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Abstract

Let G = (V,E) be a simple graph without isolated vertices and minimum
degree δ, and let k ∈ {1− ⌈δ/2⌉ , . . . , ⌊δ/2⌋} be an integer. Given a set

M ⊂ V , a vertex v of G is said to be k-controlled by M if δM (v) ≥ δG(v)
2 +k,

where δM (v) represents the number of neighbors of v in M and δG(v) the
degree of v in G. A set M is called an open k-monopoly if every vertex v of
G is k-controlled by M . The minimum cardinality of any open k-monopoly
is the open k-monopoly number of G. In this article we study the open k-
monopoly number of strong product graphs. We present general lower and
upper bounds for the open k-monopoly number of strong product graphs.
Moreover, we study in addition the open 0-monopolies of several specific
families of strong product graphs.
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1. Introduction and Preliminaries

Let G = (V,E) be a simple graph. Given a set S ⊂ V and a vertex v ∈ V ,
we denote by δS(v) the number of neighbors of v in S. If S = V , then δV (v)
is the degree of v and we write δG(v) (or just δ(v), if there are no misunder-
standings with the graph G). The minimum degree of G is denoted by δ(G)
and the maximum degree by ∆(G). If there is no confusion possible, then we
use shorter version δ and ∆ for minimum and maximum degree of G. Given
an integer k ∈

{

1−
⌈

δ
2

⌉

, . . . ,
⌊

δ
2

⌋}

and a set M , a vertex v of G is said to be

k-controlled by M if δM (v) ≥ δG(v)
2 + k (in this case we say that M k-controls

V ). The set M is called an open k-monopoly if it k-controls every vertex v of
G. The minimum cardinality of any open k-monopoly is the open k-monopoly
number and is denoted by Mk(G). An open monopoly of cardinality Mk(G) is
called an Mk(G)-set. In particular, notice that for a graph with a leaf (vertex of
degree one), there exist only open 0-monopolies and the neighbor of every leaf is
in each M0-set. The degree δG(v) in the definition of an open k-monopoly can
clearly be replaced by the cardinality of its open neighborhood |NG(v)|. Open
k-monopolies in graphs were introduced in [12] as a natural contrast to closed
monopolies which use close neighborhood instead of open (and k = 0). Closed
monopolies were studied earlier in [13], called just monopolies there. Other stud-
ies about closed monopolies in graphs and some of its applications can be found
in [5, 8, 14, 15, 19]. Since we are only interested in the open monopolies, we skip
the term open in what follows.

Several applications to practical problems have been described for (open and
closed) monopolies in graphs. A great part of these applications are related to
the notion of overcomes and failures, considering the fact that monopolies have
frequent applications in the notion of majorities: consensus problems [3], diagno-
sis problems [17] or voting systems [6], among other applications and references.
Monopolies in graphs are also closely related to different parameters in graphs.
According to several connections which exist between monopolies, global alliances
and signed domination in graphs (see [12]), it is known that the complexity of
computing the k-monopoly number of a graph is an NP-hard problem for any
suitable k (see [12, 16]). In this sense, it is desirable to study the k-monopoly
number of some particular families of graphs. In this article we obtain general
and particular bounds for the k-monopoly number of strong product graphs.

Studies about graph products have been appearing very frequently in the last
few decades and a rich theory involving the structure and recognition of classes
of these graphs has emerged, cf. the new book [7]. The most studied graph
products are the Cartesian product, the strong product, the direct product, and
the lexicographic product, which are also called standard products. A standard
approach to graph products is to deduce properties of the product with respect
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to the same or different properties of its factors. In this sense, the topic which
we deal with has been recently studied for the direct product [10] and for the
lexicographic product [11] of graphs. It is now our goal to study the strong
product graph with respect to its monopolies.

An equivalent definition for a k-monopoly in G can be described in the fol-
lowing way. Let M be the complement of a set M . Hence, a set of vertices M is
a k-monopoly in G if and only if for every vertex v of G, δM (v) ≥ δM (v) + 2k.

