\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)-\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)}+\frac{\alpha-\beta}{\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)} \\
& +\frac{1}{(\alpha+\Delta)(\alpha+\Delta-1)}+\frac{-1}{(\beta+\Delta)(\beta+\Delta+1)}+\frac{(\alpha-\beta-1)\left(d_{x_{2}}+\beta\right)-\left(d_{x_{2}}+\alpha\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(\alpha-2)(\beta-\alpha+1)\left(\alpha+\beta+2 d_{x_{2}}\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)}+\frac{1}{(\alpha+\Delta)(\alpha+\Delta-1)} \\
& +\frac{-1}{(\beta+\Delta)(\beta+\Delta+1)}+\frac{(\alpha-\beta)\left(d_{x_{2}}+\beta\right)-\left(\alpha+\beta+2 d_{x_{2}}\right)+(\alpha-\beta)\left(d_{x_{2}}+\alpha\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)} \\
& =\frac{(\alpha-2)(\beta-\alpha+1)\left(\alpha+\beta+2 d_{x_{2}}\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)}+\frac{1}{(\alpha+\Delta)(\alpha+\Delta-1)} \\
& +\frac{-1}{(\beta+\Delta)(\beta+\Delta+1)}+\frac{(\alpha-\beta-1)\left(\alpha+\beta+2 d_{x_{2}}\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)} \\
& =\frac{(\alpha-2)(\beta-\alpha+1)\left(\alpha+\beta+2 d_{x_{2}}\right)+\left(d_{x_{2}}+\alpha-1\right)(\alpha-\beta-1)\left(\alpha+\beta+2 d_{x_{2}}\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)} \\
& +\frac{-1}{(\alpha+\Delta)(\alpha+\Delta-1)}+\frac{1}{(\beta+\Delta)(\beta+\Delta+1)} \\
& =\frac{\left(\alpha+\beta+2 d_{x_{2}}\right)(\beta-\alpha+1)\left(-d_{x_{2}}-1\right)}{\left(d_{x_{2}}+\alpha\right)\left(d_{x_{2}}+\alpha-1\right)\left(d_{x_{2}}+\beta\right)\left(d_{x_{2}}+\beta+1\right)}+\frac{1}{(\alpha+\Delta)(\alpha+\Delta-1)} \\
& +\frac{-1}{(\beta+\Delta)(\beta+\Delta+1)} \\
& \leq \frac{\left(\alpha+\beta+2 d_{x_{2}}\right)(\beta-\alpha+1)\left(-d_{x_{2}}-1\right)}{(\Delta+\alpha)(\Delta+\alpha-1)(\Delta+\beta)(\Delta+\beta+1)}+\frac{1}{(\alpha+\Delta)(\alpha+\Delta-1)}+\frac{1}{(\beta+\Delta)(\beta+\Delta+1)} \\
& =\frac{\left(\alpha+\beta+2 d_{x_{2}}\right)(\beta-\alpha+1)\left(-d_{x_{2}}-1\right)+(\alpha+\beta+2 \Delta)(\beta-\alpha+1)}{(\Delta+\alpha)(\Delta+\alpha-1)(\Delta+\beta)(\Delta+\beta+1)} \\
& =\frac{(\beta-\alpha+1)\left(\left(\alpha+\beta+2 d_{x_{2}}\right)\left(-d_{x_{2}}-1\right)+(\alpha+\beta+2 \Delta)\right)}{(\Delta+\alpha)(\Delta+\alpha-1)(\Delta+\beta)(\Delta+\beta+1)}
\end{aligned}
$$

Since $\alpha+\beta+2 d_{x_{2}}<2 \Delta+2 d_{x_{2}}$ and $-d_{x_{2}}-1 \leq-2$, we deduce that $(\alpha+\beta+2 d)\left(-d_{x_{2}}-1\right)+(\alpha+\beta+2 \Delta)<-4 \Delta-4 d_{x_{2}}+(\alpha+\beta+2 \Delta)<-4 d_{x_{2}}<0$ and hence $\frac{1}{2}\left(H\left(T^{\prime}\right)-H(T)\right)<0$.

