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Abstract

Ruskey and Savage asked the following question: Does every matching in
a hypercube Qn for n ≥ 2 extend to a Hamiltonian cycle of Qn? Fink con-
firmed that every perfect matching can be extended to a Hamiltonian cycle
of Qn, thus solved Kreweras’ conjecture. Also, Fink pointed out that every
matching can be extended to a Hamiltonian cycle of Qn for n ∈ {2, 3, 4}.
In this paper, we prove that every matching in Q5 can be extended to a
Hamiltonian cycle of Q5.
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1. Introduction

Let [n] denote the set {1, . . . , n}. The n-dimensional hypercube Qn is a graph
whose vertex set consists of all binary strings of length n, i.e., V (Qn) = {u :
u = u1 · · ·un and ui ∈ {0, 1} for every i ∈ [n]}, with two vertices being adjacent
whenever the corresponding strings differ in just one position.

The hypercube Qn is one of the most popular and efficient interconnection
networks. It is well known that Qn is Hamiltonian for every n ≥ 2. This state-
ment dates back to 1872 [9]. Since then, the research on Hamiltonian cycles
in hypercubes satisfying certain additional properties has received considerable
attention [2, 3, 4, 6, 12].

A set of edges in a graph G is called a matching if no two edges have an
endpoint in common. A matching is perfect if it covers all vertices of G. A cycle
in a graph G is a Hamiltonian cycle if every vertex in G appears exactly once in
the cycle.

Ruskey and Savage [11] asked the following question: Does every matching
in Qn for n ≥ 2 extend to a Hamiltonian cycle of Qn? Kreweras [10] conjectured
that every perfect matching of Qn for n ≥ 2 can be extended to a Hamiltonian
cycle of Qn. Fink [5, 7] confirmed the conjecture to be true. Let K(Qn) be the
complete graph on the vertices of the hypercube Qn.

Theorem 1.1 [5, 7]. For every perfect matching M of K(Qn), there exists a

perfect matching F of Qn, n ≥ 2, such that M ∪F forms a Hamiltonian cycle of

K(Qn).

Also, Fink [5] pointed out that the following conclusion holds.

Lemma 1.2 [5]. Every matching in Qn can be extended to a Hamiltonian cycle

of Qn for n ∈ {2, 3, 4}.

Gregor [8] strengthened Fink’s result and obtained that given a partition of
the hypercube into subcubes of nonzero dimensions, every perfect matching of
the hypercube can be extended on these subcubes to a Hamiltonian cycle if and
only if the perfect matching interconnects these subcubes.

The present authors [14] proved that every matching of at most 3n−10 edges
in Qn can be extended to a Hamiltonian cycle of Qn for n ≥ 4.

In this paper, we consider Ruskey and Savage’s question and obtain the
following result.

Theorem 1.3. Every matching in Q5 can be extended to a Hamiltonian cycle

of Q5.

It is worth mentioning that Ruskey and Savage’s question has been recently
done for n = 5 independently by a computer search [15]. In spite of this, a
direct proof is still necessary, as it may serve in a possible solution of the general
question.
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2. Preliminaries and Lemmas

Terminology and notation used in this paper but undefined below can be found
in [1]. The vertex set and edge set of a graph G are denoted by V (G) and E(G),
respectively. For a set F ⊆ E(G), let G − F denote the resulting graph after
removing all edges in F from G. Let H and H ′ be two subgraphs of G. We
use H +H ′ to denote the graph with the vertex set V (H) ∪ V (H ′) and edge set
E(H)∪E(H ′). For F ⊆ E(G), we use H+F to denote the graph with the vertex
set V (H)∪V (F ) and edge set E(H)∪F , where V (F ) denotes the set of vertices
incident with F .

The distance between two vertices u and v is the number of edges in a shortest
path joining u and v in G, denoted by dG(u, v), with the subscripts being omitted
when the context is clear.

Let j ∈ [n]. An edge in Qn is called an j-edge if its endpoints differ in the jth
position. The set of all j-edges in Qn is denoted by Ej . Thus, E(Qn) =

⋃n
i=1Ei.

