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Abstract

Let T (X ∪ Y,A) be a bipartite tournament with partite sets X,Y and
arc set A. For any vertex x ∈ X∪Y , the second out-neighbourhood N++(x)
of x is the set of all vertices with distance 2 from x. In this paper, we prove
that T contains at least two vertices x such that |N++(x)| ≥ |N+(x)| unless
T is in a special class B1 of bipartite tournaments; show that T contains at
least a vertex x such that |N++(x)| ≥ |N−(x)| and characterize the class
B2 of bipartite tournaments in which there exists exactly one vertex x with
this property; and prove that if |X| = |Y | or |X| ≥ 4|Y |, then the bipartite
tournament T contains a vertex x such that |N++(x)|+|N+(x)| ≥ 2|N−(x)|.
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1. Terminology and Introduction

We will assume that the reader is familiar with the standard terminology on
digraphs and refer to [1] for terminology not discussed here. In this paper, all
digraphs have no multiple arcs and no loops.

We denote the vertex set and the arc set of a digraph D by V (D) and A(D),
respectively. For a vertex subset X, we denote by D〈X〉 the subdigraph of D
induced by X, D〈V (D) − X〉 by D − X. In addition, D − x = D − {x} for a
vertex x of D.

Let x, y be distinct vertices in D. If there is an arc from x to y then we say
that x dominates y, write x → y and call y (respectively, x) an out-neighbour

(respectively, an in-neighbour) of x (respectively, y). For a subdigraph or simply
a vertex subset H of D (possibly, H = D), we let N+

H (x) (respectively, N−
H (x))

denote the set of out-neighbours (respectively, the set of in-neighbours) of x

in H and call it out-neighbourhood (respectively, in-neighbourhood) of x in H.
Furthermore, d+H(x) = |N+

H (x)| (respectively, d−H(x) = |N−
H (x)|) is called the

out-degree (respectively, in-degree) of x in H. Let

N++
H (x) =

⋃

u∈N+

H
(x)

N+
H (u)−N+

H (x),

which is called the second out-neighbourhood of x in H. Furthermore, d++
H (x) =

|N++
H (x)|. We will omit the subscript if H = D is known from the context.
Let X,Y be two disjoint subsets of vertices of D. We let E(X,Y ) denote the

set of all arcs with head in Y and tail in X. If E(Y,X) = ∅ and x → y for all
x ∈ X and y ∈ Y , then we say that X completely dominates Y and denote this
by X → Y .

An oriented graph is a digraph with no cycle of length two. One of the
most interesting and challenging open questions concerning digraphs is Seymour’s
Second Neighbourhood Conjecture (SSNC) (see [5] and Problem 325, page 804
in volume 197/198 (1999) of Discrete Mathematics), which asserts that one can
always find, in an oriented graph D, a vertex x whose second out-neighbourhood
is at least as large as its out-neighbourhood.

Conjecture 1 (Seymour’s Second Neighbourhood Conjecture). In every oriented

graph D, there exists a vertex x such that d++(x) ≥ d+(x).

Following [4], we will call such a vertex x a Seymour vertex.
Note that if we allow 2-cycles, then SSNC is no longer true as can be seen

by taking the complete digraph
←→
K n. Note also that SSNC trivially holds for

digraphs D which contain a vertex of out-degree zero, e.g. for acyclic digraphs.
A tournament is an oriented graph where every pair of distinct vertices are

adjacent. SSNC in the case of tournaments was also stated by Dean and Latka [5].
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This special case of the conjecture was proved by Fisher [7] using Farkas’ Lemma
and averaging arguments.

Theorem 2 [7]. In any tournament, there is a Seymour vertex.

A more elementary proof of SSNC for tournaments was given by Havet and
Thomassé [10] who introduced a median order approach. Their proof also yields
the following stronger result.

Theorem 3 [10]. A tournament with no vertex of out-degree zero has at least

two Seymour vertices.

