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Abstract

A subset S of vertices in a graph G = (V,E) is a dominating set of
G if every vertex in V − S has a neighbor in S, and is a total dominat-
ing set if every vertex in V has a neighbor in S. A dominating set S is
a locating-dominating set of G if every two vertices x, y ∈ V − S satisfy
N(x) ∩ S 6= N(y) ∩ S. The locating-domination number γL(G) is the mini-
mum cardinality of a locating-dominating set of G. A total dominating set
S is called a differentiating-total dominating set if for every pair of distinct
vertices u and v of G, N [u] ∩ S 6= N [v] ∩ S. The minimum cardinality of
a differentiating-total dominating set of G is the differentiating-total domi-

nation number of G, denoted by γD

t
(G). We obtain new upper bounds for

the locating-domination number, and the differentiating-total domination
number in trees. Moreover, we characterize all trees achieving equality for
the new bounds.

Keywords: locating-dominating set, differentiating-total dominating set,
tree.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

For notation and graph theory terminology in general we follow [9]. We consider
finite, undirected, and simple graphs G with vertex set V = V (G) and edge set
E = E(G). The number of vertices |V (G)| of a graph G is called the order of
G and is denoted by n = n(G). The open neighborhood of a vertex v ∈ V is
N(v) = NG(v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is N [v] =
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N(v) ∪ {v}. The degree of v, denoted by deg(v) (or degG(v) to refer to G), is
the cardinality of its open neighborhood. A leaf of a tree T is a vertex of degree
one, while a support vertex of T is a vertex adjacent to a leaf. A strong support

vertex is a support vertex adjacent to at least two leaves. We denote the set
of all support vertices of a tree T by S(T ) and the set of leaves by L(T ). We
always denote ℓ = ℓ(T ) = |L(T )|, and s = s(T ) = |S(T )|. Whenever a tree T ′

(or T ′′, . . .) is introduced, we let n′, ℓ′ (or n′′, ℓ′′, . . .) be its order, and number of
leaves, respectively. We denote by ℓv the number of leaves adjacent to a support
vertex v, and by Lv the set of leaves adjacent to v. We denote a path of order n
by Pn (or Pn : v1v2 · · · vn, where V (Pn) = {v1, . . . , vn} and vi is adjacent to vi+1

for i = 1, 2, . . . , n− 1). The distance d(x, y) between two vertices x and y is the
length of a shortest path from x to y. The diameter diam(G) of a graph G is
the maximum distance over all pair of vertices of G. For a rooted tree T and a
vertex v, we denote by Tv the sub-rooted tree, rooted at v.

A subset S ⊆ V is a dominating set ofG if every vertex in V−S has a neighbor
in S. The domination number γ(G) is the minimum cardinality of a dominating
set of G. A dominating set S is a locating-dominating set (or just LDS) of G
if every two vertices x, y ∈ V − S satisfy N(x) ∩ S 6= N(y) ∩ S. The locating-

domination number γL(G) is the minimum cardinality of a locating-dominating
set of G. A locating-dominating set of G of cardinality γL(G) is referred as a
γL(G)-set. The concept of locating domination in graphs was pioneered by Slater
[15, 16], and has been further studied in, for example, [1, 2, 4, 7, 13, 14].

A dominating set S is a total dominating set (or just TDS) of G if the
induced subgraph G[S] has no isolated vertex. A total dominating set S is called
a differentiating-total dominating set (or just DTDS) if for every pair of distinct
vertices u and v of G, N [u] ∩ S 6= N [v] ∩ S. The minimum cardinality of a
differentiating-total dominating set of G is the differentiating-total domination

number of G, denoted by γDt (G). The concept of differentiating-total domination
was introduced by Haynes, Henning and Howard [8] and further studied in, for
example, [3, 5, 6, 10, 11, 12].

Blidia et al. [1] obtained the following upper bound for the locating-domi-
nation number of a tree.

Theorem 1 (Blidia et al. [1]). For any tree T of order n ≥ 2, with ℓ leaves and

s support vertices, γL(T ) ≤ (n+ ℓ− s)/2.