Let Q0
n−1,j and Q1

n−1,j , with the superscripts j being omitted when the context
is clear, be the (n − 1)-dimensional subcubes of Qn induced by the vertex sets
{u ∈ V (Qn) : u

j = 0} and {u ∈ V (Qn) : u
j = 1}, respectively. Thus, Qn − Ej =

Q0
n−1+Q1

n−1. We say that Qn splits into two (n−1)-dimensional subcubes Q0
n−1

and Q1
n−1 at position j; see Figure 1 for example.
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Figure 1. Q4 splits into two 3-dimensional subcubes Q0

3
and Q1

3
at position 4.

The parity p(u) of a vertex u in Qn is defined by p(u) =
∑n

i=1 u
i(mod 2).

Then there are 2n−1 vertices with parity 0 and 2n−1 vertices with parity 1 in Qn.
Vertices with parity 0 and 1 are called black vertices and white vertices, respec-
tively. Observe that Qn is bipartite and vertices of each parity form bipartite
sets of Qn. Thus, p(u) 6= p(v) if and only if d(u, v) is odd.

A u, v-path is a path with endpoints u and v, denoted by Puv when we specify
a particular such path. We say that a spanning subgraph of G whose components
are k disjoint paths is a spanning k-path of G. A spanning 1-path thus is simply
a spanning or Hamiltonian path. We say that a path P (respectively, a cycle C)
passes through a set M of edges if M ⊆ E(P ) (respectively, M ⊆ E(C)).
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Lemma 2.1 [13]. Let u, v, x, y be pairwise distinct vertices in Q3 with p(u) =
p(v) 6= p(x) = p(y) and d(u, x) = d(v, y) = 1. If M is a matching in Q3 −{u, v},
then there exists a spanning 2-path Pux + Pvy in Q3 passing through M .

Lemma 2.2 [13]. For n ∈ {3, 4}, let u, v ∈ V (Qn) be such that p(u) 6= p(v). If

M be a matching in Qn − u, then there exists a Hamiltonian path in Qn joining

u and v passing through M .

3. Proof of Theorem 1.3

Let M be a matching in Q5. If M is a perfect matching, then the theorem holds
by Theorem 1.1. So in the following, we only need to consider the case that M
is not perfect. Since Q5 has 25 vertices, we have |M | ≤ 15.

Choose a position j ∈ [5] such that |M ∩ Ej | is as small as possible. Then
|M ∩Ej | ≤ 3. Without loss of generality, we may assume j = 5. Split Q5 into Q0

4

and Q1
4 at position 5. Then Q5 − E5 = Q0

4 + Q1
4. Let α ∈ {0, 1}. Observe that

every vertex uα ∈ V (Qα
4 ) has in Q1−α

4 a unique neighbor, denoted by u1−α. Let
Mα = M ∩ E(Qα

4 ). We distinguish four cases to consider.

Case 1. M ∩ E5 = ∅. We say that a vertex u is covered by M if u ∈ V (M).
Otherwise, we say that u is uncovered by M . Since M is not perfect in Q5, there
exists a vertex uncovered by M . By symmetry we may assume that the uncovered
vertex lies in Q0

4, and denote it by u0. In other words, u0 ∈ V (Q0
4) \V (M). First

apply Lemma 1.2 to find a hamiltonian cycle C1 in Q1
4 passing through M1. Let

v1 be a neighbor of u1 on C1 such that u1v1 /∈ M . Since M is a matching, this is
always possible. Since p(u0) 6= p(v0) and M0 is a matching in Q0

4−u0, by Lemma
2.2 there exists a Hamiltonian path Pu0v0 in Q0

4 passing through M0. Hence
Pu0v0 + C1 + {u0u1, v0v1} − u1v1 is a Hamiltonian cycle in Q5 passing through
M , see Figure 2.
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Figure 2. Illustration for Case 1.

