MATCHINGS EXTEND TO HAMILTONIAN CYCLES IN 5 -CUBE ${ }^{1}$

Fan Wang ${ }^{2}$
School of Sciences
Nanchang University
Nanchang, Jiangxi 330000, P.R. China
e-mail: wangfan620@163.com
AND
Weisheng Zhao
Institute for Interdisciplinary Research
Jianghan University
Wuhan, Hubei 430056, P.R. China
e-mail: weishengzhao101@aliyun.com

Abstract

Ruskey and Savage asked the following question: Does every matching in a hypercube Q_{n} for $n \geq 2$ extend to a Hamiltonian cycle of Q_{n} ? Fink confirmed that every perfect matching can be extended to a Hamiltonian cycle of Q_{n}, thus solved Kreweras' conjecture. Also, Fink pointed out that every matching can be extended to a Hamiltonian cycle of Q_{n} for $n \in\{2,3,4\}$. In this paper, we prove that every matching in Q_{5} can be extended to a Hamiltonian cycle of Q_{5}.

Keywords: hypercube, Hamiltonian cycle, matching.
2010 Mathematics Subject Classification: 05C38, 05C45.

[^0]
1. Introduction

Let $[n]$ denote the set $\{1, \ldots, n\}$. The n-dimensional hypercube Q_{n} is a graph whose vertex set consists of all binary strings of length n, i.e., $V\left(Q_{n}\right)=\{u$: $u=u^{1} \cdots u^{n}$ and $u^{i} \in\{0,1\}$ for every $\left.i \in[n]\right\}$, with two vertices being adjacent whenever the corresponding strings differ in just one position.

The hypercube Q_{n} is one of the most popular and efficient interconnection networks. It is well known that Q_{n} is Hamiltonian for every $n \geq 2$. This statement dates back to 1872 [9]. Since then, the research on Hamiltonian cycles in hypercubes satisfying certain additional properties has received considerable attention $[2,3,4,6,12]$.

A set of edges in a graph G is called a matching if no two edges have an endpoint in common. A matching is perfect if it covers all vertices of G. A cycle in a graph G is a Hamiltonian cycle if every vertex in G appears exactly once in the cycle.

Ruskey and Savage [11] asked the following question: Does every matching in Q_{n} for $n \geq 2$ extend to a Hamiltonian cycle of Q_{n} ? Kreweras [10] conjectured that every perfect matching of Q_{n} for $n \geq 2$ can be extended to a Hamiltonian cycle of Q_{n}. Fink [5, 7] confirmed the conjecture to be true. Let $K\left(Q_{n}\right)$ be the complete graph on the vertices of the hypercube Q_{n}.
Theorem 1.1 [5, 7]. For every perfect matching M of $K\left(Q_{n}\right)$, there exists a perfect matching F of $Q_{n}, n \geq 2$, such that $M \cup F$ forms a Hamiltonian cycle of $K\left(Q_{n}\right)$.

Also, Fink [5] pointed out that the following conclusion holds.
Lemma 1.2 [5]. Every matching in Q_{n} can be extended to a Hamiltonian cycle of Q_{n} for $n \in\{2,3,4\}$.

Gregor [8] strengthened Fink's result and obtained that given a partition of the hypercube into subcubes of nonzero dimensions, every perfect matching of the hypercube can be extended on these subcubes to a Hamiltonian cycle if and only if the perfect matching interconnects these subcubes.

The present authors [14] proved that every matching of at most $3 n-10$ edges in Q_{n} can be extended to a Hamiltonian cycle of Q_{n} for $n \geq 4$.

In this paper, we consider Ruskey and Savage's question and obtain the following result.
Theorem 1.3. Every matching in Q_{5} can be extended to a Hamiltonian cycle of Q_{5}.

It is worth mentioning that Ruskey and Savage's question has been recently done for $n=5$ independently by a computer search [15]. In spite of this, a direct proof is still necessary, as it may serve in a possible solution of the general question.

2. Preliminaries and Lemmas

Terminology and notation used in this paper but undefined below can be found in [1]. The vertex set and edge set of a graph G are denoted by $V(G)$ and $E(G)$, respectively. For a set $F \subseteq E(G)$, let $G-F$ denote the resulting graph after removing all edges in F from G. Let H and H^{\prime} be two subgraphs of G. We use $H+H^{\prime}$ to denote the graph with the vertex set $V(H) \cup V\left(H^{\prime}\right)$ and edge set $E(H) \cup E\left(H^{\prime}\right)$. For $F \subseteq E(G)$, we use $H+F$ to denote the graph with the vertex set $V(H) \cup V(F)$ and edge set $E(H) \cup F$, where $V(F)$ denotes the set of vertices incident with F.

The distance between two vertices u and v is the number of edges in a shortest path joining u and v in G, denoted by $d_{G}(u, v)$, with the subscripts being omitted when the context is clear.

Let $j \in[n]$. An edge in Q_{n} is called an j-edge if its endpoints differ in the j th position. The set of all j-edges in Q_{n} is denoted by E_{j}. Thus, $E\left(Q_{n}\right)=\bigcup_{i=1}^{n} E_{i}$. Let $Q_{n-1, j}^{0}$ and $Q_{n-1, j}^{1}$, with the superscripts j being omitted when the context is clear, be the $(n-1)$-dimensional subcubes of Q_{n} induced by the vertex sets $\left\{u \in V\left(Q_{n}\right): u^{j}=0\right\}$ and $\left\{u \in V\left(Q_{n}\right): u^{j}=1\right\}$, respectively. Thus, $Q_{n}-E_{j}=$ $Q_{n-1}^{0}+Q_{n-1}^{1}$. We say that Q_{n} splits into two ($n-1$)-dimensional subcubes Q_{n-1}^{0} and Q_{n-1}^{1} at position j; see Figure 1 for example.

Figure 1. Q_{4} splits into two 3-dimensional subcubes Q_{3}^{0} and Q_{3}^{1} at position 4.
The parity $p(u)$ of a vertex u in Q_{n} is defined by $p(u)=\sum_{i=1}^{n} u^{i}(\bmod 2)$. Then there are 2^{n-1} vertices with parity 0 and 2^{n-1} vertices with parity 1 in Q_{n}. Vertices with parity 0 and 1 are called black vertices and white vertices, respectively. Observe that Q_{n} is bipartite and vertices of each parity form bipartite sets of Q_{n}. Thus, $p(u) \neq p(v)$ if and only if $d(u, v)$ is odd.

