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Abstract

The palette of a vertex x of a graph G determined by a proper edge
colouring ϕ of G is the set {ϕ(xy) : xy ∈ E(G)} and the diversity of ϕ is the
number of different palettes determined by ϕ. The palette index of G is the
minimum of diversities of ϕ taken over all proper edge colourings ϕ of G. In
the article we determine the palette index of Km,n for m ≤ 5 and pose two
conjectures concerning the palette index of complete bipartite graphs.
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Let G be a finite simple graph and C a finite set of colours. A proper edge
colouring is a mapping from E(G) to C that assigns different colours to adjacent
edges. It is well known that the minimum possible cardinality of C, the chromatic
index of the graph G, is either ∆(G) (then G is a class 1 graph) or ∆(G)+1 (and
G is a class 2 graph).

Consider a proper edge colouring ϕ : E(G) → C. The palette of a vertex x ∈
V (G) (determined by the colouring ϕ) is the set Sϕ(x) := {ϕ(xy) : xy ∈ E(G)}
and the diversity of ϕ is the number dvs(ϕ) :=

∣

∣

⋃

x∈V (G){Sϕ(x)}
∣

∣. The palette
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index of the graph G, denoted by š(G), is the minimum of dvs(ϕ) over all proper
edge colourings ϕ of G.

The palette index has been introduced by Horňák et al. in [2], where the
main attention has been devoted to regular graphs and especially to complete
graphs. It is a straightforward observation that š(G) = 1 if and only if G is a
regular class 1 graph. If G is a d-regular class 2 graph, then 3 ≤ š(G) ≤ d + 1:
in [2] it has been proved that š(G) 6= 2, and if ϕ : E(G) → C is a proper colouring
with |C| = d+ 1, then š(G) ≤ dvs(ϕ) ≤

(

d+1
d

)

= d+ 1. By the results in [2], the
palette index of a cubic graph is 3 or 4, according to whether G has a perfect
matching or not, respectively.

The case of 4-regular graphs has been studied by Bonvicini and Mazzuoc-
colo in [1]. The analysis of the palette index of 4-regular graphs is much more
complicated, no characterisation similar to that for cubic graphs seems to be in
sight. Nevertheless, there are 4-regular class 2 graphs having the palette index p
for any p ∈ {3, 4, 5}.

The concept of the palette index has been generalised to designs by Lindner,
Meszka and Rosa in [3], where they obtained several results for the palette index
of Steiner triple systems and Steiner quadruple systems.

In this paper we are interested in the palette index of complete bipartite
graphs. Since Kn,m

∼= Km,n and š(Km,m) = 1 (Km,m is an m-regular class 1
graph), our study will be restricted to looking for š(Km,n) with m < n. It will be
useful to have a special notation for intervals of integers. Namely, if p, q ∈ Z, then
[p, q] := {z ∈ Z : p ≤ z ≤ q} and [p,∞) := {z ∈ Z : z ≥ p}. An edge colouring
ϕ : E(Km,n) → C of the graph Km,n with the (ordered) bipartition (X,Y ),
X = {xi : i ∈ [1,m]} and Y = {yj : j ∈ [1, n]} can be comfortably described using
the m× n matrix Mϕ whose element (Mϕ)i,j in the ith row and the jth column
is ϕ(xiyj). Palettes (determined by ϕ) are therefore of two types: n-element
row palettes (called in the sequel ralettes) {ϕ(xiyj) : j ∈ [1, n]}, i ∈ [1,m], and
m-element column palettes (calettes) {ϕ(xiyj) : i ∈ [1,m]}, j ∈ [1, n].

Let ϕ : E(Km,n) → C be a fixed proper colouring. For i ∈ [1,m], let ri be
the number of ralettes appearing i times (i-ralettes) and for j ∈ [1, n] let cj be the
number of calettes appearing j times (j-calettes). Further, let r be the number of
ralettes and c the number of calettes. Notice that, given a j-calette C̃ ⊆ C, each
colour c̃ ∈ C̃ appears at least j times in Mϕ. The assumption j ≥ m + 1 then
would mean, by the pigeonhole principle, that there is a row of Mϕ containing
the colour c̃ at least twice, which contradicts the fact that ϕ is proper. Therefore,
cj = 0 for each j ∈ [m+1, n]. We shall frequently use this (more or less) obvious
statement without explicitly mentioning it. If m 6= n, then ralettes and calettes
are distinct, hence the diversity of ϕ is r + c. Moreover, we have r =

∑m
i=1 ri,

m =
∑m

i=1 iri, c =
∑m

j=1 cj , and n =
∑m

j=1 jcj . We denote by R(ϕ) the set of
ralettes and by C(ϕ) the set of calettes (both determined by ϕ, here a reference
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to ϕ will be useful).

Proposition 1. If m ∈ [1,∞) and n ∈ [m+ 1,∞), then š(Km,n) ≤ n+ 1.

Proof. Consider the proper colouring ϕ : E(Km,n) → [1, n+1] withMϕ =Mm,n,
where Mm,n is the m×n matrix determined by (Mm,n)i,j = (j− i+1) (mod m),
i.e., the matrix

Mm,n =













1 2 . . . n− 1 n

n 1 . . . n− 2 n− 1
. . . . . . . . . . . . . . .

n−m+ 3 n−m+ 4 . . . n−m+ 1 n−m+ 2
n−m+ 2 n−m+ 3 . . . n−m n−m+ 1













.

