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Abstract

Let G be an edge-colored connected graph. A path P in G is called
ℓ-rainbow if each subpath of length at most ℓ + 1 is rainbow. The graph
G is called (k, ℓ)-rainbow connected if there is an edge-coloring such that
every pair of distinct vertices of G is connected by k pairwise internally
vertex-disjoint ℓ-rainbow paths in G. The minimum number of colors needed
to make G (k, ℓ)-rainbow connected is called the (k, ℓ)-rainbow connection
number of G and denoted by rck,ℓ(G). In this paper, we first focus on the
(1, 2)-rainbow connection number of G depending on some constraints of G.
Then, we characterize the graphs of order n with (1, 2)-rainbow connection
number n − 1 or n − 2. Using this result, we investigate the Nordhaus-
Gaddum-Type problem of (1, 2)-rainbow connection number and prove that
rc1,2(G) + rc1,2(G) ≤ n + 2 for connected graphs G and G. The equality
holds if and only if G or G is isomorphic to a double star.
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1. Introduction

All graphs in this paper are finite, undirected, simple and connected. We follow
the notation and terminology in the book [3].

When considering the transmission of information between agencies of the
government, an immediate question is put forward as follows: What is the min-
imum number of passwords or firewalls needed that allows one or more secure
paths between every two agencies so that the passwords along each path are dis-
tinct? This question can be represented by a graph and studied by means of
what is called rainbow colorings introduced by Chartrand et al. in [5]. An edge-

coloring of a graph is a mapping from its edge set to the set of natural numbers
(colors). A path in an edge-colored graph with no two edges sharing the same
color is called a rainbow path. A graph G with an edge-coloring c is said to be
rainbow connected if every pair of distinct vertices of G is connected by at least
one rainbow path in G. The coloring c is called a rainbow coloring of the graph
G. For a connected graph G, the minimum number of colors needed to make G
rainbow connected is defined as the rainbow connection number of G and denoted
by rc(G). Many researchers have studied problems on rainbow connection. See
[9, 12, 14] for example. For more details we refer to the survey paper [13] and
the book [14].

The following question provides a relaxation of this concept: What is the
minimum number of passwords or firewalls that allows one or more secure paths
between every two agencies such that as we progress from one agency to another
along such a path, we are required to change passwords at each step? Inspired
by this, Borozan et al. in [2] and Andrews et al. in [1] introduced the concept of
proper-path coloring of graphs. Let G be an edge-colored graph. A path P in G is
called a proper path if no two adjacent edges of P are colored with the same color.
An edge-colored graph G is k-proper connected if every pair of distinct vertices
u, v of G is connected by k pairwise internally vertex-disjoint proper (u, v)-paths
in G. For a connected graph G, the minimum number of colors needed to make G
k-proper connected is called the k-proper connection number of G and denoted by
pck(G). Particularly for k = 1, we write pc1(G), the proper connection number
of G, as pc(G) for simplicity. Recently, many results have been obtained on the
proper connection number. For details, we refer to the dynamic survey [10].

Relaxing the notion of a rainbow path, the (k, ℓ)-proper-path coloring was
defined in [11] as a generalization of rainbow coloring and proper-path coloring.
The notion of ℓ-rainbow colorings was also independently defined and studied in
[4, 6, 7]. A path P in G is called an ℓ-rainbow path if each subpath of length
at most ℓ+ 1 is rainbow colored. The graph G is called (k, ℓ)-rainbow connected

if there is an edge-coloring c such that every pair of distinct vertices of G is
connected by k pairwise internally vertex-disjoint ℓ-rainbow paths in G. This
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coloring is called a (k, ℓ)-rainbow-path coloring of G. In addition, if t colors are
used, then c is referred to as a (k, ℓ)-rainbow-path t-coloring of G. For a con-
nected graph G, the minimum number of colors needed to make G (k, ℓ)-rainbow
connected is called the (k, ℓ)-rainbow connection number of G and denoted by
rck,ℓ(G). Particularly, for k = 1 and ℓ = 2, there is an edge-coloring using rc1,2
colors such that there exists a 2-rainbow path between each pair of vertices of the
graph G. Furthermore, if we ensure that every path in G is a 2-rainbow path,
then such an edge-coloring is called a strong edge-coloring. In addition, the strong
chromatic index χ′

s(G), which was introduced by Fouquet and Jolivet [8], is the
minimum number of colors needed in a strong edge-coloring of G. Immediately
we get that rc1,2(G) ≤ χ′

s(G). And this inspires us to pay our attention to the
(1, 2)-rainbow connection number of the connected graph G, i.e., rc1,2(G).

