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Abstract

The height of a face in a 3-polytope is the maximum degree of its incident
vertices, and the height of a 3-polytope, h, is the minimum height of its faces.
A face is pyramidal if it is either a 4-face incident with three 3-vertices, or
a 3-face incident with two vertices of degree at most 4. If pyramidal faces
are allowed, then h can be arbitrarily large, so we assume the absence of
pyramidal faces in what follows.

In 1940, Lebesgue proved that every quadrangulated 3-polytope has h ≤
11. In 1995, this bound was lowered by Avgustinovich and Borodin to 10.
Recently, Borodin and Ivanova improved it to the sharp bound 8.

For plane triangulation without 4-vertices, Borodin (1992), confirming
the Kotzig conjecture of 1979, proved that h ≤ 20, which bound is sharp.
Later, Borodin (1998) proved that h ≤ 20 for all triangulated 3-polytopes.
In 1996, Horňák and Jendrol’ proved for arbitrarily polytopes that h ≤ 23.
Recently, Borodin and Ivanova obtained the sharp bounds 10 for triangle-
free polytopes and 20 for arbitrary polytopes.

In this paper we prove that any polytope has a face of degree at most 10
with height at most 20, where 10 and 20 are sharp.
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1. Introduction

By a 3-polytope we mean a finite convex 3-dimensional polytope. As proved
by Steinitz [30], the 3-polytopes are in 1-1 correspondence with the 3-connected
planar graphs.

A plane map is normal (NPM) if each its vertex and face is incident with at
least three edges. Clearly, every 3-polytope is an NPM.

The degree d(x) of a vertex or face x in an NPM M is the number of incident
edges. A k-vertex or k-face is one of degree k, a k+-vertex has degree at least k,
a k−-face has degree at most k, and so on.

The height h(f) of a face f in M is the maximum degree of its incident
vertices. The height h(M) (or simply h) of a map M is the minimum height of
faces in M .

A 3-face is pyramidal if it is incident with at least two 4−-vertices, and a
4-face is pyramidal if it is incident with at least three 3-vertices.

If M has pyramidal faces, then h can be arbitrarily large. Indeed, every
face f of the Archimedean (3, 3, 3, n)- and (4, 4, n)-solids satisfies h(f) = n. We
consider NPMs without pyramidal faces in what follows.

We now recall some results about the structure of 5−-faces in M without
pyramidal faces. By δ denote the minimum degree of vertices in M . We say that
f is a face of type (k1, k2, . . .) or simply (k1, k2, . . .)-face if the set of its incident
vertices is majorized by the vector (k1, k2, . . .).

In 1940, Lebesgue [26] gave an approximated description of 5−-faces in NPMs.

Theorem 1 (Lebesgue [26]). Every normal plane map has a 5−-face of one of

the following types:

(3, 6,∞), (3, 7, 41), (3, 8, 23), (3, 9, 17), (3, 10, 14), (3, 11, 13),
(4, 4,∞), (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7),

(3, 3, 3,∞), (3, 3, 4, 11), (3, 3, 5, 7), (3, 4, 4, 5), (3, 3, 3, 3, 5).

The classical Theorem 1, along with other ideas in [26], has numerous appli-
cations to coloring problems on plane graphs (first examples of such applications
and a recent survey can be found in [4, 28]). In 2002, Borodin [7] strengthened
Theorem 1 in six parameters without worsening the others. However, the question
in [7] of the best possible version(s) of Theorem 1 remains open, even for the spe-
cial case of quadrangulations. Precise descriptions are obtained for NPMs with
δ = 5 (Borodin [3]) and δ ≥ 4 (Borodin, Ivanova [9]), and also for triangulations
(Borodin, Ivanova, Kostochka [15]).

Some parameters of Lebesgue’s Theorem were improved for special classes of
plane graphs. In 1989, Borodin [3] proved, confirming Kotzig’s conjecture [24] of
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1963, that every normal plane map with δ = 5 has a (5, 5, 7)-face or (5, 6, 6)-face,
where all parameters are the best possible. This result also confirmed Grünbaum’s
conjecture [19] of 1975 that the cyclic connectivity (defined as the minimum
number of edges to be deleted from a graph so as to obtain two components each
of which has a cycle) of every 5-connected plane graph is at most 11, which bound
is sharp (earlier, Plummer [29] obtained the bound 13).

