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Abstract

The Clar number of a fullerene graph with n vertices is bounded above
by ⌊n/6⌋ − 2 and this bound has been improved to ⌊n/6⌋ − 3 when n is
congruent to 2 modulo 6. We can construct at least one fullerene graph
attaining the upper bounds for every even number of vertices n ≥ 20 except
n = 22 and n = 30.
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1. Introduction

A fullerene graph ((4, 6)-fullerene graph, respectively) is a finite 3-regular plane
graph consisting only of pentagonal (quadrilateral, respectively) and hexagonal
faces. Grünbaum and Motzkin [6] showed that a fullerene graph with n vertices
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exists for n = 20 and for all even n > 22. For more information on fullerenes, we
refer to [1].

For a fullerene graph F , a perfect matching (or Kekulé structure)M is a set of
edges such that each vertex is incident with exactly one edge in M . For a perfect
matching M , an alternating face is a hexagonal face with exactly three of its
bounding edges in M . A resonant pattern of F is a set of independent alternating
faces with respect to some perfect matching. A Clar set is a resonant pattern with
the maximum number of independent alternating faces over all perfect matchings.
The Clar number c(F ) of F is the size of a Clar set of F . (H,M0) is called a Clar

cover [10] of F if H is a resonant pattern of F and M0 is a perfect matching of
F −H. We say a Clar cover (H,M0) is a Clar frame if H is a Clar set of F .

Zhang and Ye [11] showed that ⌊n/6⌋ − 2 is an upper bound for the Clar
number of a fullerene graph with n vertices. The bound ⌊n/6⌋ − 2 was improved
to ⌊n/6⌋ − 3 for fullerenes whose orders are congruent to 2 modulo 6 [4]. These
two results can be unified as the following theorem.

Theorem 1.1 [4, 11]. Let F be a fullerene graph with n vertices. Then

c(F ) ≤

{

⌊n/6⌋ − 3, n ≡ 2 (mod 6);

⌊n/6⌋ − 2, otherwise.

Zhang and Ye [11] defined the extremal fullerene graphs as those whose
Clar numbers are n/6 − 2. We extend the definition and say a fullerene graph
extremal if the Clar number of the fullerene attains the bound in Theorem
1.1. Amongst all experimentally characterised fullerenes, C60:1(Ih), C70:1(D5h),
C76:1(D2), C78:1(D3), C80:1(D5d), C80:2(D2), C82:3(C2), C84:22(D2) and
C84:23(D2d) are extremal, where Cn:m occurs at position m in a list of lexico-
graphically ordered spirals that describe isolated-pentagon isomers with n atoms
[1], and inside parentheses the point group of the isomer is given. Figure 1 illus-
trated a Clar frame of each such fullerene.

Ye and Zhang [9] gave a graph-theoretical characterization of fullerene graphs
with at least 60 vertices attaining the maximum Clar number n/6− 2. Later, a
combination of the Clar number and Kekulé count as a selector to predict the sta-
bility of fullerene isomers was proposed by Zhang et al. [12], which distinguishes
uniquely the buckminsterfullerene C60 from its all 1812 fullerene isomers. Re-
cently, Hartung [7] gave another graph-theoretical characterization of fullerene
graphs whose Clar numbers are n/6 − 2 by establishing a connection between
fullerene graphs and (4,6)-fullerene graphs.

The bound ⌊n/6⌋−2 was generalised to ⌊n/6⌋−χ(Σ) for a fullerene graph on
surface Σ [2], where χ(Σ) represents the Euler characteristic of Σ. The toroidal
and Klein-bottle fullerene graphs whose Clar numbers attain n/6 were charac-
terised in [2, 3], whereas the projective fullerene graphs whose Clar numbers
attain n/6− 1 were characterised in [3].
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Figure 1. All experimentally characterised fullerenes with their Clar frames.

The main result of this paper can be presented as the following theorem and
the proof is constructive.

Theorem 1.2. There is at least one extremal fullerene graph for each even num-

ber of vertices n ≥ 20 with the exceptions of n = 22 and n = 30.