Thus all cases lead to a contradiction since T has the minimum harmonic index. This completes the proof.

Lemma 6. Let $T \in \mathcal{T}_{n, \Delta}$ be an extremal tree with the minimum harmonic index in $\mathcal{T}_{n, \Delta}$ where $\Delta \geq 3, n=(\Delta-1) k+r$ and $0 \leq r \leq \Delta-2$. If n_{i} is the number of vertices of T of degree i for each $i=1,2, \ldots, \Delta$, then the following hold:

1. if $r=0,1$, then $n_{\Delta}=k-1, n_{\Delta-2+r}=1$ and $n_{1}=n-k$,
2. if $r=2$, then $n_{\Delta}=k$ and $n_{1}=n-k$,
3. if $r \geq 3$, then $n_{\Delta}=k, n_{r-1}=1$ and $n_{1}=n-k-1$.

Proof. Let n_{i} be the number of vertices of T of degree i for each $i=1,2, \ldots, \Delta$. Then $n_{1}+n_{2}+\cdots+n_{\Delta}=n$ and $n_{1}+2 n_{2}+\ldots+\Delta n_{\Delta}=2 n-2$ and hence

$$
\begin{equation*}
n_{2}+2 n_{3}+\cdots+(\Delta-1) n_{\Delta}=n-2 \tag{1}
\end{equation*}
$$

By Lemma 5 we have $n_{2}+n_{3}+\cdots+n_{\Delta-1} \leq 1$ that yields

$$
\begin{equation*}
n_{2}+2 n_{3}+\cdots+(\Delta-2) n_{\Delta-1} \leq \Delta-2 \tag{2}
\end{equation*}
$$

Assume $n_{t}=1$ if $n_{2}+n_{3}+\cdots+n_{\Delta-1}=1$.
(1) If $r=0,1$, then we deduce from (1) that $n_{2}+n_{3}+\cdots+n_{\Delta-1}=1$ and so

$$
(t-1)+(\Delta-1) n_{\Delta}=(\Delta-1) k+r-2=(\Delta-1)(k-1)+(\Delta-3+r)
$$

This implies that $n_{\Delta}=k-1, n_{t}=n_{\Delta-2+r}=1$ and $n_{1}=n-k$.
(2) If $r=2$, then we conclude from (1) and (2) that $n_{2}+n_{3}+\cdots+n_{\Delta-1}=0$ and so $n_{\Delta}=k$ and $n_{1}=n-k$.
(3) Let $r \geq 3$. Then we have

$$
(t-1)+(\Delta-1) n_{\Delta}=(\Delta-1) k+r-2
$$

and this implies that $n_{\Delta}=k, n_{t}=n_{r-1}=1$ and $n_{1}=n-k-1$.

Let $E_{i, j}$ denote the set of all edges having a vertex of degree i at one end and a vertex of degree j at the other end and let $\varepsilon_{i, j}=\left|E_{i, j}\right|$.

Lemma 7. Let $T \in \mathcal{T}_{n, \Delta}$ be an extremal tree with the minimum harmonic index in $\mathcal{T}_{n, \Delta}$ and let T have a vertex v of degree t with $1<t<\Delta$. Then $\varepsilon_{1, t}$ is as small as possible.

Proof. It follows from Lemma 5 that $\operatorname{deg}(u)=1$ or Δ for each $u \in V(T)-\{v\}$ and hence $E(T)=E_{1, t} \cup E_{1, \Delta} \cup E_{t, \Delta} \cup E_{\Delta, \Delta}$. By definition we have

