MORE ABOUT THE HEIGHT OF FACES IN 3-POLYTOPES

Oleg V. Borodin, Mikhail A. Bykov
AND
Anna O. Ivanova
Institute of Mathematics Siberian Branch
Russian Academy of Sciences
Novosibirsk, 630090, Russia
e-mail: brdnoleg@math.nsc.ru
131093@mail.ru
shmgnanna@mail.ru

Abstract

The height of a face in a 3-polytope is the maximum degree of its incident vertices, and the height of a 3-polytope, h, is the minimum height of its faces. A face is pyramidal if it is either a 4 -face incident with three 3 -vertices, or a 3 -face incident with two vertices of degree at most 4 . If pyramidal faces are allowed, then h can be arbitrarily large, so we assume the absence of pyramidal faces in what follows.

In 1940, Lebesgue proved that every quadrangulated 3-polytope has $h \leq$ 11. In 1995, this bound was lowered by Avgustinovich and Borodin to 10. Recently, Borodin and Ivanova improved it to the sharp bound 8.

For plane triangulation without 4 -vertices, Borodin (1992), confirming the Kotzig conjecture of 1979 , proved that $h \leq 20$, which bound is sharp. Later, Borodin (1998) proved that $h \leq 20$ for all triangulated 3-polytopes. In 1996, Horňák and Jendrol' proved for arbitrarily polytopes that $h \leq 23$. Recently, Borodin and Ivanova obtained the sharp bounds 10 for trianglefree polytopes and 20 for arbitrary polytopes.

In this paper we prove that any polytope has a face of degree at most 10 with height at most 20 , where 10 and 20 are sharp.

Keywords: plane map, planar graph, 3-polytope, structural properties, height of face.
2010 Mathematics Subject Classification: 05C15.

1. Introduction

By a 3 -polytope we mean a finite convex 3 -dimensional polytope. As proved by Steinitz [30], the 3-polytopes are in 1-1 correspondence with the 3-connected planar graphs.

A plane map is normal (NPM) if each its vertex and face is incident with at least three edges. Clearly, every 3 -polytope is an NPM.

The degree $d(x)$ of a vertex or face x in an NPM M is the number of incident edges. A k-vertex or k-face is one of degree k, a k^{+}-vertex has degree at least k, a k^{-}-face has degree at most k, and so on.

The height $h(f)$ of a face f in M is the maximum degree of its incident vertices. The height $h(M)$ (or simply h) of a map M is the minimum height of faces in M.

A 3 -face is pyramidal if it is incident with at least two 4^{-}-vertices, and a 4 -face is pyramidal if it is incident with at least three 3 -vertices.

If M has pyramidal faces, then h can be arbitrarily large. Indeed, every face f of the Archimedean $(3,3,3, n)$ - and $(4,4, n)$-solids satisfies $h(f)=n$. We consider NPMs without pyramidal faces in what follows.

We now recall some results about the structure of 5^{-}-faces in M without pyramidal faces. By δ denote the minimum degree of vertices in M. We say that f is a face of type (k_{1}, k_{2}, \ldots) or simply (k_{1}, k_{2}, \ldots)-face if the set of its incident vertices is majorized by the vector $\left(k_{1}, k_{2}, \ldots\right)$.

In 1940, Lebesgue [26] gave an approximated description of 5^{-}-faces in NPMs.
Theorem 1 (Lebesgue [26]). Every normal plane map has a 5^{-}-face of one of the following types:

$$
\begin{gathered}
(3,6, \infty),(3,7,41),(3,8,23),(3,9,17),(3,10,14),(3,11,13) \\
(4,4, \infty),(4,5,19),(4,6,11),(4,7,9),(5,5,9),(5,6,7) \\
(3,3,3, \infty),(3,3,4,11),(3,3,5,7),(3,4,4,5),(3,3,3,3,5)
\end{gathered}
$$

The classical Theorem 1, along with other ideas in [26], has numerous applications to coloring problems on plane graphs (first examples of such applications and a recent survey can be found in $[4,28]$). In 2002, Borodin [7] strengthened Theorem 1 in six parameters without worsening the others. However, the question in [7] of the best possible version(s) of Theorem 1 remains open, even for the special case of quadrangulations. Precise descriptions are obtained for NPMs with $\delta=5$ (Borodin [3]) and $\delta \geq 4$ (Borodin, Ivanova [9]), and also for triangulations (Borodin, Ivanova, Kostochka [15]).

