Discussiones Mathematicae Graph Theory 38 (2018) 443–453 doi:10.7151/dmgt.2014

MORE ABOUT THE HEIGHT OF FACES IN 3-POLYTOPES

OLEG V. BORODIN, MIKHAIL A. BYKOV

AND

Anna O. Ivanova

Institute of Mathematics Siberian Branch Russian Academy of Sciences Novosibirsk, 630090, Russia

e-mail: brdnoleg@math.nsc.ru 131093@mail.ru shmgnanna@mail.ru

Abstract

The height of a face in a 3-polytope is the maximum degree of its incident vertices, and the height of a 3-polytope, h, is the minimum height of its faces. A face is pyramidal if it is either a 4-face incident with three 3-vertices, or a 3-face incident with two vertices of degree at most 4. If pyramidal faces are allowed, then h can be arbitrarily large, so we assume the absence of pyramidal faces in what follows.

In 1940, Lebesgue proved that every quadrangulated 3-polytope has $h \leq$ 11. In 1995, this bound was lowered by Avgustinovich and Borodin to 10. Recently, Borodin and Ivanova improved it to the sharp bound 8.

For plane triangulation without 4-vertices, Borodin (1992), confirming the Kotzig conjecture of 1979, proved that $h \leq 20$, which bound is sharp. Later, Borodin (1998) proved that $h \leq 20$ for all triangulated 3-polytopes. In 1996, Horňák and Jendrol' proved for arbitrarily polytopes that $h \leq 23$. Recently, Borodin and Ivanova obtained the sharp bounds 10 for trianglefree polytopes and 20 for arbitrary polytopes.

In this paper we prove that any polytope has a face of degree at most 10 with height at most 20, where 10 and 20 are sharp.

Keywords: plane map, planar graph, 3-polytope, structural properties, height of face.

2010 Mathematics Subject Classification: 05C15.

The work was funded by the Russian Science Foundation (grant 16-11-10054).

1. INTRODUCTION

By a 3-polytope we mean a finite convex 3-dimensional polytope. As proved by Steinitz [30], the 3-polytopes are in 1-1 correspondence with the 3-connected planar graphs.

A plane map is *normal* (NPM) if each its vertex and face is incident with at least three edges. Clearly, every 3-polytope is an NPM.

The degree d(x) of a vertex or face x in an NPM M is the number of incident edges. A k-vertex or k-face is one of degree k, a k^+ -vertex has degree at least k, a k^- -face has degree at most k, and so on.

The height h(f) of a face f in M is the maximum degree of its incident vertices. The height h(M) (or simply h) of a map M is the minimum height of faces in M.

A 3-face is *pyramidal* if it is incident with at least two 4^- -vertices, and a 4-face is *pyramidal* if it is incident with at least three 3-vertices.

If M has pyramidal faces, then h can be arbitrarily large. Indeed, every face f of the Archimedean (3, 3, 3, n)- and (4, 4, n)-solids satisfies h(f) = n. We consider NPMs without pyramidal faces in what follows.

We now recall some results about the structure of 5⁻-faces in M without pyramidal faces. By δ denote the minimum degree of vertices in M. We say that f is a face of type (k_1, k_2, \ldots) or simply (k_1, k_2, \ldots) -face if the set of its incident vertices is majorized by the vector (k_1, k_2, \ldots) .

In 1940, Lebesgue [26] gave an approximated description of 5⁻-faces in NPMs.

Theorem 1 (Lebesgue [26]). Every normal plane map has a 5^- -face of one of the following types:

 $\begin{array}{l} (3,6,\infty), \ (3,7,41), \ (3,8,23), \ (3,9,17), \ (3,10,14), \ (3,11,13), \\ (4,4,\infty), \ (4,5,19), \ (4,6,11), \ (4,7,9), \ (5,5,9), \ (5,6,7), \\ (3,3,3,\infty), \ (3,3,4,11), \ (3,3,5,7), \ (3,4,4,5), \ (3,3,3,3,5). \end{array}$

The classical Theorem 1, along with other ideas in [26], has numerous applications to coloring problems on plane graphs (first examples of such applications and a recent survey can be found in [4, 28]). In 2002, Borodin [7] strengthened Theorem 1 in six parameters without worsening the others. However, the question in [7] of the best possible version(s) of Theorem 1 remains open, even for the special case of quadrangulations. Precise descriptions are obtained for NPMs with $\delta = 5$ (Borodin [3]) and $\delta \geq 4$ (Borodin, Ivanova [9]), and also for triangulations (Borodin, Ivanova, Kostochka [15]).