$$
\begin{aligned}
\frac{1}{2} H(T) & =\frac{\varepsilon_{1, t}}{1+t}+\frac{\varepsilon_{1, \Delta}}{1+\Delta}+\frac{\varepsilon_{t, \Delta}}{t+\Delta}+\frac{\varepsilon_{\Delta, \Delta}}{2 \Delta} \\
& =\frac{\varepsilon_{1, t}}{1+t}+\frac{n_{1}-\varepsilon_{1, t}}{1+\Delta}+\frac{t-\varepsilon_{1, t}}{t+\Delta}+\frac{n-1-n_{1}-\varepsilon_{t, \Delta}}{2 \Delta} \\
& =\frac{\varepsilon_{1, t}}{1+t}+\frac{n_{1}-\varepsilon_{1, t}}{1+\Delta}+\frac{t-\varepsilon_{1, t}}{t+\Delta}+\frac{n-1-n_{1}-t+\varepsilon_{1, t}}{2 \Delta} \\
& =\varepsilon_{1, t}\left(\frac{1}{1+t}+\frac{1}{2 \Delta}\right)-\varepsilon_{1, t}\left(\frac{1}{1+\Delta}+\frac{1}{t+\Delta}\right)+\left(\frac{n_{1}}{1+\Delta}+\frac{t}{t+\Delta}+\frac{n-1-n_{1}-t}{2 \Delta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\varepsilon_{1, t}\left(\frac{2 \Delta+t+1}{2(1+t) \Delta}-\frac{2 \Delta+t+1}{(1+\Delta)(t+\Delta)}\right)+\left(\frac{n_{1}}{1+\Delta}+\frac{t}{t+\Delta}+\frac{n-1-n_{1}-t}{2 \Delta}\right) \\
& =\varepsilon_{1, t}(2 \Delta+t+1)\left(\frac{1}{2 \Delta(1+t)}-\frac{1}{(1+\Delta)(t+\Delta)}\right)+\left(\frac{n_{1}}{1+\Delta}+\frac{t}{t+\Delta}+\frac{n-1-n_{1}-t}{2 \Delta}\right) \\
& =\varepsilon_{1, t}(2 \Delta+t+1)\left(\frac{t+\Delta+t \Delta+\Delta^{2}-2 \Delta-2 t \Delta}{2 \Delta(1+t)(1+\Delta)(t+\Delta)}\right)+\left(\frac{n_{1}}{1+\Delta}+\frac{t}{t+\Delta}+\frac{n-1-n_{1}-t}{2 \Delta}\right) \\
& =\varepsilon_{1, t}(2 \Delta+t+1) \cdot \frac{(\Delta-1)(\Delta-t)}{2 \Delta(1+t)(1+\Delta)(t+\Delta)}+\left(\frac{n_{1}}{1+\Delta}+\frac{t}{t+\Delta}+\frac{n-1-n_{1}-t}{2 \Delta}\right) .
\end{aligned}
$$

Since $\frac{(\Delta-1)(\Delta-t)}{2 \Delta(1+t)(1+\Delta)(t+\Delta)}>0$ and T is an extremal tree with the minimum harmonic index in $\mathcal{T}_{n, \Delta}$, we conclude that $\varepsilon_{1, t}$ is as small as possible.

Proof of Theorem 1. Let $T^{*} \in \mathcal{T}_{n, \Delta}$ be an extremal tree with the minimum harmonic index in $\mathcal{T}_{n, \Delta}$. We consider four cases.

Case 1. $r=0$. Then $n_{\Delta}=k-1, n_{t}=n_{\Delta-2}=1$ and $n_{1}=n-k$ by Lemma 6. We have also $\varepsilon_{1, \Delta}=n-k-\varepsilon_{1, t}, \varepsilon_{t, \Delta}=\Delta-2-\varepsilon_{1, t}$ and $\varepsilon_{\Delta, \Delta}=k-\Delta+\varepsilon_{1, t}+1$. Consider two subcases.