Some parameters of Lebesgue's Theorem were improved for special classes of plane graphs. In 1989, Borodin [3] proved, confirming Kotzig's conjecture [24] of

1963, that every normal plane map with $\delta=5$ has a ($5,5,7$)-face or ($5,6,6$)-face, where all parameters are the best possible. This result also confirmed Grünbaum's conjecture [19] of 1975 that the cyclic connectivity (defined as the minimum number of edges to be deleted from a graph so as to obtain two components each of which has a cycle) of every 5 -connected plane graph is at most 11 , which bound is sharp (earlier, Plummer [29] obtained the bound 13).

For plane triangulations without 4-vertices Kotzig [25] proved that $h \leq 30$, and Borodin [5] proved, confirming Kotzig's conjecture [25], that $h \leq 20$; this bound is the best possible, as follows from the construction obtained from the icosahedron by twice inserting a 3 -vertex into each face. Borodin [6] further showed that $h \leq 20$ for every triangulated 3 -polytopes.

In 1940, Lebesgue [26] proved that every quadrangulated 3-polytope satisfies $h \leq 11$. In 1995, this bound was improved by Avgustinovich and Borodin [1] to 10. Recently, Borodin and Ivanova [10] improved this bound to the sharp bound 8 , and obtained the best possible bound 10 for triangle-free polytopes in [11].

Borodin and Loparev [8], with the additional assumption of the absence of $(3,5, \infty)$-faces, proved that there is either a 3 -face with height at most 20 , or 4 -face with height at most 11 , or 5 -face of height at most 5 , where bounds 20 and 5 are best possible. We note that the height of 5^{-}-faces can reach 30 in the presence $(3,5, \infty)$-face due to the construction by Hornák and Jendrol' [20]. Furthermore, Horňák and Jendrol' [20] proved that $h \leq 39$, which was recently improved by Borodin and Ivanova [14] to $h \leq 30$.

Other results related to Lebesgue's Theorem can be found in the above mentioned papers and also in [2,16-18, 21-23, 27, 31].

For arbitrary polytopes, Horňák and Jendrol' $[20]$ (1996) proved that $h \leq 23$. Recently, Borodin and Ivanova [13] improved this bound to the best possible bound 20 .

The purpose of this paper is to refine the general bound 20 as follows.
Theorem 2. Every normal plane map without pyramidal faces has a 10^{-}-face of height at most 20, where both bounds 10 and 20 are sharp.

2. Proof of Theorem 2

The bound 20 is attained at the triangulation described in Introduction, obtained from the icosahedron by two-fold putting 3 -vertices in all faces.

Figure 1 shows how to transform the ($3,3,3,3,5$) Archimedean solid into a 3 -polytope with no 9^{-}-faces of height at most 20 , which means that 10 is sharp. In particular, Figure 1 shows a fragment of the 3 -polytope obtained.

Figure 1. Each 9^{-}-face is incident with a 22 -vertex [12].
Now let a normal plane map M^{\prime} be a counterexample to Theorem 2. Starting from M^{\prime}, we construct a counterexample M to Theorem 2 with some useful properties.

The operation D 1 consists in putting a diagonal incident with a 21^{+}-vertex into a 4^{+}-face f that subdivides f into two non-pyramidal faces. By the operation D2 we mean putting a 3 -vertex into a face $x y z$ such that $d(x) \geq 21, d(y) \geq 21$, and $d(z)=5$. Clearly, D2 does not create pyramidal faces, and each application of D1 or D2 transforms a counterexample to another counterexample with additional useful properties.

We first apply D1 to M^{\prime} as many times as possible, and then apply D2 as much as we can; after a finite number of steps this results in a counterexample M.