As an example of this concept, we consider the (2, 3)-rainbow connection
number of the cycle C12. Since ℓ = 3, then each pair of edges with the same color
must have at least 3 edges in between. Additionally, there are pairs of vertices at
distance greater than 4, we see that rc2,3(C12) ≥ 4. On the other hand, if we color
the edges of C12 by alternating through the colors like 1, 2, 3, 4, 1, . . . , 4 in order
around the cycle, then it is easy to see that this is a (2, 3)-rainbow connected
coloring using 4 colors, so rc2,3(C12) = 4.

In this paper, we consider the (k, ℓ)-rainbow connection number of graphs
and their complements. This paper is organized as follows. In Section 2, we list
some useful results about the (k, ℓ)-rainbow connection number of a graph. In
Section 3, we focus on rc1,2(G) depending on some constraints of G. In Section 4,
we first characterize the graphs of order n with (1, 2)-rainbow connection number
n−1 or n−2. Using this result, we give the Nordhaus-Gaddum-Type result for the
(1, 2)-rainbow connection number, i.e., rc1,2(G) + rc1,2(G) ≤ n+ 2 for connected
graphs G and G, and the equality holds if and only if G or G is isomorphic to a
double star.

2. Preliminaries

In this section, we introduce some definitions and present several results which
will be used later. Let G be a connected graph. We denote by n the number of
its vertices and by m the number of its edges. The distance between two vertices

u and v in G, denoted by d(u, v), is the length of a shortest path between them
in G. The eccentricity of a vertex v is ecc(v) := maxx∈V (G) d(v, x). The radius

of G is rad(G) := minx∈V (G) ecc(x). We also write σ′

2(G) as the largest sum of
degrees of vertices x and y, where x and y are taken over all couples of adjacent
vertices in G. Additionally, we set [n] = {1, 2, . . . , n} for any integer n ≥ 1.

The following are some results that we will use in our proofs. The first
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is a simple observation that the addition of edges cannot increase the rainbow
connection number.

Proposition 2.1 [11]. If G is a nontrivial connected graph and H is a con-

nected spanning subgraph of G, ℓ ≥ 1 is an integer, then rc1,ℓ(G) ≤ rc1,ℓ(H).
Particularly, rc1,ℓ(G) ≤ rc1,ℓ(T ) for every spanning tree T of G.

When we focus on trees, the following holds.

Theorem 2.2 [11]. If T is a nontrivial tree, then rc1,2(T ) = σ′

2(T )− 1.

For complete bipartite graphs, the situation is trickier.

Theorem 2.3 [11]. Let ℓ ≥ 2 be an integer and m ≤ n. Then

rc1,ℓ(Km,n) =







n if m = 1,
2 if m ≥ 2 and m ≤ n ≤ 2m,
3 if ℓ = 2, m ≥ 2 and n > 2m

or ℓ ≥ 3, m ≥ 2 and 2m < n ≤ 3m,
4 if ℓ ≥ 3, m ≥ 2 and n > 3m.

For a general 2-connected graph, we gave in [11] an upper bound for the
(1, 2)-rainbow connection number.

Theorem 2.4 [11]. If a graph G is 2-connected, then rc1,2(G) ≤ 5.

3. (1, 2)-Rainbow Connection Number for the Complement of a

Graph

In this section, we investigate the (1, 2)-rainbow connection number of G depend-
ing on some properties of its complement G.

Theorem 3.1. If G is a graph with diam(G) ≥ 4, then rc1,2(G) ≤ 3.

Proof. We first claim that G must be connected. If not, G must contain a span-
ning complete bipartite graph which implies that diam(G) ≤ 2, a contradiction.
Choose a vertex x with eccG(x) = diam(G). Let Ni(x) = {v : distG(x, v) = i}
for 0 ≤ i ≤ 3 and N4(x) = {v : distG(x, v) ≥ 4}. Obviously N0(x) = {x}. We
write Ni (for 0 ≤ i ≤ 4) instead of Ni(x) and ni instead of |Ni| for convenience.
It can be deduced that all edges are present in G of the form uv, where u ∈ N1

and v ∈ N3 ∪N4 or u ∈ N2 and v ∈ N4 (see Figure 1).
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x

N1(x) N3(x)

N4(x) N2(x)

Figure 1. The graph G for the proof of Theorem 3.1.