Ning et al. [12] constructed the following family F of trees as follows. For
each tree T ∈ F , every vertex v in T has a label s(v) ∈ {A,B,C,D}, called
its status. Let F be the family of labeled trees T = Tk that can be obtained
as follows. Let T0 = x1x2x3x4x5x6x7x8 be a path of order 8 in which s(x1) =
s(x8) = C, s(x2) = s(x7) = A, s(x3) = s(x6) = B and s(x4) = s(x5) = D. If
k ≥ 1, then Tk can be obtained from Tk−1 by one of the following operations.
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Operation φ1. For x ∈ V (Tk−1), if s(x) = C and degTk−1
(x) = 1, then add a

path Q = yzuvw and the edge xy. Let s(y) = D, s(z) = D, s(u) = B, s(v) = A
and s(w) = C.

Operation φ2. For x ∈ V (Tk−1), if s(x) = D, then add a path Q = yzuv and
the edge xy. Let s(y) = D, s(z) = B, s(u) = A and s(v) = C.

Theorem 2 (Ning et al. [12]). If T is a tree of order n ≥ 3 with ℓ leaves, then

γDt (T ) ≤ 3(n+ ℓ)/5, with equality if and only if T = P3, or T ∈ F .

In Section 2, we prove that for any tree T of order n ≥ 2, with ℓ leaves,
γL(T ) ≤ (2n + 3ℓ − 2)/5, and characterize all trees achieving equality for this
bound. We note that our bound is an improvement of the bound of Theorem 1
for trees T with n > ℓ + 5s − 4. In Section 3, we prove that for any tree T of
order n ≥ 4 with ℓ leaves and s support vertices, γDt (T ) ≤ (3n + 2ℓ + s)/5, and
characterize all trees achieving equality for this bound. We note that our bound
is an improvement of the bound of Theorem 2 for trees T with ℓ > s. We make
use of the following.

Lemma 3 (Blidia et al. [1]). In any tree T of order n ≥ 3 there is a γL(T )-set
S such that:

(1) If x is a support vertex and ℓx is the number of leaves adjacent to x, then S
contains x and exactly ℓx − 1 leaves adjacent to x.

(2) If abcd is a path with deg(a) = 1, deg(b) = deg(c) = 2 and deg(d) > 1, then
S ∩ {a, b, c, d} = {b, d}.

2. An Upper Bound for γL(T )

We begin with the following observation.

Observation 4. If T is a tree obtained from a tree T ′ by adding a leaf or a path

P2 to T ′, then γL(T ) ≤ γL(T
′) + 1.

Let T be the collection of trees T that can be obtained from a sequence
T1, T2, . . . , Tk = T (k ≥ 1) of trees, where T1 = P3, and Ti+1 can be obtained
recursively from Ti by one of the following operations for 1 ≤ i ≤ k − 1.

Operation O1. Assume that w is a support vertex of Ti. Then Ti+1 is obtained
from Ti by adding a leaf to w.

Operation O2. Assume that w is a leaf of Ti. Then Ti+1 is obtained from Ti by
adding a path P5 and joining w to a leaf of P5.

Lemma 5. If γL(Ti) = (2n(Ti) + 3ℓ(Ti)− 2)/5, and Ti+1 is obtained from Ti by

Operation O1 or Operation O2, then γL(Ti+1) = (2n(Ti+1) + 3ℓ(Ti+1)− 2)/5.
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Proof. Let γL(Ti) =
2ni+3ℓi−2

5 , where ni = n(Ti) and ℓi = ℓ(Ti). Assume that
Ti+1 is obtained from Ti by Operation O1. Let Ti+1 be obtained from Ti by adding
a leaf v to a support vertex w of Ti. By Observation 4, γL(Ti+1) ≤ γT (Ti) + 1.
Let S be a γL(Ti+1)-set satisfying the conditions of Lemma 3. Thus w ∈ S, and
without loss of generality, we may assume that v ∈ S. Then S − {v} is an LDS
for Ti, implying that γL(Ti) ≤ γL(Ti+1) − 1. Thus γL(Ti+1) = γT (Ti) + 1. Now
γL(Ti+1) = (2n(Ti) + 3ℓ(Ti) − 2)/5 + 1 = (2(n(Ti) + 1) + 3(ℓ(Ti) + 1) − 2)/5 =
(2n(Ti+1) + 3ℓ(Ti+1)− 2)/5.