A u, v-path is a path with endpoints u and v, denoted by $P_{u v}$ when we specify a particular such path. We say that a spanning subgraph of G whose components are k disjoint paths is a spanning k-path of G. A spanning 1 -path thus is simply a spanning or Hamiltonian path. We say that a path P (respectively, a cycle C) passes through a set M of edges if $M \subseteq E(P)$ (respectively, $M \subseteq E(C)$).

Lemma 2.1 [13]. Let u, v, x, y be pairwise distinct vertices in Q_{3} with $p(u)=$ $p(v) \neq p(x)=p(y)$ and $d(u, x)=d(v, y)=1$. If M is a matching in $Q_{3}-\{u, v\}$, then there exists a spanning 2-path $P_{u x}+P_{v y}$ in Q_{3} passing through M.

Lemma 2.2 [13]. For $n \in\{3,4\}$, let $u, v \in V\left(Q_{n}\right)$ be such that $p(u) \neq p(v)$. If M be a matching in $Q_{n}-u$, then there exists a Hamiltonian path in Q_{n} joining u and v passing through M.

3. Proof of Theorem 1.3

Let M be a matching in Q_{5}. If M is a perfect matching, then the theorem holds by Theorem 1.1. So in the following, we only need to consider the case that M is not perfect. Since Q_{5} has 2^{5} vertices, we have $|M| \leq 15$.

Choose a position $j \in[5]$ such that $\left|M \cap E_{j}\right|$ is as small as possible. Then $\left|M \cap E_{j}\right| \leq 3$. Without loss of generality, we may assume $j=5$. Split Q_{5} into Q_{4}^{0} and Q_{4}^{1} at position 5. Then $Q_{5}-E_{5}=Q_{4}^{0}+Q_{4}^{1}$. Let $\alpha \in\{0,1\}$. Observe that every vertex $u_{\alpha} \in V\left(Q_{4}^{\alpha}\right)$ has in $Q_{4}^{1-\alpha}$ a unique neighbor, denoted by $u_{1-\alpha}$. Let $M_{\alpha}=M \cap E\left(Q_{4}^{\alpha}\right)$. We distinguish four cases to consider.

Case 1. $M \cap E_{5}=\emptyset$. We say that a vertex u is covered by M if $u \in V(M)$. Otherwise, we say that u is uncovered by M. Since M is not perfect in Q_{5}, there exists a vertex uncovered by M. By symmetry we may assume that the uncovered vertex lies in Q_{4}^{0}, and denote it by u_{0}. In other words, $u_{0} \in V\left(Q_{4}^{0}\right) \backslash V(M)$. First apply Lemma 1.2 to find a hamiltonian cycle C_{1} in Q_{4}^{1} passing through M_{1}. Let v_{1} be a neighbor of u_{1} on C_{1} such that $u_{1} v_{1} \notin M$. Since M is a matching, this is always possible. Since $p\left(u_{0}\right) \neq p\left(v_{0}\right)$ and M_{0} is a matching in $Q_{4}^{0}-u_{0}$, by Lemma 2.2 there exists a Hamiltonian path $P_{u_{0} v_{0}}$ in Q_{4}^{0} passing through M_{0}. Hence $P_{u_{0} v_{0}}+C_{1}+\left\{u_{0} u_{1}, v_{0} v_{1}\right\}-u_{1} v_{1}$ is a Hamiltonian cycle in Q_{5} passing through M, see Figure 2 .

Figure 2. Illustration for Case 1.
Case 2. $\left|M \cap E_{5}\right|=1$. Let $M \cap E_{5}=\left\{u_{0} u_{1}\right\}$, where $u_{\alpha} \in V\left(Q_{4}^{\alpha}\right)$. Let v_{α} be a
neighbor of u_{α} in Q_{4}^{α} for $\alpha \in\{0,1\}$. Then $p\left(u_{0}\right) \neq p\left(v_{0}\right)$ and $p\left(u_{1}\right) \neq p\left(v_{1}\right)$. Since $u_{0} u_{1} \in M \cap E_{5}$, we have $u_{\alpha} \notin V\left(M_{\alpha}\right)$ for every $\alpha \in\{0,1\}$. In other words, M_{α} is a matching in $Q_{4}^{\alpha}-u_{\alpha}$. By Lemma 2.2 there exist Hamiltonian paths $P_{u_{\alpha} v_{\alpha}}$ in Q_{4}^{α} passing through M_{α} for every $\alpha \in\{0,1\}$. Hence $P_{u_{0} v_{0}}+P_{u_{1} v_{1}}+\left\{u_{0} u_{1}, v_{0} v_{1}\right\}$ is a Hamiltonian cycle in Q_{5} passing through M.

Case 3. $\left|M \cap E_{5}\right|=2$. Let $M \cap E_{5}=\left\{u_{0} u_{1}, v_{0} v_{1}\right\}$, where $u_{\alpha}, v_{\alpha} \in V\left(Q_{4}^{\alpha}\right)$. If $p\left(u_{0}\right) \neq p\left(v_{0}\right)$, then $p\left(u_{1}\right) \neq p\left(v_{1}\right)$, the proof is similar to Case 2 . So in the following we may assume $p\left(u_{0}\right)=p\left(v_{0}\right)$. Now $p\left(u_{1}\right)=p\left(v_{1}\right)$. In Q_{4}^{α}, since there are already matched two vertices with the same color, we have $\left|M_{\alpha}\right| \leq 6$ for every $\alpha \in\{0,1\}$. Thus, $\sum_{i \in[4]}\left|M \cap E_{i}\right|=\left|M_{0}\right|+\left|M_{1}\right| \leq 12$ and $|M| \leq 14$.

Choose a position $k \in[4]$ such that $\left|M \cap E_{k}\right|$ is as small as possible. Then $\left|M \cap E_{k}\right| \leq 3$. Without loss of generality, we may assume $k=4$. Let $\alpha \in\{0,1\}$. Split Q_{4}^{α} into $Q_{3}^{\alpha 0}$ and $Q_{3}^{\alpha 1}$ at position 4. For clarity, we write $Q_{3}^{\alpha 0}$ and $Q_{3}^{\alpha 1}$ as $Q_{3}^{\alpha L}$ and $Q_{3}^{\alpha R}$, respectively, see Figure 3. Then $Q_{4}^{\alpha}-E_{4}=Q_{3}^{\alpha L}+Q_{3}^{\alpha R}$. Let $M_{\alpha \delta}=M_{\alpha} \cap E\left(Q_{3}^{\alpha \delta}\right)$ for every $\delta \in\{L, R\}$. Note that every vertex $s_{\alpha L} \in V\left(Q_{3}^{\alpha L}\right)$ has in $Q_{3}^{\alpha R}$ a unique neighbor, denoted by $s_{\alpha R}$, and every vertex $t_{\alpha R} \in V\left(Q_{3}^{\alpha R}\right)$ has in $Q_{3}^{\alpha L}$ a unique neighbor, denoted by $t_{\alpha L}$.