2.1. The structural properties of the counterexample M

(P1) M has no faces of degree from 6 to 10 . Since each such face f is incident with a 21^{+}-vertex v by assumption, we apply the operation D 1 to f by joining v with a vertex at distance at least 3 along the boundary of f. This results is splitting f to two non-pyramidal 4^{+}-faces with height at least 22 , contrary to the maximality of M.
(P2) M has no 4^{+}-face $f=\cdots x y z$, where $d(y) \geq 21$ and both x and z are 5^{+}-vertices. We can apply D1 to such a face by adding a diagonal incident with y, thus splitting f into two non-pyramidal 3^{+}-faces, a contradiction.
(P3) M has no 4 -face $f=w x y z$, such that $d(y) \geq 21$ and $d(x)=d(z)=3$. Since M has no pyramidal 4-faces, it would follow that $d(w) \geq 4$ and we could add the diagonal $y w$ to f.
(P4) In $M, a 21^{+}$-vertex cannot lie at distance two from a 4^{+}-vertex in the boundary of an incident 4^{+}-face f. Otherwise, we could apply D1 by joining these vertices inside f.
(P5) Every 5-vertex v in M is incident with an 11^{+}-face f of height at most 20. Due to the oddness of $d(v)$, our v has either two consecutive 20^{-}-neighbors, or two consecutive 21^{+}-neighbors.

If v_{1} and v_{2} are 21^{+}-neighbors of v, then there is a 3 -face $v_{1} v v_{2}$ according to D1, which means that we can apply D 2 , a contradiction.

Suppose v_{3} and v_{4} are 20^{-}-neighbors of v. Hence there is a 4^{+}-face $f=\cdots$ $v_{3} v v_{4}$ (since M has no 10^{-}-face of height at most 20). If f were incident with a 21^{+}-vertex z, then we could join v to z, contrary to the maximality of M. Hence $h(f) \leq 20$, which implies that $d(f) \geq 11$, as claimed.
(P6) If M has a 3-vertex v incident with precisely two 3-faces, then v has a 21^{+}-neighbor and is incident with an 11^{+}-face f of height at most 20 . Suppose a 3 -vertex v is incident with a 4^{+}-face $f=\cdots v_{1} v v_{3}$ and 3 -faces $v v_{1} v_{2}$ and $v v_{2} v_{3}$. Note that $d\left(v_{1}\right) \geq 5$ and $d\left(v_{3}\right) \geq 5$ due to the absence of pyramidal 3 -faces. On the other hand, if $d\left(v_{1}\right) \geq 21$, then we could apply D1 by inserting the diagonal $v_{1} v_{3}$, a contradiction. By symmetry, we have $d\left(v_{1}\right) \leq 20$ and $d\left(v_{3}\right) \leq 20$, which again implies that $h(f) \leq 20$ and $d(f) \geq 11$ by (P2). In turn, this implies that $d\left(v_{2}\right) \geq 21$, and we are done.

2.2. Discharging

Euler's formula $|V|-|E|+|F|=2$ for M implies

$$
\begin{equation*}
\sum_{v \in V}(d(v)-6)+\sum_{f \in F}(2 d(f)-6)=-12, \tag{1}
\end{equation*}
$$

where V, E and F are the sets of vertices, edges, and faces of M, respectively.
We define the initial charge to be $\mu(v)=d(v)-6$ whenever $v \in V$ and $\mu(f)=2 d(f)-6$ whenever $f \in F$. Using the properties of M as a counterexample, we locally redistribute the initial charges, preserving their sum, so as the new charge $\mu^{\prime}(x)$ becomes non-negative whenever $x \in V \cup F$. This will contradict the fact that the sum of new charges is still -12 according to (1).

By $v_{1}, v_{2}, \ldots, v_{d(v)}$ denote the neighbors of a vertex v in a cyclic order. A 4face $w x y z$ is special if $d(x)=d(w)=3,4 \leq d(y) \leq 20$, and $d(z) \geq 21$. A 3 -vertex v is bad if v is incident with a 3 -face $v_{1} v v_{2}$, where $d\left(v_{1}\right) \geq 21,5 \leq d\left(v_{2}\right) \leq 20$, special face $v v_{2} x v_{3}$ and 4^{+}-face $\cdots v_{1} v v_{3}$ (see Figure 2, R3). Note that $d(x) \geq 21$. A vertex incident only with 3 -faces is simplicial.

We use the following rules of discharging (see Figure 2).
R1. Every 3-vertex not incident with 3-faces receives 1 from each incident face.

Figure 2. Rules of discharging.

R2. Every 3-vertex v incident with a unique triangle $T=v_{1} v v_{2}$, where $d\left(v_{i}\right) \geq 21$, $1 \leq i \leq 2$, receives $\frac{1}{2}$ from each v_{i} through T and 1 from each of the two incident 4^{+}-faces.