Kaneko and Locke [11] proved SSNC for oriented graphs with minimum out-
degree at most 6. Fidler and Yuster [6] further developed the median order
approach and proved that SSNC holds for oriented graphs D with minimum
degree |V (D)|− 2, tournaments minus a star, and tournaments minus the arc set
of a subtournament. The median order approach was also used by Ghazal [8] who
proved a weighted version of SSNC for tournaments missing a generalized star.
Cohn, Godbole, Wright Harkness, and Zhang [4] proved that the conjecture holds
for random oriented graphs. Recently, Gutin and Li [9] proved SSNC for quasi-
transitive oriented digraphs which is a superclass of tournaments and transitive
acyclic digraphs. Another approach to SSNC is to determine the maximum value
γ such that in every oriented graph D, there exists a vertex x such that d+(x) ≤
γd++(x). SSNC asserts that γ = 1. Chen, Shen, and Yuster [3] proved that
γ ≥ r where r = 0.657298 . . . is the unique real root of 2x3 + x2 − 1 = 0. They
also claim a slight improvement to r ≥ 0.67815 . . ..

Sullivan [13] stated the following “compromise conjectures” on SSNC, where
d−(v) is used instead of or together with d+(v).

Conjecture 4 [13].
(1) Every oriented graph D has a vertex x such that d++(x) ≥ d−(x).

(2) Every oriented graph D has a vertex x such that d++(x) + d+(x) ≥ 2d−(x).

For convenience, a vertex x satisfying Conjecture 4(i) is called a Sullivan-i

vertex for i = 1, 2. Recently, we show that these conjectures hold for quasi-
transitive oriented graphs. See [14].

A bipartite tournament is an oriented graph defined as an orientation of a
complete bipartite graph. T (X ∪ Y,A) will denote a bipartite tournament with
partite setsX,Y and arc set A. When no confusion arises the short form T will be
used. In this paper, we consider Conjecture 1 and 4 for bipartite tournaments. It
is not difficult to see that each vertex of minimum out-degree is a Seymour vertex
in a bipartite tournament. In Section 2, we characterize the class of bipartite
tournaments in which there exists exactly one Seymour vertex. In Section 3, we
show that any bipartite tournament contains a Sullivan-1 vertex and characterize
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the class of bipartite tournaments in which there exists exactly one Sullivan-1
vertex. In Section 4, we prove that if |X| = |Y | or |X| ≥ 4|Y |, then the bipartite
tournament T contains a Sullivan-2 vertex.

2. SSNC for Bipartite Tournaments

We consider SSNC for bipartite tournaments. Let T (X ∪ Y,A) be a bipartite
tournament. For any two vertices x, y of a bipartite tournament T , if x → y,
then N+(y) ⊆ N++(x). So we can obtain the following observation immediately.

Lemma 5. Let T be a bipartite tournament and x, y two vertices of T . If x→ y

and d+(y) ≥ d+(x), then x is a Seymour vertex of T .

Moreover, SSNC is true for bipartite tournaments. In fact, in a bipartite
tournament, each vertex of minimum out-degree is a Seymour vertex due to
Lemma 5. Similarly to the Theorem 3 on tournaments, we have the following
result on bipartite tournaments.

Lemma 6. A bipartite tournament with no vertex of out-degree zero has at least

two Seymour vertices.

Proof. Let T = (X∪Y,A) be a bipartite tournament with no vertex of out-degree
zero. Without loss of generality, assume that x ∈ X is a vertex of minimum out-
degree in T . Then x is a Seymour vertex of T , so we need to find another vertex
with this property. Let Tr = T − x and y a vertex of minimum out-degree in Tr.
Then y is a Seymour vertex of the bipartite tournament Tr. We claim that

(1) If y ∈ X or y ∈ Y, x→ y, then y is also a Seymour vertex of T.

In fact, in both cases, d++(y) ≥ d++
Tr

(y) ≥ d+Tr
(y) = d+(y). So assume that y ∈ Y

and y → x.
For the case when N+

Tr
(y) = ∅, we have d+Tr

(y) = 1. Recall that the out-degree
of x is not zero. Hence d++(y) ≥ d+(x) = d+(y) and y is another Seymour vertex
of T . For the case when N+

Tr
(y) 6= ∅, let z ∈ N+

Tr
(y). Clearly, z ∈ X and

d+Tr
(z) ≥ d+Tr

(y). Note that d+Tr
(z) = d+Tr

(y) implies that z is also a vertex of
minimum out-degree in Tr. By (1), z is another Seymour vertex of T . So assume
that d+Tr

(z) > d+Tr
(y). Since N+

Tr
(z) ⊆ N++

Tr
(y), we have

d++(y) = d++
Tr

(y) ≥ d+Tr
(z) ≥ d+Tr

(y) + 1 = d+(y).

y is another Seymour vertex. The lemma holds.