By symmetry, we may assume $\left|M_{0} \cap E_{4}\right| \leq\left|M_{1} \cap E_{4}\right|$. Since $\left|M \cap E_{4}\right|=$ $\left|M_{0} \cap E_{4}\right|+\left|M_{1} \cap E_{4}\right| \leq 3$, we have $\left|M_{0} \cap E_{4}\right| \leq 1$. Since $u_{0} \in V\left(Q_{4}^{0}\right)$, without loss of generality we may assume $u_{0} \in V\left(Q_{3}^{0 L}\right)$. Now $u_{1} \in V\left(Q_{3}^{1 L}\right)$. We distinguish two cases to consider.

Figure 3. Q_{5} splits into four 3-dimensional subcubes $Q_{3}^{0 L}, Q_{3}^{0 R}, Q_{3}^{1 L}$ and $Q_{3}^{1 R}$.
Subcase 3.1. $v_{0} \in V\left(Q_{3}^{0 R}\right)$. Now $v_{1} \in V\left(Q_{3}^{1 R}\right)$.
Subcase 3.1.1. $M_{0} \cap E_{4}=\emptyset$. Apply Lemma 1.2 to find a Hamiltonian cycle C_{1} in Q_{4}^{1} passing through M_{1}. Since u_{1} has only one neighbor in $Q_{3}^{1 R}$, we may choose
a neighbor x_{1} of u_{1} on C_{1} such that $x_{1} \in V\left(Q_{3}^{1 L}\right)$. Similarly, we may choose a neighbor y_{1} of v_{1} on C_{1} such that $y_{1} \in V\left(Q_{3}^{1 R}\right)$. Since $\left\{u_{0} u_{1}, v_{0} v_{1}\right\} \subseteq M$, we have $\left\{u_{1} x_{1}, v_{1} y_{1}\right\} \cap M=\emptyset$. Since $p\left(u_{0}\right) \neq p\left(x_{0}\right)$ and $M_{0 L}$ is a matching in $Q_{3}^{0 L}-u_{0}$, by Lemma 2.2 there exists a Hamiltonian path $P_{u_{0} x_{0}}$ in $Q_{3}^{0 L}$ passing through $M_{0 L}$. Similarly, there exists a Hamiltonian path $P_{v_{0} y_{0}}$ in $Q_{3}^{0 R}$ passing through $M_{0 R}$. Hence $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}+C_{1}+\left\{u_{0} u_{1}, x_{0} x_{1}, v_{0} v_{1}, y_{0} y_{1}\right\}-\left\{u_{1} x_{1}, v_{1} y_{1}\right\}$ is a Hamiltonian cycle in Q_{5} passing through M, see Figure 4.

Figure 4. Illustration for Subcase 3.1.1.
Subcase 3.1.2. $\left|M_{0} \cap E_{4}\right|=1$. Now $1 \leq\left|M_{1} \cap E_{4}\right| \leq 2$. Let $M_{0} \cap E_{4}=$ $\left\{s_{0 L} s_{0 R}\right\}$, where $s_{0 \delta} \in V\left(Q_{3}^{0 \delta}\right)$. Since $p\left(u_{0}\right)=p\left(v_{0}\right)$ and $p\left(s_{0 L}\right) \neq p\left(s_{0 R}\right)$, without loss of generality, we may assume $p\left(u_{0}\right)=p\left(v_{0}\right)=p\left(s_{0 L}\right) \neq p\left(s_{0 R}\right)$.

First, we claim that there exists a Hamiltonian cycle C_{1} in Q_{4}^{1} passing through M_{1} such that the two neighbors of v_{1} on C_{1} both belong to $V\left(Q_{3}^{1 R}\right)$.

If $\left|M_{1} \cap E_{4}\right|=2$, then $\left|M \cap E_{4}\right|=3$. So $\left|M \cap E_{i}\right|=3$ for every $i \in$ [4]. Since $\left|M_{\alpha}\right| \leq 6$ for every $\alpha \in\{0,1\}$ and $\left|M_{0}\right|+\left|M_{1}\right|=\sum_{i \in[4]}\left|M \cap E_{i}\right|$, we have $\left|M_{\alpha}\right|=6$ for every $\alpha \in\{0,1\}$. Let $M_{1} \cap E_{4}=\left\{a_{1 L} a_{1 R}, b_{1 L} b_{1 R}\right\}$, where $a_{1 \delta}, b_{1 \delta} \in V\left(Q_{3}^{1 \delta}\right)$. Then $p\left(a_{1 \delta}\right) \neq p\left(b_{1 \delta}\right)$ for every $\delta \in\{L, R\}$. (Otherwise, if $p\left(a_{1 \delta}\right)=p\left(b_{1 \delta}\right)$, then $\left|M_{1 \delta}\right| \leq 2$. Moreover, either $p\left(u_{1}\right)=p\left(a_{1 L}\right)=p\left(b_{1 L}\right)$ or $p\left(v_{1}\right)=p\left(a_{1 R}\right)=p\left(b_{1 R}\right)$, so $\left|M_{1 L}\right| \leq 1$ or $\left|M_{1 R}\right| \leq 1$. Thus, $\left|M_{1}\right| \leq 2+1+2=5$, a contradiction).

If $\left|M_{1} \cap E_{4}\right|=1$, let $M_{1} \cap E_{4}=\left\{a_{1 L} a_{1 R}\right\}$, where $a_{1 \delta} \in V\left(Q_{3}^{1 \delta}\right)$. Since $a_{1 R}$ has three neighbors in $Q_{3}^{1 R}$, we may choose a neighbor $b_{1 R}$ of $a_{1 R}$ in $Q_{3}^{1 R}$ such that $b_{1 R} \neq v_{1}$. Now $p\left(a_{1 \delta}\right) \neq p\left(b_{1 \delta}\right)$ for every $\delta \in\{L, R\}$.