Then R(ϕ) = {[1, n]}, r = |R(ϕ)| = 1, and it is easy to see that c = |C(ϕ)| = n;
so, š(Km,n) ≤ dvs(ϕ) = 1 + n.

Note that the matrix Mm,n from the proof of Proposition 1 can be defined
for m = n, too, and the edge colouring ϕ of Km,m with Mϕ =Mm,m, where

Mm,m =













1 2 . . . m− 1 m

m 1 . . . m− 2 m− 1
. . . . . . . . . . . . . . .

3 4 . . . 1 2
2 3 . . . m 1













,

shows that š(Km,m) = 1.

Lemma 2. If m,n ∈ [1,∞) and n 6= m, then š(Km,m+n) ≤ š(Km,n) + 1.

Proof. Let ϕ : E(Km,n) → C be a proper colouring with dvs(ϕ) = š(Km,n).
Without loss of generality we may suppose that C ∩ [1,m] = ∅. The proper
edge colouring ψ : E(Km,m+n) → C ∪ [1,m] with Mψ equal to the block matrix
(MϕMm,m) then satisfies R(ψ) = {R ∪ [1,m] : R ∈ R(ϕ)} and C(ψ) = C(ϕ) ∪
{[1,m]}, which implies |R(ψ)| = |R(ϕ)| and |C(ψ)| = |C(ϕ)|+1. As a consequence
of n 6= m we haveR(ϕ)∩C(ϕ) = ∅, hence dvs(ϕ) = |R(ϕ)∪C(ϕ)|= |R(ϕ)|+|C(ϕ)|,
and, having in mind that R(ψ) ∩ C(ψ) = ∅, š(Km,m+n) ≤ dvs(ψ) = |R(ψ)| +
|C(ψ)| = dvs(ϕ) + 1 = š(Km,n) + 1.

Corollary 3. If m,n, p ∈ [1,∞) and n 6= m, then š(Km,mp+n) ≤ š(Km,n) + p.

Lemma 4. If m ∈ [1,∞), n ∈ [m+1,∞) \ {2m} and there is a proper colouring

ϕ : E(Km,n) → C such that cm ≥ 1, then š(Km,n−m) ≤ dvs(ϕ)− 1.
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Proof. Without loss of generality we may suppose that [1,m] ⊆ C is an m-
calette of ϕ, and that there is anm×(n−m) matrix A satisfyingMϕ = (AMm,m)
(permuting rows and/or columns of a matrix does not change the diversity of the
corresponding edge colouring of a complete bipartite graph). Clearly, no element
of A belongs to [1,m]. So, the colouring ψ : E(Km,n−m) → C \ [1,m] with
Mψ = A is proper, and we have

R(ψ) = {R \ [1,m] : R ∈ R(ϕ)},

C(ψ) = C(ϕ) \ {[1,m]},

and, consequently, š(Km,n−m) ≤ dvs(ψ) = dvs(ϕ) − 1 (notice that R(ψ) ∩ C(ψ)
= ∅ because of n 6= 2m).

Lemma 5. If m,n ∈ [1,∞) and p ∈ [2,∞), then š(Kmp,np) ≤ š(Km,n).

Proof. Consider a proper colouring ϕ : E(Km,n) → C with dvs(ϕ) = š(Km,n).
Further, for k ∈ [1, p] letM(k) be the m×n matrix with (M(k))i,j = ((Mϕ)i,j , k)
and let Cp := {(c, k) : c ∈ C, k ∈ [1, p]}. Denote byMp the block matrix composed
of p blocks M(k) for each k ∈ [1, p] in such a way that the block in the ith block
row and the jth block column is the matrix M((j − i+ 1) (mod p)). So,

Mp =













M(1) M(2) . . . M(p− 1) M(p)
M(p) M(1) . . . M(p− 2) M(p− 1)
. . . . . . . . . . . . . . .

M(3) M(4) . . . M(1) M(2)
M(2) M(3) . . . M(p) M(1)













,

and the proper colouring ψ : E(Kmp,np) → Cp determined by Mψ =Mp satisfies

R(ψ) = {{(x, k) : x ∈ R, k ∈ [1, p]} : R ∈ R},

C(ψ) = {{(y, k) : y ∈ C, k ∈ [1, p]} : C ∈ C},

which means that š(Kmp,np) ≤ dvs(ψ) = dvs(ϕ) = š(Km,n).

Lemma 6. If m ∈ [1,∞) and n ∈ [m+ 1,∞), then š(Km,n) ≥
⌈

n
m

⌉

+ 1.

Proof. Provided that ϕ : E(Km,n) → C is a proper colouring with dvs(ϕ) =
š(Km,n), we have n =

∑m
j=1 jcj ≤ m

∑m
j=1 cj and š(Km,n) = r+c ≥ 1+

∑m
j=1 cj ≥

1 +
⌈

n
m

⌉

.

Corollary 7. If n ∈ [2,∞) and p ∈ [1,∞), then š(Kp,np) = n+ 1.