Let T = (X ∪ Y,A) be a bipartite tournament. According to the out-degree
of each vertex of T , we give a partition V1, . . . , Vk of the vertex set X ∪ Y of T
such that
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(a) d+(u) = d+(v) for any 1 ≤ i ≤ k and any u, v ∈ Vi;

(b) d+(ui) < d+(uj) for any 1 ≤ i < j ≤ k and any ui ∈ Vi and uj ∈ Vj .

We call the unique sequence V1, . . . , Vk satisfying the statement (a) and (b) the
out-degree sequence of T .

Now we consider a special class B1 of bipartite tournaments. T ∈ B1 if
and only if T is a bipartite tournament with the out-degree sequence V1, . . . , Vk

satisfying that

• |V1| = 1 and |V1|+ |V3|+ · · ·+ |V2i−1| < |V2|+ |V4|+ · · ·+ |V2i| < |V1|+ |V3|+
· · ·+ |V2i+1| for any 1 ≤ i ≤ ⌈k2⌉ − 1;

• all Vi’s for i odd are contained in a common partite set and all Vj ’s for j even
are contained in the other common partite set;

• Vi → V2, V4, . . . , Vi−1 for any i odd and Vj → V1, V3, . . . , Vj−1 for any j even.

It is not difficult to check that v ∈ V1 is the only Seymour vertex of T . See two
examples of the class B1 in Figure 1.
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Figure 1. Two bipartite tournaments in B1. The dashed boxes indicate the partition of
the vertex set of a bipartite tournament and an arc from a box Vi to a box Vj between
two boxes indicates Vi → Vj .

Theorem 7. A bipartite tournament T has at least two Seymour vertices unless

T ∈ B1.

Proof. Let T (X ∪ Y,A) be a bipartite tournament. Suppose T has exactly one
Seymour vertex. We will show that T ∈ B1. Let V1, . . . , Vk be the out-degree
sequence of T . Without loss of generality, assume that k is even since the proof
is very similar when k is odd. Recall that a vertex of minimum out-degree is
a Seymour vertex and each vertex of V1 has the minimum out-degree in T . So
|V1| = 1. Lemma 6 shows that V2, V4, . . . , Vk → V1.
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We claim that either Vi ⊆ X or Vi ⊆ Y for any 1 ≤ i ≤ k. Suppose not. Let
u, v ∈ Vi but u ∈ X, v ∈ Y . Clearly, i ≥ 2. By Lemma 5, u→ v implies that u is
a Seymour vertex and v → u implies that v is a Seymour vertex. In both cases,
T has two Seymour vertices. Hence Vi ⊆ X or Vi ⊆ Y for any 1 ≤ i ≤ k.

We also claim that Vi and Vi+1 are contained in different partite sets. Suppose
to the contrary that Vi, Vi+1 ⊆ X. For any vi ∈ Vi and vi+1 ∈ Vi+1, there exists
a vertex y ∈ Y such that vi+1 → y → vi since d+(vi+1) > d+(vi). Since neither
vi+1 nor y is a Seymour vertex, we have d+(vi+1) > d+(y) > d+(vi) by Lemma 5.
This contradicts the definition of V1, V2, . . . , Vk. Hence Vi and Vi+1 are contained
in different partite sets.

For convenience, assume V1 ⊆ X. The claims above show that Vi ⊆ X for
any i odd and Vj ⊆ Y for any j even. Also for any Vi, Vj with i < j, either
Vi, Vj are nonadjacent or Vj → Vi by Lemma 5 and the fact that T has exactly
one Seymour vertex. This means that Vi → V2, V4, . . . , Vi−1 for any i odd and
Vj → V1, V3, . . . , Vj−1 for any j even.