From now on, given a graph G, we use the standard notations NG(g) for
the open neighborhood {g′ : gg′ ∈ E(G)} and NG[g] for the closed neighborhood
NG(g)∪{g}. The strong product G⊠H of graphs G and H is a graph with vertex
set V (G ⊠ H) = V (G) × V (H). Two vertices (g, h) and (g′, h′) are adjacent in
G ⊠ H whenever (gg′ ∈ E(G) and h = h′) or (g = g′ and hh′ ∈ E(H)) or
(gg′ ∈ E(G) and hh′ ∈ E(H)). For a fix h ∈ V (H) we call Gh = {(g, h) ∈
V (G ⊠H) : g ∈ V (G)} a G-layer in G ⊠H. An H-layer gH for a fix g ∈ V (G)
is defined symmetrically. Notice that a subgraph induced by Gh and gH are
isomorphic to G and H, respectively. The commutativity of the strong product
follows from the symmetry of the definition of adjacency, while for associativity,
see [7]. The closed neighborhoods of vertices in strong product graphs are nicely
connected to closed neighborhoods of projections to the factors

NG⊠H [g, h] = NG[g]×NH [h].

Notice that the same situation does not occur with open neighborhoods in strong
product.

2. General Bounds

To begin the description of our results we give some general bounds for the
k-monopoly number of strong product graphs in terms of the order and the
monopoly number of the factor graphs. Some of these results are related to the
alliances of the factor graphs. Alliances were presented first in [9], and for more
information about alliances in graphs we suggest the recent survey [18].

For k ∈ {−∆, . . . ,∆}, a nonempty set A ⊆ V is a defensive k-alliance in G
if for every v ∈ A it follows that

(1) δA(v) ≥ δA(v) + k.

Moreover, for k ∈ {2−∆, . . . ,∆}, a nonempty set A ⊆ V is an offensive k-alliance
in G if for every v ∈ ∂A it follows that

(2) δA(v) ≥ δA(v) + k,

where ∂A is the set of all vertices not in A which are adjacent to at least one
vertex of A.
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For k ∈ {−∆, . . . ,∆− 2}, if A is a defensive k-alliance as well as an offensive
(k + 2)-alliance, then A is a powerful k-alliance. A powerful k-alliance is called
global if it is a dominating set. The global powerful k-alliance number of G,
denoted by γpk(G), is defined as the minimum cardinality of a global powerful
k-alliance in G. For a global powerful k-alliance A, it is easy to see that ∂A = A.
Hence δA(v) ≥ δA(v) + k holds for every v ∈ A and δA(v) ≥ δA(v) + k + 2 holds
for every v ∈ A.

Theorem 1. Let G and H be two graphs and let ℓ = min{δ(G), δ(H)}. If k ∈
{

1−
⌈

ℓ
2

⌉

, . . . ,
⌊

ℓ
2

⌋}

, then

Mk(G⊠H) ≤ min
{

γpk(G)|V (H)|, |V (G)|γpk(H)
}

.

Proof. Let (g, h) be an arbitrary vertex of G⊠H and let AG and AH be a γpk(G)-
set and a γpk(H)-set, respectively. Hence, if g ∈ AG, then δAG

(g) ≥ δAG
(g) + k,

and if g /∈ AG, then δAG
(g) ≥ δAG

(g) + k + 2. On the other hand, if h ∈ AH ,
then δAH

(h) ≥ δAH
(h)+k, and if h /∈ AH , then δAH

(h) ≥ δAH
(h)+k+2. Hence,

we can split the neighborhood NG⊠H(g, h) of a vertex (g, h) of G ⊠ H to the
following disjoint union of sets

(A×C)∪(B×C)∪(A×D)∪(B×D)∪({g}×C)∪({g}×D)∪(A×{h})∪(B×{h}),

where A = NG(g) ∩ AG, B = NG(g) ∩ AG, C = NH(h) ∩ AH and D = NH(h) ∩
AH . Clearly, |A × C| = δAG

(g)δAH
(h), |B × C| = δAG

(g)δAH
(h), |A × D| =

δAG
(g)δAH

(h), |B×D| = δAG
(g)δAH

(h), |{g}×C| = δAH
(h), |{g}×D| = δAH

(h),
|A× {h}| = δAG

(g) and |B × {h}| = δAG
(g).

By the commutativity of the strong product, it is enough to show that
Mk(G ⊠ H) is bounded from above by |V (G)|γpk(H). Let M = V (G) × AH .
Clearly |M | = |V (G)|γpk(H). Also, A × C, B × C and {g} × C are subsets of
M , while A × D, B × D and {g} × D are subsets of M . Sets A × {h} and
B×{h} are subsets of M whenever h ∈ AH and subsets of M whenever h ∈ AH .