Proof. Any proper edge colouring of the graph K1,n uses n colours and has the
diversity n+ 1, hence š(K1,n) = n+ 1. Therefore, by Lemmas 6 and 5, n+ 1 ≤
š(Kp,np) ≤ š(K1,n) = n+ 1, and we are done.
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So, the inequality in Lemma 5 for m = 1 turns into the equality. We are
convinced that this is true for any m.

Conjecture 1. If m,n ∈ [1,∞) and p ∈ [2,∞), then š(Kmp,np) = š(Km,n).

We have š(Km,m) = 1 and, by Corollary 7, š(Km,mp+m) = p + 2 for any
m, p ∈ [1,∞). Thus, provided that š(Kl,k) is known for each l ∈ [1,m − 1]
and k ∈ [1,∞), to determine š(Km,k) it is sufficient to restrict our attention to
š(Km,mp+n) with n ∈ [1,m−1] and p ∈ [1,∞). We solve this problem completely
step by step for m = 2, 3, 4, 5.

Theorem 8. If p ∈ [0,∞), then š(K2,2p+1) = p+ 3.

Proof. From Corollary 7 we know that š(K2,1) = 3, hence, by Corollary 3,
š(K2,2p+1) ≤ š(K2,1) + p = p+3 for any p ∈ [0,∞), and the last inequality turns
into equality for p = 0.

Suppose there is q ∈ [1,∞) such that š(K2,2q+1) ≤ q + 2. Without loss of
generality q can be taken to be minimum; in such a case š(K2,2p+1) = p + 3
for every p ∈ [0, q − 1], especially š(K2,2(q−1)+1) = š(K2,2q−1) = q + 2. Let
ϕ : E(K2,2q+1) → C be a colouring with dvs(ϕ) = š(K2,2q+1).

Suppose first that c2 ≥ 1. By Lemma 4 then q+2 = š(K2,2q−1) ≤ š(K2,2q+1)−
1 ≤ q + 1, a contradiction.

If c2 = 0, then c = c1 = 2q + 1 and q + 2 ≥ š(K2,2q+1) = dvs(ϕ) = r + c ≥
2q + 2, a contradiction again.

Theorem 9. If p ∈ [0,∞) and n ∈ [1, 2], then š(K3,3p+n) = p+ 4.

Proof. Observe that š(K3,n) = 4 (by Corollary 7 for n = 1, and by Theorem 8 for
n = 2). Therefore, by Corollary 3, we have š(K3,3p+n) ≤ p+4 for any p ∈ [0,∞)
with the equality in the case p = 0.

Admit that there are q ∈ [1,∞) and n ∈ [1, 2] such that š(K3,3q+n) ≤ q+3 and
š(K3,3p+n) = p+4 whenever p ∈ [0, q−1]. Consider a colouring ϕ : E(K3,3q+n) →
C with dvs(ϕ) = š(K3,3q+n).

Let c3 ≥ 1. In such a case, by Lemma 4, q+3 = š(K3,3q−3+n) ≤ š(K3,3q+n)−
1 ≤ q + 2, a contradiction.

If c3 = 0, then q+3 ≥ dvs(ϕ) = r+c1+c2 and 3q+n = c1+2c2 ≤ q+3−r+c2,
hence

(1) c2 ≥ 2q + n+ r − 3,

and 3q + n ≥ c1 + 4q + 2n+ 2r − 6, so that

(2) c1 + q + n+ 2r ≤ 6,

which implies r ≤ 2.
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If r = 1, then c1+c2 ≤ q+2 and all 3q+n colours of ϕ are of the frequency 3.

Since c3 = 0, each colour must be present in a 1-calette. Therefore, c1 ≥
⌈

3q+n
3

⌉

=

q + 1, and, consequently, q + 2 ≥ c1 + c2 ≥ q + 1 + c2, which, using (1), leads to
1 ≥ c2 ≥ 2q+n− 2, q = n = c2 = 1 and c1 = 2. Thus, each colour is present in a
1-calette and in the unique 2-calette. The two 1-calettes are then disjoint, hence
|C| = 6 6= 3q + n, a contradiction.

If r = 2, then, by (2), q = n = 1, c1 = 0, c2 = 2 and all colours of ϕ are of an
even frequency. However, there is one 1-ralette and one 2-ralette, which means
that colours of the 1-ralette are of an odd frequency, a contradiction again.

Theorem 10. If p ∈ [1,∞), then

š(K4,4p+n) =







p+ 4, for n = 1,
p+ 3, for n = 2,
p+ 5, for n = 3.

Proof. The polynomial f(n) = 1
2(3n

2 − 11n + 16) satisfies f(1) = 4, f(2) = 3
and f(3) = 5, hence we have to prove that š(K4,4p+n) = p + 1

2(3n
2 − 11n + 16)

whenever p ∈ [1,∞) and n ∈ [1, 3]. Note that in the statement of our theorem
the assumption p = 0 should be avoided, since, by Corollary 7, š(K4,1) = 5 >
f(1). Nevertheless, by the same corollary we see that š(K4,2) = 3 = f(2), while
Theorem 9 yields š(K4,3) = 5 = f(3); so,

(3) n ∈ [1, 3] ⇒ š(K4,n) ≥
1

2

(

3n2 − 11n+ 16
)

.