We denote by Ni,j(0 ≤ i 6= j ≤ 4) the edge set between Ni and Nj in G.
We distinguish four cases and give in each of the cases a (1, 2)-rainbow-path
3-coloring, respectively. Again we use f(e)(e ∈ E(G)) to represent the color
assigned to e.

Case 1. n4 > 1. We give all edges of N1,3 the color 3, edges of N0,3 the
color 3, edges of N0,4 the color 2, edges of N0,2 the color 3, edges of N2,4 the
color 1. Additionally, color the edges of N1,4 such that for v ∈ N1, {f(vs) : s ∈
N4} = {1, 2}. Then for any u, v ∈ N1(if n1 > 1), there must exist s1, s2 ∈ N4

(possibly with s1 = s2) such that f(us1) = 1 and f(vs2) = 2. Then one of us1v
or us1xss2v, where s ∈ N2, is a 2-rainbow (u, v)-path. Other situations can be
checked similarly.

Case 2. n4 = 1, n3 > 1 and n1 = 1. Then we give all edges of N1,3 the color
1, the edge of N1,4 the color 3, edges of N0,3 the color 1, edges of N0,4 the color
2, edges of N0,2 the color 1 and edges of N2,4 the color 3. It is easy to verify this
is indeed a (1, 2)-rainbow-path 3-coloring of G.

Case 3. n4 = 1, n3 > 1 and n1 > 1. Let G′ be the complete bipartite graph
G′ = G[N1 ∪N3]. By Theorem 2.3, we can use at most three colors to make G′

(1, 2)-rainbow connected. Then we give all edges of N1,4 the color 1, edges of
N0,3 the color 2, the edge of N0,4 the color 3, edges of N0,2 the color 1 and edges
of N2,4 the color 2. One can easily check this is a (1, 2)-rainbow-path 3-coloring
of G and we omit the details here.

Case 4. n4 = 1 and n3 = 1. Then we give all edges of N1,3 the color 1, edges
of N1,4 the color 1, the edge of N0,3 the color 2, the edge of N0,4 the color 3,
edges of N0,2 the color 2 and edges of N2,4 the color 1. We can again verify the
correctness easily.

Thus, the proof is completed.

Theorem 3.2. For a graph G, if G is triangle-free and diam(G) = 3, then

rc1,2(G) ≤ 3.

Proof. As in the proof of Theorem 3.1, it is easy to show that G is connected.
Choose a vertex x such that eccG(x) = diam(G) = 3. In addition, Ni, ni and
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Ni,j for 0 ≤ i 6= j ≤ 3 are defined as in the previous theorem. Again it can be
deduced that there exist all edges of the form uv, where u ∈ N0 and v ∈ N2 ∪N3

or where u ∈ N1 and v ∈ N3. Since G is triangle-free and x has all edges to N1

in G, we know that N1 is a clique in G. We give a (1, 2)-rainbow-path 3-coloring
for G as follows.

We assign to the edges of N0,2 the color 3, edges of N0,3 the color 1, edges of
N1,3 the color 2, any edges of N1,2 the color 3, any edges of N2,3 the color 2 and
the edges of the induced subgraph G[N1] the color 3.

It is obvious that for any u ∈ Ni and v ∈ Nj(i 6= j), there exists a 2-rainbow
path between them. Then it suffices to show that for any u, v ∈ N2 or N3, there
is a 2-rainbow path connecting them in G. First suppose u, v ∈ N2 and there
is no edge between them in G. Since G is triangle-free, there exists a vertex
w ∈ N1 such that wv ∈ G, then uxtwv is a 2-rainbow path between u and v,
where t ∈ N3. The situation for any vertices u, v ∈ N3 can be dealt with similarly.
Thus rc1,2(G) ≤ 3.

Theorem 3.3. Let G be a connected graph. If G is triangle free and diam(G)
= 2, then rc1,2(G) ≤ 3.

Proof. First we choose a vertex x with eccG(x) = diam(G) = 2. In addition,
Ni, ni and Ni,j are defined as above. Clearly, all edges of the form xv for v ∈ N2

are present in G. Again N1 is a clique in G, since all edges of the form xu are in
G for u ∈ N1 and G is triangle free.