Next assume that Ti+1 is obtained from Ti by Operation O2. Let Ti+1 be
obtained from Ti by joining a leaf v of Ti to the leaf a of a path P5 : abcde.
If S is a γL(Ti)-set, then S ∪ {b, d} is an LDS for Ti+1, and so γL(Ti+1) ≤
γL(Ti) + 2. Let D be a γL(Ti+1)-set satisfying the conditions of Lemma 3. Thus
S ∩ {b, c, d, e} = {b, d}. If a 6∈ D, then D − {b, d} is an LDS for Ti, and if
a ∈ D, then (D− {a, b, d})∪ {v} is an LDS for Ti, and so γL(Ti) ≤ γL(Ti+1)− 2.
Thus γL(Ti+1) = γT (Ti) + 2. Now γL(Ti+1) = (2n(Ti) + 3ℓ(Ti) − 2)/5 + 2 =
(2(n(Ti) + 5) + 3ℓ(Ti)− 2)/5 = (2n(Ti+1) + 3ℓ(Ti+1)− 2)/5.

By a simple induction on the operations performed to construct a tree T ∈ T ,
and Lemma 5 we obtain the following.

Lemma 6. For any tree T ∈ T of order n ≥ 3 and with ℓ leaves, γL(T ) =
(2n+ 3ℓ− 2)/5.

We are now ready to present the main result of this section.

Theorem 7. For any tree T of order n ≥ 2 with ℓ leaves, γL(T ) ≤ (2n+3ℓ−2)/5,
with equality if and only if T ∈ T .

Proof. We first use an induction on the order n of T to show that γL(T ) ≤
(2n + 3ℓ − 2)/5. The base step is obvious for n = 2 and 3. Assume that for
any nontrivial tree T ′ of order n′ < n, with l′ leaves, γL(T

′) ≤ (2n′ + 3ℓ′ − 2)/5.
Now consider the tree T of order n ≥ 4. Assume that T has a strong support
vertex. Let v be a strong support vertex, and u be a leaf adjacent to v. Let
T ′ = T −u. By Observation 4, γL(T ) ≤ γL(T

′)+1. By the inductive hypothesis,
γL(T ) ≤ γL(T

′)+1 ≤ (2n(T ′)+3ℓ(T ′)−2)/5+1 = (2(n−1)+3(ℓ−1)−2)/5+1 =
(2n + 3ℓ − 2)/5. Next assume that T has an edge e = uv with deg(u) ≥ 3 and
deg(v) ≥ 3. Let T1 and T2 be the components of T − e, with u ∈ V (T1) and
v ∈ V (T2). By the inductive hypothesis, γL(T ) ≤ γL(T1) + γL(T2) ≤ (2n(T1) +
3ℓ(T1)−2)/5+(2n(T2)+3ℓ(T2)−2)/5 = (2n+3ℓ−4)/5 < (2n+3ℓ−2)/5. Thus
for the next, we may assume that the following facts hold.

Fact 1. T has no strong support vertex.