Some parameters of Lebesgue's Theorem were improved for special classes of plane graphs. In 1989, Borodin [3] proved, confirming Kotzig's conjecture [24] of

1963, that every normal plane map with $\delta = 5$ has a (5, 5, 7)-face or (5, 6, 6)-face, where all parameters are the best possible. This result also confirmed Grünbaum's conjecture [19] of 1975 that the cyclic connectivity (defined as the minimum number of edges to be deleted from a graph so as to obtain two components each of which has a cycle) of every 5-connected plane graph is at most 11, which bound is sharp (earlier, Plummer [29] obtained the bound 13).

For plane triangulations without 4-vertices Kotzig [25] proved that $h \leq 30$, and Borodin [5] proved, confirming Kotzig's conjecture [25], that $h \leq 20$; this bound is the best possible, as follows from the construction obtained from the icosahedron by twice inserting a 3-vertex into each face. Borodin [6] further showed that $h \leq 20$ for every triangulated 3-polytopes.

In 1940, Lebesgue [26] proved that every quadrangulated 3-polytope satisfies $h \leq 11$. In 1995, this bound was improved by Avgustinovich and Borodin [1] to 10. Recently, Borodin and Ivanova [10] improved this bound to the sharp bound 8, and obtained the best possible bound 10 for triangle-free polytopes in [11].

Borodin and Loparev [8], with the additional assumption of the absence of $(3, 5, \infty)$ -faces, proved that there is either a 3-face with height at most 20, or 4-face with height at most 11, or 5-face of height at most 5, where bounds 20 and 5 are best possible. We note that the height of 5⁻-faces can reach 30 in the presence $(3, 5, \infty)$ -face due to the construction by Horňák and Jendrol' [20]. Furthermore, Horňák and Jendrol' [20] proved that $h \leq 39$, which was recently improved by Borodin and Ivanova [14] to $h \leq 30$.

Other results related to Lebesgue's Theorem can be found in the above mentioned papers and also in [2, 16–18, 21–23, 27, 31].

For arbitrary polytopes, Horňák and Jendrol' [20] (1996) proved that $h \leq 23$. Recently, Borodin and Ivanova [13] improved this bound to the best possible bound 20.

The purpose of this paper is to refine the general bound 20 as follows.

Theorem 2. Every normal plane map without pyramidal faces has a 10^{-} -face of height at most 20, where both bounds 10 and 20 are sharp.

2. Proof of Theorem 2

The bound 20 is attained at the triangulation described in Introduction, obtained from the icosahedron by two-fold putting 3-vertices in all faces.

Figure 1 shows how to transform the (3,3,3,3,5) Archimedean solid into a 3-polytope with no 9⁻-faces of height at most 20, which means that 10 is sharp. In particular, Figure 1 shows a fragment of the 3-polytope obtained.

Figure 1. Each 9⁻-face is incident with a 22-vertex [12].

Now let a normal plane map M' be a counterexample to Theorem 2. Starting from M', we construct a counterexample M to Theorem 2 with some useful properties.

The operation D1 consists in putting a diagonal incident with a 21^+ -vertex into a 4^+ -face f that subdivides f into two non-pyramidal faces. By the operation D2 we mean putting a 3-vertex into a face xyz such that $d(x) \ge 21$, $d(y) \ge 21$, and d(z) = 5. Clearly, D2 does not create pyramidal faces, and each application of D1 or D2 transforms a counterexample to another counterexample with additional useful properties.

We first apply D1 to M' as many times as possible, and then apply D2 as much as we can; after a finite number of steps this results in a counterexample M.

2.1. The structural properties of the counterexample M

(P1) M has no faces of degree from 6 to 10. Since each such face f is incident with a 21^+ -vertex v by assumption, we apply the operation D1 to f by joining v with a vertex at distance at least 3 along the boundary of f. This results is splitting f to two non-pyramidal 4^+ -faces with height at least 22, contrary to the maximality of M.