Now for any 1 ≤ i ≤ ⌈k2⌉ − 1 and for any u ∈ V2i+1 and v ∈ V2i+2, we see
that

N+(u) = V2 ∪ V4 ∪ · · · ∪ V2i, N++(u) = V1 ∪ V3 ∪ · · · ∪ V2i−1,

N+(v) = V1 ∪ V3 ∪ · · · ∪ V2i+1, N++(v) = V2 ∪ V4 ∪ · · · ∪ V2i.

Since T has exactly one Seymour vertex, we have d++(u) < d+(u) and d++(v) <
d+(v). This means that

|V1|+ |V3|+ · · ·+ |V2i−1| < |V2|+ |V4|+ · · ·+ |V2i| < |V1|+ |V3|+ · · ·+ |V2i+1|.

Thus T ∈ B1 and the theorem follows.

3. Sullivan’s Conjecture (1) for Bipartite Tournaments

We consider Conjecture 4(1) for bipartite tournaments. We begin with two ob-
servations.

Lemma 8. Let T be a bipartite tournament and x, y two vertices of T . If x→ y

and d+(y) ≥ d−(x), then x is a Sullivan-1 vertex.

Proof. Note that N+(y) ⊆ N++(x). Then d++(x) ≥ d+(y) ≥ d−(x).

Lemma 9. Let T = (X ∪ Y,A) be a bipartite tournament. If |E(Y,X)| ≥
|E(X,Y )|, then there exists a vertex y ∈ Y such that d+(y) ≥ d−(y).
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Proof. Suppose d+(y) < d−(y) for any y ∈ Y . Then

E(Y,X) =
∑

y∈Y

d+(y) <
∑

y∈Y

d−(y) = |E(X,Y )|,

a contradiction. Thus there exists a vertex y ∈ Y such that d+(y) ≥ d−(y).

Now we show that Conjecture 4(1) is true in the case of bipartite tourna-
ments.

Theorem 10. Any bipartite tournament has a Sullivan-1 vertex.

Proof. Let T = (X∪Y,A) be a bipartite tournament. Without loss of generality,
assume |E(Y,X)| ≥ |E(X,Y )|. Then by Lemma 9, there exists a vertex y ∈ Y

such that d+(y) ≥ d−(y). Let y0 ∈ Y such that y0 has maximum out-degree
among the vertices of Y . Clearly, d+(y0) ≥ d−(y0). We give a partition of the
vertex set X ∪ Y of T . Set

V1 = N−(y0), V2 = N+(y0), V3 = N++(y0), V4 = Y − V3

and ti = |Vi| for i = 1, 2, 3, 4. We claim that V1 → V4 → V2. In fact, V3 =
N++(y0) =

⋃
x∈V2

N+(x) implies V4 → V2. Moreover, since y0 has maximum out-
degree in Y , we have d+(y) ≤ d+(y0) for any y ∈ V4. Note that y → V2 = N+(y0).
We have N+(y0) ⊆ N+(y). So N+(y) = N+(y0) and hence N−(y) = N−(y0) for
any y ∈ V4. Thus V1 → V4. See Figure 2(a).

Now we will prove the following claim which directly implies the result.

Claim A. Either y0 or w ∈ N−(y0) is a Sullivan-1 vertex. Moreover, if y0 is not

a Sullivan-1 vertex, then d++(w) > d−(w).

If t3 ≥ t1, then d++(y0) ≥ d−(y0) and y0 is a Sullivan-1 vertex. We are done.
So assume t3 < t1. Since d+(y0) ≥ d−(y0), we have t1 ≤ t2. For any w ∈ V1,
N−(w) ⊆ V3 and V2 ⊆ N++(w). Now

d++(w) ≥ t2 ≥ t1 > t3 ≥ d−(w).

w is a Sullivan-1 vertex in T . The theorem follows.

We consider a special class B2 of bipartite tournaments. T ∈ B2 if and
only if T is a bipartite tournament with two partite sets X and Y such that
x → Y → X − x (possibly, X − x = ∅) for some x ∈ X. See Figure 2(b). It is
not difficult to check that x is the only Sullivan-1 vertex of T .