Fact 2. For each edge e = uv, deg(u) ≤ 2 or deg(v) ≤ 2.
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Let d = diam(T ). By Fact 1, d ≥ 3. If d = 3, then T = P4, and γL(T ) =
2 < (2n + 3ℓ − 2)/5. Thus d ≥ 4. We root T at a leaf x0 of a diameterical
path x0x1 · · ·xd from x0 to a leaf xd farthest from x0. By Fact 1, deg(xd−1) =
deg(x1) = 2. Assume that d = 4. If deg(x2) = 2 then T = P5, and γL(T ) =
2 < (2n + 3ℓ − 2)/5. Thus assume that deg(x2) > 2. If x2 is a support vertex,
then T has deg(x2) − 1 support vertices of degree two. Then N(x2) is a LDS
for T , implying that γL(T ) ≤ deg(x2) < (2n + 3ℓ − 2)/5, since n = 2deg(x2)
and ℓ = deg(x2). Thus assume that x2 is not a support vertex. Then T has
deg(x2) support vertices of degree two, and we can see that N(x2) is an LDS for
T , implying that γL(T ) ≤ deg(x2) < (2n+3ℓ− 2)/5, since n = 2deg(x2)+ 1 and
ℓ = deg(x2). Assume that d = 5. By Fact 2, we may assume that deg(x3) = 2.
If deg(x2) = 2 then T = P6, and γL(T ) = 3 < (2n + 3ℓ − 2)/5. Thus assume
that deg(x2) > 2. Since d = 5, by Fact 1, any vertex of N(x2) − {x3} is a leaf
or a support vertex of degree two. Assume that x2 is a support vertex. By Fact
1, there is a unique leaf adjacent to x2. Then S(T ) is an LDS for T , implying
that γL(T ) ≤ |S(T )| = deg(x2) < (2n + 3ℓ − 2)/5, since n = 2deg(x2) + 1 and
ℓ = deg(x2). Thus assume that x2 is not a support vertex. Then S(T ) ∪ {x2} is
an LDS for T , implying that γL(T ) ≤ |S(T )|+1 = deg(x2)+1 < (2n+3ℓ−2)/5,
since n = 2deg(x2) + 2 and ℓ = deg(x2). Thus assume that d ≥ 6. Assume that
deg(xd−2) ≥ 3. Let T ′ = T − {xd, xd−1}. Using Observation 4 and the inductive

hypothesis, we obtain γL(T ) ≤ γL(T
′) + 1 ≤ 2(n−2)+3(ℓ−1)−2

5 + 1 < 2n+3ℓ−2
5 . We

thus assume that deg(xd−2) = 2.

Assume that deg(xd−3) ≥ 3. Suppose that xd−3 is a support vertex and u is
the unique leaf adjacent to xd−3. Let T

′ = T − {xd, xd−1, xd−2}. Note that xd−3

is a support vertex in T ′, and by Lemma 3 there is a γL(T
′)-set D containing

xd−3. Then D ∪ {xd−1} is an LDS for T , implying that γL(T ) ≤ γL(T
′) + 1. By

the inductive hypothesis, γL(T ) ≤ γL(T
′) + 1 ≤ 2(n−3)+3(ℓ−1)−2

5 + 1 < 2n+3ℓ−2
5 .

Thus assume that xd−3 is not a support vertex. Assume that there is a leaf y
of Txd−3

with d(y, xd−3) = 2. Let u be the father of y. By Fact 2, deg(u) = 2.
Let T ′ = T − {u, y}. By Observation 4 and the inductive hypothesis, γL(T ) ≤
γL(T

′) + 1 ≤ (2(n− 2) + 3(ℓ− 1)− 2)/5 + 1 < (2n+ 3ℓ− 2)/5. Thus assume for
the next that any leaf of Txd−3

is at distance three from xd−3. Since any such leaf
plays the same role as xd, any internal vertex in the shortest path from such leaf to
xd−3 has degree two. Let deg(xd−3) = k+1 with k ≥ 2. By Fact 2, deg(xd−4) = 2.
Let T ′ = T −Txd−4

. By the inductive hypothesis, γL(T
′) ≤ (2n′+3ℓ′−2′)/5. But

l′ ≤ l−k+1, and n′ = n− 3k− 2. Let S be a γL(T
′)-set. Then S ∪{xd−3}∪U is

an LDS for T , where U is the set of vertices of Txd−4
at distance two from xd−3.

Thus γL(T ) ≤ γL(T
′)+k+1 ≤ (2n′+3ℓ′−2)/5+k+1 ≤ (2n+3ℓ−2−4k+4)/5 <

(2n+ 3ℓ− 2)/5 because k ≥ 2. Thus assume that deg(xd−3) = 2.