R3. Every bad 3-vertex v incident with a triangle $T=v_{1} v v_{2}$ with $d\left(v_{1}\right) \geq 21$ and $5 \leq d\left(v_{2}\right) \leq 20$ and special face $f=v v_{2} x v_{3}$ with $d(x) \geq 21$ receives $\frac{3}{4}$ from v_{1} through $T, \frac{1}{4}$ from x through f, and 1 from each of the two incident 4^{+}-faces.

R4. Every 3 -vertex v incident with a unique triangle $T=v_{1} v v_{2}$ with $d\left(v_{1}\right) \geq 21$ and $5 \leq d\left(v_{2}\right) \leq 20$ and a non-special 4^{+}-face $f=\cdots v_{2} v v_{3}$ receives $\frac{3}{4}$ from v_{1} through $T, \frac{5}{4}$ from f, and 1 from the other incident 4^{+}-face.

R5. Every 3 -vertex v incident with an 11^{+}-face $f=v_{1} v v_{3} \cdots$ and two 3 -faces receives 2 from f and $\frac{1}{2}$ from the 21^{+}-vertex v_{2} through each incident 3 -face.
R6. Every simplicial 3-vertex adjacent to three 21^{+}-vertices receives $\frac{1}{2}$ from each of them through each incident face.
R7. Every simplicial 3 -vertex adjacent to precisely two 21^{+}-vertices receives $\frac{3}{4}$ from each of them through each incident face.
R8. Every 4-vertex v incident with a triangle $T=v_{1} v v_{2}$, where $d\left(v_{i}\right) \geq 21$, $1 \leq i \leq 2$, receives $\frac{1}{4}$ from each v_{i} through T.

R9. Every 4-vertex v incident with a triangle $T=v_{1} v v_{2}$, where $d\left(v_{1}\right) \geq 21$, $5 \leq d\left(v_{2}\right) \leq 20$, receives $\frac{1}{2}$ from v_{1} through T.
R10. Every 4-vertex incident with a special face f receives $\frac{1}{2}$ through f from the 21^{+}-vertex incident with f.

R11. Every 4 -vertex receives $\frac{1}{2}$ from each incident non-special 4^{+}-face.
R12. Every 5 -vertex v receives 1 from each incident 11^{+}-face.

2.3. Proving that $\mu^{\prime}(x) \geq 0$ whenever $x \in V \cup F$

Case 1. $f \in F$. Note that $d(f) \leq 5$ or $d(f) \geq 11$ due to (P1). We recall that every 10^{-}-face is incident with a 21^{+}-vertex.

Suppose $f=\cdots v_{2} v_{1}$. First suppose that $d(f) \geq 11$. If f gives 2 to v_{2} by R5, then $d\left(v_{1}\right) \geq 5$ and $d\left(v_{3}\right) \geq 5$ due to the absence of pyramidal 3 -faces, so each of v_{1} and v_{3} receives at most 1 from f. If f gives $\frac{5}{4}$ to v_{2} by R 4 , then we can assume by symmetry that $d\left(v_{1}\right) \geq 5$ and again receives at most 1 from f.

If v_{2} receives 2 , then we move $\frac{1}{4}$ to the donations of each of v_{1} and v_{3}, so that each of v_{1}, v_{2}, and v_{3} now takes at most $\frac{3}{2}$ from f. As a result, we have $\mu^{\prime}(f) \geq 2 d(f)-6-d(f) \times \frac{3}{2}=\frac{d(f)-12}{2} \geq 0$ for $d(f) \geq 12$.

If $d(f)=11$, then there exist two consecutive vertices in the boundary of f, say v_{1} and v_{2}, such that each of them takes less than 2 , in fact at most $\frac{5}{4}$, from f. Furthermore, f gives at most 1 to one of v_{1} and v_{2}. After above movings of $\frac{1}{4}$, each of v_{1}, v_{2} takes at most $\frac{5}{4}$ from f. This implies that $\mu^{\prime}(f) \geq$ $2 \times 11-6-2 \times \frac{5}{4}-(11-2) \times \frac{3}{2}=0$.

Now suppose $d(f)=5$. If f does not give $\frac{5}{4}$ by R4, then $\mu^{\prime}(f) \geq 2 \times 5-6-$ $4 \times 1=0$ since f is incident with a 21^{+}-vertex by assumption. Otherwise, the boundary of f must have a path consisting of a 3 -vertex v_{1}, a vertex v_{2} of degree between 5 and 20 , and a 21^{+}-vertex v_{3} due to (P4). However, this contradicts the maximality of M, since we can add the diagonal $v_{1} v_{3}$ without creating pyramidal faces.