Subcase 1.1. $k=\frac{n}{\Delta-1}>t=\Delta-2$, that is, $n>(\Delta-1)(\Delta-2)$. We conclude from Lemma 7 that $\varepsilon_{1, t}=0$ and hence $\varepsilon_{1, \Delta}=n-k, \varepsilon_{t, \Delta}=\Delta-2$ and $\varepsilon_{\Delta, \Delta}=k-\Delta+1$. Therefore,

$$
\frac{1}{2} H\left(T^{*}\right)=\frac{n-k}{1+\Delta}+\frac{\Delta-2}{t+\Delta}+\frac{k-\Delta+1}{2 \Delta}=\frac{n-k}{\Delta+1}+\frac{\Delta-2}{2 \Delta-2}+\frac{k-\Delta+1}{2 \Delta} .
$$

Subcase 1.2. $k=\frac{n}{\Delta-1} \leq t=\Delta-2$, that is, $n \leq(\Delta-1)(\Delta-2)$. Then we must have $\varepsilon_{1, t}=t-n_{\Delta}=t-k+1=\Delta-k-1$ which implies that $\varepsilon_{1, \Delta}=n-\Delta+1$, $\varepsilon_{t, \Delta}=k-1$ and $\varepsilon_{\Delta, \Delta}=0$. Therefore,

$$
\frac{1}{2} H\left(T^{*}\right)=\frac{\Delta-k-1}{1+t}+\frac{n-\Delta+1}{1+\Delta}+\frac{k-1}{t+\Delta}=\frac{\Delta-k-1}{\Delta-1}+\frac{k-1}{2 \Delta-2}+\frac{n-\Delta+1}{\Delta+1} .
$$

$k=2$

$k=3$

$$
k=4
$$

Figure 3. $\Delta=5, r=0, t=\Delta-2=3, n=(\Delta-1) k=8,12,16$.

Case 2. $\quad r=1$. As in Case 1, we have $n_{\Delta}=k-1, n_{t}=n_{\Delta-1}=1$, $n_{1}=n-k, \varepsilon_{1, \Delta}=n-k-\varepsilon_{1, t}, \varepsilon_{t, \Delta}=\Delta-1-\varepsilon_{1, t}$ and $\varepsilon_{\Delta, \Delta}=k-\Delta+\varepsilon_{1, t}$. If $k=\frac{n-1}{\Delta-1}>t=\Delta-1$ that is $n>(\Delta-1)^{2}+1$, then as in Subcase 1.1. we have $\varepsilon_{1, t}=0, \varepsilon_{1, \Delta}=n-k, \varepsilon_{t, \Delta}=\Delta-1, \varepsilon_{\Delta, \Delta}=k-\Delta$ and by definition we have

$$
\frac{1}{2} H\left(T^{*}\right)=\frac{n-k}{\Delta+1}+\frac{\Delta-1}{2 \Delta-1}+\frac{k-\Delta}{2 \Delta}
$$

If $k \leq t=\Delta-1$ that is $n \leq(\Delta-1)^{2}+1$, then we have $\varepsilon_{1, t}=\Delta-k, \varepsilon_{1, \Delta}=n-\Delta$, $\varepsilon_{t, \Delta}=k-1$ and $\varepsilon_{\Delta, \Delta}=0$. Hence

$$
\frac{1}{2} H\left(T^{*}\right)=\frac{\Delta-k}{1+t}+\frac{n-\Delta}{1+\Delta}+\frac{k-1}{t+\Delta}=\frac{\Delta-k}{\Delta}+\frac{n-\Delta}{\Delta+1}+\frac{k-1}{2 \Delta-1}
$$

Case 3. $r=2$. In this case we have $n_{\Delta}=k, n_{1}=n-k, \varepsilon_{1, \Delta}=n_{1}=n-k$ and $\varepsilon_{\Delta, \Delta}=(n-1)-(n-k)=k-1$. It follows from definition that

$$
\frac{1}{2} H\left(T^{*}\right)=\frac{n-k}{\Delta+1}+\frac{k-1}{2 \Delta}
$$

Case 4. $r \geq 3$. By Lemma 6 we have $n_{\Delta}=k, n_{t}=n_{r-1}=1$ and $n_{1}=$ $n-k-1$. Also we have $\varepsilon_{1, \Delta}=n-k-1-\varepsilon_{1, t}, \varepsilon_{t, \Delta}=r-1-\varepsilon_{1, t}$ and $\varepsilon_{\Delta, \Delta}=k-r+\varepsilon_{1, t}+1$. An argument similar to that described in Case 1 shows that