2. Proof of Theorem 1.2

We first construct three families of diagonalised plane graphs. The construction is
inspired by Grünbaum and Motzkin’s method for constructing a family of (4,6)-
fullerene graphs [6] and is based on the Hartung method for characterising the
extremal fullerene graphs with Clar numbers n/6− 2, see [7]. For a 2-connected
plane graph G with maximum degree 4 and minimum degree 3, we define a
diagonalization c of G as a choice of diagonal vertices for each quadrilateral face
so that each vertex of degree 4 is chosen twice or thrice and any other vertex is
chosen at most once. If a diagonalization c of G exists, then (G, c) is called a
diagonalised plane graph. Denote by (Qk(n), ck) (k = 0, 1, 2) a diagonalised plane
graph with n vertices satisfying (i) there are exactly 2k vertices of degree 4, the
other vertices are of degree 3, and (ii) there are exactly 6+2k quadrilateral faces,
the other faces are hexagons. We have the following lemma.

Lemma 2.1. (1) (Q0(n), c0) exists for every even number n satisfying n ≥ 12
and n 6= 14.

(2) (Q1(n), c1) exists for every even number n satisfying n ≥ 14.

(3) (Q2(n), c2) exists for every even number n satisfying n ≥ 12.
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(b) (d)(a) (c)

(e) (f ) (g)

Figure 2. (Qk(n), ck) for n = 12, 14 and 16.

Figure 3. Q0(14).

Proof. (Q0(12), c0), (Q2(12), c2), (Q1(14), c1),(Q2(14), c2), (Q0(16), c0), (Q1(16),
c1) and (Q2(16), c2) are presented in Figure 2(a), (b), (c), (d), (e), (f) and (g),
respectively. It is easily seen that Q0(14) is the unique (4,6)-fullerene graph with
14 vertices, as depicted in Figure 3, which obviously cannot be diagonalized.
Thus (Q0(14), c0) does not exist. (Q0(18), c0), (Q1(18), c1) and (Q2(18), c2) are
shown in Figure 4. A diagonalised plane graph of type (Qk(n), ck) (n ≥ 20,
k = 0, 1, 2) may be obtained by iteratively applying the operation illustrated
in Figure 5 on the diagonalised plane graphs depicted in Figure 4. Note that
the initial configuration can be found in the derived one as a subgraph, so the
operation can be iterated.

We then perform the so-called leapfrog transformation on Qk(n) (k = 0, 1, 2).
For a 2-connected plane graph G, leapfrog transformation L(G) is defined as the
truncation of the dual of G [5, 8]. The dual G∗ of a plane graph G can be built
as follows: locate a point in the inner of each face and join two such points if
their corresponding faces share a common edge [8]. The truncation of G∗ can be
obtained by replacing each vertex v of degree k with k new vertices, one for each
edge incident to v. Pairs of vertices corresponding to an edge of G∗ are adjacent,
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Figure 4. (Qk(18), ck), k = 0, 1, 2.

→ →

Figure 5. The iterative operations.

and k new vertices corresponding to a single vertex of G∗ are joined in the cyclic
order given by the embedding to form a face of size k [5]. Figure 6 illustrates the
generation procedure of L(Q1(18)).

(a) (c)(b)

Figure 6. (a) Q1(18); (b) Q
∗

1
(18); (c) L(Q1(18)).

It follows that L(Qk(n)) (k = 0, 1, 2) is a trivalent plane graph. It has ex-
actly 2k octagonal faces, 6 + 2k quadrilateral faces, and the other faces of it are
hexagons. Since quadrilateral faces in Qk(n) correspond to quadrilateral faces in
L(Qk(n)), a pair of opposite vertices of a quadrilateral face in Qk(n) correspond
to a pair of opposite edges of a quadrilateral face in L(Qk(n)), see Figure 7. Such
a pair of opposite edges of the quadrilateral face in L(Qk(n)) connect two faces
in L(Qk(n)) which correspond to the pair of opposite vertices of the quadrilat-
eral face in Qk(n). Thus a diagonalised plane graph (Qk(n), ck) corresponds to
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(L(Qk(n)), c
′

k
), where c′

k
represents the set of the pairs of opposite edges of the

quadrilateral faces in L(Qk(n)) which corresponds to the diagonalization ck of
Qk(n).

(a) (b) (c)

Figure 7. (a) (Q1(18), c1); (b) (L(Q1(18)), c
′

1
); (c) F1(18).

Finally, for each quadrilateral face of (L(Qk(n)), c
′

k
), we compress the pair of

opposite edges of the quadrilateral face and change the quadrilateral face into an
edge, see Figure 7. Denote the resulting graph by Fk(n). We have the following
result.