Case 2. |M ∩E5| = 1. Let M ∩E5 = {u0u1}, where uα ∈ V (Qα
4 ). Let vα be a
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neighbor of uα in Qα
4 for α ∈ {0, 1}. Then p(u0) 6= p(v0) and p(u1) 6= p(v1). Since

u0u1 ∈ M ∩ E5, we have uα /∈ V (Mα) for every α ∈ {0, 1}. In other words, Mα

is a matching in Qα
4 −uα. By Lemma 2.2 there exist Hamiltonian paths Puαvα in

Qα
4 passing through Mα for every α ∈ {0, 1}. Hence Pu0v0 + Pu1v1 + {u0u1, v0v1}

is a Hamiltonian cycle in Q5 passing through M .

Case 3. |M ∩ E5| = 2. Let M ∩ E5 = {u0u1, v0v1}, where uα, vα ∈ V (Qα
4 ).

If p(u0) 6= p(v0), then p(u1) 6= p(v1), the proof is similar to Case 2. So in the
following we may assume p(u0) = p(v0). Now p(u1) = p(v1). In Qα

4 , since there
are already matched two vertices with the same color, we have |Mα| ≤ 6 for every
α ∈ {0, 1}. Thus,

∑
i∈[4] |M ∩ Ei| = |M0|+ |M1| ≤ 12 and |M | ≤ 14.

Choose a position k ∈ [4] such that |M ∩ Ek| is as small as possible. Then
|M ∩ Ek| ≤ 3. Without loss of generality, we may assume k = 4. Let α ∈ {0, 1}.
Split Qα

4 into Qα0
3 and Qα1

3 at position 4. For clarity, we write Qα0
3 and Qα1

3 as
QαL

3 and QαR
3 , respectively, see Figure 3. Then Qα

4 − E4 = QαL
3 + QαR

3 . Let
Mαδ = Mα ∩E(Qαδ

3 ) for every δ ∈ {L,R}. Note that every vertex sαL ∈ V (QαL
3 )

has in QαR
3 a unique neighbor, denoted by sαR, and every vertex tαR ∈ V (QαR

3 )
has in QαL

3 a unique neighbor, denoted by tαL.

By symmetry, we may assume |M0 ∩ E4| ≤ |M1 ∩ E4|. Since |M ∩ E4| =
|M0∩E4|+ |M1∩E4| ≤ 3, we have |M0∩E4| ≤ 1. Since u0 ∈ V (Q0

4), without loss
of generality we may assume u0 ∈ V (Q0L

3 ). Now u1 ∈ V (Q1L
3 ). We distinguish

two cases to consider.
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Figure 3. Q5 splits into four 3-dimensional subcubes Q0L
3
, Q0R

3
, Q1L

3
and Q1R

3
.

Subcase 3.1. v0 ∈ V (Q0R
3 ). Now v1 ∈ V (Q1R

3 ).

Subcase 3.1.1. M0∩E4 = ∅. Apply Lemma 1.2 to find a Hamiltonian cycle C1

in Q1
4 passing through M1. Since u1 has only one neighbor in Q1R

3 , we may choose
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a neighbor x1 of u1 on C1 such that x1 ∈ V (Q1L
3 ). Similarly, we may choose a

neighbor y1 of v1 on C1 such that y1 ∈ V (Q1R
3 ). Since {u0u1, v0v1} ⊆ M , we

have {u1x1, v1y1} ∩ M = ∅. Since p(u0) 6= p(x0) and M0L is a matching in
Q0L

3 − u0, by Lemma 2.2 there exists a Hamiltonian path Pu0x0
in Q0L

3 passing
through M0L. Similarly, there exists a Hamiltonian path Pv0y0 in Q0R

3 passing
through M0R. Hence Pu0x0

+Pv0y0 +C1 + {u0u1, x0x1, v0v1, y0y1}− {u1x1, v1y1}
is a Hamiltonian cycle in Q5 passing through M , see Figure 4.
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Figure 4. Illustration for Subcase 3.1.1.

Subcase 3.1.2. |M0 ∩ E4| = 1. Now 1 ≤ |M1 ∩ E4| ≤ 2. Let M0 ∩ E4 =
{s0Ls0R}, where s0δ ∈ V (Q0δ

3 ). Since p(u0) = p(v0) and p(s0L) 6= p(s0R), without
loss of generality, we may assume p(u0) = p(v0) = p(s0L) 6= p(s0R).