For the above two cases, since $M_{1 \delta}$ is a matching in $Q_{3}^{1 \delta}-a_{1 \delta}$, by Lemma 2.2 there exist Hamiltonian paths $P_{a_{1 \delta} b_{1 \delta}}$ in $Q_{3}^{1 \delta}$ passing through $M_{1 \delta}$ for every $\delta \in\{L, R\}$. Let $C_{1}=P_{a_{1 L} b_{1 L}}+P_{a_{1 R} b_{1 R}}+\left\{a_{1 L} a_{1 R}, b_{1 L} b_{1 R}\right\}$. In the former case, since $\left\{v_{0} v_{1}, a_{1 L} a_{1 R}, b_{1 L} b_{1 R}\right\} \subseteq M$, we have $v_{1} \notin\left\{a_{1 R}, b_{1 R}\right\}$. In the latter case, since $\left\{v_{0} v_{1}, a_{1 L} a_{1 R}\right\} \subseteq M$, we have $v_{1} \neq a_{1 R}$, and therefore, $v_{1} \notin\left\{a_{1 R}, b_{1 R}\right\}$. Hence C_{1} is a Hamiltonian cycle in Q_{4}^{1} passing through M_{1} such that the two neighbors of v_{1} on C_{1} both belong to $V\left(Q_{3}^{1 R}\right)$, see Figure $5(1)$.

Next, choose a neighbor x_{1} of u_{1} on C_{1} such that $x_{1} \in V\left(Q_{3}^{1 L}\right)$ and choose a neighbor y_{1} of v_{1} on C_{1} such that $y_{0} \neq s_{0 R}$. Since $M_{0 R}$ is a matching in $Q_{3}^{0 R}-v_{0}$, by Lemma 2.2 there exists a Hamiltonian path $P_{v_{0} y_{0}}$ in $Q_{3}^{0 R}$ passing through $M_{0 R}$, see Figure 5(2). Since $s_{0 R} \notin\left\{v_{0}, y_{0}\right\}$, we may choose a neighbor $t_{0 R}$ of $s_{0 R}$ on $P_{v_{0} y_{0}}$ such that $t_{0 L} \neq x_{0}$. Now $u_{0}, x_{0}, s_{0 L}, t_{0 L}$ are pairwise distinct vertices in $Q_{3}^{0 L}$, and $p\left(u_{0}\right)=p\left(s_{0 L}\right) \neq p\left(x_{0}\right)=p\left(t_{0 L}\right)$, and $d\left(u_{0}, x_{0}\right)=d\left(s_{0 L}, t_{0 L}\right)=$ 1. Since $M_{0 L}$ is a matching in $Q_{3}^{0 L}-\left\{u_{0}, s_{0 L}\right\}$, by Lemma 2.1 there exists a spanning 2-path $P_{u_{0} x_{0}}+P_{s_{0 L} t_{0 L}}$ in $Q_{3}^{0 L}$ passing through $M_{0 L}$. Hence $P_{u_{0} x_{0}}+$ $P_{s_{0 L} t_{0 L}}+P_{v_{0} y_{0}}+C_{1}+\left\{u_{0} u_{1}, x_{0} x_{1}, v_{0} v_{1}, y_{0} y_{1}, s_{0 L} s_{0 R}, t_{0 L} t_{0 R}\right\}-\left\{u_{1} x_{1}, v_{1} y_{1}, s_{0 R} t_{0 R}\right\}$ is a Hamiltonian cycle in Q_{5} passing through M, see Figure 5(2).

Figure 5. Illustration for Subcase 3.1.2.
Subcase 3.2. $v_{0} \in V\left(Q_{3}^{0 L}\right)$. Now $v_{1} \in V\left(Q_{3}^{1 L}\right)$. Let x_{1} be the unique vertex in $Q_{3}^{1 L}$ satisfying $d\left(x_{1}, v_{1}\right)=3$. Then $d\left(x_{1}, u_{1}\right)=1$. Since M_{1} is a matching in $Q_{4}^{1}-u_{1}$, by Lemma 2.2 there exists a Hamiltonian path $P_{u_{1} x_{1}}$ in Q_{4}^{1} passing through M_{1}. Since v_{1} has only one neighbor in $Q_{3}^{1 R}$, we may choose a neighbor y_{1} of v_{1} on $P_{u_{1} x_{1}}$ such that $y_{1} \in V\left(Q_{3}^{1 L}\right)$. Since $d\left(x_{1}, v_{1}\right)=3$, we have $y_{1} \neq x_{1}$. Then $u_{1}, x_{1}, v_{1}, y_{1}$ are pairwise distinct vertices, and $p\left(u_{1}\right)=p\left(v_{1}\right) \neq p\left(x_{1}\right)=p\left(y_{1}\right)$, and $d\left(u_{1}, x_{1}\right)=d\left(v_{1}, y_{1}\right)=1$, and the same properties also hold for the corresponding vertices $u_{0}, x_{0}, v_{0}, y_{0}$. If we can find a spanning 2-path $P_{u_{0} x_{0}}^{\prime}+P_{v_{0} y_{0}}^{\prime}$ in Q_{4}^{0} passing through M_{0}, then $P_{u_{0} x_{0}}^{\prime}+P_{v_{0} y_{0}}^{\prime}+P_{u_{1} x_{1}}+\left\{u_{0} u_{1}, x_{0} x_{1}, v_{0} v_{1}, y_{0} y_{1}\right\}-v_{1} y_{1}$ is a Hamiltonian cycle in Q_{5} passing through M. So in the following, we only need to show that the desired spanning 2-path $P_{u_{0} x_{0}}^{\prime}+P_{v_{0} y_{0}}^{\prime}$ exists. We distinguish several cases to consider.

Subcase 3.2.1. $\left|M_{0} \cap E_{4}\right|=1$. Since $M_{0 L}$ is a matching in $Q_{3}^{0 L}-\left\{u_{0}, v_{0}\right\}$, by Lemma 2.1 there exists a spanning 2-path $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}$ in $Q_{3}^{0 L}$ passing through $M_{0 L}$. Let $M_{0} \cap E_{4}=\left\{s_{0 L} s_{0 R}\right\}$, where $s_{0 \delta} \in V\left(Q_{3}^{0 \delta}\right)$. Without loss of generality assume $s_{0 L} \in V\left(P_{v_{0} y_{0}}\right)$. Choose a neighbor $t_{0 L}$ of $s_{0 L}$ on $P_{v_{0} y_{0}}$. Since $s_{0 L} s_{0 R} \in M$, we have $s_{0 L} t_{0 L} \notin M$. Since $M_{0 R}$ is a matching in $Q_{3}^{0 R}-s_{0 R}$, by Lemma 2.2 there
exists a Hamiltonian path $P_{s_{0 R} t_{0 R}}$ in $Q_{3}^{0 R}$ passing through $M_{0 R}$. Let $P_{u_{0} x_{0}}^{\prime}=$ $P_{u_{0} x_{0}}$ and $P_{v_{0} y_{0}}^{\prime}=P_{v_{0} y_{0}}+P_{s_{0 R} t_{0 R}}+\left\{s_{0 L} s_{0 R}, t_{0 L} t_{0 R}\right\}-s_{0 L} t_{0 L}$. Then $P_{u_{0} x_{0}}^{\prime}+P_{v_{0} y_{0}}^{\prime}$ is the desired spanning 2-path in Q_{4}^{0}, see Figure 6.