Lemma 2.2. Fk(n) is an extremal fullerene graph.

Proof. Clearly, the graph Fk(n) is trivalent. Because each octagonal face in
L(Qk(n)) corresponds to a vertex of degree 4 in Qk(n) and each vertex of degree
4 in Qk(n) is chosen twice or thrice, we compress totally two or three pairs of
opposite edges of the quadrilateral faces exiting any octagonal face. Since the
size of each face connected by a pair of opposite edges in L(G) is decreased by
one after compression, Fk(n) is a fullerene graph.

It is clear that the set of hexagonal faces Hk in Fk(n) corresponding to
hexagonal faces in Qk(n) forms a resonant pattern of Fk(n). Hence c(Fk(n)) ≥
|Hk|. Denote by nk the number of vertices of Fk(n). We can see that |Hk| =
n/2− 4− k and nk = |Fk(n)| = 3n− 12− 2k. Combining these two equations, we
obtain that |Hk| = (nk−4k)/6−2. The right side of the equation equals ⌊nk/6⌋−2
if k = 0 and k = 1. Otherwise, it equals ⌊nk/6⌋ − 3. Further, nk ≡ (6 − 2k)
(mod 6). By Theorem 1.1, c(Fk(n)) = |Hk|. So Fk(n) is an extremal fullerene
graph.

Observe that the fullerene graphs constructed are (except for a few smallest
examples) nanotubes of type (6, 3). Another example of a resulting fullerene
graph is depicted in Figure 8. The iterative operation as a patch replacement
operation for fullerene graphs is depicted in Figure 9.
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Figure 8. An example of an extremal fullerene graph for n = 94. To obtain the graph,
dotted lines are to be identified. The dashed line passes through a spiral of resonant
hexagons; its length may be chosen arbitrarily (at least three hexagons).

Proof of Theorem 1.2. By Lemma 2.1(1), we know that there is at least one
diagonaized plane graph (Q0(n), c0) for every even number n satisfying n ≥ 12
and n 6= 14. By Lemma 2.2, there is at least one extremal fullerene graph
F0(n) with n0 = 3n − 12 vertices. Using similar discussions to (Q1(n), c1)
and (Q2(n), c2), respectively, we also obtain that there is at least one extremal
fullerene graph with n1 = 3n − 14 vertices, n is an even number and n ≥ 14,
and there is at least one extremal fullerene graph with n2 = 3n − 16 vertices,
n is an even number and n ≥ 12. Furthermore, it can be checked directly that
there is no fullerene graph with 22 vertices and each of the three fullerene graphs
(see Figure 10) with 30 vertices has Clar number less than 3. Thus Theorem 1.2
holds.

→ →

Figure 9. The same iterative operations, here they add six new vertices (a resonant
hexagon) to a fullerene graph.
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Figure 10. All three fullerene graphs with 30 vertices.
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[8] T. Pisanski and M. Randić, Bridges between geometry and graph theory , in: Geom-
etry at Work: Papers in Applied Geometry Vol. 53, C.A. Gorini (Ed(s)), (Washing-
ton, DC, Mathematical Association of America, 2000) 174–194.

[9] D. Ye and H. Zhang, Extremal fullerene graphs with the maximum Clar number ,
Discrete Appl. Math. 157 (2009) 3152–3173.
doi:10.1016/j.dam.2009.06.007

[10] H. Zhang and F. Zhang, The Clar covering polynomial of hexagonal systems I ,
Discrete Appl. Math. 69 (1996) 147–167.
doi:10.1016/0166-218X(95)00081-2

[11] H. Zhang and D. Ye, An upper bound for Clar number of fullerene graphs , J. Math.
Chem. 42 (2007) 123–133.
doi:10.1007/s10910-006-9061-5

http://dx.doi.org/10.1016/j.dam.2015.08.007
http://dx.doi.org/10.1007/978-1-4613-0163-9
http://dx.doi.org/10.4153/CJM-1963-071-3
http://dx.doi.org/10.1016/j.dam.2013.06.009
http://dx.doi.org/10.1016/j.dam.2009.06.007
http://dx.doi.org/10.1016/0166-218X\(95\)00081-2
http://dx.doi.org/10.1007/s10910-006-9061-5


Sharp Upper Bounds on the Clar Number of Fullerene Graphs 163

[12] H. Zhang, D. Ye and Y. Liu, A combination of Clar number and Kekulé count as an
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