Suppose there exists a vertex v0 ∈ N2 such that no edge vw(w ∈ N1) exists
in G. Then v0 is adjacent to every vertex of N1 in G. Thus, since every vertex
of N2 has at least one edge to N1 in G, the vertex v0 must be adjacent to every
other vertex of N2 in G, since otherwise a triangle will appear in G. Next we
give an edge coloring f for G. We set f(xv0) = 3, f(xw) = 2 and f(v0w) = 1
(w ∈ N2, w 6= v0), and we give any edges of N1,2 the color 2, the edges of the
induced subgraph G[N1] the color 3. We only need to consider the 2-rainbow
path for w1, w2 ∈ N2 and w1v0xw2 clearly suffices.

Next suppose there exists no such vertex v0. Since G and G are connected,
we know that n1 ≥ 2. We denote by EG(v) (for v ∈ N2) the set of edges between
v and vertices of N1 in G and set eG(v) = |EG(v)|. Also eG(v) (for v ∈ N2) is
defined similarly. Again we distinguish two cases to analyze.

If |N1| ≥ 3, then for each u ∈ N2 with eG(u) = 1, we color this edge incident
to u with color 1. And for u ∈ N2 with eG(u) ≥ 2, we arbitrarily color these edges
but confirm that {f(e) : e ∈ EG(u)} = {1, 2}. Then we set f(xu) = 2 (u ∈ N2)
and give the edges of the induced subgraph G[N1] the color 3. The rest edges
are colored arbitrarily with colors from [3]. Again we only need to consider
the 2-rainbow path between the two non-adjacent vertices v, w ∈ N2. Since
|N1| ≥ 3 and v and w are non-adjacent in G, so eG(v) + eG(w) ≤ |N1|. Thus
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eG(v)+eG(w) ≥ |N1| ≥ 3, which implies that one of the vertices v, w, say v, must
have eG(v) ≥ 2. So there exists one vertex s ∈ N1 or two vertices s, t ∈ N1 such
that vsw or vstw is a 2-rainbow (v, w)-path in G.

If |N1| = 2 and N1 = {s, t}, then each vertex u ∈ N2 is adjacent to only one
vertex of N1 in G, either s or t since otherwise diam(G) ≥ 3. We denote by V1 the
set of vertices of N2 adjacent to s in G, that is, the set of vertices adjacent to t in
G. And we write V2 for the rest of the vertices of N2. It is easy to see that V1 and
V2 both induce cliques in G. We then set f(xu) = 1 (u ∈ V1), f(us) = 2 (u ∈ V1),
f(xu) = 2 (u ∈ V2), f(ut) = 1 (u ∈ V2), f(st) = 3 and color any remaining edges
with color 1. It is easy to check that this is a (1, 2)-rainbow-path 3-coloring of
G. Thus the proof is completed.

4. Nordhaus-Gaddum-Type Theorem for (1, 2)-Rainbow Connection

Number

In this section, we first characterize the graphs on n vertices with (1, 2)-rainbow
connection number n− 1 or n− 2, which is crucial to investigate the Nordhaus-
Gaddum-Type result for the (1, 2)-rainbow connection number of the graph G.
We use Cn, Sn to denote the cycle and the star graph on n vertices, respectively.
Denote by T (n1, n2) the double star in which the degrees of its (adjacent) center
vertices are n1 + 1 and n2 + 1 respectively. Additionally, we write T 1(n1, n2) as
the graph obtained by replacing one pendent edge with P3 in the double star
T (n1, n2) and denote the new pendent vertex by u0 (see Figure 2). Also define
graphs G1, . . . , G8 as in Figure 2.

G1 G2 G3 G4 G5

G6 G7 G8 T 1(n1, n2)

︷
︸
︸

︷

︷
︸
︸

︷

n2 n1

u0

Figure 2. Graphs Gi (1 ≤ i ≤ 8) and T 1(n1, n2) in G2.

Theorem 4.1. Let G be a nontrivial connected graph on n ≥ 2 vertices. Then

(i) rc1,2(G) = n−1 if and only if G ∈ G1 = {Sn (n ≥ 2), T (n1, n2) (n1, n2 ≥ 1)};

(ii) rc1,2(G) = n− 2 if and only if G ∈ G2 = {C3, C4, C5, G1, G2, G3, G4, G5, G6,
G7, G8, T

1(n1, n2)}.
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Proof. Let G be a connected graph of order n ≥ 2 and T be a spanning tree of
G. Proposition 2.1 shows that rc1,2(G) ≤ rc1,2(T ). Now we give proofs for (i)
and (ii) separately.