The matrix








1 2 3 4 5
4 1 2 5 3
2 3 4 1 6
3 4 1 6 2









shows that š(K4,5) ≤ 5 = 1+f(1), by Lemma 5 and Theorem 8 we have š(K4,6) ≤
š(K2,3) = 4 = 1 + f(2), while Lemma 2 and Theorem 9 lead to š(K4,7) ≤
š(K4,3)+1 = 6 = 1+f(3). Therefore, Corollary 3 gives us š(K4,4p+n) ≤ p+f(n) =
p+ 1

2(3n
2 − 11n+ 16) for any p ∈ [1,∞) and n ∈ [1, 3]. Our task is to show that

the last inequality is in fact the equality.
Proceeding by the way of contradiction we suppose there are q ∈ [1,∞) and

n ∈ [1, 3] that satisfy

(4) š(K4,4q+n) ≤ q +
1

2

(

3n2 − 11n+ 16
)

− 1,

(5) p ∈ [1, q − 1] ⇒ š (K4,4p+n) = p+
1

2

(

3n2 − 11n+ 16
)

.

Consider a colouring ϕ : E(K4,4q+n) → C with dvs(ϕ) = š(K4,4q+n).
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Admit first that c4 ≥ 1. If q ≥ 2, then p = q − 1 is one of possible values
in the assumption of the implication (5) so that š(K4,4q−4+n) = š(K4(q−1)+n) =

q − 1 + 1
2(3n

2 − 11n + 16). On the other hand, for q = 1 we see, by (3), that
š(K4,4q−4+n) ≥ q − 1 + 1

2(3n
2 − 11n+ 16). Thus, the inequality

(6) q − 1 +
1

2

(

3n2 − 11n+ 16
)

≤ š(K4,4q−4+n)

is true for both possibilities that are available for q. Since c4 ≥ 1, we can apply
Lemma 4 to the colouring ϕ, and then, using (6) and (4), we arrive to

q − 1 +
1

2

(

3n2 − 11n+ 16
)

≤ š(K4,4q−4+n) ≤ dvs(ϕ)− 1 = š(K4,4q+n)− 1

≤ q +
1

2

(

3n2 − 11n+ 16
)

− 2,

a contradiction.

If c4 = 0, then r+ c1 + c2 + c3 = dvs(ϕ) ≤ q + 1
2(3n

2 − 11n+ 14), 8q + 2n =
2(c1 + 2c2 + 3c3) ≤ 2q + 3n2 − 11n + 14 − 2r + (2c2 + 4c3) = 2q + 3n2 − 11n +
14− 2r + (4q + n− c1 + c3), hence

(7) c3 ≥ 2r + c1 + 2q − 3n2 + 12n− 14,

which yields q + 1
2(3n

2 − 11n+ 14) ≥ r+ c1 + c2 + 2r+ c1 + 2q − 3n2 + 12n− 14
and

(8) 3r + 2c1 + c2 + q ≤
1

2

(

9n2 − 35n+ 42
)

.

If n = 2, then (8) means that 3r + 2c1 + c2 + q ≤ 4, which is possible only
if r = q = 1 (so that all colours are of the frequency 4) and c1 = c2 = 0, c3 = 2,
implying that all colours are of the frequency 3, a contradiction.

If n ∈ {1, 3}, then (8) yields r ≤ 2. Suppose first r = 1 so that each colour is
of the frequency 4. A colour in a 3-calette must then appear in a 1-calette, too.
Therefore, at least 4c3 positions in the matrix Mϕ are occupied by colours of 1-
calettes, hence c1 ≥

⌈

4c3
4

⌉

= c3. Then necessarily c1 6≡ c3 (mod 2), for otherwise
c1 + 2c2 + 3c3 ≡ 0 (mod 2), while 4q + n ≡ 1 (mod 2), a contradiction; so,
c1 ≥ c3+1. Since −3n2+12n−14 = −5, (7) leads to c3 ≥ c1+2q−3 ≥ c3+2q−2,
q = 1, c1 = c3 + 1, 4 + n = c3 + 1 + 2c2 + 3c3 and c3 =

3+n−2c2
4 < 2.

If c3 = 0, then each colour in the unique 1-calette is of an odd frequency, a
contradiction.

If c3 = 1, then c2 =
n−1
2 , |C| = 4+n ≥ 5, and there is a colour of a frequency

smaller than 4, a contradiction: either a colour out of the 3-calette (for n = 1),
or a colour that is in the 2-calette and out of a 1-calette (for n = 3).
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Now let r = 2 so that, by (7), c3 ≥ c1+2q−1 ≥ 1. Due to 3c3 = 4q+n−c1−2c2
then c1 + 2q − 1 ≤ c3 =

1
3(4q + n− c1 − 2c2), which leads to

(9) 2c1 + c2 + q ≤
n+ 3

2
.

If c1 = 0, then from c3 ≥ 1 it follows that there is a colour of the frequency 3,
hence r1 = r3 = 1 (in the case r2 = 2 all colours would be of an even frequency).
Then, however, there is a colour belonging to the 1-ralette, but not to the 3-
ralette, and such a colour is of the frequency 1, which means that c1 ≥ 1, a
contradiction.