(P2) *M* has no 4^+ -face $f = \cdots xyz$, where $d(y) \ge 21$ and both x and z are 5^+ -vertices. We can apply D1 to such a face by adding a diagonal incident with y, thus splitting f into two non-pyramidal 3^+ -faces, a contradiction.

(P3) *M* has no 4-face f = wxyz, such that $d(y) \ge 21$ and d(x) = d(z) = 3. Since *M* has no pyramidal 4-faces, it would follow that $d(w) \ge 4$ and we could add the diagonal yw to f. (P4) In M, a 21^+ -vertex cannot lie at distance two from a 4^+ -vertex in the boundary of an incident 4^+ -face f. Otherwise, we could apply D1 by joining these vertices inside f.

(P5) Every 5-vertex v in M is incident with an 11^+ -face f of height at most 20. Due to the oddness of d(v), our v has either two consecutive 20^- -neighbors, or two consecutive 21^+ -neighbors.

If v_1 and v_2 are 21^+ -neighbors of v, then there is a 3-face v_1vv_2 according to D1, which means that we can apply D2, a contradiction.

Suppose v_3 and v_4 are 20⁻-neighbors of v. Hence there is a 4⁺-face $f = \cdots$ v_3vv_4 (since M has no 10⁻-face of height at most 20). If f were incident with a 21⁺-vertex z, then we could join v to z, contrary to the maximality of M. Hence $h(f) \leq 20$, which implies that $d(f) \geq 11$, as claimed.

(P6) If M has a 3-vertex v incident with precisely two 3-faces, then v has a 21^+ -neighbor and is incident with an 11^+ -face f of height at most 20. Suppose a 3-vertex v is incident with a 4^+ -face $f = \cdots v_1 v v_3$ and 3-faces $v v_1 v_2$ and $v v_2 v_3$. Note that $d(v_1) \ge 5$ and $d(v_3) \ge 5$ due to the absence of pyramidal 3-faces. On the other hand, if $d(v_1) \ge 21$, then we could apply D1 by inserting the diagonal $v_1 v_3$, a contradiction. By symmetry, we have $d(v_1) \le 20$ and $d(v_3) \le 20$, which again implies that $h(f) \le 20$ and $d(f) \ge 11$ by (P2). In turn, this implies that $d(v_2) \ge 21$, and we are done.

2.2. Discharging

Euler's formula |V| - |E| + |F| = 2 for M implies

(1)
$$\sum_{v \in V} (d(v) - 6) + \sum_{f \in F} (2d(f) - 6) = -12,$$

where V, E and F are the sets of vertices, edges, and faces of M, respectively.

We define the *initial charge* to be $\mu(v) = d(v) - 6$ whenever $v \in V$ and $\mu(f) = 2d(f) - 6$ whenever $f \in F$. Using the properties of M as a counterexample, we locally redistribute the initial charges, preserving their sum, so as the *new* charge $\mu'(x)$ becomes non-negative whenever $x \in V \cup F$. This will contradict the fact that the sum of new charges is still -12 according to (1).

By $v_1, v_2, \ldots, v_{d(v)}$ denote the neighbors of a vertex v in a cyclic order. A 4face wxyz is special if d(x) = d(w) = 3, $4 \le d(y) \le 20$, and $d(z) \ge 21$. A 3-vertex v is bad if v is incident with a 3-face v_1vv_2 , where $d(v_1) \ge 21$, $5 \le d(v_2) \le 20$, special face vv_2xv_3 and 4^+ -face $\cdots v_1vv_3$ (see Figure 2, R3). Note that $d(x) \ge 21$. A vertex incident only with 3-faces is simplicial.

We use the following rules of discharging (see Figure 2).

R1. Every 3-vertex not incident with 3-faces receives 1 from each incident face.

Figure 2. Rules of discharging.

R2. Every 3-vertex v incident with a unique triangle $T = v_1vv_2$, where $d(v_i) \ge 21$, $1 \le i \le 2$, receives $\frac{1}{2}$ from each v_i through T and 1 from each of the two incident 4^+ -faces.