First, we claim that there exists a Hamiltonian cycle C1 inQ1
4 passing through

M1 such that the two neighbors of v1 on C1 both belong to V (Q1R
3 ).

If |M1 ∩E4| = 2, then |M ∩E4| = 3. So |M ∩Ei| = 3 for every i ∈ [4]. Since
|Mα| ≤ 6 for every α ∈ {0, 1} and |M0|+|M1| =

∑
i∈[4] |M∩Ei|, we have |Mα| = 6

for every α ∈ {0, 1}. Let M1 ∩ E4 = {a1La1R, b1Lb1R}, where a1δ, b1δ ∈ V (Q1δ
3 ).

Then p(a1δ) 6= p(b1δ) for every δ ∈ {L,R}. (Otherwise, if p(a1δ) = p(b1δ), then
|M1δ| ≤ 2. Moreover, either p(u1) = p(a1L) = p(b1L) or p(v1) = p(a1R) = p(b1R),
so |M1L| ≤ 1 or |M1R| ≤ 1. Thus, |M1| ≤ 2 + 1 + 2 = 5, a contradiction).

If |M1 ∩ E4| = 1, let M1 ∩ E4 = {a1La1R}, where a1δ ∈ V (Q1δ
3 ). Since a1R

has three neighbors in Q1R
3 , we may choose a neighbor b1R of a1R in Q1R

3 such
that b1R 6= v1. Now p(a1δ) 6= p(b1δ) for every δ ∈ {L,R}.

For the above two cases, since M1δ is a matching in Q1δ
3 − a1δ, by Lemma

2.2 there exist Hamiltonian paths Pa1δb1δ in Q1δ
3 passing through M1δ for every

δ ∈ {L,R}. Let C1 = Pa1Lb1L + Pa1Rb1R + {a1La1R, b1Lb1R}. In the former case,
since {v0v1, a1La1R, b1Lb1R} ⊆ M , we have v1 /∈ {a1R, b1R}. In the latter case,
since {v0v1, a1La1R} ⊆ M , we have v1 6= a1R, and therefore, v1 /∈ {a1R, b1R}.
Hence C1 is a Hamiltonian cycle in Q1

4 passing through M1 such that the two
neighbors of v1 on C1 both belong to V (Q1R

3 ), see Figure 5(1).
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Next, choose a neighbor x1 of u1 on C1 such that x1 ∈ V (Q1L
3 ) and choose a

neighbor y1 of v1 on C1 such that y0 6= s0R. Since M0R is a matching in Q0R
3 −v0,

by Lemma 2.2 there exists a Hamiltonian path Pv0y0 in Q0R
3 passing through

M0R, see Figure 5(2). Since s0R /∈ {v0, y0}, we may choose a neighbor t0R of s0R
on Pv0y0 such that t0L 6= x0. Now u0, x0, s0L, t0L are pairwise distinct vertices
in Q0L

3 , and p(u0) = p(s0L) 6= p(x0) = p(t0L), and d(u0, x0) = d(s0L, t0L) =
1. Since M0L is a matching in Q0L

3 − {u0, s0L}, by Lemma 2.1 there exists
a spanning 2-path Pu0x0

+ Ps0Lt0L in Q0L
3 passing through M0L. Hence Pu0x0

+
Ps0Lt0L+Pv0y0+C1+{u0u1, x0x1, v0v1, y0y1, s0Ls0R, t0Lt0R}−{u1x1, v1y1, s0Rt0R}
is a Hamiltonian cycle in Q5 passing through M , see Figure 5(2).
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Figure 5. Illustration for Subcase 3.1.2.