$$
\frac{1}{2} H\left(T^{*}\right)=\frac{n-k-1}{\Delta+1}+\frac{r-1}{\Delta+r-1}+\frac{k-r+1}{2 \Delta}
$$

if $k=\frac{n-r}{\Delta-1} \geq t=r-1$ that is $n \geq \Delta(r-1)+1$, and

$$
\frac{1}{2} H\left(T^{*}\right)=\frac{r-k-1}{1+t}+\frac{n-r}{\Delta+1}+\frac{k}{\Delta+t}=\frac{r-k-1}{r}+\frac{n-r}{\Delta+1}+\frac{k}{\Delta+r-1}
$$

when $k<t=r-1$ that is $n<\Delta(r-1)+1$.
Replacing k by $\frac{n-r}{\Delta-1}$ in all cases, we arrive at the bounds of Theorem 1. This completes the proof.

Applying Theorem 1, we can get two corollaries in the following.
Corollary 8. Let T be a tree of order n and maximum degree Δ. If $\Delta \geq 3$ and $n=(\Delta-1) k+r, 0 \leq r \leq \Delta-2$, then

$$
H(T) \geq 2\left(\frac{n(\Delta-2)+r}{\Delta^{2}-1}+\frac{n-\Delta-r+1}{2 \Delta(\Delta-1)}\right)
$$

with equality if and only if $n-2=(\Delta-1) k$ and $n_{\Delta}=k$.

Corollary 9 ([10]). For any tree T of order $n \geq 3$,

$$
H(T) \geq \frac{2(n-1)}{n}
$$

with equality if and only if T is a star.
In Figure 4, we determine the harmonic index of all trees of order 6 and 7 with maximum degree at least 3 .

$$
\begin{array}{lllll}
\Delta=3 & \Delta=3 & \Delta=3 & \Delta=4 & \Delta=5 \\
H=\frac{77}{30} & H=\frac{7}{3} & H=\frac{79}{30} & H=\frac{11}{5} & H=\frac{5}{3}
\end{array}
$$

$\begin{array}{lllllllll}\Delta=3 & \Delta=3 & \Delta=3 & \Delta=3 & \Delta=3 & \Delta=4 & \Delta=4 & \Delta=4 & \Delta=5 \\ H=\frac{46}{15} & H=\frac{47}{15} & H=\frac{14}{5} & H=\frac{29}{10} & H=\frac{16}{5} & H=\frac{14}{5} & H=\frac{27}{10} & H=\frac{87}{35} & H=\frac{16}{7} \\ H & H=\frac{12}{7}\end{array}$

Figure 4. The harmonic index of all trees T of order 6 and 7 with $\Delta(T) \geq 3$.