R3. Every bad 3-vertex v incident with a triangle $T = v_1vv_2$ with $d(v_1) \ge 21$ and $5 \le d(v_2) \le 20$ and special face $f = vv_2xv_3$ with $d(x) \ge 21$ receives $\frac{3}{4}$ from v_1 through T, $\frac{1}{4}$ from x through f, and 1 from each of the two incident 4^+ -faces.

R4. Every 3-vertex v incident with a unique triangle $T = v_1vv_2$ with $d(v_1) \ge 21$ and $5 \le d(v_2) \le 20$ and a non-special 4^+ -face $f = \cdots v_2vv_3$ receives $\frac{3}{4}$ from v_1 through T, $\frac{5}{4}$ from f, and 1 from the other incident 4^+ -face.

R5. Every 3-vertex v incident with an 11^+ -face $f = v_1vv_3\cdots$ and two 3-faces receives 2 from f and $\frac{1}{2}$ from the 21^+ -vertex v_2 through each incident 3-face.

R6. Every simplicial 3-vertex adjacent to three 21^+ -vertices receives $\frac{1}{2}$ from each of them through each incident face.

R7. Every simplicial 3-vertex adjacent to precisely two 21^+ -vertices receives $\frac{3}{4}$ from each of them through each incident face.

R8. Every 4-vertex v incident with a triangle $T = v_1vv_2$, where $d(v_i) \ge 21$, $1 \le i \le 2$, receives $\frac{1}{4}$ from each v_i through T.

R9. Every 4-vertex v incident with a triangle $T = v_1vv_2$, where $d(v_1) \ge 21$, $5 \le d(v_2) \le 20$, receives $\frac{1}{2}$ from v_1 through T.

R10. Every 4-vertex incident with a special face f receives $\frac{1}{2}$ through f from the 21^+ -vertex incident with f.

R11. Every 4-vertex receives $\frac{1}{2}$ from each incident non-special 4⁺-face.

R12. Every 5-vertex v receives 1 from each incident 11^+ -face.

2.3. Proving that $\mu'(x) \ge 0$ whenever $x \in V \cup F$

Case 1. $f \in F$. Note that $d(f) \leq 5$ or $d(f) \geq 11$ due to (P1). We recall that every 10⁻-face is incident with a 21⁺-vertex.

Suppose $f = \cdots v_2 v_1$. First suppose that $d(f) \ge 11$. If f gives 2 to v_2 by R5, then $d(v_1) \ge 5$ and $d(v_3) \ge 5$ due to the absence of pyramidal 3-faces, so each of v_1 and v_3 receives at most 1 from f. If f gives $\frac{5}{4}$ to v_2 by R4, then we can assume by symmetry that $d(v_1) \ge 5$ and again receives at most 1 from f.

If v_2 receives 2, then we move $\frac{1}{4}$ to the donations of each of v_1 and v_3 , so that each of v_1 , v_2 , and v_3 now takes at most $\frac{3}{2}$ from f. As a result, we have $\mu'(f) \ge 2d(f) - 6 - d(f) \times \frac{3}{2} = \frac{d(f) - 12}{2} \ge 0$ for $d(f) \ge 12$.

If d(f) = 11, then there exist two consecutive vertices in the boundary of f, say v_1 and v_2 , such that each of them takes less than 2, in fact at most $\frac{5}{4}$, from f. Furthermore, f gives at most 1 to one of v_1 and v_2 . After above movings of $\frac{1}{4}$, each of v_1 , v_2 takes at most $\frac{5}{4}$ from f. This implies that $\mu'(f) \ge 2 \times 11 - 6 - 2 \times \frac{5}{4} - (11 - 2) \times \frac{3}{2} = 0$.

Now suppose d(f) = 5. If f does not give $\frac{5}{4}$ by R4, then $\mu'(f) \ge 2 \times 5 - 6 - 4 \times 1 = 0$ since f is incident with a 21⁺-vertex by assumption. Otherwise, the boundary of f must have a path consisting of a 3-vertex v_1 , a vertex v_2 of degree between 5 and 20, and a 21⁺-vertex v_3 due to (P4). However, this contradicts the maximality of M, since we can add the diagonal v_1v_3 without creating pyramidal faces.