For plane triangulations without 4-vertices Kotzig [25] proved that h ≤ 30,
and Borodin [5] proved, confirming Kotzig’s conjecture [25], that h ≤ 20; this
bound is the best possible, as follows from the construction obtained from the
icosahedron by twice inserting a 3-vertex into each face. Borodin [6] further
showed that h ≤ 20 for every triangulated 3-polytopes.

In 1940, Lebesgue [26] proved that every quadrangulated 3-polytope satisfies
h ≤ 11. In 1995, this bound was improved by Avgustinovich and Borodin [1] to
10. Recently, Borodin and Ivanova [10] improved this bound to the sharp bound
8, and obtained the best possible bound 10 for triangle-free polytopes in [11].

Borodin and Loparev [8], with the additional assumption of the absence of
(3, 5,∞)-faces, proved that there is either a 3-face with height at most 20, or
4-face with height at most 11, or 5-face of height at most 5, where bounds 20
and 5 are best possible. We note that the height of 5−-faces can reach 30 in
the presence (3, 5,∞)-face due to the construction by Horňák and Jendrol’ [20].
Furthermore, Horňák and Jendrol’ [20] proved that h ≤ 39, which was recently
improved by Borodin and Ivanova [14] to h ≤ 30.

Other results related to Lebesgue’s Theorem can be found in the above men-
tioned papers and also in [2, 16–18,21–23,27, 31].

For arbitrary polytopes, Horňák and Jendrol’ [20] (1996) proved that h ≤ 23.
Recently, Borodin and Ivanova [13] improved this bound to the best possible
bound 20.

The purpose of this paper is to refine the general bound 20 as follows.

Theorem 2. Every normal plane map without pyramidal faces has a 10−-face of

height at most 20, where both bounds 10 and 20 are sharp.

2. Proof of Theorem 2

The bound 20 is attained at the triangulation described in Introduction, obtained
from the icosahedron by two-fold putting 3-vertices in all faces.

Figure 1 shows how to transform the (3,3,3,3,5) Archimedean solid into a
3-polytope with no 9−-faces of height at most 20, which means that 10 is sharp.
In particular, Figure 1 shows a fragment of the 3-polytope obtained.
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Figure 1. Each 9−-face is incident with a 22-vertex [12].

Now let a normal plane map M ′ be a counterexample to Theorem 2. Starting
from M ′, we construct a counterexample M to Theorem 2 with some useful
properties.

The operation D1 consists in putting a diagonal incident with a 21+-vertex
into a 4+-face f that subdivides f into two non-pyramidal faces. By the operation
D2 we mean putting a 3-vertex into a face xyz such that d(x) ≥ 21, d(y) ≥ 21, and
d(z) = 5. Clearly, D2 does not create pyramidal faces, and each application of D1
or D2 transforms a counterexample to another counterexample with additional
useful properties.

We first apply D1 to M ′ as many times as possible, and then apply D2 as
much as we can; after a finite number of steps this results in a counterexample M .

2.1. The structural properties of the counterexample M

(P1) M has no faces of degree from 6 to 10. Since each such face f is incident
with a 21+-vertex v by assumption, we apply the operation D1 to f by joining
v with a vertex at distance at least 3 along the boundary of f . This results is
splitting f to two non-pyramidal 4+-faces with height at least 22, contrary to the
maximality of M .

(P2) M has no 4+-face f = · · ·xyz, where d(y) ≥ 21 and both x and z are

5+-vertices. We can apply D1 to such a face by adding a diagonal incident with
y, thus splitting f into two non-pyramidal 3+-faces, a contradiction.

(P3) M has no 4-face f = wxyz, such that d(y) ≥ 21 and d(x) = d(z) = 3.
Since M has no pyramidal 4-faces, it would follow that d(w) ≥ 4 and we could
add the diagonal yw to f .
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(P4) In M , a 21+-vertex cannot lie at distance two from a 4+-vertex in the bo-

undary of an incident 4+-face f . Otherwise, we could apply D1 by joining these
vertices inside f .