Assume that deg(xd−4) ≥ 3. Let T ′ = T − {xd, xd−1, xd−2, xd−3}. Let D
be γL(T

′)-set. Then D ∪ {xd−2, xd−1} is an LDS for T , and so γL(T ) ≤ γL(T
′)
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+ 2. By the inductive hypothesis, γL(T ) ≤ γL(T
′) + 2 ≤ 2n(T ′)+3ℓ(T ′)−2

5 + 2 ≤
2(n−4)+3(ℓ−1)−2

5 + 2 < 2n+3ℓ−2
5 . Thus assume that deg(xd−4) = 2.

Let T ′ = T − Txd−4
. By the inductive hypothesis, γL(T

′) ≤ (2n′ +3ℓ′ − 2)/5.
Let S be a γL(T

′)-set. Then S ∪ {xd−3, xd−1} is an LDS for T . Thus γL(T ) ≤
γL(T

′) + 2 ≤ (2(n− 5) + 3ℓ− 2)/5 + 2 = (2n+ 3ℓ− 2)/5.
We next prove the equality part. We use an induction on the order n of a

tree T with ℓ leaves and γL(T ) = (2n+3ℓ− 2)/5 to show that T ∈ T . The basic
step is obvious, since P3 ∈ T . Assume that any nontrivial tree T ′ of order n′ < n,
with ℓ′ leaves and γL(T

′) = (2n′ + 3ℓ′ − 2)/5 belongs to T . Let n = n(T ) ≥ 4.
Assume that T has a strong support vertex u, and v is a leaf adjacent to u.
Let T ′ = T − v. Using Lemma 3, we can easily see that γL(T ) = γL(T

′) + 1.
Thus γL(T

′) = γL(T )− 1 = (2n+ 3ℓ− 2)/5− 1 = (2(n− 1) + 3(ℓ− 1)− 2)/5 =
(2n(T ′)+3ℓ(T ′)−2)/5. By the inductive hypothesis, T ′ ∈ T . Hence T is obtained
from T ′ by Operation O1. Thus for the next assume that T has no strong support
vertex.

We root T at a leaf x0 of a diameterical path x0x1 · · ·xd from x0 to a leaf
xd farthest from x0. By the first part of the proof, we find that d ≥ 6, and
deg(xd−2) = deg(xd−3) = deg(xd−4) = 2. Since γL(P7) = 3 < (2n(P7) + 3ℓ(P7)−
2)/5, we have d ≥ 7. We next show that deg(xd−5) = 2. Assume that deg(xd−5) ≥
3. Let T ′ = T − {xd, xd−1, xd−2, xd−3, xd−4}. Let D be a γL(T

′)-set. Then
D ∪ {xd−3, xd−1} is an LDS for T , and so γL(T ) ≤ γL(T

′) + 2. By the first
part of the theorem we have γL(T ) ≤ γL(T

′) + 2 ≤ (2n(T ′) + 3ℓ(T ′) − 2)/5 +
2 ≤ (2(n − 5) + 3(ℓ − 1) − 2)/5 + 2 < (2n + 3ℓ − 2)/5, a contradiction. Thus
deg(xd−5) = 2. Let T ∗ = T − {xd, xd−1, xd−2, xd−3, xd−4}. If D

∗ is a γL(T
∗)-set,

then D∗ ∪ {xd−3, xd−1} is an LDS for T , and so γL(T ) ≤ γL(T
∗) + 2. By Lemma

3 there is a γL(T )-set D such that D ∩ {xd−3, xd−2, xd−1, xd} = {xd−3, xd−1}.
If xd−4 ∈ D, then (D − {xd−3, xd−1, xd−4}) ∪ {xd−5} is an LDS for T ∗, and if
xd−4 6∈ D, then D−{xd−3, xd−1} is an LDS for T ∗. Thus γL(T

∗) ≤ γL(T )−2. We
deduce that γL(T ) = γL(T

∗)+2. Now γL(T
∗) = γL(T )−2 = (2n+3ℓ−2)/5−2 =

(2(n − 5) + 3ℓ − 2)/5 = (2n(T ∗) + 3ℓ(T ∗) − 2)/5. By the inductive hypothesis,
T ∗ ∈ T . Hence T is obtained from T ∗ by Operation O2.