Figure 6. Illustration for Subcase 3.2.1.

Subcase 3.2.2. $M_{0} \cap E_{4}=\emptyset$. It suffices to consider the case that $M_{0 L}$ is maximal in $Q_{3}^{0 L}-\left\{u_{0}, v_{0}\right\}$ and $M_{0 R}$ is maximal in $Q_{3}^{0 R}$. In $Q_{3}^{0 L}$, since $p\left(u_{0}\right)=$ $p\left(v_{0}\right)$, we have u_{0}, v_{0} are different in two positions, so there is one possibility of $\left\{u_{0}, v_{0}\right\}$ up to isomorphism. Since $d\left(x_{0}, v_{0}\right)=3$, the vertex x_{0} is fixed by v_{0}. Since $d\left(y_{0}, v_{0}\right)=1$, there are two choices of y_{0} up to isomorphism. Thus, there are two possibilities of $\left\{u_{0}, v_{0}, x_{0}, y_{0}\right\}$ up to isomorphism, see Figure $7(a)(b)$. When $\left\{u_{0}, v_{0}, x_{0}, y_{0}\right\}$ is the case (a), since $M_{0 L}$ is a maximal matching in $Q_{3}^{0 L}-\left\{u_{0}, v_{0}\right\}$, there are three possibilities of $M_{0 L}$ up to isomorphism, see Figure 7(1)-(3). When $\left\{u_{0}, v_{0}, x_{0}, y_{0}\right\}$ is the case (b), there are seven possibilities of $M_{0 L}$, see Figure 7(4)-(10). In $Q_{3}^{0 R}$, there are three non-isomorphic maximal matchings, denoted by P_{1}, P_{2} and P_{3}, see Figure 8 .

Figure 7. All possibilities of $\left\{u_{0}, v_{0}, x_{0}, y_{0}, M_{0 L}\right\}$ up to isomorphism.

Before the proof, we point out that if $M_{0 R}$ is isomorphic to the matching P_{1} or P_{2}, then there exists a Hamiltonian cycle in $Q_{3}^{0 R}$ passing through $M_{0 R} \cup\{e\}$ for any $e \notin M_{0 R}$, see Figure 9 .

Figure 8. Three non-isomorphic maximal matchings in $Q_{3}^{0 R}$.

Figure 9. Hamiltonian cycles passing through $M_{0 R} \cup\{e\}$ for any $e \notin M_{0 R}$ in $Q_{3}^{0 R}$ when $M_{0 R}$ is isomorphic to P_{1} or P_{2}.

First, suppose that $M_{0 R}$ is isomorphic to P_{1}. Since $M_{0 L}$ is a matching in $Q_{3}^{0 L}-\left\{u_{0}, v_{0}\right\}$, by Lemma 2.1 there exists a spanning 2-path $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}$ in $Q_{3}^{0 L}$ passing through $M_{0 L}$. Since $\left|E\left(P_{u_{0} x_{0}}+P_{v_{0} y_{0}}\right)\right|=6>\left|M_{0 L}\right|+\left|M_{0 R}\right|$, there exists an edge $s_{0 L} t_{0 L} \in E\left(P_{u_{0} x_{0}}+P_{v_{0} y_{0}}\right) \backslash M_{0 L}$ such that $s_{0 R} t_{0 R} \notin M_{0 R}$. Choose a Hamiltonian cycle $C_{0 R}$ in $Q_{3}^{0 R}$ passing through $M_{0 R} \cup\left\{s_{0 R} t_{0 R}\right\}$. Hence $P_{u_{0} x_{0}}+$ $P_{v_{0} y_{0}}+C_{0 R}+\left\{s_{0 L} s_{0 R}, t_{0 L} t_{0 R}\right\}-\left\{s_{0 L} t_{0 L}, s_{0 R} t_{0 R}\right\}$ is the desired spanning 2-path in Q_{4}^{0}. (Note that the construction is similar to Subcase 3.2.1, so the readers may refer to the construction in Figure 6.)

Next, suppose that $M_{0 R}$ is isomorphic to P_{2}. We say that a set S of edges crosses a position i if $S \cap E_{i} \neq \emptyset$. If $\left\{u_{0}, v_{0}, x_{0}, y_{0}, M_{0 L}\right\}$ is isomorphic to one of the cases (2)-(10) in Figure 7, then we may choose a spanning 2-path $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}$ in $Q_{3}^{0 L}$ such that the set $E\left(P_{u_{0} x_{0}}+P_{v_{0} y_{0}}\right) \backslash M_{0 L}$ crosses at least two positions, see Figure 10(2)-(10). Since all the edges in $M_{0 R}$ lie in the same position, there exists an edge $s_{0 L} t_{0 L} \in E\left(P_{u_{0} x_{0}}+P_{v_{0} y_{0}}\right) \backslash M_{0 L}$ such that $s_{0 R} t_{0 R} \notin M_{0 R}$. If $\left\{u_{0}, v_{0}, x_{0}, y_{0}, M_{0 L}\right\}$ is isomorphic to the case (1) in Figure 7, then we may choose two different spanning 2-paths $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}$ in $Q_{3}^{0 L}$ such that the two sets $E\left(P_{u_{0} x_{0}}+P_{v_{0} y_{0}}\right) \backslash M_{0 L}$ cross two different positions, see Figure 10(1-1), (12), and therefore, at least one of them is different from the position in which $M_{0 R}$ lies. Thus, we may choose a suitable spanning 2-path $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}$ such that there exists an edge $s_{0 L} t_{0 L} \in E\left(P_{u_{0} x_{0}}+P_{v_{0} y_{0}}\right) \backslash M_{0 L}$ and $s_{0 R} t_{0 R} \notin M_{0 R}$. The remaining construction is similar to the above case.