(P5) Every 5-vertex v in M is incident with an 11+-face f of height at most 20.
Due to the oddness of d(v), our v has either two consecutive 20−-neighbors, or
two consecutive 21+-neighbors.

If v1 and v2 are 21+-neighbors of v, then there is a 3-face v1vv2 according to
D1, which means that we can apply D2, a contradiction.

Suppose v3 and v4 are 20−-neighbors of v. Hence there is a 4+-face f = · · ·
v3vv4 (since M has no 10−-face of height at most 20). If f were incident with a
21+-vertex z, then we could join v to z, contrary to the maximality of M . Hence
h(f) ≤ 20, which implies that d(f) ≥ 11, as claimed.

(P6) If M has a 3-vertex v incident with precisely two 3-faces, then v has a

21+-neighbor and is incident with an 11+-face f of height at most 20. Suppose a
3-vertex v is incident with a 4+-face f = · · · v1vv3 and 3-faces vv1v2 and vv2v3.
Note that d(v1) ≥ 5 and d(v3) ≥ 5 due to the absence of pyramidal 3-faces. On
the other hand, if d(v1) ≥ 21, then we could apply D1 by inserting the diagonal
v1v3, a contradiction. By symmetry, we have d(v1) ≤ 20 and d(v3) ≤ 20, which
again implies that h(f) ≤ 20 and d(f) ≥ 11 by (P2). In turn, this implies that
d(v2) ≥ 21, and we are done.

2.2. Discharging

Euler’s formula |V | − |E|+ |F | = 2 for M implies

∑

v∈V

(d(v)− 6) +
∑

f∈F

(2d(f)− 6) = −12,(1)

where V , E and F are the sets of vertices, edges, and faces of M , respectively.
We define the initial charge to be µ(v) = d(v) − 6 whenever v ∈ V and

µ(f) = 2d(f)−6 whenever f ∈ F . Using the properties ofM as a counterexample,
we locally redistribute the initial charges, preserving their sum, so as the new

charge µ′(x) becomes non-negative whenever x ∈ V ∪F . This will contradict the
fact that the sum of new charges is still −12 according to (1).

By v1, v2, . . . , vd(v) denote the neighbors of a vertex v in a cyclic order. A 4-
face wxyz is special if d(x) = d(w) = 3, 4 ≤ d(y) ≤ 20, and d(z) ≥ 21. A 3-vertex
v is bad if v is incident with a 3-face v1vv2, where d(v1) ≥ 21, 5 ≤ d(v2) ≤ 20,
special face vv2xv3 and 4+-face · · · v1vv3 (see Figure 2, R3). Note that d(x) ≥ 21.
A vertex incident only with 3-faces is simplicial.

We use the following rules of discharging (see Figure 2).

R1. Every 3-vertex not incident with 3-faces receives 1 from each incident face.
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Figure 2. Rules of discharging.

R2. Every 3-vertex v incident with a unique triangle T = v1vv2, where d(vi) ≥ 21,
1 ≤ i ≤ 2, receives 1

2 from each vi through T and 1 from each of the two incident

4+-faces.

R3. Every bad 3-vertex v incident with a triangle T = v1vv2 with d(v1) ≥ 21 and

5 ≤ d(v2) ≤ 20 and special face f = vv2xv3 with d(x) ≥ 21 receives 3
4 from v1

through T , 1
4 from x through f , and 1 from each of the two incident 4+-faces.

R4. Every 3-vertex v incident with a unique triangle T = v1vv2 with d(v1) ≥ 21
and 5 ≤ d(v2) ≤ 20 and a non-special 4+-face f = · · · v2vv3 receives 3

4 from v1
through T , 5

4 from f , and 1 from the other incident 4+-face.

R5. Every 3-vertex v incident with an 11+-face f = v1vv3 · · · and two 3-faces
receives 2 from f and 1

2 from the 21+-vertex v2 through each incident 3-face.

R6. Every simplicial 3-vertex adjacent to three 21+-vertices receives 1
2 from each

of them through each incident face.

R7. Every simplicial 3-vertex adjacent to precisely two 21+-vertices receives 3
4

from each of them through each incident face.