Proof of (i). For any graph G ∈ G1, we can easily check that rc1,2(G) = n−1.
So it remains to verify the converse. Since rc1,2(G) = n− 1, we see that n− 1 =
rc1,2(G) ≤ rc1,2(T ) ≤ n − 1, i.e., rc1,2(T ) = n − 1. Thus, by Theorem 2.2, we
know that any spanning tree T of G must be a star or a double star, i.e., T ∈ G1.
Without loss of generality, we can assume that n2 ≥ n1.

rc1,2 = 1 = n− 2 rc1,2 = 2 = n− 2 rc1,2 = 3 = n− 2 rc1,2 = n− 3

1 1

1

2 2

1

1

1 2

3

1 2

1 2

3

1 2 n− 3

Figure 3. Graphs obtained by adding an edge to Sn (n ≥ 2).

If G is a tree, then G ∈ G1. Now we suppose that G is not a tree. Then
since T ∈ G1, G can be constructed from Sn (n ≥ 2) or T (n1, n2) (n1, n2 ≥ 1) by
adding edges. Adding an edge to Sn (n ≥ 2), we will obtain one of the graphs
depicted in Figure 3. However, all the graphs in Figure 3 have (1, 2)-rainbow
connection number no more than n − 2, which implies that any spanning tree
T of G cannot be a star. Next, we will consider the graphs obtained by adding
edges to T (n1, n2) (n1, n2 ≥ 1).

If n1 = n2 = 1, then T (1, 1) = P4. If an edge is added, then we will obtain
either the cycle C4 or the graph G1 depicted in Figure 2. Obviously, both C4

and G1 have (1, 2)-rainbow connection number 2 = n − 2 < n − 1. For the
cases n1 = 1, n2 = 2 and n1 = n2 = 2, one of the graphs in Figure 4 or 5 will
be obtained by adding an edge to T (1, 2) or T (2, 2), respectively. The (1, 2)-
rainbow-path colorings given in Figures 4 and 5 show that all these graphs have
(1, 2)-rainbow connection number no more than n− 2.

rc1,2 = 3 = n− 2 rc1,2 = 3 = n− 2 rc1,2 = 3 = n− 2 rc1,2 = 3 = n− 2

1 2

1 2

3

1

2

1

2

3

12

3

1

1

2

3

1

3 1

Figure 4. Graphs obtained by adding an edge to T (1, 2).

For all the other situations, i.e., n1 = 1, n2 ≥ 3 or n1 = 2, n2 ≥ 3 or n1 ≥ 3,
n2 ≥ 3, Figure 6, Figure 7 and Figure 8 give all the graphs obtained by adding
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an edge to T (1, n2 ≥ 3), T (2, n2 ≥ 3) and T (n1 ≥ 3, n2 ≥ 3), respectively. We
give (1, 2)-rainbow-path colorings for these graphs showed in Figure 6, Figure
7 and Figure 8. One can easily check that all these graphs have (1, 2)-rainbow
connection number no more than n− 2.

rc1,2 = 4 = n− 2

1 2

3

4 2

1

3

2

1

1 2

3
rc1,2 = 3 = n− 3 rc1,2 = 3 = n− 3

3

1

2 1

2
1

Figure 5. Graphs obtained by adding an edge to T (2, 2).

From the discussions all above, we come to a conclusion that if rc1,2(G) =
n− 1, then G ∈ G1 = {Sn (n ≥ 2), T (n1, n2)(n1, n2 ≥ 1)}.

rc1,2 = n− 3 rc1,2 ≤ n− 3

1 2

1 2

3

n− 3
2

1

n− 3

1n− 3
n− 4

rc1,2 ≤ n− 3

1

2

3

1 3

n− 3

2

rc1,2 = n− 3

1

2 12
3

n− 3 3

Figure 6. Graphs obtained by adding an edge to T (1, n2 ≥ 3).

