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Abstract

A subset S of vertices in a graph G = (V, E) is a dominating set of
G if every vertex in V' — S has a neighbor in S, and is a total dominat-
ing set if every vertex in V' has a neighbor in S. A dominating set S is
a locating-dominating set of G if every two vertices z,y € V — S satisfy
N(z)NS # N(y)NS. The locating-domination number v (G) is the mini-
mum cardinality of a locating-dominating set of G. A total dominating set
S is called a differentiating-total dominating set if for every pair of distinct
vertices w and v of G, N[u] NS # N[v]NS. The minimum cardinality of
a differentiating-total dominating set of G is the differentiating-total domi-
nation number of G, denoted by v (G). We obtain new upper bounds for
the locating-domination number, and the differentiating-total domination
number in trees. Moreover, we characterize all trees achieving equality for
the new bounds.
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1. INTRODUCTION

For notation and graph theory terminology in general we follow [9]. We consider
finite, undirected, and simple graphs G with vertex set V = V(@) and edge set
E = E(G). The number of vertices |V (G)| of a graph G is called the order of
G and is denoted by n = n(G). The open neighborhood of a vertex v € V is
N(v) = Ng(v) = {u € V | wv € E} and the closed neighborhood of v is N[v] =
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N(v) U{v}. The degree of v, denoted by deg(v) (or degq(v) to refer to G), is
the cardinality of its open neighborhood. A leaf of a tree T is a vertex of degree
one, while a support vertex of T is a vertex adjacent to a leaf. A strong support
verter is a support vertex adjacent to at least two leaves. We denote the set
of all support vertices of a tree T by S(T') and the set of leaves by L(T). We
always denote £ = ((T) = |L(T)|, and s = s(T) = |S(T)|. Whenever a tree T”
(or T”,...) is introduced, we let n’, ¢’ (or n”,¢”,...) be its order, and number of
leaves, respectively. We denote by ¢, the number of leaves adjacent to a support
vertex v, and by L, the set of leaves adjacent to v. We denote a path of order n
by P, (or P, : vjve--- vy, where V(P,) = {v1,...,v,} and v; is adjacent to v;4+1
fori=1,2,...,n—1). The distance d(x,y) between two vertices x and y is the
length of a shortest path from x to y. The diameter diam(G) of a graph G is
the maximum distance over all pair of vertices of G. For a rooted tree T and a
vertex v, we denote by T, the sub-rooted tree, rooted at v.

A subset S C V is a dominating set of G if every vertex in V —S has a neighbor
in S. The domination number ~(G) is the minimum cardinality of a dominating
set of G. A dominating set S is a locating-dominating set (or just LDS) of G
if every two vertices x,y € V — § satisfy N(z) NS # N(y) N S. The locating-
domination number 1, (G) is the minimum cardinality of a locating-dominating
set of G. A locating-dominating set of G of cardinality v (G) is referred as a
~vL(G)-set. The concept of locating domination in graphs was pioneered by Slater
[15, 16], and has been further studied in, for example, [1, 2, 4, 7, 13, 14].

A dominating set S is a total dominating set (or just TDS) of G if the
induced subgraph G[S] has no isolated vertex. A total dominating set S is called
a differentiating-total dominating set (or just DTDS) if for every pair of distinct
vertices u and v of G, N[u] NS # N[v] N S. The minimum cardinality of a
differentiating-total dominating set of G is the differentiating-total domination
number of G, denoted by 7 (G). The concept of differentiating-total domination
was introduced by Haynes, Henning and Howard [8] and further studied in, for
example, [3, 5, 6, 10, 11, 12).

Blidia et al. [1] obtained the following upper bound for the locating-domi-
nation number of a tree.

Theorem 1 (Blidia et al. [1]). For any tree T' of order n > 2, with { leaves and
s support vertices, vp(T) < (n+ £ — s)/2.

Ning et al. [12] constructed the following family F of trees as follows. For
each tree T' € F, every vertex v in T has a label s(v) € {4, B,C, D}, called
its status. Let F be the family of labeled trees T' = T} that can be obtained
as follows. Let Ty = xjzexsrsrsxeryrs be a path of order 8 in which s(zp) =
s(zg) = C, s(xe) = s(x7) = A, s(x3) = s(wvg) = B and s(x4) = s(x5) = D. If
k > 1, then T} can be obtained from 7T}_;1 by one of the following operations.
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Operation ¢;. For x € V(T}_1), if s(z) = C and degy, ,(z) = 1, then add a
path Q = yzuvw and the edge xy. Let s(y) = D, s(z) = D, s(u) = B, s(v) = A
and s(w) = C.