Last, suppose that $M_{0 R}$ is isomorphic to P_{3}. Without loss of generality, we may assume $M_{0 R} \subseteq\left(E_{2} \cup E_{3}\right)$.

If $\left\{u_{0}, v_{0}, x_{0}, y_{0}, M_{0 L}\right\}$ is isomorphic to the case (5) or (8) in Figure 7, we may choose a spanning 2-path $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}$ in $Q_{3}^{0 L}$ passing through $M_{0 L}$ such that $\left(E\left(P_{u_{0} x_{0}}+P_{v_{0} y_{0}}\right) \backslash M_{0 L}\right) \cap E_{1} \neq \emptyset$, see Figure 11. Let $s_{0 L} t_{0 L} \in\left(E\left(P_{u_{0} x_{0}}+P_{v_{0} y_{0}}\right) \backslash\right.$ $\left.M_{0 L}\right) \cap E_{1}$. Then $s_{0 R} t_{0 R} \in E_{1}$. One can verify that there exists a Hamiltonian cycle $C_{0 R}$ in $Q_{3}^{0 R}$ passing through $M_{0 R} \cup\left\{s_{0 R} t_{0 R}\right\}$. Hence $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}+C_{0 R}+$ $\left\{s_{0 L} s_{0 R}, t_{0 L} t_{0 R}\right\}-\left\{s_{0 L} t_{0 L}, s_{0 R} t_{0 R}\right\}$ is the desired spanning 2-path in Q_{4}^{0}.

Figure 10. Spanning 2-paths $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}$ in $Q_{3}^{0 L}$ with the possible edges $s_{0 L} t_{0 L}$ lined by $\backslash \backslash$.

Figure 11. The possible spanning 2-paths $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}$ such that $\left(E\left(P_{u_{0} x_{0}}+P_{v_{0} y_{0}}\right) \backslash M_{0 L}\right) \cap E_{1} \neq \emptyset$.

If $\left\{u_{0}, v_{0}, x_{0}, y_{0}, M_{0 L}\right\}$ is isomorphic to one of the cases (3), (6), (7) or (10) in Figure 7, then choose a spanning 2-path $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}$ in $Q_{3}^{0 L}$ passing through $M_{0 L}$, see Figure 12(3), (6), (7), (10). If $\left(E\left(P_{u_{0} x_{0}}+P_{v_{0} y_{0}}\right) \backslash M_{0 L}\right) \cap E_{1} \neq \emptyset$, then the proof is similar to the above case. If $\left(E\left(P_{u_{0} x_{0}}+P_{v_{0} y_{0}}\right) \backslash M_{0 L}\right) \cap E_{1}=\emptyset$, then the set $E\left(P_{u_{0} x_{0}}+P_{v_{0} y_{0}}\right) \backslash M_{0 L}$ crosses the positions 2 and 3, and therefore, $M_{0 R}$ has two choices for every case, see Figure 12. Then we can find a spanning 2-path $P_{u_{0} x_{0}}^{\prime}+P_{v_{0} y_{0}}^{\prime}$ in Q_{4}^{0} passing through M_{0}, see Figure 12.

If $\left\{u_{0}, v_{0}, x_{0}, y_{0}, M_{0 L}\right\}$ is isomorphic to one of the cases (1), (2), (4) or (9) in Figure 7, we observe that there exist two vertices in $V\left(Q_{3}^{0 L}\right)$ at distance 3, denoted by $s_{0 L}, t_{0 L}$, such that there is a spanning 2-path $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}$ in $Q_{3}^{0 L}+$ $s_{0 L} t_{0 L}$ passing through $M_{0 L} \cup\left\{s_{0 L} t_{0 L}\right\}$, see Figure 13. Next, we can verify that there exists a Hamiltonian path $P_{s_{0 R} t_{0 R}}$ in $Q_{3}^{0 R}$ passing through $M_{0 R}$. Hence $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}+P_{s_{0 R} t_{0 R}}+\left\{s_{0 L} s_{0 R}, t_{0 L} t_{0 R}\right\}-s_{0 L} t_{0 L}$ is the desired spanning 2-path in Q_{4}^{0}.

Case 4. $\left|M \cap E_{5}\right|=3$. Let $M \cap E_{5}=\left\{u_{0} u_{1}, v_{0} v_{1}, w_{0} w_{1}\right\}$, where $u_{\alpha}, v_{\alpha}, w_{\alpha} \in$ $V\left(Q_{4}^{\alpha}\right)$. Now $\left|M \cap E_{i}\right|=3$ for every $i \in[5]$ and $|M|=15$. Hence there are two vertices of $\left\{u_{\alpha}, v_{\alpha}, w_{\alpha}\right\}$ in one partite set and one vertex in the other partite set. Otherwise, if $p\left(u_{\alpha}\right)=p\left(v_{\alpha}\right)=p\left(w_{\alpha}\right)$, then $\left|M_{\alpha}\right| \leq 5$, and therefore, $|M| \leq 13$, a contradiction. Without loss of generality, we may assume $p\left(u_{\alpha}\right)=p\left(v_{\alpha}\right) \neq p\left(w_{\alpha}\right)$.

(3)

(3-1)

(7-1)

(3-2)

(7-2)

(6)

(6-1)

(10-1)

(6-2)

(10-2)

Figure 12. Spanning 2-paths $P_{u_{0} x_{0}}^{\prime}+P_{v_{0} y_{0}}^{\prime}$ in Q_{4}^{0} passing through M_{0}.

Figure 13. Spanning 2-paths $P_{u_{0} x_{0}}+P_{v_{0} y_{0}}$ in $Q_{3}^{0 L}+s_{0 L} t_{0 L}$ passing through $M_{0 L} \cup\left\{s_{0 L} t_{0 L}\right\}$.

Split Q_{4}^{α} into two 3-cubes $Q_{3}^{\alpha L}$ and $Q_{3}^{\alpha R}$ at some position k such that $u_{\alpha} \in$ $V\left(Q_{3}^{\alpha L}\right)$ and $v_{\alpha} \in V\left(Q_{3}^{\alpha R}\right)$. Without loss of generality, we may assume $k=4$. Since $p\left(u_{\alpha}\right)=p\left(v_{\alpha}\right) \neq p\left(w_{\alpha}\right)$, by symmetry we may assume $w_{\alpha} \in V\left(Q_{3}^{\alpha L}\right)$. Since $\left|M_{0} \cap E_{4}\right|+\left|M_{1} \cap E_{4}\right|=\left|M \cap E_{4}\right|=3$, by symmetry we may assume $\left|M_{0} \cap E_{4}\right| \leq 1$. Let $M_{\alpha \delta}=M_{\alpha} \cap E\left(Q_{3}^{\alpha \delta}\right)$ for every $\delta \in\{L, R\}$.