rc1,2 = n− 3

1 2

n− 3

1 2

3
rc1,2 ≤ n− 3

n− 3

2

1 n− 4

n− 5
n− 4 3

2

1

1
3
4

rc1,2 ≤ n− 3

n− 3

2
1

rc1,2 ≤ n− 3

n− 3

2

n− 4

n− 5

1

1

rc1,2 ≤ 4 = n− 3

2 41

3

rc1,2 ≤ n− 3

2 n− 3

1

1

3 2

4

1
2

1

1

1 1

Figure 7. Graphs obtained by adding an edge to T (2, n2 ≥ 3).
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1
2

n2

n2 + 1
n2 + 2

n2 + 1
n2 + 2

1

rc1,2 = n− 3

n− 3

1
2

n2

n2 + 2

n1 − 1

rc1,2 ≤ n2 + 2 ≤ n− 3

1

n2 + 1

1

n2 − 1

n2 + 2

n1 − 1

rc1,2 ≤ n2 + 2 ≤ n− 3

1

n2 + 1

n2n2

1
n2 − 1

2
n1

rc1,2 ≤ n2 + 1 ≤ n− 4

1 n2 + 1

1 1
1

Figure 8. Graphs obtained by adding an edge to T (n1 ≥ 3, n2 ≥ 3).

Proof of (ii). One can easily check that rc1,2(G) = n − 2 for any graph
G ∈ G2. Hence, it remains to show the converse. Since rc1,2(G) = n − 2,
n− 2 ≤ rc1,2(T ) ≤ n− 1. Thus, Theorem 2.2 implies that any spanning tree T of
G must be an element of the set {Sn (n ≥ 2), T (n1, n2) (n1, n2 ≥ 1), T 1(n1, n2)
(n1, n2 ≥ 1)}.

If G is a tree, then G ∼= T 1(n1, n2) (n1, n2 ≥ 1) ⊆ G2. Next we suppose
that G is not a tree. Then G can be constructed from Sn (n ≥ 2), T (n1, n2)
(n1, n2 ≥ 1) or T 1(n1, n2) (n1, n2 ≥ 1) by adding edges. In the proof of (i),
we listed eight graphs with (1, 2)-rainbow connection number n − 2, which are
C3, C4, G1, G3, G4, G6, G7 and G8, respectively. Furthermore, all graphs obtained
by adding an edge to Sn (n ≥ 2) or T (n1, n2) (n1, n2 ≥ 1) except these eight
ones have (1, 2)-rainbow connection number no more than n − 3. Therefore,
the graph G can be constructed from C3, C4, G1, G3, G4, G6, G7, G8 or T 1(n1, n2)
(n1, n2 ≥ 1) by adding edges.

n− 4 n2

1

n2 + 1

n2 + 2n− 3

12

1 n1 − 1 n1 n− 5
n− 4

n− 4 n− 4

n− 5 1

n− 3 n2

1

n2 + 1

n2 + 2
2

n− 3

1
1 n1 − 1

n− 4

n1 n2 + 1

1 n2

n2 + 2

rc1,2 ≤ n− 3 rc1,2 ≤ n− 4 rc1,2 = n− 3 rc1,2 ≤ n2 + 2 ≤ n− 3

1

Figure 9. Graphs obtained by adding an edge to T 1(n1 ≥ 2, n2 ≥ 2).

Considering graphs constructed from C3, C4, G1, G3, G4, G6, G7 or G8 by
adding edges, we find only another two graphs G2, G5 with rc1,2(G2) = 2 =
|V (G2)| − 2 and rc1,2(G5) = 3 = |V (G5)| − 2. All others have (1, 2)-rainbow
connection number no more than n − 3. Now we focus on the graphs obtained
by adding an edge to T 1(n1, n2) (n1, n2 ≥ 1). For the cases n1 = n2 = 1, n1 = 1,
n2 ≥ 2 and n1 ≥ 2, n2 = 1, we find another graph C5 such that rc1,2(C5) = n− 2
with similar analysis as in the proof of (i). Denote by e the new edge added to
T (n1, n2) (n1, n2 ≥ 1) or T 1(n1, n2) (n1, n2 ≥ 1) and T (n1, n2)+ e, T 1(n1, n2)+ e
the newly obtained graphs. For the case n1 ≥ 2, n2 ≥ 2, we consider cases de-
pending on whether the pendent vertex u0 in T 1(n1, n2) is an end vertex of e or
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not. It is obvious that if u0 /∈ e, then T 1(n1, n2)+e\u0 ∼= T (n1, n2)+e. The proof
of (i) suggests that we only need to consider the case when T 1(n1, n2)+e\u0 ∼= G8.
It is easy to check that rc1,2(T

1(n1, n2) + e) = n − 3 < n − 2 for this case. If
u0 ∈ e, then one of the graphs in Figure 9 will be obtained by adding an edge to
T 1(n1, n2). However, all these graphs have (1, 2)-rainbow connection number no
more than n−3 (as colored in the figure). Thus, we complete the proof of (ii).