We will show that δM (g, h) ≥ δG⊠H(g,h)
2 + k for every vertex (g, h) and every

k ∈
{

1−
⌈

ℓ
2

⌉

, . . . ,
⌊

ℓ
2

⌋}

, where ℓ = min{δ(G), δ(H)}. We consider the following
cases.

Case 1. If h ∈ AH , then, since AH is a global defensive k-alliance, we have
that

δM (g, h)− δM (g, h) = δAG
(g)δAH

(h) + δAG
(g)δAH

(h) + δAH
(h) + δAG

(g)

+ δAG
(g)− δAG

(g)δAH
(h)− δAG

(g)δAH
(h)− δAH

(h)

= δAG
(g)(δAH

(h)− δAH
(h) + 1)

+ δAG
(g)(δAH

(h)− δAH
(h) + 1) + δAH

(h)− δAH
(h)
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≥ δAG
(g)(k + 1) + δAG

(g)(k + 1) + k = (k + 1)δG(g) + k ≥ 2k + 1.

Now, since δG⊠H(g, h) = δM (g, h) + δM (g, h), from the above we have that

(3) δM (g, h) ≥
δG⊠H(g, h) + 2k + 1

2
=

δG⊠H(g, h)

2
+ k +

1

2
.

Case 2. If h ∈ AH , then, since AH is a global offensive (k + 2)-alliance, we
have

δM (g, h)− δM (g, h) = δAG
(g)δAH

(h) + δAG
(g)δAH

(h) + δAH
(h)− δAG

(g)−

+ δAG
(g)− δAG

(g)δAH
(h)− δAG

(g)δAH
(h)− δAH

(h)

= δAG
(g)(δAH

(h)− δAH
(h)− 1)

+ δAG
(g)(δAH

(h)− δAH
(h)− 1) + δAH

(h)− δAH
(h)

≥ (k + 1)δAG
(g) + (k + 1)δAG

(g) + k + 2

= (k + 1)δG(g) + k + 2 ≥ 2k + 3.

Similarly to the Case 1, we have that

(4) δM (g, h) ≥
δG⊠H(g, h) + 2k + 3

2
≥

δG⊠H(g, h)

2
+ k + 1.

As a consequence of both cases we obtain that M is a k-monopoly and the proof
is complete.

If we consider two graphs G and H such that all its vertices have even degree,
then, since k is an integer, it follows from the expressions (3) and (4) that every

(g, h) of V (G ⊠ H) satisfies δM (g, h) ≥ δG⊠H(g,h)
2 + k + 1 and so, the following

result.

Theorem 2. Let G and H be two graphs graphs without vertices and let ℓ =
min{δ(G), δ(H)}. If G and H are Eulerian graphs, then for k ∈

{

1−
⌈

ℓ
2

⌉

, . . . ,
⌊

ℓ
2

⌋}

Mk+1(G⊠H) ≤ min
{

γpk(G)|V (H)|, |V (G)|γpk(H)
}

.

To give some lower bounds for the k-monopoly number of strong product
graphs we need some additional terminology. Given a graph G and a set S ⊂
V (G), we say that closed neighborhoods over S form a closed subpartition for
G if NG[u] ∩ NG[v] = ∅ for every different u, v ∈ S. A closed subpartition S
for G is a maximum closed subpartition, if V (G) \

⋃

v∈S NG[v] has the minimum
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cardinality among all closed subpartitions S′ for G. Notice that, if S forms a
maximum closed subpartition which is also a partition of V (G), then S is called
a perfect code [2] or an efficient dominating set [1] of G. We have the following
result, which yields a corollary that is important for this work.

Proposition 3. Let G and H be graphs. If SG and SH form maximum closed
subpartitions for G and H, respectively, then S = SG×SH form a closed subpar-
tition for G⊠H.

Proof. Let SG and SH be maximum closed subpartitions for G and H, respec-
tively, and let S = SG × SH . Since NG⊠H [(g, h)] = NG[g] × NH [h] holds, we
have NG⊠H [g, h] ∩NG⊠H [g′, h′] = ∅ for every different vertices (g, h) and (g′, h′)
from S.

Now we present lower bounds on the monopoly number of strong product
graphs. One of them will be based on the following observation.