The converse follows by Lemma 6.

We note that the bound of Theorem 7 is an improvement of the bound of
Theorem 1 for trees T with n > ℓ+ 5s− 4.

3. An Upper Bound for γDt (T )

We prove that for any tree T of order n ≥ 3 with ℓ leaves and s support vertices,
γDt (T ) ≤ (3n+ 2ℓ+ s)/5. We begin with the following observation of [12], since
for any tree T ∈ F , {v ∈ V (T ) | s(v) ∈ {A ∪B ∪ C}} is a γDt (T )-set.
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Observation 8 (Ning et al. [12]). Any tree T ∈ F has a γDt (T )-set containing
all leaves and all support vertices.

Theorem 9. If T is a tree of order n ≥ 4 with ℓ leaves and s support vertices,

then γDt (T ) ≤ (3n+ 2ℓ+ s)/5, with equality if and only if T ∈ F .

Proof. Let T be a tree of order n ≥ 4 with ℓ leaves and s support vertices. We
prove by induction on the order n of T that γDt (T ) ≤ (3n + 2ℓ + s)/5. For the
base step of the induction, if n = 4, then T ∈ {P4,K1,3}, and it is obvious that
γDt (T ) < (3n+ 2ℓ+ s)/5.

Assume that for any tree T ′ of order n′ < n with ℓ′ leaves and s′ support
vertices, γDt (T ′) ≤ (3n′ + 2ℓ′ + s′)/5. Now consider the tree T of order n > 4
with ℓ leaves and s support vertices. If T has no strong support vertices, then
ℓ = s, and the result follows from Theorem 2. Thus assume that T has some
strong support vertex. Let u be a strong support vertex of T , and v be a leaf
adjacent to u. Let T ′ = T −v. Then n′ ≥ 4. Clearly γDt (T ) ≤ γDt (T ′)+1. By the
inductive hypothesis, γDt (T ) ≤ γDt (T ′) + 1 ≤ (3n(T ′) + 2ℓ(T ′) + s(T ′))/5 + 1 =
(3(n− 1) + 2(ℓ− 1) + s)/5 + 1 = (3n+ 2ℓ+ s)/5.

Now we prove the equality part. Assume that γDt (T ) = (3n+ 2ℓ+ s)/5. We
show that ℓ = s. Suppose that ℓ > s. Let T ′ be a tree obtained from T by
removing ℓx − 1 leaves of any support vertex x. Thus n′ = n(T ′) = n− ℓ+ s and
ℓ(T ′) = s(T ′) = s(T ). By the theorem, γDt (T ′) ≤ (3n(T ′) + 2ℓ(T ′) + s(T ′))/5 =
(3(n−ℓ+s)+3s)/5. If γDt (T ′) < (3(n−ℓ+s)+3s)/5, then γDt (T ) ≤ γDt (T ′)+ℓ−s <
(3n+2ℓ+s)/5, a contradiction. Thus γDt (T ′) = (3(n−ℓ+s)+3s)/5. By Theorem
2, T ′ ∈ F . By Observation 8, T ′ has a γDt (T ′)-set S containing all leaves and all
support vertices. Let y ∈ L(T ) − L(T ′). Then (S ∪ (L(T ) − L(T ′))) − {y} is a
DTDS for T , and thus γDt (T ) ≤ γDt (T ′)+ℓ−s−1 = (3(n−ℓ+s)+3s)/5+ℓ−s−1 <
(3n+ 2ℓ+ s)/5, a contradiction. Thus ℓ = s, and so γDt (T ) = (3n+ 3l)/5. Now
the result follows from Theorem 2. The converse is obvious.

We note that the bound of Theorem 9 is an improvement of the bound of
Theorem 2 for trees T with ℓ > s.
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