Theorem 4.2. Let G and G be connected graphs on n vertices. Then rc1,2(G)+
rc1,2(G) ≤ n+ 2 and the equality holds if and only if G or G is isomorphic to a

double star, i.e., G ∼= T (n1, n2) (n1, n2 ≥ 1) or G ∼= T (n1, n2) (n1, n2 ≥ 1).

Proof. Since both G and G are connected, we have n ≥ 4 and ∆(G), ∆(G) ≤
n − 2. Let G be the double star with center vertices u, v and NG(u) \ v = A,
NG(v) \ u = B. So, G[A ∪B] is a clique and NG(u) = B, NG(v) = A. Certainly,
all edges of G must have distinct colors so we consider colorings of G. Color all
edges incident to v with 1, all edges incident to u with 2 and edges in G[A ∪ B]
with 3. This coloring shows that rc1,2(G) ≤ 3. Since u and v are at distance 3 in
G, we get that rc1,2(G) = 3 and so rc1,2(G) + rc1,2(G) = n + 2. Now, we must
show that rc1,2(G) + rc1,2(G) < n + 2 for all other connected graphs G and G.
One can easily check that this is true for n = 4, 5. So we consider n ≥ 6 in the
following.

If G or G has (1, 2)-rainbow connection number n − 1 or n − 2, i.e., G ∈
G1 ∪ G2 \ T (n1, n2) (n1, n2 ≥ 1) or G ∈ G1 ∪ G2 \ T (n1, n2) (n1, n2 ≥ 1), then
rc1,2(G) + rc1,2(G) < n + 2 by simple examination. Hence, we can assume that
2 ≤ rc1,2(G) ≤ n− 3 and 2 ≤ rc1,2(G) ≤ n− 3.

H7

1 H7

2

1

3

2

1

2

1

2

1

2

Figure 10. Graphs for the proof of Theorem 4.2.

Suppose first that both G and G are 2-connected. For n = 6, it is easy to
check that rc1,2(G) + rc1,2(G) ≤ 3 + 3 < 8 = n+ 2. And for n ≥ 9, Theorem 2.4
implies that rc1,2(G) + rc1,2(G) ≤ 5 + 5 = 10 < 11 ≤ n+ 2. Then what remains
are the cases n = 7 and n = 8. For convenience, we denote the circumference of
G by c(G). We first suppose n = 7. Obviously 4 ≤ c(G) ≤ 7. If c(G) = 7, then
C7 is a spanning subgraph of G and rc1,2(G) ≤ rc1,2(C7) = 3. If c(G) = 6, then
G has a traceable spanning subgraph which is composed of C6 by adding an open
ear of length two. Thus, rc1,2(G) ≤ 3. If c(G) = 5, then G contains H7

1 or H7
2



382 X. Li, C. Magnant, M. Wei and X. Zhu

(see Figure 10) as a spanning subgraph. Since H7
1 is traceable and rc1,2(H

7
2 ) ≤ 3,

we have rc1,2(G) ≤ 3. For the case c(G) = 4, G contains K2,5 as its spanning
subgraph, which contradicts the assumption that G is connected. Therefore, all
2-connected graphs of order n = 7 with connected complementary graphs has
(1, 2)-rainbow connection number no more than 3. Hence, rc1,2(G) + rc1,2(G) ≤
3 + 3 < 9 = n+ 2. With similar analysis as for the situation n = 7, we can also
draw the conclusion that rc1,2(G) + rc1,2(G) ≤ 3 + 3 < 10 = n+ 2 for n = 8.

Now we consider the case where at least one of G and G has at least one cut
vertex. Without loss of generality, suppose that G has at least one cut vertex.
We distinguish the following two cases.

Case 1. G has a cut vertex u such that G−u has at least three components.
Let G1, G2, . . . , Gk (k ≥ 3) be the components of G−u, and let ni be the number
of vertices of Gi for i = 1, 2, . . . , k with n1 ≤ n2 ≤ · · · ≤ nk. Since ∆(G) ≤ n− 2,
nk ≥ 2. The complementary graph G \ u contains Knk,n−nk−1 as a spanning
subgraph and both nk ≥ 2 and n − nk − 1 ≥ 2. By Theorem 2.3, there exists a
(1, 2)-rainbow-path 3-coloring of Knk,n−nk−1 using elements in [3]. Then, if we
color the edges incident to u in G with color 4, then we obtain a (1, 2)-rainbow-
path 4-coloring of G. Therefore, rc1,2(G)+rc1,2(G) ≤ (n−3)+4 = n+1 < n+2.