R8. Every 4-vertex v incident with a triangle T = v1vv2, where d(vi) ≥ 21,
1 ≤ i ≤ 2, receives 1

4 from each vi through T .
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R9. Every 4-vertex v incident with a triangle T = v1vv2, where d(v1) ≥ 21,
5 ≤ d(v2) ≤ 20, receives 1

2 from v1 through T .

R10. Every 4-vertex incident with a special face f receives 1
2 through f from the

21+-vertex incident with f .

R11. Every 4-vertex receives 1
2 from each incident non-special 4+-face.

R12. Every 5-vertex v receives 1 from each incident 11+-face.

2.3. Proving that µ′(x) ≥ 0 whenever x ∈ V ∪ F

Case 1. f ∈ F . Note that d(f) ≤ 5 or d(f) ≥ 11 due to (P1). We recall that
every 10−-face is incident with a 21+-vertex.

Suppose f = · · · v2v1. First suppose that d(f) ≥ 11. If f gives 2 to v2 by R5,
then d(v1) ≥ 5 and d(v3) ≥ 5 due to the absence of pyramidal 3-faces, so each
of v1 and v3 receives at most 1 from f . If f gives 5

4 to v2 by R4, then we can
assume by symmetry that d(v1) ≥ 5 and again receives at most 1 from f .

If v2 receives 2, then we move 1
4 to the donations of each of v1 and v3, so

that each of v1, v2, and v3 now takes at most 3
2 from f . As a result, we have

µ′(f) ≥ 2d(f)− 6− d(f)× 3
2 = d(f)−12

2 ≥ 0 for d(f) ≥ 12.
If d(f) = 11, then there exist two consecutive vertices in the boundary of

f , say v1 and v2, such that each of them takes less than 2, in fact at most
5
4 , from f . Furthermore, f gives at most 1 to one of v1 and v2. After above
movings of 1

4 , each of v1, v2 takes at most 5
4 from f . This implies that µ′(f) ≥

2× 11− 6− 2× 5
4 − (11− 2)× 3

2 = 0.
Now suppose d(f) = 5. If f does not give 5

4 by R4, then µ′(f) ≥ 2× 5− 6−
4 × 1 = 0 since f is incident with a 21+-vertex by assumption. Otherwise, the
boundary of f must have a path consisting of a 3-vertex v1, a vertex v2 of degree
between 5 and 20, and a 21+-vertex v3 due to (P4). However, this contradicts the
maximality of M , since we can add the diagonal v1v3 without creating pyramidal
faces.

Next suppose that d(f) = 4. Note that f can give 1 or 5
4 to 3-vertices by

R1–R4 and 1
2 to 4-vertices by R11. It remains to assume according to (P4) that

f is incident with at most two 3-vertices. If f is incident with precisely two 3-
vertices, then R4 is not applied to f , which implies µ′(f) = 2× 4− 6− 2× 1 = 0
by R1–R3. Otherwise, we have µ′(f) ≥ 2− 5

4 −
1
2 > 2− 1− 2× 1

2 = 0 due to R4
and R11.

Finally, if d(f) = 3 then f does not participate in R1–R12, whence µ′(f) =
µ(f) = 0.

Case 2. v ∈ V . Note that the charge is given according to R2–R10 only from
21+-vertices to 4−-vertices. Moreover, v gives at most 3

4 through each incident

face. If d(v) ≥ 24, then µ′(f) ≥ d(v)− 6− d(v)× 3
4 = d(v)−24

4 ≥ 0.
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Suppose that 21 ≤ d(v) ≤ 23. If v gives 3
4 through each face, then a 23-vertex

has a deficiency 1
4 , and 22- and 21-vertices have deficiencies 1

2 and 3
4 , respectively.

In what follows, we will make sure that in fact v saves something at certain faces
with respect to the level of 3

4 . To estimate the total donation of v, we need the
following observations.

(S1) v gives nothing through a non-special 4+-face, which means that v saves 3
4

at such a face.

(S2) The saving of v at an incident (5+, 5+, 21+)-face is 3
4 .

(S3) Through a special (3, 3, 5+, 21+)-face, v can transfer 1
4 to a bad 3-vertex by

R3, and so saves 1
2 at such a face.