Observation 4. Let G be a graph. If S ⊂ V (G) forms a closed subpartition of
G, then

Mk(G) ≥ k|S|+
∑

v∈S

⌈

δ(v)

2

⌉

.

The following theorem follows directly from the above observation, Proposi-
tion 3 and the fact that δG⊠H(g, h) = δG(g)δH(h) + δ(g) + δ(h).

Theorem 5. Let G and H be graphs without isolated vertices and let ℓ =
δ(G)δ(H) + δ(G) + δ(H). If SG and SH are maximum closed subpartitions of
G and H, respectively, then for k ∈

{

1−
⌈

ℓ
2

⌉

, . . . ,
⌊

ℓ
2

⌋}

we have

Mk(G⊠H) ≥ k|SG||SH |+
∑

(g,h)∈SG×SH

⌈

δG(g)δH(h) + δ(g) + δ(h)

2

⌉

.

The next result, presented previously in [10], is also useful to obtain a lower
bound on the monopoly number of strong product graphs.

Proposition 6 [10]. Let G be a graph of order n, minimum degree δ and maxi-
mum degree ∆. Then, for any k ∈

{

1−
⌈

δ
2

⌉

, . . . ,
⌊

δ
2

⌋}

Mk(G) ≥

⌈

n

∆

(⌈

δ

2

⌉

+ k

)⌉

.

Corollary 7. Let G and H be two graphs without isolated vertices of order n

and m, respectively. For any k ∈
{

1−
⌈

δ(G)δ(H)
2

⌉

, . . . ,
⌊

δ(G)δ(H)
2

⌋}

we have

Mk(G⊠H) ≥

⌈

mn

∆(G)∆(H) + ∆(G) + ∆(H)

(⌈

δ(G)δ(H) + δ(G) + δ(H)

2

⌉

+ k

)⌉

.
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The best performance of the last bound is achieved when both factors are
Eulerian regular graphs.

3. Bounds or Closed Formulaes for Particular Families of

Strong Product Graphs

We start with the strong product of two cycles.

Theorem 8. Let r, t ≥ 3, r ≤ t, be two integers. If r and t are even, then
M0(Cr⊠Ct) =

rt
2 . Moreover, if at least one of integers r or t, say t, is odd, then

⌈

rt

2

⌉

≤ M0(Cr ⊠ Ct) ≤

{ rt
2 +

⌈

r
4

⌉

, if r is even,
⌊

rt
2

⌋

+
⌈

r
4

⌉

+
⌊

t
4

⌋

, if r is odd.

Proof. Let V (Cr) = {u0, . . . , ur−1} and V (Ct) = {v0, . . . , vt−1}. From now on,
operations with subscripts of vertices of Cr and Ct are done modulo r and modulo
t, respectively. Also we assume that ui, ui+1 and vi, vi+1 are adjacent in Cr and
Ct, respectively. Clearly, Cr ⊠Ct is an 8-regular graph and M0(Cr ⊠Ct) ≥

⌈

rt
2

⌉

holds by Corollary 7.

Let M = {(ui, vj) : i, j have different parities}. Notice that the cardinality
of M is

⌊

rt
2

⌋

. We suppose first that both r and t are even. Hence, it is easy to
check that every vertex (ui, vj) ∈ V (Cr ⊠ Ct) has exactly four neighbors in M
and four neighbors in M . So, M is a 0-monopoly in Cr ⊠Ct. Moreover, in every
Cr-layer there are exactly r

2 vertices of M , which gives all together rt
2 vertices in

M . Therefore, we have that M0(Cr ⊠ Ct) =
rt
2 .

Now let t ≥ 3 be an odd integer. We consider first r ≥ 3 being an even
integer. It is straightforward to observe that all the vertices of M belonging to
the set V (Cr ⊠ Ct) \ (C

v0
r ∪ C

vt−1

r ) are 0-controlled by M (we recall that Cvi
r is

the Cr-layer corresponding to the vertex vi). Vertices from Cv0
r ∪ C

vt−1

r which
are not in M have five neighbors in M and are also 0-controlled. On the other
hand, vertices of M in Cv0

r ∪ C
vt−1

r have only three neighbors in M . Hence, it
is necessary to add some extra vertices to M to have a 0-monopoly in Cr ⊠ Ct.
That is, M1 = M ∪

{

(u4i, vt−1) : i ∈
{

0, . . . ,
⌈

r
4

⌉

− 1
}}

is a 0-monopoly in Cr⊠Ct

and, thus, M0(Cr ⊠ Ct) ≤
rt
2 +

⌈

r
4

⌉

.