Case 2. Each cut vertex u of G satisfies that G−u has only two components.
Let G1, G2 be the two components of G − u, and let ni be the number of

vertices of Gi for i = 1, 2 with n1 ≤ n2. Since n ≥ 6, we have n2 ≥ 2.

Subcase 2.1. n1 ≥ 2. The complementary graph G \ u contains Kn1,n2
as a

spanning subgraph. By Theorem 2.3, there is a coloring of Kn1,n2
with colors in

[3], and we color the edges incident to u in G with color 4. This gives a (1, 2)-
rainbow-path 4-coloring of G. As a result, rc1,2(G) + rc1,2(G) ≤ n − 3 + 4 =
n+ 1 < n+ 2 as desired.

Subcase 2.2. n1 = 1, i.e., each cut vertex of G is incident with a pendent
edge.

Since n ≥ 6, we have n2 ≥ 4. Let {u1, u2, . . . , uℓ} be the set of all cut vertices
of G, and let u1v1, u2v2, . . . , uℓvℓ be the pendent edges incident to these cut
vertices in G. Set H = G\{v1, v2, . . . , vℓ}, so H is 2-connected. By Theorem 2.4,
we know that rc1,2(H) ≤ 5.

If ℓ ≥ 2, then G \ {u1, u2} contains K2,n−4 as a spanning subgraph. By
Theorem 2.3, there is a coloring of K2,n−4 using colors from [3], and we color
the edges incident to u1 or u2 in G with color 4. One can easily check this is a
(1, 2)-rainbow-path 4-coloring of G. Thus, rc1,2(G) + rc1,2(G) ≤ (n − 3) + 4 =
n+ 1 < n+ 2.

Thus, we may assume ℓ = 1, so rc1,2(G) ≤ rc1,2(H) + 1 ≤ 6. Since G
is connected, |NG(u1)| ≥ 1 and G contains G1, G2 or G3 (see Figure 11) as
a spanning subgraph. We first suppose that G1 is a spanning subgraph of G.
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Let H1, . . . , H5 be as in Figure 12. If G ∼= H1, then it is easy to verify that
rc1,2(G) + rc1,2(G) = 3 + 3 = 6 < 8 = n+ 2 for n = 6 and rc1,2(G) + rc1,2(G) =
4 + 3 = 7 < 9 = n+ 2 for n = 7. If G ∼= H1 and n ≥ 8, the coloring depicted in
Figure 12 shows that rc1,2(G) ≤ n− 4. In addition, if we color u1v1 with color 1,
other edges incident to u1 with color 2 and all other edges color 3 in G, then we
get a (1, 2)-rainbow-path 3-coloring of G. Consequently, rc1,2(G) + rc1,2(G) ≤
(n− 4) + 3 = n− 1 < n+ 2. Next we consider the situation H1 & G. Adding an
edge to G1, we arrive at some graph in {H2, H3, H4, H5} depicted in Figure 12.

G1 G2

v1

u1

v1

u1

G3

v1

u1

Figure 11. Graphs for the proof of Theorem 4.2.
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Figure 12. Graphs for the proof of Theorem 4.2.

If G ∼= H5, then rc1,2(G) ≤ n − 4 by the coloring in Figure 12. In order to
color G, we color u1v1 with color 1 and other edges incident to u1 with color 2.
Additionally, we color edges incident to x (y is the same) with colors 1, 3 such
that both 1 and 3 appear and all other edges with color 2 in G. Thus, we get a
(1, 2)-rainbow-path 3-coloring of G and so rc1,2(G) + rc1,2(G) ≤ 3 + (n − 4) =
n − 1 < n + 2. If G is not isomorphic to H5, then G has H2, H3 or H4 as its
spanning subgraph. As is depicted in Figure 12, rc1,2(Hi) ≤ n− 5 (2 ≤ i ≤ 4) for
n ≥ 9. Therefore, rc1,2(G)+rc1,2(G) ≤ 6+(n−5) = n+1 < n+2 for n ≥ 9. For
the situation 6 ≤ n ≤ 8, we can verify the result depending on the circumference
of H = G \ u1 similarly as above. Hence, if G1 is a spanning subgraph of G,
then rc1,2(G) + rc1,2(G) < n + 2. By the same method, we can draw the same
conclusion for G2 or G3 as a spanning subgraph of G. Therefore, we complete
the proof.
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