Operation ¢2. For x € V(T}_1), if s(z) = D, then add a path @ = yzuv and
the edge xy. Let s(y) = D, s(z) = B, s(u) = A and s(v) = C.

Theorem 2 (Ning et al. [12]). If T is a tree of order n > 3 with ¢ leaves, then
YP(T) < 3(n + €)/5, with equality if and only if T = Ps, or T € F.

In Section 2, we prove that for any tree T' of order n > 2, with ¢ leaves,
vL(T) < (2n + 3¢ — 2)/5, and characterize all trees achieving equality for this
bound. We note that our bound is an improvement of the bound of Theorem 1
for trees T" with n > £ + 5s — 4. In Section 3, we prove that for any tree T of
order n > 4 with £ leaves and s support vertices, 72 (T) < (3n + 2¢ + s)/5, and
characterize all trees achieving equality for this bound. We note that our bound
is an improvement of the bound of Theorem 2 for trees T with £ > s. We make
use of the following.

Lemma 3 (Blidia et al. [1]). In any tree T of order n > 3 there is a v (T)-set
S such that:

(1) If z is a support vertex and {, is the number of leaves adjacent to x, then S
contains x and exactly £, — 1 leaves adjacent to x.

(2) If abed is a path with deg(a) =1, deg(b) = deg(c) = 2 and deg(d) > 1, then
Sn{a,b,c,d} = {b,d}.

2. AN UpPER BOUND FOR 7L(T)

We begin with the following observation.

Observation 4. If T is a tree obtained from a tree T' by adding a leaf or a path
Py toT', then vp(T) <~ (T') + 1.

Let 7 be the collection of trees 1" that can be obtained from a sequence
Ty, Ts,..., T, =T (k > 1) of trees, where T} = P3, and T;11 can be obtained
recursively from T; by one of the following operations for 1 <+i¢ < k — 1.

Operation O;. Assume that w is a support vertex of T;. Then T;,1 is obtained
from T; by adding a leaf to w.

Operation Os. Assume that w is a leaf of T;. Then Tj4; is obtained from T; by
adding a path P5; and joining w to a leaf of Ps.

Lemma 5. If v (T;) = (2n(T;) + 34(T;) — 2)/5, and T;4q is obtained from T; by
Operation Oy or Operation Oz, then vr,(Tit1) = 2n(Tiv1) + 30(Ti11) — 2)/5.
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Proof. Let vr(T;) = 2"’*73&_2, where n; = n(T;) and ¢; = ¢(T;). Assume that
T;11 is obtained from T; by Operation O;. Let T;11 be obtained from T; by adding
a leaf v to a support vertex w of T;. By Observation 4, v (Ti+1) < vr(T;) + 1.
Let S be a v1(T;41)-set satisfying the conditions of Lemma 3. Thus w € S, and
without loss of generality, we may assume that v € S. Then S — {v} is an LDS
for T;, implying that v7(T;) < v (Ti41) — 1. Thus vp(Ti+1) = vr(T;) + 1. Now
10(Tin) = (2n(T3) + 30T) — 2)/5+ 1 = Q(n(T) + 1) + 3((T;) + 1) — 2)/5 =
(2n(Ti41) + 36(Tisn) — 2)/5.

Next assume that T;,1 is obtained from T; by Operation Oy. Let T;11 be
obtained from T; by joining a leaf v of T; to the leaf a of a path P5 : abcde.
If S is a vp(T;)-set, then S U {b,d} is an LDS for T;11, and so v (T;11) <
v (T;) + 2. Let D be a v, (Ti4+1)-set satisfying the conditions of Lemma 3. Thus
SnAbcde} = {bd}. If a ¢ D, then D — {b,d} is an LDS for T;, and if
a € D, then (D — {a,b,d}) U{v} is an LDS for T;, and so v.(T;) < v(Ti+1) — 2.
Thus v.(Tiv1) = v0(T3) + 2. Now v1(Tiv1) = 2n(T;) + 3UTi) — 2)/5 + 2 =
(2(n(T3) +5) + 3U(T3) — 2)/5 = (2n(Tis1) + 3€(Tig1) — 2)/5. u

By a simple induction on the operations performed to construct a tree T' € T,
and Lemma 5 we obtain the following.