Theorem 11. Any bipartite tournament has at least two Sullivan-1 vertices un-

less T ∈ B2.
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Figure 2. (a) A partition of the vertex set of a bipartite tournament T = (X ∪Y,A). For
any vertex y ∈ V1, d

+(y) ≥ d+(y) and y has the maximum out-degree among all vertices
in Y . V1 = N−(y), V2 = N+(y), V3 = N++(y), V4 = Y − V3. An dotted arc from a box
V2 to a box V3 indicates N+(V2) = V3. V1 → V4 → V2. (b) A bipartite tournament in
B2. x→ Y → X − x.

Proof. Let T = (X ∪ Y,A) be a bipartite tournament. Suppose T has exactly
one Sullivan-1 vertex. It is sufficient to show that T ∈ B2. Without loss of
generality, assume |E(Y,X)| ≥ |E(X,Y )|. Let y0, Vi and ti be defined as in the
proof of Theorem 10. Then d+(y0) ≥ d−(y0) and V1 → V4 → V2. We consider
the following two cases.

Case 1. t3 ≥ t1. Clearly, each vertex of V4 is a Sullivan-1 vertex. So |V4| = 1
and V4 = {y0}. Let Tr = T − y0.

Subcase 1.1. There is a vertex y ∈ Y − y0 such that d+(y) ≥ d−(y). Let y1
be the vertex of maximum out-degree in Y − y0. Then d+(y1) ≥ d−(y1). Clearly,
y1 ∈ V3 and d+Tr

(y1) = d+(y1) ≥ d−(y1) = d−Tr
(y1). Applying Claim A of the proof

of Theorem 10 to the bipartite tournament Tr, either y1 is a Sullivan-1 vertex or
w ∈ N−

Tr
(y1) is a Sullivan-1 vertex of Tr. And if y1 is not a Sullivan-1 vertex of

Tr, then d++
Tr

(w) > d−Tr
(w).

For the case when y1 is a Sullivan-1 vertex of Tr, we have d
++(y1) ≥ d++

Tr
(y1) ≥

d−Tr
(y1) = d−(y1). So y1 is also Sullivan-1 vertex of T . For the case when y1 is

not a Sullivan-1 vertex of Tr, we have w ∈ N−
Tr
(y1) is a Sullivan-1 vertex and

d++
Tr

(w) > d−Tr
(w). Now d++(w) ≥ d++

Tr
(w) ≥ d−Tr

(w) + 1 ≥ d−(w). So w is also
Sullivan-1 vertex of T .

Subcase 1.2. For any vertex y ∈ Y − y0, d
+(y) < d−(y). In the bipartite

tournament Tr, we see that

|E(X,Y − y0)| =
∑

y∈Y−y0

d−(y) >
∑

y∈Y−y0

d+(y) = |E(Y − y0, X)|.
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By Lemma 9, there exists a vertex x ∈ X such that d+Tr
(x) ≥ d−Tr

(x). Let x0 ∈ X

be the vertex of maximum out-degree among the vertices of X in Tr. Clearly,
d+Tr

(x0) ≥ d−Tr
(x0). Similarly to the proof of Theorem 10, set

V ′
1 = N−

Tr
(x0), V ′

2 = N+
Tr
(x0), V ′

3 = N++
Tr

(x0), V ′
4 = Y − y0 − V ′

3 .

Let t′i = |V
′
i | for i = 1, 2, 3, 4. By Claim A of the proof of Theorem 10, either x0

is a Sullivan-1 vertex in Tr or z ∈ N−
Tr
(x0) is a Sullivan-1 vertex of Tr. For the

case when z ∈ N−
Tr
(x0) is a Sullivan-1 vertex of Tr, we have d++(z) ≥ d++

Tr
(z) ≥

d−Tr
(z) = d−(z). Then z is also a Sullivan-1 vertex of T . For the case when x0

is a Sullivan-1 vertex in Tr, we have t′3 ≥ t′1. Note that t′3 > t′1 implies that
d++(x0) ≥ d++

Tr
(x0) ≥ d−Tr

(x0) + 1 ≥ d−(x0) Then x0 is also a Sullivan-2 vertex
of Tr. So assume t′3 = t′1. Recall that t′1 ≤ t′2. So t′3 ≤ t′2. On the other hand,
z is not a Sullivan-1 vertex of Tr implies that t′2 ≤ d++

Tr
(z) < d−Tr

(z) ≤ t′3, a
contradiction.