If c1 ≥ 1, then from (9) we obtain c1 = q = 1, n = 3, c2 = 0 and c3 = 2.
The two 3-calettes, say C1

3 and C2
3 , are disjoint. Let M

∗

ϕ be the submatrix of Mϕ

created from the columns with calettes C1
3 and C2

3 . The set Ri(M
∗

ϕ) of colours of
the ith row of M∗

ϕ consists of six colours of C1
3 ∪ C2

3 , hence |R∗

i | = 2 for the set
R∗

i =
(

C1
3 ∪ C2

3

)

\ Ri(M
∗

ϕ), i = 1, 2, 3, 4. Each of the eight colours of C1
3 ∪ C2

3 is
missing in M∗

ϕ (it has the frequency 3 there), therefore {R∗

i : i ∈ [1, 4]} is a set
of four pairwise disjoint 2-element sets. As a consequence then (having in mind
that Mϕ is created from M∗

ϕ by adding just one column) any two distinct sets in
R(ϕ) differ in at least two colours, which means that r = 4, a contradiction.

From Theorems 8, 9 and 10 we know that š(Km,m+1) = m+2 for m ∈ [2, 4].
Later we shall see that š(K5,6) = 7 (Theorem 13). Moreover, the next two
propositions show that the difference betweenm and š(Km,m+1) can be arbitrarily
large if m is large enough.

Proposition 11. If k ∈ [3,∞), then š(K2k−1,2k) ≤
⌈

k+9
2

⌉

.

Proof. Let ϕ : E(K2k−1,2k) → [1, 5k−1] be the proper colouring with the matrix
Mϕ equal to

























1 2 . . . k − 1 k k + 1 k + 2 . . . 2k − 1 2k
k 1 . . . k − 2 k − 1 2k k + 1 . . . 2k − 2 2k − 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 3 . . . k 1 k + 2 k + 3 . . . 2k k + 1
2k + 1 2k + 2 . . . 3k − 1 a1 3k + 1 3k + 2 . . . 4k − 1 b1
3k − 1 2k + 1 . . . 3k − 2 a2 4k − 1 3k + 1 . . . 4k − 2 b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2k + 2 2k + 3 . . . 2k + 1 ak−1 3k + 2 3k + 3 . . . 3k + 1 bk−1

























,

where a2i−1 = b2i = 4k + 2i− 1 and a2i = b2i−1 = 4k + 2i for i ∈
[

1, k−1
2

]

if k is

odd, while a2i−1 = b2i = 4k + 2i − 1, a2i = b2i−1 = 4k + 2i for i ∈
[

1, k−4
2

]

and
ak−3 = bk−1 = 5k − 3, ak−2 = bk−3 = 5k − 2, ak−1 = bk−2 = 5k − 1 if k is even.
It is easy to see that dvs(ϕ) =

⌈

k+9
2

⌉

.
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Proposition 12. If k ∈ [3,∞), then š(K2k,2k+1) ≤ 2k − 3
⌈

k
2

⌉

+ 6.

Proof. Consider the proper colouring ϕ : E(K2k,2k+1) → [1, 4k] with the matrix
Mϕ equal to





























1 2 . . . k k + 1 k + 2 . . . 2k − 1 2k 2k + 1
k 1 . . . k − 1 2k + 1 k + 1 . . . 2k − 2 2k − 1 2k
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 3 . . . 1 k + 3 k + 4 . . . 2k + 1 k + 1 k + 2
2k + 2 2k + 3 . . . 3k + 1 k + 2 k + 3 . . . 2k 2k + 1 k + 1
3k + 1 2k + 2 . . . 3k 3k + 2 3k + 3 . . . 4k a1 b1
3k 3k + 1 . . . 3k − 1 4k 3k + 2 . . . 4k − 1 a2 b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2k + 3 2k + 4 . . . 2k + 2 3k + 3 3k + 4 . . . 3k + 2 ak−1 bk−1





























,

where a2i−1 = b2i = 2i− 1 and a2i = b2i−1 = 2i for i ∈
[

1, k−1
2

]

if k is odd, while

a2i−1 = b2i = 2i − 1, a2i = b2i−1 = 2i for i ∈
[

1, k−4
2

]

and ak−3 = bk−1 = k − 3,
ak−2 = bk−3 = k− 2, ak−1 = bk−2 = k− 1 if k is even. One can easily check that
dvs(ϕ) = 2k − 3

⌈

k
2

⌉

+ 6.

Using Propositions 12 and 11 we see that if k ∈ [1,∞), then

š(K4k+l,4k+l+1) ≤







k + 5, for l = 1, 2,
k + 6, for l = 3,
k + 7, for l = 4.

Thus š(K4k+l,4k+l+1)≤k + l + 4 for k∈[1,∞] and l∈[1, 4].

Theorem 13. If p ∈ [1,∞) and n ∈ [1, 4], then š(K5,5p+n) = p+ 5.

Proof. First realise that š(K5,1) = 6 (by Corollary 7), š(K5,2) = š(K5,3) =
š(K5,4) = 5 (use Theorems 8, 9, 10) and š(K5,6) ≤ 6 (Proposition 11 with k = 3),
which means that we have the inequality

(10) š(K5,n) ≥ 5,

as well as (with help of Lemma 2 for n ∈ [2, 4]) the inequality

(11) š(K5,5+n) ≤ 1 + 5 = 6.