Lemma 6. For any tree T € T of order n > 3 and with ¢ leaves, vr(T) =
(2n+ 3¢ —2)/5.

We are now ready to present the main result of this section.

Theorem 7. For any tree T of order n > 2 with ¢ leaves, v,(T') < (2n+3(—2)/5,
with equality if and only if T € T.

Proof. We first use an induction on the order n of T to show that v.(T) <
(2n 4 3¢ — 2)/5. The base step is obvious for n = 2 and 3. Assume that for
any nontrivial tree T" of order n’ < n, with I’ leaves, v, (T") < (2n’ + 3¢/ — 2)/5.
Now consider the tree T of order n > 4. Assume that T has a strong support
vertex. Let v be a strong support vertex, and u be a leaf adjacent to v. Let
T' =T —u. By Observation 4, v, (T) < v.(T") + 1. By the inductive hypothesis,
o (T) < vp(T)+1 < 2n(T")+30(T")—2)/5+1 = (2(n—1)+3({—1)—2)/5+1 =
(2n + 3¢ — 2)/5. Next assume that 7" has an edge e = uv with deg(u) > 3 and
deg(v) > 3. Let 71 and T be the components of T' — e, with v € V(71) and
v € V(T3z). By the inductive hypothesis, v.(T) < v(T1) + v.(T2) < (2n(T1) +
3U(Th)—2)/5+ (2n(Te) +36(T2) —2)/5 = (2n+30—4)/5 < (2n+ 3¢ —2) /5. Thus
for the next, we may assume that the following facts hold.

Fact 1. T has no strong support vertex.

Fact 2. For each edge e = uv, deg(u) < 2 or deg(v) < 2.
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Let d = diam(T). By Fact 1, d > 3. If d = 3, then T' = Py, and v(T) =
2 < (2n+ 3¢ —2)/5. Thus d > 4. We root T at a leaf xy of a diameterical
path zoz; - - - x4 from zy to a leaf x4 farthest from zy. By Fact 1, deg(z4—1) =
deg(z1) = 2. Assume that d = 4. If deg(x2) = 2 then T' = P5, and v.(T) =
2 < (2n+ 3¢ —2)/5. Thus assume that deg(z2) > 2. If x9 is a support vertex,
then T has deg(z2) — 1 support vertices of degree two. Then N(z2) is a LDS
for T, implying that v(T) < deg(x2) < (2n + 3¢ — 2)/5, since n = 2deg(x2)
and ¢ = deg(x2). Thus assume that zo is not a support vertex. Then T has
deg(x2) support vertices of degree two, and we can see that N(x2) is an LDS for
T, implying that v7,(7T") < deg(z2) < (2n+3¢—2)/5, since n = 2deg(z2) + 1 and
¢ = deg(x2). Assume that d = 5. By Fact 2, we may assume that deg(x3) = 2.
If deg(x2) = 2 then T' = Ps, and v(T) = 3 < (2n + 3¢ — 2)/5. Thus assume
that deg(z2) > 2. Since d = 5, by Fact 1, any vertex of N(z2) — {x3} is a leaf
or a support vertex of degree two. Assume that x, is a support vertex. By Fact
1, there is a unique leaf adjacent to x3. Then S(T') is an LDS for T, implying
that v (T) < |S(T)| = deg(z2) < (2n + 3¢ — 2)/5, since n = 2deg(z2) + 1 and
¢ = deg(z2). Thus assume that 2 is not a support vertex. Then S(T") U {x2} is
an LDS for T, implying that v.,(T') < |S(T)|+1 = deg(z2)+1 < (2n+3¢—2)/5,
since n = 2deg(z2) + 2 and ¢ = deg(z2). Thus assume that d > 6. Assume that
deg(zg_2) > 3. Let T" =T — {x4,24-1}. Using Observation 4 and the inductive
hypothesis, we obtain v (T) < v (T7) + 1 < w +1< 2"+7§H. We
thus assume that deg(z4_2) = 2.