If r ≥ 3 is an odd integer, then we make an analogue extension of M to a set
M2 as we did above from M to M1. That is, M2 is given as the following set.

M ∪
{

(u4i, vt−1) : i ∈
{

0, . . . ,
⌈r

4

⌉

−1
}}

∪

{

(ur−1, v4j+2) : j ∈

{

0, . . . ,

⌊

t

4

⌋

−1

}}

.
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Similarly as before, M2 is a 0-monopoly in Cr ⊠ Ct. Thus, it follows

M0(Cr ⊠ Ct) ≤

⌊

rt

2

⌋

+

⌈

r

4

⌉

+

⌊

t

4

⌋

.

By using a similar pattern like in the above result, we obtain the following
for the case of strong product of paths.

Proposition 9. If r ≥ 3 and t ≥ 3 are two integers, then

M0(Pr ⊠ Pt) ≤

⌊

rt

2

⌋

+

⌈

r + t− 2

2

⌉

.

Proof. Let V (Pr) = {u1, . . . , ur} and V (Pt) = {v1, . . . , vt}. With the above
notation we suppose that two consecutive vertices of V (Pi) are adjacent for i ∈
{r, t}. Suppose that r, t have the same parity. Consider the set M = {(ui, vj) :
i, j have different parities}. Notice that the cardinality of M is

⌊

rt
2

⌋

. First we
consider the case that r and t are odd integers. Now, it is easy to see that any
vertex (ui, vj) ∈ V (Pr ⊠ Pt) with δPr⊠Pt

(ui, vj) = 8 has exactly four neighbors
in M and four neighbors in M . Also, if δPr⊠Pt

(ui, vj) = 3, then δM (ui, vj) = 2,
and if δPr⊠Pt

(ui, vj) = 5 and (ui, vj) /∈ M , then δM (ui, vj) = 3. However, if
δPr⊠Pt

(ui, vj) = 5 and (ui, vj) ∈ M , then δM (ui, vj) = 2 which is not enough to
satisfy the 0-monopoly condition, and we need to add some additional vertices to
M . Notice that there are exactly 2 r−1+t−1

2 = r + t− 2 of such vertices, and this
is an even number, since r, t have the same parity. Since, the layers P 1

r ,
rPt, P

r
t

and 1Pt form a cycle, say C, and any two consecutive vertices of M lying in C
have a common neighbor in C not belonging to M , we can split them into pairs
and for each pair we add to M one extra vertex, to obtain a 0-monopoly set in
Pr ⊠ Pt. Therefore we have

M0(Pr ⊠ Pt) ≤

⌊

rt

2

⌋

+
r + t− 2

2
.

Now, we assume that r, t are even integers. We proceed similarly as above,
but in this case, there also exist two vertices with δPr⊠Pt

(ui, vj) = 3, for which
δM (ui, vj) = 1 (not satisfying the 0-monopoly condition). Again, if δPr⊠Pt

(ui, vj)
= 5 and (ui, vj) ∈ M , then δM (ui, vj) = 2 which is not enough to satisfy the
0-monopoly condition, and we need to add some additional vertices to M . There
are exactly 2 r−1+t−1

2 = r + t− 2 of such vertices (two with degree three and the
rest with degree five). The same lower bound is obtained as above.

On the other hand, without loss of generality, suppose t ≥ 3 is even and
r ≥ 3 is odd. We consider the same set M , which has the same cardinality
as above. Also, only those vertices (ui, vj) ∈ M with δPr⊠Pt

(ui, vj) = 5 and
two corner vertices of degree three are not satisfying the 0-monopoly condition,
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since δM (ui, vj) = 2 or δM (ui, vj) = 1, respectively. Thus, we need to add some
additional vertices to M . Again, there are exactly 2 r−1+t−1

2 = r + t − 2 of such
vertices, but in this case, this is an odd number, since r, t have different parities.
By adding

⌈

r+t−2
2

⌉

vertices to M , in a similar way, we obtain a 0-monopoly. Thus

M0(Pr ⊠ Pt) ≤

⌊

rt

2

⌋

+

⌈

r + t− 2

2

⌉

.