Next suppose that $d(f)=4$. Note that f can give 1 or $\frac{5}{4}$ to 3 -vertices by $\mathrm{R} 1-\mathrm{R} 4$ and $\frac{1}{2}$ to 4 -vertices by R11. It remains to assume according to (P 4) that f is incident with at most two 3 -vertices. If f is incident with precisely two 3 vertices, then R 4 is not applied to f, which implies $\mu^{\prime}(f)=2 \times 4-6-2 \times 1=0$ by R1-R3. Otherwise, we have $\mu^{\prime}(f) \geq 2-\frac{5}{4}-\frac{1}{2}>2-1-2 \times \frac{1}{2}=0$ due to R4 and R11.

Finally, if $d(f)=3$ then f does not participate in R1-R12, whence $\mu^{\prime}(f)=$ $\mu(f)=0$.

Case 2. $v \in V$. Note that the charge is given according to R2-R10 only from 21^{+}-vertices to 4^{-}-vertices. Moreover, v gives at most $\frac{3}{4}$ through each incident face. If $d(v) \geq 24$, then $\mu^{\prime}(f) \geq d(v)-6-d(v) \times \frac{3}{4}=\frac{d(v)-24}{4} \geq 0$.

Suppose that $21 \leq d(v) \leq 23$. If v gives $\frac{3}{4}$ through each face, then a 23 -vertex has a deficiency $\frac{1}{4}$, and 22 - and 21-vertices have deficiencies $\frac{1}{2}$ and $\frac{3}{4}$, respectively. In what follows, we will make sure that in fact v saves something at certain faces with respect to the level of $\frac{3}{4}$. To estimate the total donation of v, we need the following observations.
(S1) v gives nothing through a non-special 4^{+}-face, which means that v saves $\frac{3}{4}$ at such a face.
(S2) The saving of v at an incident $\left(5^{+}, 5^{+}, 21^{+}\right)$-face is $\frac{3}{4}$.
(S3) Through a special $\left(3,3,5^{+}, 21^{+}\right)$-face, v can transfer $\frac{1}{4}$ to a bad 3 -vertex by R3, and so saves $\frac{1}{2}$ at such a face.
(S4) Through a special $\left(3,3,4,21^{+}\right)$-face, v transfers $\frac{1}{2}$ by R10, and so saves $\frac{1}{4}$.
(S5) v transfers at most $\frac{1}{2}$ through a 3 -face incident with a 4 -vertex by R8, R 9 , and saves at least $\frac{1}{4}$.
(S6) As follows from (S4) and (S5), the presence of a 4 -vertex w adjacent to v implies the total saving at least $\frac{1}{2}$ at the two faces incident with the edge $v w$.
(S7) Each participation of v in R5 or R6 results in saving of $\frac{1}{4}+\frac{1}{4}$.
(S8) As follows from (S1)-(S5), the saving of v at an incident face f can equal zero only if f is a 3 -face incident with a 3 -vertex, which happens only when one of R3, R4, and R7 is applied.

Subcase 2.1. $d(v)=23$. To cover the deficiency of $\frac{1}{4}$, it suffices to have a face with a positive saving at v. Otherwise, according to (S8), the vertex v is simplicial and the degrees of neighbors of v alternate from 3 to 5^{+}. The latter is impossible due to the oddness of $d(v)$.

Subcase 2.2. $d(v)=22$. According to (S6), we can assume that v has no 4 -neighbors, which implies that we are done unless v is simplicial due to (S1) and (S3). If so, then the degrees of neighbors of v must alternate from 3 to 5^{+} in view of (S2). We now look at the eleven 5^{+}-neighbors of v. By parity, there should exist a 3 -neighbor, say v_{2}, such that either $d\left(v_{1}\right) \geq 21$ and $d\left(v_{3}\right) \geq 21$, or $d\left(v_{1}\right) \leq 20$ and $d\left(v_{3}\right) \leq 20$. This results in saving $2 \times \frac{1}{4}$ by v at the two 3 -faces incident with the edge $v v_{2}$ by (S 7) due to R 5 or R 6 in view of (P 4), as desired.

Subcase 2.3. $d(v)=21$. We recall that now we need to find a total saving of $\frac{3}{4}$. We can assume that v has no two consecutive 5^{+}-neighbors, for otherwise this yields a 3 -face by (P 2), which takes nothing from v by (S2), and we are done.