Assume that deg(xg4_3) > 3. Suppose that z4_3 is a support vertex and u is
the unique leaf adjacent to z4_3. Let 7" =T — {x4,x4_1,24_2}. Note that x4 3
is a support vertex in 7”, and by Lemma 3 there is a 7 (T")-set D containing
z4—3. Then D U{z4_1} is an LDS for T', implying that v.(T) < v.(T") + 1. By
the inductive hypothesis, v7,(T) < v.(T") + 1 < w +1< 2n+7§€—2_
Thus assume that z4_3 is not a support vertex. Assume that there is a leaf y
of Ty, , with d(y,xq—3) = 2. Let u be the father of y. By Fact 2, deg(u) = 2.
Let 7" = T — {u,y}. By Observation 4 and the inductive hypothesis, v (T) <
yvo(T)+1<(2(n—2)+3(¢—-1)—2)/5+1 < (2n+ 3¢ —2)/5. Thus assume for
the next that any leaf of T, , is at distance three from z4_3. Since any such leaf
plays the same role as x4, any internal vertex in the shortest path from such leaf to
x4—3 has degree two. Let deg(z4—3) = k+1 with k > 2. By Fact 2, deg(zq4—4) = 2.
Let T" = T —T,,_,. By the inductive hypothesis, v, (T") < (2n'+3¢'—2')/5. But
I!'<l—k+1,and n' =n—3k—2. Let S be a y1,(T")-set. Then SU{x4_3}UU is
an LDS for T', where U is the set of vertices of T, , at distance two from z4_3.
Thus v, (T) < yp(T")+k+1 < (20 +30—2)/5+k+1 < (2n+30—2—4k+4)/5 <
(2n + 3¢ —2)/5 because k > 2. Thus assume that deg(xq_3) = 2.

Assume that deg(zq—4) > 3. Let 7" = T — {x4,24-1,T4—2, Tq—3}. Let D
be v (T")-set. Then D U {xg_2,24-1} is an LDS for T, and so v.(T) < v.(T")
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. . . 2 (T")+36(T")—2
+ 2. By the inductive hypothesis, v, (T) < y,(T") +2 < H————=

w +2< 2”+753€_2. Thus assume that deg(zq_4) = 2.

Let 7" =T —T,, ,. By the inductive hypothesis, v (T") < (2n’ + 3¢ — 2) /5.
Let S be a v(T")-set. Then S U {x4q_3,24-1} is an LDS for T'. Thus v, (T) <
(T +2<(2(n—5)+30—2)/5+2=(2n+3( —2)/5.

We next prove the equality part. We use an induction on the order n of a
tree T' with ¢ leaves and ~,(T) = (2n+ 3¢ — 2)/5 to show that T' € T. The basic
step is obvious, since P3 € 7. Assume that any nontrivial tree T” of order n’ < n,
with ¢ leaves and v, (T") = (2n’ 4+ 3¢/ — 2)/5 belongs to T. Let n = n(T) > 4.
Assume that T has a strong support vertex u, and v is a leaf adjacent to wu.
Let T" = T — v. Using Lemma 3, we can easily see that v (T) = v.(T") + 1.
Thus vy, (T") =y (T)—1=2n+30-2)/5-1=(2(n—1)+3(—-1)—2)/5 =
(2n(T")+3¢(T")—2)/5. By the inductive hypothesis, 7" € T. Hence T is obtained
from 7" by Operation O;. Thus for the next assume that 7" has no strong support
vertex.