Subcase 4.1. $M_{0} \cap E_{4}=\emptyset$. Since $p\left(u_{1}\right) \neq p\left(w_{1}\right)$ and M_{1} is a matching in $Q_{4}^{1}-u_{1}$, by Lemma 2.2 there exists a Hamiltonian path $P_{u_{1} w_{1}}$ in Q_{4}^{1} passing
through M_{1}. Since v_{1} has only one neighbor in $Q_{3}^{1 L}$, we may choose a neighbor y_{1} of v_{1} on $P_{u_{1} w_{1}}$ such that $y_{1} \in V\left(Q_{3}^{1 R}\right)$. Now $y_{0} \in V\left(Q_{3}^{0 R}\right)$ and $p\left(u_{0}\right)=p\left(v_{0}\right) \neq$ $p\left(w_{0}\right)=p\left(y_{0}\right)$. Since $M_{0 L}$ is a matching in $Q_{3}^{0 L}-u_{0}$ and $M_{0 R}$ is a matching in $Q_{3}^{0 R}-v_{0}$, by Lemma 2.2 there exist Hamiltonian paths $P_{u_{0} w_{0}}$ in $Q_{3}^{0 L}$ and $P_{v_{0} y_{0}}$ in $Q_{3}^{0 R}$ passing through $M_{0 L}$ and $M_{0 R}$, respectively. Hence $P_{u_{1} w_{1}}+P_{u_{0} w_{0}}+P_{v_{0} y_{0}}+$ $\left\{u_{0} u_{1}, w_{0} w_{1}, v_{0} v_{1}, y_{0} y_{1}\right\}-v_{1} y_{1}$ is a Hamiltonian cycle in Q_{5} passing through M, see Figure 14.

Figure 14. Illustration for Subcase 4.1.
Subcase 4.2. $\left|M_{0} \cap E_{4}\right|=1$. Now $\left|M_{1} \cap E_{4}\right|=2$. Let $M_{0} \cap E_{4}=\left\{s_{0 L} s_{0 R}\right\}$ and $M_{1} \cap E_{4}=\left\{a_{1 L} a_{1 R}, b_{1 L} b_{1 R}\right\}$, where $s_{0 \delta} \in V\left(Q_{3}^{0 \delta}\right)$ and $a_{1 \delta}, b_{1 \delta} \in V\left(Q_{3}^{1 \delta}\right)$. Since $|M|=15, Q_{5}$ has exactly two vertices uncovered by M, one in $Q_{3}^{0 L}$ and the other in $Q_{3}^{1 R}$. Thus, $p\left(a_{1 L}\right) \neq p\left(b_{1 L}\right)$, and $p\left(v_{0}\right) \neq p\left(s_{0 R}\right)$, and $M_{1 L}$ is a perfect matching in $Q_{3}^{1 L}-\left\{u_{1}, w_{1}, a_{1 L}, b_{1 L}\right\}$. Since $p\left(u_{1}\right) \neq p\left(w_{1}\right)$ and $p\left(a_{1 L}\right) \neq p\left(b_{1 L}\right)$, without loss of generality, we may assume $p\left(u_{1}\right)=p\left(b_{1 L}\right) \neq p\left(w_{1}\right)=p\left(a_{1 L}\right)$. Thus, $p\left(v_{1}\right)=p\left(a_{1 R}\right) \neq p\left(b_{1 R}\right)$.

Figure 15. Illustration for Subcase 4.2.
Since $p\left(u_{0}\right) \neq p\left(w_{0}\right)$ and $M_{0 L}$ is a matching in $Q_{3}^{0 L}-u_{0}$, by Lemma 2.2 there exists a Hamiltonian path $P_{u_{0} w_{0}}$ in $Q_{3}^{0 L}$ passing through $M_{0 L}$, see Figure 15. Since $s_{0 L} \notin\left\{u_{0}, w_{0}\right\}$, we may choose a neighbor $t_{0 L}$ of $s_{0 L}$ on $P_{u_{0} w_{0}}$ such that $t_{0 R} \neq v_{0}$. Since $p\left(s_{0 R}\right) \neq p\left(t_{0 R}\right)$ and $M_{0 R}$ is a matching in $Q_{3}^{0 R}-s_{0 R}$,
by Lemma 2.2 there exists a Hamiltonian path $P_{s_{0 R} t_{0 R}}$ in $Q_{3}^{0 R}$ passing through $M_{0 R}$, see Figure 15. Since $v_{0} \notin\left\{s_{0 R}, t_{0 R}\right\}$, we may choose a neighbor y_{0} of v_{0} on $P_{S_{0 R} t_{0 R}}$ such that $y_{1} \neq b_{1 R}$. Now $v_{1}, y_{1}, a_{1 R}, b_{1 R}$ are pairwise distinct vertices, and $p\left(v_{1}\right)=p\left(a_{1 R}\right) \neq p\left(y_{1}\right)=p\left(b_{1 R}\right)$, and $d\left(v_{1}, y_{1}\right)=1$, and $M_{1 R}$ is a matching in $Q_{3}^{1 R}-\left\{v_{1}, a_{1 R}\right\}$.