Since $d(v)$ is odd, there are two consecutive 4^{-}-vertices v_{1} and v_{21}, which form a 4^{+}-face $f_{21}=\cdots v_{1} v v_{21}$ due to the absence of any pyramidal face. If $d\left(v_{1}\right)=d\left(v_{21}\right)=4$, then v saves $\frac{3}{4}$ at the non-special face f_{21} by our rules, and the same is true if $d\left(v_{1}\right)=d\left(v_{21}\right)=3$. Therefore, we can assume that $d\left(v_{1}\right)=3$ and $d\left(v_{21}\right)=4$. This means that we are done unless $d\left(f_{21}\right)=4$ and, moreover, f_{21} is special and participates in R10. Hence v saves $\frac{1}{4}$ at f_{21}.

Since at least $\frac{1}{4}$ is also saved at the face $f_{20}=\cdots v_{20} v v_{21}$ as mentioned in (S6), we can assume that v has no saving at the other 19 faces.

According to (S8), all these 19 faces are triangles incident with 3 -vertices. Due to the absence of pyramidal faces, we have $d\left(v_{1}\right)=d\left(v_{3}\right)=\cdots=d\left(v_{19}\right)=3$, and each of these 3 -vertices, except v_{1}, is simplicial and participates in R7. Hence, the degrees of $v_{2}, v_{4}, \ldots, v_{20}$ alternate from 21^{+}to 20^{-}.

If $d\left(v_{2}\right) \geq 21$, then our v saves another $\frac{1}{4}$ at the face $v_{1} v v_{2}$ according to R2, hence it remains to assume that $d\left(v_{2}\right) \leq 20$. This implies that $d\left(v_{20}\right) \geq 21$, which means that $d\left(f_{20}\right)=3$ due to (P 4), and v actually saves as much as $\frac{1}{2}$ at f_{20} according to R8. Due to $\frac{1}{4}$ saved at the face f_{21}, we have $\mu^{\prime}(v) \geq 0$, as desired.

Subcase 2.5. $6 \leq d(v) \leq 20$. Since v does not participate in R1-R12, it follows that $\mu^{\prime}(v)=\mu(v)=\bar{d}(v)-6 \geq 0$.

Subcase 2.6. $d(v)=5$. Note that v is incident with an 11^{+}-face due to (P5), so $\mu^{\prime}(v) \geq 5-6+1=0$ by R12.

Subcase 2.7. $d(v)=4$. Note that v receives $\frac{1}{2}$ by R8-R11 from or through each incident face, whence $\mu^{\prime}(v) \geq-2+4 \times \frac{1}{2}=0$.

Subcase 2.8. $d(v)=3$. A small case analysis based on the number of incident 3 -faces shows in view of (P6) that we always have $\mu^{\prime}(v)=-3+3=0$ by R1-R7.

Thus we have proved that $\mu^{\prime}(x) \geq 0$ for all $x \in V \cup F$, this contradicts (1) and completes the proof of Theorem 2.