We root T at a leaf xg of a diameterical path xzgxq --- x4 from zg to a leaf
xq farthest from xg. By the first part of the proof, we find that d > 6, and
deg(x4—2) = deg(x4-3) = deg(wa—4) = 2. Since y(Pr) =3 < (2n(Pr) + 3((Pr) —
2)/5, we have d > 7. We next show that deg(x4_5) = 2. Assume that deg(zg4_5) >
3. Let T" = T — {xq,4-1,%Td—2,Tqg—3,Tq—4}. Let D be a vy (T')-set. Then
D U{zg4-3,24-1} is an LDS for T, and so y.(T) < v.(T") + 2. By the first
part of the theorem we have v(T) < v (T") + 2 < (2n(T") + 3(T") — 2)/5 +
2<(2n—-5)+3(¢—-1)—-2)/54+2 < (2n+ 3¢ — 2)/5, a contradiction. Thus
deg(zg-5) =2. Let T* =T — {xq,T4—1, Td—2, Td—3, Tg—a}. If D* is a yr(T*)-set,
then D* U{z4_3,24-1} is an LDS for T, and so v (T) < v.(T*) + 2. By Lemma
3 there is a vy (T')-set D such that D N {x4_3,T4—2,T4—1,%q} = {®q—3,Tq-1}-
If x4-4 € D, then (D — {x4_3,24-1,%4-4}) U {x4_5} is an LDS for T*, and if
Zg—a & D, then D—{x4_3,x4-1} is an LDS for T*. Thus v, (T%) < v.(T)—2. We
deduce that v,(T) = v (T*)4+2. Now v(T*) = v.(T)—2 = (2n+3(—-2)/5-2 =
(2(n —5)+30—2)/5 = (2n(T*) + 3¢(T*) — 2)/5. By the inductive hypothesis,
T* € T. Hence T is obtained from 7™ by Operation O,.

The converse follows by Lemma 6. [

+2<

We note that the bound of Theorem 7 is an improvement of the bound of
Theorem 1 for trees T with n > £ + 5s — 4.

3. AN UpPPER BouUND rOR v (T)

We prove that for any tree T of order n > 3 with ¢ leaves and s support vertices,
vP(T) < (3n + 20 + s)/5. We begin with the following observation of [12], since
for any tree T € F, {v € V(T)|s(v) € {AU BUC}} is a v (T)-set.
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Observation 8 (Ning et al. [12]). Any tree T € F has a vP(T)-set containing
all leaves and all support vertices.

Theorem 9. If T is a tree of order n > 4 with £ leaves and s support vertices,
then vP(T) < (3n + 20 + 5)/5, with equality if and only if T € F.

Proof. Let T be a tree of order n > 4 with ¢ leaves and s support vertices. We
prove by induction on the order n of T that vP(T) < (3n + 2¢ + s)/5. For the
base step of the induction, if n = 4, then T' € {Py, K; 3}, and it is obvious that
VP (T) < (3n + 20+ s)/5.

Assume that for any tree T’ of order n’ < n with ¢ leaves and s’ support
vertices, v (T') < (3n' + 2¢' + s')/5. Now consider the tree T of order n > 4
with ¢ leaves and s support vertices. If T' has no strong support vertices, then
¢ = s, and the result follows from Theorem 2. Thus assume that 7" has some
strong support vertex. Let u be a strong support vertex of T', and v be a leaf
adjacent to u. Let 7/ = T —v. Then n/ > 4. Clearly v/ (T) < 4P (T') +1. By the
inductive hypothesis, v (T) < 4P (T") +1 < (3n(T") +20(T") + s(T")) /5 + 1 =
Bn—1)+2({—-1)+s)/54+1=(3n+2(+s)/5.

Now we prove the equality part. Assume that v”(T) = (3n + 2¢ + 5)/5. We
show that ¢ = s. Suppose that £ > s. Let T” be a tree obtained from T by
removing ¢, — 1 leaves of any support vertex x. Thus n’ = n(T') =n — £+ s and
UT") = s(T") = s(T). By the theorem, v (T") < (3n(T") + 20(T") + s(T"))/5 =
(3(n—0+5)+3s) /5. P (T") < (3(n—l+s)+3s)/5, then v2(T) < AP (T')+4—s <
(3n+20+5)/5, a contradiction. Thus v2(T") = (3(n—£+5s)+3s)/5. By Theorem
2, T' € F. By Observation 8, T" has a 7’ (T")-set S containing all leaves and all
support vertices. Let y € L(T) — L(T"). Then (S U (L(T) — L(T"))) — {y} is a
DTDS for T, and thus v2 (T) < v (T")+{—s5—1 = (3(n—{+5)+35) /5+L—s5—1 <
(3n +2¢ + s)/5, a contradiction. Thus £ = s, and so v (T) = (3n + 31) /5. Now
the result follows from Theorem 2. The converse is obvious. ]

We note that the bound of Theorem 9 is an improvement of the bound of
Theorem 2 for trees T with £ > s.
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