In any case, we get a contradiction. Thus Case 1 is impossible.

Case 2. t3 < t1. Clearly, any vertex y ∈ V4 is not a Sullivan-1 vertex. So
any vertex w ∈ V1 is a Sullivan-1 vertex and d++(w) > d−(w) by Claim A of the
proof of Theorem 10. Since T has exactly one Sullivan-1 vertex, we have t1 = 1.
So t3 = 0 and V3 is an empty set. Thus w → Y → X − w (possibly, X − w = ∅)
and T ∈ B2. The theorem follows.

4. Support for Sullivan’s Conjecture (2) on Bipartite
Tournaments

The results in Section 4 provide support for Conjecture 4(2) on bipartite tourna-
ments.

Lemma 12. Let T = (X ∪ Y,A) be a bipartite tournament with |X| ≤ |Y |. If

there exists a vertex y ∈ Y such that d+(y) ≥ d−(y), then T has a Sullivan-2
vertex.

Proof. Choose y0 ∈ Y such that y0 has maximum out-degree among the vertices
of Y . By the assumption, d+(y0) ≥ d−(y0). Let Vi and ti be defined as in the
proof of Theorem 10. Then |X| ≤ |Y | implies that t1 + t2 ≤ t3 + t4. Recall
that t2 ≥ t1. If y0 is a Sullivan-2 vertex of T , we are done. So assume that
d++(y0) + d+(y0) < 2d−(y0), i.e., t2 + t3 < 2t1. So t3 < t1 ≤ t2. For any
w ∈ N−(y0), suppose that w is also not a Sullivan-2 vertex of T . We have
d++(w) + d+(w) < 2d−(w), which means t2 + t4 < 2t3. So t4 < t3. Now
t3 + t4 < 2t3 < t1 + t2, a contradiction. Thus either y0 or w ∈ N−(y0) is a
Sullivan-2 vertex. The lemma follows.
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Corollary 13. Any balance bipartite tournament has a Sullivan-2 vertex.

Proof. Let T = (X ∪ Y,A) be a balance bipartite tournament. Then |X| = |Y |.
By Lemma 9, there exists a vertex u ∈ X ∪ Y such that d+(u) ≥ d−(u). Now
Lemma 12 yields the result.

Lemma 14. Let T = (X ∪ Y,A) be a bipartite tournament. If there exists a

vertex x ∈ X such that d+(x) ≥ 2|X| − 3, then any y ∈ N−(x) is a Sullivan-2
vertex.

Proof. Note that N+(x) ⊆ N++(y). So d++(y) ≥ 2|X| − 3. Thus d++(y) +
d+(y) ≥ 2|X| − 3 + 1 ≥ 2d−(y) and y is a Sullivan-2 vertex of T .

Corollary 15. Let T = (X ∪ Y,A) be a bipartite tournament. If |E(X,Y )| ≥
2|X|2, then there is a vertex x ∈ X such that any y ∈ N−(x) is a Sullivan-2
vertex.

Proof. Since |E(X,Y )| =
∑

x∈X d+(x) ≥ 2|X|2, there is a vertex x ∈ X such
that d+(x) ≥ 2|X|. By Lemma 14, any y ∈ N−(x) is a Sullivan-2 vertex.

Corollary 16. A bipartite tournament T = (X ∪ Y,A) with |Y | ≥ 4|X| has a

Sullivan-2 vertex.

Proof. By Lemma 9, there exists a vertex u ∈ X ∪ Y such that d+(u) ≥ d−(u).
If u ∈ Y , by Lemma 12, T has a Sullivan-2 vertex and we are done. So assume
u ∈ X. Now d+(u) ≥ |Y |

2 ≥ 2|X|. By Lemma 14, any y ∈ N−(u) is a Sullivan-2
vertex of T .
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