References

[1] S.V. Avgustinovich and O.V.Borodin, Neighborhoods of edges in normal maps, Diskretn. Anal. Issled. Oper. 2 (1995) 3-9, in Russian, translation in Ser. Mathematics and Its Applications 391 (1997) 17-22.
[2] O.V. Borodin, Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps, Diskret. Mat. 3 (1991) 24-27, in Russian.
[3] O.V. Borodin, Solving the Kotzig and Grünbaum problems on the separability of a cycle in planar graphs, Mat. Zametki 46 (1989) 9-12, in Russian, translation in Math. Notes 46 (1992) 835-837.
[4] O.V. Borodin, Colorings of plane graphs: a survey, Discrete Math. 313 (2013) 517-539. doi:10.1016/j.disc.2012.11.011
[5] O.V. Borodin, Minimal weight of a face in planar triangulations without 4-vertices, Mat. Zametki 51 (1992) 16-19, in Russian, translation in Math. Notes 51 (1992) 11-13.
[6] O.V. Borodin, Triangulated 3 -polytopes with restricted minimal weight of faces, Discrete Math. 186 (1998) 281-285. doi:10.1016/S0012-365X(97)00240-9
[7] O.V. Borodin, Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra, Diskretn. Anal. Issled. Oper., Ser. 19 (2002) 29-39, in Russian.
[8] O.V. Borodin and D.V. Loparev, The height of minor faces in normal plane maps, Diskretn. Anal. Issled. Oper. 5 (1998) 6-17, translation in Discrete Appl. Math. 135 (2004) 31-39.
doi:10.1016/S0166-218X(02)00292-5
[9] O.V. Borodin and A.O. Ivanova, Describing 3-faces in normal plane maps with minimum degree 4, Discrete Math. 313 (2013) 2841-2847.
doi:10.1016/j.disc.2013.08.028
[10] O.V. Borodin and A.O. Ivanova, The vertex-face weight of edges in 3-polytopes, Sibirsk. Mat. Zh. 56 (2015) 338-350, in Russian, translation in Sib. Math. J. 56 (2015) 275-284.
doi:10.1134/s003744661502007x
[11] O.V. Borodin and A.O. Ivanova, Heights of minor faces in triangle-free 3-polytopes, Sibirsk. Mat. Zh. 56 (2015) 982-988, in Russian, translation in Sib. Math. J. 56 (2015) 783-788. doi:10.1134/S003744661505002X
[12] O.V. Borodin and A.O. Ivanova, The weight of faces in normal plane maps, Discrete Math. 339 (2016) 2573-2580. doi:10.1016/j.disc.2016.04.018
[13] O.V. Borodin and A.O. Ivanova, Heights of faces in 3-polytopes, Sibirsk. Mat. Zh. 58 (2017) 48-55, in Russian, translation in Sib. Math. J. 58 (2017) 37-42. doi:10.1134/S0037446617010050
[14] O.V. Borodin and A.O. Ivanova, Low minor faces in 3-polytopes, Discrete Math., accepted.
[15] O.V. Borodin, A.O. Ivanova and A.V. Kostochka, Describing faces in plane triangulations, Discrete Math. 319 (2014) 47-61.
doi:10.1016/j.disc.2013.11.021
[16] O.V. Borodin and D.R. Woodall, The weight of faces in plane maps, Mat. Zametki 64 (1998) 648-657, in Russian. doi:10.4213/mzm1441
[17] O.V. Borodin and D.R. Woodall, Cyclic degrees of 3-polytopes, Graphs Combin. 15 (1999) 267-277. doi:10.1007/S003730050060
[18] B. Ferencová and T. Madaras, Light graphs in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight, Discrete Math. 310 (2010) 1661-1675.
[19] B. Grünbaum, Polytopal graphs, in: Studies in Graph Theory, D.R. Fulkerson, Ed., MAA Studies in Mathematics 12 (1975) 201-224.
[20] M. Horňák and S. Jendrol', Unavoidable sets of face types for planar maps, Discuss. Math. Graph Theory 16 (1996) 123-142.
doi:10.7151/dmgt. 1028
[21] S. Jendrol', Triangles with restricted degrees of their boundary vertices in plane triangulations, Discrete Math. 196 (1999) 177-196. doi:10.1016/S0012-365X(98)00172-1
[22] S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in the plane-a survey, Discrete Math. 313 (2013) 406-421. doi:10.1016/j.disc.2012.11.007
[23] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. Eas. SAV (Math. Slovaca) 5 (1955) 101-113.
[24] A. Kotzig, From the theory of Eulerian polyhedrons, Mat. Eas. SAV (Math. Slovaca) 13 (1963) 20-34.
[25] A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979) 569-570. doi:10.1111/j.1749-6632.1979.tb32837.x
[26] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27-43.
[27] B. Mohar, R. Škrekovski and H.-J. Voss, Light subraphs in planar graphs of minimum degree 4 and edge-degree 9, J. Graph Theory 44 (2003) 261-295.
doi:10.1002/jgt. 10144
[28] O. Ore and M.D. Plummer, Cyclic coloration of plane graphs, in: Recent Progress in Combinatorics, W.T. Tutte (Ed.), (Academic Press, New York, 1969) 287-293.
[29] M.D. Plummer, On the cyclic connectivity of planar graph, Graph Theory and Application (Springer, Berlin, 1972) 235-242.
[30] E. Steinitz, Polyeder und Raumeinteilungen, Enzykl. Math. Wiss. (Geometrie), 3AB 12 (1922) 1-139.
[31] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426.
doi:10.1007/BF01444968
Received 24 May 2016
Revised 12 December 2016
Accepted 12 December 2016