So, by Corollary 3, š(K5,5p+n) ≤ p+ 5 for any p ∈ [1,∞).

Suppose that there are q ∈ [1,∞) and n ∈ [1, 4] such that š(K5,5q+n) ≤ q+4
and š(K5,5p+n) = p + 5 whenever p ∈ [1, q − 1]. Let ϕ : E(K5,5q+n) → C be a
proper colouring with dvs(ϕ) = š(K5,5q+n).
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Admit first that c5 ≥ 1. If q ≥ 2, then, because of the assumptions on q,
q + 4 ≤ q − 1 + 5 = š(K5,5(q−1)+n). The inequality q + 4 ≤ š(K5,5q−5+n) is true
for q = 1, too (see (10)). Thus, by Lemma 4, we obtain q + 4 ≤ š(K5,5q+n−5) ≤
dvs(ϕ)− 1 = š(K5,5q+n)− 1 ≤ q + 4− 1, a contradiction.

For the rest of the proof we have c5 = 0 and

(12) 5q + n =
4

∑

j=1

jcj ,

(13) q + 4 ≥ dvs(ϕ) = r +
4

∑

j=1

cj .

For k ∈ [1,∞) the inequality (13) gives us k(q + 4 − r) ≥
∑4

j=1 kcj , which

combined with (12) leads to (k − 5)q + k(4− r)− n ≥
∑4

j=1(k − j)cj and

kr +

4
∑

j=1

(k − j)cj + (5− k)q + n ≤ 4k.

The last inequality for k = 4, 5 reads as

4r + 3c1 + 2c2 + c3 + q + n ≤ 16,(14)

5r + 4c1 + 3c2 + 2c3 + c4 + n ≤ 20,(15)

and we see that r ≤ 3.
If r = 1, then all colours are of the frequency 5. Let pk,l denote the number of

positions in the matrixMϕ that are occupied by a colour belonging to a k-calette
and to an l-calette as well, (k, l) ∈ {(1, 3), (1, 4), (2, 3)}. Any two different calettes
of a frequency at least 3 are disjoint, therefore p1,4 = 5c4 and p1,3 + p2,3 = 10c3.
We have

(16) c1 ≥

⌈

p1,3 + p1,4

5

⌉

≥

⌈

5c4
5

⌉

= c4

and c2 ≥
⌈p2,3

10

⌉

, hence

(17) c1 + c2 ≥
2p1,3 + 2p1,4 + p2,3

10
≥
p1,3

10
+ c3 + c4.

Now using (15), (16) and (17) we obtain 15 ≥ c1 + 3(c1 + c2) + 2c3 + c4 + n ≥
c4 + 3(c3 + c4) + 2c3 + c4 + n = 5(c3 + c4) + n, hence

(18) c3 + c4 ≤
15− n

5
< 3.
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Further, (14) yields 3c1 + 2c2 + c3 ≤ 12− q − n ≤ 10 and c1 ≤ 3.
If c1 = 3, then 2c2 + c3 ≤ 3 − q − n ≤ 1, which implies c2 = 0 and c3 ≤ 1.

If c3 = 1, then q = n = 1 and the number of colours is 5q + n = 6, but at most
five of them (those of the 3-calette) can have the frequency 5, a contradiction. If
c3 = 0, then (15) yields c4 ≤ 3 − n ≤ 2. In order to have the frequency 5 each
of 5q + n ≥ 6 colours must be in a 4-calette, hence, by (18), c4 = 2, n = 1 and
q = 2. However, at most 10 out of 11 colours can have the frequency 5 (those
belonging to a 4-calette), a contradiction.

If c1 ≤ 2, then, by (16), c4 ≤ 2. In the case c4 = 2 we obtain, because of (16)
and (18), c1 = 2 and c3 = 0. Besides that, (15) yields 3c2 ≤ 5− n and c2 ≤ 1. If
c2 = 0, then 10 = c1 + 4c4 = 5q + n 6≡ 0 (mod 5), a contradiction. On the other
hand, if c2 = 1, then colours of the unique 2-calette do not have the frequency 5,
which is impossible.

If c4 = 1, then each colour of the unique 4-calette C4 must belong to a
1-calette, and, consequently, c1 > 1 (each 1-calette is distinct from C4), which
yields c1 = 2; so, by (15), 3c2 + 2c3 ≤ 6− n ≤ 5 and c2 ≤ 1. All 5 colours of C4

are present (exactly once) in the two 1-calettes, hence at least one colour, that
is out of C4, appears in the two 1-calettes exactly once (the number of positions
in columns of Mϕ corresponding to 1-calettes occupied by colours that do not
belong to C4 is an odd number 10− 5 = 5), which means that it cannot have the
frequency 5 (here we use the inequality c2 ≤ 1), a contradiction.

Suppose finally that c4 = 0, which, because of (18), yields c3 ≤ 2. Due to
(15) then

(19) 3(c1 + c2) ≤ 4c1 + 3c2 ≤ 15− n− 2c3.