(S4) Through a special (3, 3, 4, 21+)-face, v transfers 1
2 by R10, and so saves 1

4 .

(S5) v transfers at most 1
2 through a 3-face incident with a 4-vertex by R8, R9,

and saves at least 1
4 .

(S6) As follows from (S4) and (S5), the presence of a 4-vertex w adjacent to v

implies the total saving at least 1
2 at the two faces incident with the edge vw.

(S7) Each participation of v in R5 or R6 results in saving of 1
4 + 1

4 .

(S8) As follows from (S1)–(S5), the saving of v at an incident face f can equal
zero only if f is a 3-face incident with a 3-vertex, which happens only when one
of R3, R4, and R7 is applied.

Subcase 2.1. d(v) = 23. To cover the deficiency of 1
4 , it suffices to have a

face with a positive saving at v. Otherwise, according to (S8), the vertex v is
simplicial and the degrees of neighbors of v alternate from 3 to 5+. The latter is
impossible due to the oddness of d(v).

Subcase 2.2. d(v) = 22. According to (S6), we can assume that v has no
4-neighbors, which implies that we are done unless v is simplicial due to (S1)
and (S3). If so, then the degrees of neighbors of v must alternate from 3 to 5+

in view of (S2). We now look at the eleven 5+-neighbors of v. By parity, there
should exist a 3-neighbor, say v2, such that either d(v1) ≥ 21 and d(v3) ≥ 21, or
d(v1) ≤ 20 and d(v3) ≤ 20. This results in saving 2 × 1

4 by v at the two 3-faces
incident with the edge vv2 by (S7) due to R5 or R6 in view of (P4), as desired.

Subcase 2.3. d(v) = 21. We recall that now we need to find a total saving of
3
4 . We can assume that v has no two consecutive 5+-neighbors, for otherwise this
yields a 3-face by (P2), which takes nothing from v by (S2), and we are done.

Since d(v) is odd, there are two consecutive 4−-vertices v1 and v21, which
form a 4+-face f21 = · · · v1vv21 due to the absence of any pyramidal face. If
d(v1) = d(v21) = 4, then v saves 3

4 at the non-special face f21 by our rules, and
the same is true if d(v1) = d(v21) = 3. Therefore, we can assume that d(v1) = 3
and d(v21) = 4. This means that we are done unless d(f21) = 4 and, moreover,
f21 is special and participates in R10. Hence v saves 1

4 at f21.
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Since at least 1
4 is also saved at the face f20 = · · · v20vv21 as mentioned in

(S6), we can assume that v has no saving at the other 19 faces.
According to (S8), all these 19 faces are triangles incident with 3-vertices.

Due to the absence of pyramidal faces, we have d(v1) = d(v3) = · · · = d(v19) = 3,
and each of these 3-vertices, except v1, is simplicial and participates in R7. Hence,
the degrees of v2, v4, . . . , v20 alternate from 21+ to 20−.

If d(v2) ≥ 21, then our v saves another 1
4 at the face v1vv2 according to R2,

hence it remains to assume that d(v2) ≤ 20. This implies that d(v20) ≥ 21, which
means that d(f20) = 3 due to (P4), and v actually saves as much as 1

2 at f20
according to R8. Due to 1

4 saved at the face f21, we have µ′(v) ≥ 0, as desired.

Subcase 2.5. 6 ≤ d(v) ≤ 20. Since v does not participate in R1–R12, it
follows that µ′(v) = µ(v) = d(v)− 6 ≥ 0.

Subcase 2.6. d(v) = 5. Note that v is incident with an 11+-face due to (P5),
so µ′(v) ≥ 5− 6 + 1 = 0 by R12.

Subcase 2.7. d(v) = 4. Note that v receives 1
2 by R8–R11 from or through

each incident face, whence µ′(v) ≥ −2 + 4× 1
2 = 0.

Subcase 2.8. d(v) = 3. A small case analysis based on the number of incident
3-faces shows in view of (P6) that we always have µ′(v) = −3+ 3 = 0 by R1–R7.

Thus we have proved that µ′(x) ≥ 0 for all x ∈ V ∪ F , this contradicts (1)
and completes the proof of Theorem 2.
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