Figure 16. The spanning 2-path $P_{u_{1} a_{1 L}}+P_{w_{1} b_{1 L}}\left(\right.$ or $\left.P_{u_{1} w_{1}}+P_{a_{1 L} b_{1 L}}\right)$ in $Q_{3}^{1 L}$.
If $d\left(a_{1 R}, b_{1 R}\right)=1$, then by Lemma 2.1 there is a spanning 2-path $P_{v_{1} y_{1}}+$ $P_{a_{1 R} b_{1 R}}$ in $Q_{3}^{1 R}$ passing through $M_{1 R}$, see Figure 17(1). Since $M_{1 L}$ is a perfect matching in $Q_{3}^{1 L}-\left\{u_{1}, w_{1}, a_{1 L}, b_{1 L}\right\}$, we have $M_{1 L} \cup\left\{u_{1} w_{1}, a_{1 L} b_{1 L}\right\}$ is a perfect matching in $K\left(Q_{3}^{1 L}\right)$. By Theorem 1.1, there exists a perfect matching R in $Q_{3}^{1 L}$ such that $M_{1 L} \cup\left\{u_{1} w_{1}, a_{1 L} b_{1 L}\right\} \cup R$ forms a Hamiltonian cycle in $K\left(Q_{3}^{1 L}\right)$. Hence $M_{1 L} \cup R$ forms a spanning 2-path in $Q_{3}^{1 L}$. Note that each path of the spanning 2path is an $\left(R, M_{1 L}\right)$-alternating path beginning with an edge in R and ending with an edge in R. So the number of vertices in each path is even. Since Q_{5} is a bipartite graph, the two endpoints of each path have different parities. Hence one path joins the vertices u_{1} and $a_{1 L}$, and the other path joins the vertices w_{1} and $b_{1 L}$, see Figure 16 for example. Denote the spanning 2 -path by $P_{u_{1} a_{1 L}}+P_{w_{1} b_{1 L}}$. Note that $s_{0 L} t_{0 L} \notin M$ and $v_{0} y_{0} \notin M$. Hence $P_{u_{0} w_{0}}+P_{s_{0 R} t_{0 R}}+P_{u_{1} a_{1 L}}+P_{w_{1} b_{1 L}}+P_{v_{1} y_{1}}+$ $P_{a_{1 R} b_{1 R}}+\left\{u_{0} u_{1}, w_{0} w_{1}, v_{0} v_{1}, y_{0} y_{1}, a_{1 L} a_{1 R}, b_{1 L} b_{1 R}, s_{0 L} s_{0 R}, t_{0 L} t_{0 R}\right\}-\left\{v_{0} y_{0}, s_{0 L} t_{0 L}\right\}$ is a Hamiltonian cycle in Q_{5} passing through M, see Figure 17(1).

Figure 17. Illustration for Subcase 4.2.

If $d\left(a_{1 R}, b_{1 R}\right)=3$, then $d\left(v_{1}, b_{1 R}\right)=d\left(a_{1 R}, y_{1}\right)=1$. Since $M_{1 R}$ is a matching in $Q_{3}^{1 R}-\left\{v_{1}, a_{1 R}\right\}$, by Lemma 2.1 there is a spanning 2-path $P_{v_{1} b_{1 R}}+P_{a_{1 R} y_{1}}$ in $Q_{3}^{1 R}$ passing through $M_{1 R}$, see Figure 17(2). Since $M_{1 L} \cup\left\{u_{1} a_{1 L}, w_{1} b_{1 L}\right\}$ is a perfect matching in $K\left(Q_{3}^{1 L}\right)$, similar to the above case, there is a spanning 2-path $P_{u_{1} w_{1}}+P_{a_{1 L} b_{1 L}}$ in $Q_{3}^{1 L}$ passing through $M_{1 L}$. Hence $P_{u_{0} w_{0}}+P_{s_{0 R} t_{0 R}}+P_{v_{1} b_{1 R}}+$ $P_{y_{1} a_{1 R}}+P_{u_{1} w_{1}}+P_{a_{1 L} b_{1 L}}+\left\{u_{0} u_{1}, w_{0} w_{1}, v_{0} v_{1}, y_{0} y_{1}, a_{1 L} a_{1 R}, b_{1 L} b_{1 R}, s_{0 L} s_{0 R}, t_{0 L} t_{0 R}\right\}-$ $\left\{v_{0} y_{0}, s_{0 L} t_{0 L}\right\}$ is a Hamiltonian cycle in Q_{5} passing through M, see Figure 17(2). The proof of Theorem 1.3 is complete.

Acknowledgements

The authors would like to express their gratitude to the anonymous referees for their kind suggestions on the original manuscript.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, NewYork-Amsterdam-Oxford, 1982).
[2] R. Caha and V. Koubek, Spanning multi-paths in hypercubes, Discrete Math. 307 (2007) 2053-2066.
doi:10.1016/j.disc.2005.12.050
[3] D. Dimitrov, T. Dvořák, P. Gregor and R. Škrekovski, Gray codes avoiding matchings, Discrete Math. Theoret. Comput. Sci. 11 (2009) 123-148.
[4] T. Dvořák, Hamiltonian cycles with prescribed edges in hypercubes, SIAM J. Discrete Math. 19 (2005) 135-144.
doi:10.1137/S0895480103432805
[5] J. Fink, Perfect matchings extend to Hamilton cycles in hypercubes, J. Combin. Theory Ser. B 97 (2007) 1074-1076.
doi:10.1016/j.jctb.2007.02.007
[6] J. Fink, Connectivity of matching graph of hypercube, SIAM J. Discrete Math. 23 (2009) 1100-1109. doi:10.1137/070697288
[7] J. Fink, Matching graphs of hypercubes and complete bipartite graphs, European J. Combin. 30 (2009) 1624-1629. doi:10.1016/j.ejc.2009.03.007
[8] P. Gregor, Perfect matchings extending on subcubes to Hamiltonian cycles of hypercubes, Discrete Math. 309 (2009) 1711-1713. doi:10.1016/j.disc.2008.02.013
[9] L. Gros, Théorie du Baguenodier (Aimé Vingtrinier, Lyon, 1872).
[10] G. Kreweras, Matchings and Hamiltonian cycles on hypercubes, Bull. Inst. Combin. Appl. 16 (1996) 87-91.
[11] F. Ruskey and C. Savage, Hamilton cycles that extend transposition matchings in Cayley graphs of S_{n}, SIAM J. Discrete Math. 6 (1993) 152-166. doi:10.1137/0406012
[12] J. Vandenbussche and D. West, Matching extendability in hypercubes, SIAM J. Discrete Math. 23 (2009) 1539-1547.
doi:10.1137/080732687
[13] F. Wang and H.P. Zhang, Two types of matchings extend to Hamiltonian cycles in hypercubes, Ars Combin. 118 (2015) 269-283.
[14] F. Wang and H.P. Zhang, Small matchings extend to Hamiltonian cycles in hypercubes, Graphs Combin. 32 (2016) 363-376. doi:10.1007/s00373-015-1533-6
[15] E. Zulkoski, V. Ganesh and K. Czarnecki, MathCheck: A Math Assistant via a Combination of Computer Algebra Systems and SAT Solvers, in: A.P. Felty and A. Middeldorp, Proc. CADE-25 (Ed(s)), (LNCS 9195, 2015) 607-622. doi:10.1007/978-3-319-21401-6_41

[^0]: ${ }^{1}$ This work is supported by NSFC (grant nos. 11501282 and 11261019) and the science and technology project of Jiangxi Provincial Department of Education (grant No. 20161BAB201030).
 ${ }^{2}$ Corresponding author.