References

[1] H. Deng, S. Balachandran, S.K. Ayyaswamy and Y.B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, Discrete Appl. Math. 161 (2013) 2740-2744.
doi:10.1016/j.dam.2013.04.003
[2] H. Deng, S. Balachandran, S.K. Ayyaswamy and V.B. Venkatakrishnan, On harmonic indices of trees, unicyclic graphs and bicyclic graphs, Ars Combin. 130 (2017) 239-248.
[3] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer. 60 (1987) 187-197.
[4] B. Furtula, I. Gutman and M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comput. 219 (2013) 8973-8978.
doi:10.1016/j.amc.2013.03.072
[5] O. Favaron, M. Mahio and J.F. Sacle, Some eigenvalue properties in graphs (Conjectures of Graffiti-II), Discrete Math. 111 (1993) 197-220.
doi:10.1016/0012-365X(93)90156-N
[6] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361. doi:10.5562/cca2294
[7] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538. doi:10.1016/0009-2614(72)85099-1
[8] I. Gutman, L. Zhong and K. Xu, Relating ABC and harmonic indices, J. Serb. Chem. Soc. 79 (2014) 557-563.
doi:10.2298/JSC130930001G
[9] Y. Hu and X. Zhou, On the harmonic index of the unicyclic and bicyclic graphs, WSEAS Trans. Math. 12 (2013) 716-726.
[10] A. Ilic, Note on the harmonic index of a graph, Appl. Math. Lett. 25 (2012) 561566.
doi:10.1016/j.aml.2011.09.059
[11] M.A. Iranmanesh and M. Saheli, On the harmonic index and harmonic polynomial of caterpillars with diameter four, Iranian J. Math. Chem. 6 (2015) 41-49.
[12] J. Li and W.C. Shiu, The harmonic index of a graph, Rocky Mountain J. Math. 44 (2014) 1607-1620. doi:0.1216/RMJ-2014-44-5-1607
[13] J. Liu, On harmonic index and diameter of graphs, J. Appl. Math. Phys. 1 (2013) 5-6.
doi:10.4236/jamp.2013.13002
[14] J. Liu, On the harmonic index of triangle-free graphs, Appl. Math. 4 (2013) 12041206.
doi:10.4236/am.2013.48161
[15] J. Liu, Harmonic index of dense graphs, Ars Combin. 120 (2015) 293-304.
[16] J. Liu and Q. Zhang, Remarks on harmonic index of graphs, Util. Math. 88 (2012) 281-285.
[17] J.B. Lv, J. Li and W.C. Shiu, The harmonic index of unicyclic graphs with given matching number, Kragujevac J. Math. 38 (2014) 173-183. doi:doi.org/10.5937/KgJMath1401173J
[18] S. Liu and J. Liu, Some properties on the harmonic index of molecular trees, ISRN Appl. Math. (2014) 1-8.
[19] R. Rasi, S.M. Sheikholeslami and I. Gutman, On harmonic index of trees, MATCH Commun. Math. Comput. Chem. 78 (2017) 405-416.
[20] R.Wu, Z. Tang and H. Deng, A lower bound for the harmonic index of a graph with minimum degree at least two, Filomat 27 (2013) 51-55.
doi:10.2298/FIL1301051W
[21] R. Wu, Z. Tang and H. Deng, On the harmonic index and the girth of a graph, Util. Math. 91 (2013) 65-69.
[22] X. Xu, Relationships between harmonic index and other topological indices, Appl. Math. Sci. 6 (2012) 2013-2018.
[23] L. Yang and H. Hua, The harmonic index of general graphs, nanocones and triangular benzenoid graphs, Optoelectron. Adv. Mater. - Rapid Commun. 6 (2012) 660-663.
[24] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561-566. doi:10.1016/j.aml.2011.09.059
[25] L. Zhong, The harmonic index of unicyclic graphs, Ars Combin. 104 (2012) 261-269.
[26] L. Zhong, The harmonic index for unicyclic and bicyclic graphs with given matching number, Miskolc Math. Notes 16 (2015) 587-605.
[27] L. Zhong and Q. Cui, The harmonic index for unicyclic graphs with given girth, Filomat 29 (2015) 673-686. doi:10.2298/FIL1504673Z
[28] L. Zhong and K. Xu, The harmonic index for bicyclic graphs, Util. Math. 90 (2013) 23-32.
[29] L. Zhong and K. Xu, Inequalities between vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 627-642.
[30] Y. Zhu, R. Chang and X. Wei, The harmonic index on bicyclic graphs, Ars Combin. 110 (2013) 97-104.
[31] Y. Zhu and R. Chang, On the harmonic index of bicyclic conjugated molecular graphs, Filomat 28 (2014) 421-428. doi:10.2298/FIL1402421Z
[32] Y. Zhu and R. Chang, Minimum harmonic index of trees and unicyclic graphs with given number of pendant vertices and diameter, Util. Math. 93 (2014) 345-374.
[33] A. Zolfi, A.R. Ashrafi and S. Moradi, The top ten values of harmonic index in chemical trees, Kragujevac J. Sci. 37 (2015) 91-98.