The next result is a kind of “combination” of the above two results, in the
sense we analyze the case when one factor is a path and the second one is a
cycle. According to this, the construction of a 0-monopoly set in the proof is
very similar to the above ones. So, we omit the proof.

Proposition 10. If r ≥ 3 and t ≥ 3 are two integers, then

M0(Pr ⊠ Ct) ≤



















rt
2 + 2

⌈

t
4

⌉

, if t is even,

rt
2 +

⌊

r
4

⌋

+ 2
⌊

t
4

⌋

, if r is even and t is odd,

rt−1
2 +

⌈

r
4

⌉

+ 2
⌊

t
4

⌋

, if r, t are odd.

The upper bound of k-monopolies of strong product graphs depends on the
value of the global powerful k-alliance number of its factors by Theorem 1. For
the complete graphs it is as follows.

Lemma 11 [4]. For any Kt of order t ≥ 2 and k ∈ {2− t, . . . , t− 3},

γpk(Kt) =

⌈

t+ k + 1

2

⌉

.

Since Cr ⊠Kt is a regular graph of degree 3t− 1, from Theorem 1, Corollary
7, Lemma 11, and by making some straightforward calculations, it is possible to
observe that for any r, t ≥ 3,

⌈

rt
2

⌉

≤ M0(Cr ⊠Kt) ≤ r
⌈

t+1
2

⌉

. Nevertheless such
results can be improved as we show at next.

Proposition 12. For integers r, t ≥ 3 we have

rt

2
+

r

6
≤ M0(Cr ⊠Kt) ≤ r

⌈

t+ 1

2

⌉

−

⌊

r

3

⌋

.

Moreover, if r ≡ 0(mod 3) and t is odd, then M0(Cr ⊠Kt) =
rt
2 + r

6 .

Proof. Let V (Cr) = {u0, . . . , ur−1} and V (Kt) = {v1, . . . , vt}. With the above
notation we suppose that two consecutive vertices ui and ui+1 are adjacent (all
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the operations with the subindexes of ui are done modulo r). Let M be an
M0(Cr ⊠Kt)-set and let (ui, vj) ∈ M . Hence, we have that

(5) δM (ui, vj) ≥
δCr⊠Kt

(ui, vj)

2
=

3t− 1

2
.

Now, for every i ∈ {0, . . . , r−1}, let Mi = M ∩({ui−1, ui, ui+1}×V (Kt)). Hence,
for every (x, y) ∈ Mi, from (5) we obtain that |Mi| ≥ δMi

(x, y) ≥ 3t−1
2 . On the

other hand, it is clear that for every i ∈ {0, . . . , r − 1}, Mi 6= ∅. Also, notice
that if there exist j ∈ {0, . . . , r − 1} such that M ∩ ({uj} × V (Kt)) = ∅, then
M ∩ ({ul}×V (Kt)) 6= ∅ for every l ∈ {j− 2, j− 1, j+1, j+2}. Thus, there exist
at least r

3 disjoint sets Mi satisfying |Mi| ≥
3t−1
2 + 1, since we need to count one

vertex of Mi and its neighbors inside of the set Mi. Therefore, by counting each
vertex of M three times, we obtain that

|M | ≥
1

3

r−1
∑

i=0

|Mi| ≥
1

3

r−1
∑

i=0

(

3t− 1

2

)

+
r

3
=

r(3t− 1)

6
+

r

3
=

rt

2
+

r

6
,

and the lower bound is proved.
Let SG be a maximum closed subpartition for Cr. Let A be a set such that

if ui ∈ SCr
, then

⌊

t
2

⌋

vertices of the uiKt-layer belong to A, otherwise
⌊

t
2

⌋

+ 1
vertices of the uiKt-layer belong to A. We will prove that A is a 0-monopoly in
Cr⊠Kt. Since Cr⊠Kt is a (3t−1)-regular graph, we only need to show that any
vertex (ui, vj) ∈ V (Cr ⊠Kt) has at least

⌈

3t−1
2

⌉

neighbors in A. If (ui, vj) /∈ A,
then |NCr⊠Kt

(ui, vj) ∩ A| ≥ 3
⌊

t
2

⌋

+ 2 >
⌈

3t−1
2

⌉

. Otherwise, if (ui, vj) ∈ A, then
|NCr⊠Kt

(ui, vj)∩A| ≥ 3
⌊

t
2

⌋

+1 ≥
⌈

3t−1
2

⌉

. Thus, the 0-monopoly condition holds.
Notice that |A| = r

(⌊

t
2

⌋

+ 1
)

− |SCr
| = r

⌈

t+1
2

⌉

−
⌊

r
3

⌋

, which completes the proof
of the upper bound.