If c3 = 2, (19) leads to c1 + c2 ≤ 3. The two 3-calettes are disjoint, |C| =
5q+n ≥ 2 ·5, hence q ≥ 2, 5q+n ≥ 11 and there is a colour out of the 3-calettes.
In order to have the frequency 5 such a colour must be in a 1-calette and in two
2-calettes so that c1 = 1, c2 = 2, q = 2, n = 1 and |C| = 11. However, the unique
1-calette is disjoint with the 3-calettes, which implies |C| ≥ 15, a contradiction.

If c3 = 1, because of (19) we have 3(c1 + c2) ≤ 13 − n and c1 + c2 ≤ 4.
The assumption q ≥ 2 then leads to 11 ≤ 10 + n ≤ 5q + n = c1 + 2c2 + 3c3 ≤
c1 +2(4− c1) + 3 = 11− c1 ≤ 11, n = 1, q = 2, c1 = 0 and c2 = 4. In such a case
any of 6 colours not belonging to the unique 3-calette has an even frequency, a
contradiction. If q = 1, then, by (13), 4 = q + 3 ≥ c1 + c2 + 1 and c1 + c2 ≤ 3.
Since |C| = 5q + n ≥ 6, there is a colour out of the unique 3-calette C3, hence
necessarily (its frequency is 5) c1 = 1, c2 = 2 and |C| = 8. However, the unique
1-calette is disjoint with C3 so that |C| ≥ 10, a contradiction.

If c3 = 0, from (19) we know that c1 + c2 ≤ 4, hence c1 ≥ 1 and c2 ≥ 3
(observe that each colour must be present in a 1-calette and in two 2-calettes,
which is impossible if c2 = 2 only: there is a colour belonging to exactly one
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2-calette). Then, however, c1 = 1 and c2 = 3; since each colour is present in
exactly two 2-calettes, we have 4|C| = 10c2 = 30, a contradiction.

If r = 2, then, by (13), q + 2 ≥
∑4

j=1 cj , and from (14) it follows that
3c1 + 2c2 + c3 ≤ 8− q − n, hence c1 ≤ 2.

The assumption c1 = 2 implies 2c2 + c3 ≤ 2− q − n, q = n = 1, c2 = c3 = 0
and c4 = 1. Let C4 be the unique 4-calette. Each row of Mϕ contains one or two
colours from C \C4. Further, any colour from C \C4 belongs to at most two rows
of Mϕ (each calette, in which it appears, is one of the two 1-calettes), all ralettes
appear at most twice, hence r > 2, a contradiction.

Suppose now that c1 ≤ 1. The assumption r = 2 means that either r1 =
r4 = 1 or r2 = r3 = 1.

If r1 = r4 = 1, let Ri be the unique i-ralette, i = 1, 4. All possible colour
frequencies are 1 (colours of R1 \ R4), 4 (colours of R4 \ R1) and 5 (colours
of R1 ∩ R4). Since R1 6= R4, we have 1 ≥ c1 = |R1 \ R4| ≥ 1, c1 = 1 and
|R1 ∩ R4| = |R1| − |R1 \ R4| = 5q − n − 1 ≥ 5. At most 4 colours of the
unique 1-calette C1 are of the frequency 5 (one of them is of the frequency 1),
hence there is a colour of the frequency 5 not belonging to C1; it must be in a
2-calette C2 and in a 3-calette C3 so that min(c2, c3) ≥ 1. From (14) we obtain
2c2 + c3 ≤ 5− q − n ≤ 3 and c2 = c3 = q = n = 1. A colour of C2 \ C3 6= ∅ then
has the frequency either 2 or 3, a contradiction.

If r2 = r3 = 1, let Ri be the i-ralette, i = 2, 3. There are 3 possible colour
frequencies, namely 2 (colours of R2 \ R3 6= ∅), 3 (colours of R3 \ R2 6= ∅) and 5
(colours of R2∩R3). Since c1 ≤ 1, from the fact that the frequency 2 really applies
we obtain c2 ≥ 1. Besides that c4 = 0; indeed, if C4 is a 4-calette, it contains a
(contradictory) colour of the frequency 4: either an arbitrary one (provided that
c1 = 0) or a colour of C4 \ C1 6= ∅ (if C1 is the unique 1-calette).

If c1 = 1, then (14) yields 2c2 + c3 ≤ 5− q−n ≤ 3, hence c2 = 1. If Ci is the
i-calette, i = 1, 2, then a colour of C1 \ C2 6= ∅ has its frequency either 1 or 4, a
contradiction.

If c1 = 0, then the existence of a colour of the frequency 3 yields c3 ≥ 1.
Further, by (15), 2(c2 + c3) ≤ 3c2 + 2c3 ≤ 10− n ≤ 9, c2 + c3 ≤ 4, and, by (14),
2c2 ≤ 8− q− n− c3 ≤ 5, whence c2 ≤ 2. Note that the assumption c2 = c3 leads
to 5c2 = 2c2+3c3 = 5q+n 6≡ 0 (mod 5), a contradiction. As a consequence then
(c2, c3) ∈ {(1, 2), (1, 3), (2, 1)}.