Next suppose that d(f) = 4. Note that f can give 1 or $\frac{5}{4}$ to 3-vertices by R1–R4 and $\frac{1}{2}$ to 4-vertices by R11. It remains to assume according to (P4) that f is incident with at most two 3-vertices. If f is incident with precisely two 3-vertices, then R4 is not applied to f, which implies $\mu'(f) = 2 \times 4 - 6 - 2 \times 1 = 0$ by R1–R3. Otherwise, we have $\mu'(f) \ge 2 - \frac{5}{4} - \frac{1}{2} > 2 - 1 - 2 \times \frac{1}{2} = 0$ due to R4 and R11.

Finally, if d(f) = 3 then f does not participate in R1–R12, whence $\mu'(f) = \mu(f) = 0$.

Case 2. $v \in V$. Note that the charge is given according to R2–R10 only from 21⁺-vertices to 4⁻-vertices. Moreover, v gives at most $\frac{3}{4}$ through each incident face. If $d(v) \ge 24$, then $\mu'(f) \ge d(v) - 6 - d(v) \times \frac{3}{4} = \frac{d(v)-24}{4} \ge 0$.

Suppose that $21 \le d(v) \le 23$. If v gives $\frac{3}{4}$ through each face, then a 23-vertex has a *deficiency* $\frac{1}{4}$, and 22- and 21-vertices have deficiencies $\frac{1}{2}$ and $\frac{3}{4}$, respectively. In what follows, we will make sure that in fact v saves something at certain faces with respect to the level of $\frac{3}{4}$. To estimate the total donation of v, we need the following observations.

(S1) v gives nothing through a non-special 4⁺-face, which means that v saves $\frac{3}{4}$ at such a face.

(S2) The saving of v at an incident $(5^+, 5^+, 21^+)$ -face is $\frac{3}{4}$.

(S3) Through a special $(3, 3, 5^+, 21^+)$ -face, v can transfer $\frac{1}{4}$ to a bad 3-vertex by R3, and so saves $\frac{1}{2}$ at such a face.

(S4) Through a special $(3, 3, 4, 21^+)$ -face, v transfers $\frac{1}{2}$ by R10, and so saves $\frac{1}{4}$.

(S5) v transfers at most $\frac{1}{2}$ through a 3-face incident with a 4-vertex by R8, R9, and saves at least $\frac{1}{4}$.

(S6) As follows from (S4) and (S5), the presence of a 4-vertex w adjacent to v implies the total saving at least $\frac{1}{2}$ at the two faces incident with the edge vw.

(S7) Each participation of v in R5 or R6 results in saving of $\frac{1}{4} + \frac{1}{4}$.

(S8) As follows from (S1)–(S5), the saving of v at an incident face f can equal zero only if f is a 3-face incident with a 3-vertex, which happens only when one of R3, R4, and R7 is applied.

Subcase 2.1. d(v) = 23. To cover the deficiency of $\frac{1}{4}$, it suffices to have a face with a positive saving at v. Otherwise, according to (S8), the vertex v is simplicial and the degrees of neighbors of v alternate from 3 to 5⁺. The latter is impossible due to the oddness of d(v).

Subcase 2.2. d(v) = 22. According to (S6), we can assume that v has no 4-neighbors, which implies that we are done unless v is simplicial due to (S1) and (S3). If so, then the degrees of neighbors of v must alternate from 3 to 5⁺ in view of (S2). We now look at the eleven 5⁺-neighbors of v. By parity, there should exist a 3-neighbor, say v_2 , such that either $d(v_1) \ge 21$ and $d(v_3) \ge 21$, or $d(v_1) \le 20$ and $d(v_3) \le 20$. This results in saving $2 \times \frac{1}{4}$ by v at the two 3-faces incident with the edge vv_2 by (S7) due to R5 or R6 in view of (P4), as desired.

Subcase 2.3. d(v) = 21. We recall that now we need to find a total saving of $\frac{3}{4}$. We can assume that v has no two consecutive 5⁺-neighbors, for otherwise this yields a 3-face by (P2), which takes nothing from v by (S2), and we are done.