Now, if r ≡ 0(mod 3) and t is odd, then |SCr
| = r

3 and we have that

M0(Cr ⊠Kt) ≤ r

⌈

t+ 1

2

⌉

− |SCr
| =

r(t+ 1)

2
−

r

3
=

rt

2
+

r

6
.

Therefore the equality follows for this case.

Proposition 13. For r, t ≥ 3 we have

tr

2
+

r

6
−

t

3
≤ M0(Pr ⊠Kt) ≤



















⌊

r
3

⌋

·
⌈

3t+1
2

⌉

, if r ≡ 0 (mod 3),
⌊

r
3

⌋

·
⌈

3t+1
2

⌉

+ 1, if r ≡ 1 (mod 3),
⌊

r
3

⌋

·
⌈

3t+1
2

⌉

+ t, if r ≡ 2 (mod 3).

Proof. Let V (Pr) = {u1, . . . , ur} and V (Kt) = {v1, . . . , vt}. With the above
notation we suppose that two consecutive vertices of V (Pr) are adjacent. Let M
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be an M0(Pr ⊠Kt)-set and let (ui, vj) ∈ M ∩ (V (Pr) \ {u1, ur})× V (Kt). Hence
we have that

(6) δM (ui, vj) ≥
δPr⊠Kt

(ui, vj)

2
=

3t− 1

2
.

Now, for every i ∈ {0, . . . , r + 1}, let Mi = M ∩ ({ui−1, ui, ui+1} × V (Kt), where
u−1, u0, ur+1, ur+2 are imaginary vertices needed for counting three times every
vertex from M . It is clear that for every i ∈ {1, . . . , r}, Mi 6= ∅. Hence, for every
(x, y) ∈ Mi, from (6) we obtain that |Mi| ≥ δMi

(x, y) ≥ 3t−1
2 . Now, analogously

to the proof of Proposition 12, there exist at least r
3 disjoint sets Mi satisfying

that |Mi| ≥
3t−1
2 +1. Moreover, we need at least 2t−1

2 vertices in M1 and at least
2t−1
2 in Mr, since δPr⊠Kt

(ui, vj) = 2t− 1 for i ∈ {1, r}. Thus, we obtain that

|M | ≥
1

3

r+1
∑

i=0

|Mi| ≥
1

3

(

|M0|+ |M1|+ |Mr|+ |Mr+1|+
r−1
∑

i=2

3t− 1

2

)

+
r

3

≥
2t− 1

3
+

(r − 2)(3t− 1)

6
+

r

3
=

tr

2
+

r

6
−

t

3
,

and the lower bound is proved. To prove the upper bound we consider the
following cases.

Case 1. r ≡ 0 (mod 3). Let A0 be a set such that if i ≡ 2 (mod 3), then the
whole uiKt-layer is a subset of A0 and, for every i ≡ 0 (mod 3),

⌈

t+1
2

⌉

vertices of
the uiKt-layer belong to A0. We show that A0 is a 0-monopoly set in Pr ⊠ Kt.
Let (ui, vj) be any vertex in Pr ⊠Kt. We differentiate the following cases.

Case 1.1. i ≡ 0 (mod 3). Then, δPr⊠Kt
(ur, vj) = 2t− 1 and δPr⊠Kt

(ui, vj) =
3t− 1 for i 6= r. From the construction of the set A0, we have that δA0

(ui, vj) =
t +

⌈

t+1
2

⌉

=
⌈

3t+1
2

⌉

if (ui, vj) /∈ A0, and δA0
(ui, vj) = t +

⌈

t+1
2

⌉

− 1 =
⌈

3t−1
2

⌉

if
(ui, vj) ∈ A0. Thus, the 0-monopoly condition holds.

Case 1.2. i ≡ 1 (mod 3). Hence, δPr⊠Kt
(u1, vj) = 2t− 1 and δPr⊠Kt

(ui, vj) =
3t−1 for i 6= 1. From the construction of the set A0, we have that δA0

(u1, vj) = t
and δA0

(ui, vj) = t+
⌈

t+1
2

⌉

=
⌈

3t+1
2

⌉

, when i 6= 1. So, the 0-monopoly condition
again holds.