Suppose first that c2 = 1, c3 ∈ [2, 3], and let C2 be the unique 2-calette. Since
c1 = 0 and c2 = 1, each colour of R2 \R3 (of the frequency 2) belongs to C2, and
so R2\R3 ⊆ C2\R3. On the other hand, C2\R3 = C2\(C2∩R3) = C2∩R2 ⊆ R2,
hence C2 \R3 ⊆ R2 \R3, R2 \R3 = C2 \R3 = C2 ∩R2, |R2 \R3| = |C2 ∩R2| = 2
and |R2 ∩R3| = |R2| − |R2 \R3| = 5q + n− 2 = (2 + 3c3)− 2 = 3c3. In order to
have the frequency 5, each colour of R2 ∩ R3 6= ∅ must belong to C2. However,
6 ≤ 3c3 = |R2 ∩R3| ≤ |C2| = 5, a contradiction.
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If (c2, c3) = (2, 1), let C1
2 , C

2
2 be the two 2-calettes and C3 the unique 3-

calette. Clearly, C1
2 ∩C

2
2 = ∅ (a colour in C1

2 ∩C
2
2 would not have an appropriate

frequency). Consider the 3× 4 submatrix M ′

ϕ of Mϕ corresponding to rows with
ralette R3 and to columns with calette C1

2 or C2
2 . The frequency of a colour

c ∈ R3 ∩ (C1
2 ∪ C2

2 ) (which occupies a position in M ′

ϕ) is at least 3 (because of
c3 ∈ R3); as c appears in exactly one of the calettes C1

2 , C
2
2 , and its frequency

is more than 2, it must appear in C3, too, and have the frequency 5. Since
C1
2 ∩ C2

2 = ∅, the colour c occupies at most two positions in M ′

ϕ. The total

number of positions in M ′

ϕ is 12, hence |R3 ∩ (C1
2 ∪ C2

2 )| ≥
12
2 = 6, and at least

6 colours of C have the frequency 5. However, a colour having the frequency 5
must necessarily belong to C3, so the number of colours of the frequency 5 is at
most |C3| = 5, a contradiction.

Finally, if r = 3, then (14) yields 3c1 + 2c2 + c3 ≤ 4− q − n ≤ 2 and c1 = 0.
Suppose there exists a 4-calette C4 and consider a colour c̃ ∈ C4. Because of
c1 = 0 the frequency of c̃ is 4, hence c̃ is missing in exactly one row of Mϕ. On
the other hand, in each row of Mϕ a colour of C4 is missing (otherwise there
would be a colour of C4 of the frequency 5). Therefore, in each row of Mϕ a
“private colour of C4” is missing, so that r = 5, a contradiction. Thus, c4 = 0,
c2 + c3 ≤ 2c2 + c3 ≤ 2, 6 ≤ 5q + n = 2c2 + 3c3 ≤ 4 + c3, c3 = 2, c2 = 0,
q = n = 1, and all colours are of the frequency 3. The assumption r = 3 means
that either r1 = 1 and r2 = 2 or r1 = 2 and r3 = 1. However, the latter possibility
cannot apply (each colour of a 1-ralette has its frequency in the set {1, 2, 4, 5})).
If r1 = 1, r2 = 2 and the two 2-ralettes are R1

2, R
2
2, then R

1
2 ∩R

2
2 = ∅ (a colour in

R1
2 ∩R

2
2 would have its frequency either 4 or 5), |C| ≥ 2(5q + n) = 12, and there

is a colour having its frequency at most 5(5q+n)
12 = 30

12 < 3, a contradiction.

Because of Theorems 8, 9, 10 and 13 we believe that the following is true.

Conjecture 2. If m, p ∈ [1,∞) and n ∈ [m + 1, 2m − 1], then š(Km,mp+n) =
š(Km,n) + p.

In our final theorem we prove a weaker version of Conjecture 2.

Theorem 14. If m ∈ [6,∞), n ∈ [m + 1, 2m − 1] and p ∈ [(m − 2)n,∞), then
š(Km,mp+n) = š(Km,n) + p.

Proof. By Corollary 3 we have š(Km,mp+n) ≤ š(Km,n) + p. If our theorem
is not true, there is q ∈ [(m − 2)n,∞] such that š(Km,mq+n) < š(Km,n) + q.
Without loss of generality we may suppose that š(Km,mp+n) = š(Km,n) + p

for any p ∈ [0, q − 1]. Let ϕ : E(Km,mq+n) → C be a proper colouring with
dvs(ϕ) = š(Km,mq+n). By the pigeonhole principle then cj = 0 for j ∈ [m+1, n].
Moreover, cm = 0, for otherwise, by Lemma 4, š(Km,n)+q−1 = š(Km,mq−m+n) ≤
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dvs(ϕ) − 1 = š(Km,mq+n) − 1 < š(Km,n) + q − 1, a contradiction. Therefore,
mq + n =

∑m−1
j=1 jcj ≤ (m− 1)

∑m−1
j=1 cj and

c =
m−1
∑

j=1

cj ≥

⌈

mq + n

m− 1

⌉

= q +

⌈

q + n

m− 1

⌉

≥ q +

⌈

(m− 2)n+ n

m− 1

⌉

= q + n.

Consequently, by Proposition 1, š(Km,n) + q > š(Km,mq+n) = dvs(ϕ) = r + c ≥
1 + n+ q ≥ š(Km,n) + q, a contradiction.
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