Since d(v) is odd, there are two consecutive 4⁻-vertices v_1 and v_{21} , which form a 4⁺-face $f_{21} = \cdots v_1 v v_{21}$ due to the absence of any pyramidal face. If $d(v_1) = d(v_{21}) = 4$, then v saves $\frac{3}{4}$ at the non-special face f_{21} by our rules, and the same is true if $d(v_1) = d(v_{21}) = 3$. Therefore, we can assume that $d(v_1) = 3$ and $d(v_{21}) = 4$. This means that we are done unless $d(f_{21}) = 4$ and, moreover, f_{21} is special and participates in R10. Hence v saves $\frac{1}{4}$ at f_{21} .

450

Since at least $\frac{1}{4}$ is also saved at the face $f_{20} = \cdots v_{20}vv_{21}$ as mentioned in (S6), we can assume that v has no saving at the other 19 faces.

According to (S8), all these 19 faces are triangles incident with 3-vertices. Due to the absence of pyramidal faces, we have $d(v_1) = d(v_3) = \cdots = d(v_{19}) = 3$, and each of these 3-vertices, except v_1 , is simplicial and participates in R7. Hence, the degrees of v_2, v_4, \ldots, v_{20} alternate from 21^+ to 20^- .

If $d(v_2) \ge 21$, then our v saves another $\frac{1}{4}$ at the face v_1vv_2 according to R2, hence it remains to assume that $d(v_2) \le 20$. This implies that $d(v_{20}) \ge 21$, which means that $d(f_{20}) = 3$ due to (P4), and v actually saves as much as $\frac{1}{2}$ at f_{20} according to R8. Due to $\frac{1}{4}$ saved at the face f_{21} , we have $\mu'(v) \ge 0$, as desired.

Subcase 2.5. $6 \le d(v) \le 20$. Since v does not participate in R1–R12, it follows that $\mu'(v) = \mu(v) = d(v) - 6 \ge 0$.

Subcase 2.6. d(v) = 5. Note that v is incident with an 11⁺-face due to (P5), so $\mu'(v) \ge 5 - 6 + 1 = 0$ by R12.

Subcase 2.7. d(v) = 4. Note that v receives $\frac{1}{2}$ by R8–R11 from or through each incident face, whence $\mu'(v) \ge -2 + 4 \times \frac{1}{2} = 0$.

Subcase 2.8. d(v) = 3. A small case analysis based on the number of incident 3-faces shows in view of (P6) that we always have $\mu'(v) = -3 + 3 = 0$ by R1–R7.

Thus we have proved that $\mu'(x) \ge 0$ for all $x \in V \cup F$, this contradicts (1) and completes the proof of Theorem 2.

References

- S.V. Avgustinovich and O.V.Borodin, Neighborhoods of edges in normal maps, Diskretn. Anal. Issled. Oper. 2 (1995) 3–9, in Russian, translation in Ser. Mathematics and Its Applications 391 (1997) 17–22.
- [2] O.V. Borodin, Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps, Diskret. Mat. 3 (1991) 24–27, in Russian.
- [3] O.V. Borodin, Solving the Kotzig and Grünbaum problems on the separability of a cycle in planar graphs, Mat. Zametki 46 (1989) 9–12, in Russian, translation in Math. Notes 46 (1992) 835–837.
- [4] O.V. Borodin, Colorings of plane graphs: a survey, Discrete Math. 313 (2013) 517–539.
 doi:10.1016/j.disc.2012.11.011
- [5] O.V. Borodin, Minimal weight of a face in planar triangulations without 4-vertices, Mat. Zametki 51 (1992) 16–19, in Russian, translation in Math. Notes 51 (1992) 11–13.
- [6] O.V. Borodin, Triangulated 3-polytopes with restricted minimal weight of faces, Discrete Math. 186 (1998) 281–285. doi:10.1016/S0012-365X(97)00240-9