Case 1.3. i ≡ 2 (mod 3). From the construction of the set A0 we obtain
that δA0

(ui, vj) = t − 1 +
⌈

t+1
2

⌉

=
⌈

3t−1
2

⌉

. Since δPr⊠Kt
(ui, vj) = 3t − 1, the

0-monopoly condition holds.

Notice that |A0| =
⌊

r
3

⌋ (

t+
⌈

t+1
2

⌉)

=
⌊

r
3

⌋

·
⌈

3t+1
2

⌉

, which completes the proof
of Case 1.

Case 2. r ≡ 1 (mod 3). Let A1 be a set such that ur−1Kt ⊂ A1 and, for every
i ≡ 2 (mod 3) with i < r − 1, it follows uiKt ⊂ A1. Moreover,

⌈

t+3
2

⌉

vertices of
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the ur−2Kt-layer belong to A1, and for every i ≡ 0 (mod 3) such that i < r − 1,
⌈

t+1
2

⌉

vertices of the uiKt-layer belong to A1. By using an analogous procedure,
like in Case 1, we can show that A1 is a 0-monopoly set in Pr ⊠Kt. Notice that
|A1| = |A0|+ 1 and the proof of Case 2 is complete.

Case 3. r ≡ 2 (mod 3). Let A2 be a set such that if i ≡ 2 (mod 3) and
i < r − 2, then uiKt ⊂ A2 and ur−1Kt ⊂ A2. Moreover, for every i ≡ 0 (mod 3),
⌈

t+1
2

⌉

vertices of the uiKt-layer belong to A2. An analogous procedure like in
Case 1, can be used to show that A2 is a 0-monopoly set in Pr ⊠Kt. Notice that
|A2| = |A0|+ t, which completes the proof.
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[7] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second
Edition (CRC Press, Boca Raton, FL, 2011).

[8] K. Khoshkhah, M. Nemati, H. Soltani and M. Zaker, A study of monopolies in
graphs , Graphs Combin. 29 (2013) 1417–1427.
doi:10.1007/s00373-012-1214-7

[9] P. Kristiansen, S.M. Hedetniemi and S.T. Hedetniemi, Alliances in graphs , J. Com-
bin. Math. Combin. Comput. 48 (2004) 157–177.

[10] D. Kuziak, I. Peterin and I.G. Yero, Computing the (k-)monopoly number of direct
product of graphs , Filomat 29 (2015) 1163–1171.
doi:10.2298/FIL1505163K

http://dx.doi.org/10.1016/0095-8956\(73\)90042-7
http://dx.doi.org/10.1137/0217061
http://dx.doi.org/10.1016/S1570-8667\(03\)00022-4
http://dx.doi.org/10.1145/4221.4223
http://dx.doi.org/10.1007/s00373-012-1214-7
http://dx.doi.org/10.2298/FIL1505163K


Bounding the Open k-Monopoly Number of ... 299

[11] D. Kuziak, I. Peterin and I.G. Yero, On the monopolies of lexicographic product
graphs: bounds and closed formulaes , Bull. Math. Soc. Sci. Math. Roumanie N.S.
59 (2016) 355–366.

[12] D. Kuziak, I. Peterin and I.G. Yero, Open k-monopolies in graphs: complexity and
related concepts, Discrete Math. Theor. Comput. Sci. 18 (3) (2016).

[13] N. Linial, D. Peleg, Yu. Rabinovich and M. Saks, Sphere packing and local majorities
in graphs, in: Proc. 2nd Israel Symposium on Theory and Computing Systems
(Natanya, Israel, 1993) 141–149.
doi:10.1109/ISTCS.1993.253475

[14] A. Mishra and S.B. Rao, Minimum monopoly in regular and tree graphs , Discrete
Math. 306 (2006) 1586–1594.
doi:10.1016/j.disc.2005.06.036

[15] D. Peleg, Local majorities, coalitions and monopolies in graphs: a review , Theoret.
Comput. Sci. 282 (2002) 231–257.
doi:10.1016/S0304-3975(01)00055-X

[16] I. Peterin, The complexity of open k-monopolies in graphs for negative k, manuscript
(2016).

[17] G.F. Sullivan, Complexity of System-Level Fault Diagnosis and Diagnosability,
Ph.D. Thesis (Yale University, New Haven, CT, USA, 1986).
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