- [7] O.V. Borodin, Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra, Diskretn. Anal. Issled. Oper., Ser. 1 9 (2002) 29–39, in Russian.
- [8] O.V. Borodin and D.V. Loparev, The height of minor faces in normal plane maps, Diskretn. Anal. Issled. Oper. 5 (1998) 6–17, translation in Discrete Appl. Math. 135 (2004) 31–39. doi:10.1016/S0166-218X(02)00292-5
- [9] O.V. Borodin and A.O. Ivanova, Describing 3-faces in normal plane maps with minimum degree 4, Discrete Math. 313 (2013) 2841–2847. doi:10.1016/j.disc.2013.08.028
- [10] O.V. Borodin and A.O. Ivanova, The vertex-face weight of edges in 3-polytopes, Sibirsk. Mat. Zh. 56 (2015) 338–350, in Russian, translation in Sib. Math. J. 56 (2015) 275–284. doi:10.1134/s003744661502007x
- O.V. Borodin and A.O. Ivanova, *Heights of minor faces in triangle-free 3-polytopes*, Sibirsk. Mat. Zh. **56** (2015) 982–988, in Russian, translation in Sib. Math. J. **56** (2015) 783–788. doi:10.1134/S003744661505002X
- [12] O.V. Borodin and A.O. Ivanova, *The weight of faces in normal plane maps*, Discrete Math. **339** (2016) 2573–2580. doi:10.1016/j.disc.2016.04.018
- [13] O.V. Borodin and A.O. Ivanova, *Heights of faces in 3-polytopes*, Sibirsk. Mat. Zh. 58 (2017) 48–55, in Russian, translation in Sib. Math. J. 58 (2017) 37–42. doi:10.1134/S0037446617010050
- [14] O.V. Borodin and A.O. Ivanova, Low minor faces in 3-polytopes, Discrete Math., accepted.
- [15] O.V. Borodin, A.O. Ivanova and A.V. Kostochka, Describing faces in plane triangulations, Discrete Math. **319** (2014) 47–61. doi:10.1016/j.disc.2013.11.021
- [16] O.V. Borodin and D.R. Woodall, The weight of faces in plane maps, Mat. Zametki 64 (1998) 648–657, in Russian. doi:10.4213/mzm1441
- [17] O.V. Borodin and D.R. Woodall, *Cyclic degrees of 3-polytopes*, Graphs Combin. 15 (1999) 267–277.
 doi:10.1007/S003730050060
- [18] B. Ferencová and T. Madaras, Light graphs in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight, Discrete Math. 310 (2010) 1661–1675.
- [19] B. Grünbaum, *Polytopal graphs*, in: Studies in Graph Theory, D.R. Fulkerson, Ed., MAA Studies in Mathematics **12** (1975) 201–224.

- [20] M. Horňák and S. Jendrol', Unavoidable sets of face types for planar maps, Discuss. Math. Graph Theory 16 (1996) 123–142. doi:10.7151/dmgt.1028
- [21] S. Jendrol', Triangles with restricted degrees of their boundary vertices in plane triangulations, Discrete Math. 196 (1999) 177–196. doi:10.1016/S0012-365X(98)00172-1
- [22] S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in the plane—a survey, Discrete Math. **313** (2013) 406–421. doi:10.1016/j.disc.2012.11.007
- [23] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. Eas. SAV (Math. Slovaca) 5 (1955) 101–113.
- [24] A. Kotzig, From the theory of Eulerian polyhedrons, Mat. Eas. SAV (Math. Slovaca) 13 (1963) 20–34.
- [25] A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979) 569–570.
 doi:10.1111/j.1749-6632.1979.tb32837.x
- [26] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27–43.
- [27] B. Mohar, R. Škrekovski and H.-J. Voss, Light subraphs in planar graphs of minimum degree 4 and edge-degree 9, J. Graph Theory 44 (2003) 261–295. doi:10.1002/jgt.10144
- [28] O. Ore and M.D. Plummer, Cyclic coloration of plane graphs, in: Recent Progress in Combinatorics, W.T. Tutte (Ed.), (Academic Press, New York, 1969) 287–293.
- [29] M.D. Plummer, On the cyclic connectivity of planar graph, Graph Theory and Application (Springer, Berlin, 1972) 235–242.
- [30] E. Steinitz, Polyeder und Raumeinteilungen, Enzykl. Math. Wiss. (Geometrie), 3AB 12 (1922) 1–139.
- [31] P. Wernicke, Uber den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413–426. doi:10.1007/BF01444968

Received 24 May 2016 Revised 12 December 2016 Accepted 12 December 2016