Subcase 3.2. v0 ∈ V (Q0L
3 ). Now v1 ∈ V (Q1L

3 ). Let x1 be the unique vertex
in Q1L

3 satisfying d(x1, v1) = 3. Then d(x1, u1) = 1. Since M1 is a matching
in Q1

4 − u1, by Lemma 2.2 there exists a Hamiltonian path Pu1x1
in Q1

4 passing
through M1. Since v1 has only one neighbor in Q1R

3 , we may choose a neighbor y1
of v1 on Pu1x1

such that y1 ∈ V (Q1L
3 ). Since d(x1, v1) = 3, we have y1 6= x1. Then

u1, x1, v1, y1 are pairwise distinct vertices, and p(u1) = p(v1) 6= p(x1) = p(y1), and
d(u1, x1) = d(v1, y1) = 1, and the same properties also hold for the corresponding
vertices u0, x0, v0, y0. If we can find a spanning 2-path P ′

u0x0
+P ′

v0y0
in Q0

4 passing
through M0, then P ′

u0x0
+ P ′

v0y0
+ Pu1x1

+ {u0u1, x0x1, v0v1, y0y1} − v1y1 is a
Hamiltonian cycle in Q5 passing through M . So in the following, we only need
to show that the desired spanning 2-path P ′

u0x0
+ P ′

v0y0
exists. We distinguish

several cases to consider.

Subcase 3.2.1. |M0 ∩E4| = 1. Since M0L is a matching in Q0L
3 − {u0, v0}, by

Lemma 2.1 there exists a spanning 2-path Pu0x0
+ Pv0y0 in Q0L

3 passing through
M0L. Let M0 ∩ E4 = {s0Ls0R}, where s0δ ∈ V (Q0δ

3 ). Without loss of generality
assume s0L ∈ V (Pv0y0). Choose a neighbor t0L of s0L on Pv0y0 . Since s0Ls0R ∈ M ,
we have s0Lt0L /∈ M . Since M0R is a matching in Q0R

3 −s0R, by Lemma 2.2 there
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exists a Hamiltonian path Ps0Rt0R in Q0R
3 passing through M0R. Let P ′

u0x0
=

Pu0x0
and P ′

v0y0
= Pv0y0 +Ps0Rt0R +{s0Ls0R, t0Lt0R}−s0Lt0L. Then P ′

u0x0
+P ′

v0y0

is the desired spanning 2-path in Q0
4, see Figure 6.
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Figure 6. Illustration for Subcase 3.2.1.

Subcase 3.2.2. M0 ∩ E4 = ∅. It suffices to consider the case that M0L is
maximal in Q0L

3 − {u0, v0} and M0R is maximal in Q0R
3 . In Q0L

3 , since p(u0) =
p(v0), we have u0, v0 are different in two positions, so there is one possibility
of {u0, v0} up to isomorphism. Since d(x0, v0) = 3, the vertex x0 is fixed by v0.
Since d(y0, v0) = 1, there are two choices of y0 up to isomorphism. Thus, there are
two possibilities of {u0, v0, x0, y0} up to isomorphism, see Figure 7(a)(b). When
{u0, v0, x0, y0} is the case (a), since M0L is a maximal matching in Q0L

3 −{u0, v0},
there are three possibilities of M0L up to isomorphism, see Figure 7(1)–(3). When
{u0, v0, x0, y0} is the case (b), there are seven possibilities of M0L, see Figure
7(4)–(10). In Q0R

3 , there are three non-isomorphic maximal matchings, denoted
by P1, P2 and P3, see Figure 8.
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Figure 7. All possibilities of {u0, v0, x0, y0,M0L} up to isomorphism.
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Before the proof, we point out that if M0R is isomorphic to the matching P1

or P2, then there exists a Hamiltonian cycle in Q0R
3 passing through M0R ∪ {e}

for any e /∈ M0R, see Figure 9.

1( )P
2( )P 3( )P

Figure 8. Three non-isomorphic maximal matchings in Q0R
3

.

1( 1)P - 1( 2)P -
1( 3)P - 2( 1)P - 2( 2)P -

Figure 9. Hamiltonian cycles passing through M0R ∪ {e} for any e /∈ M0R in Q0R
3

when

M0R is isomorphic to P1 or P2.

First, suppose that M0R is isomorphic to P1. Since M0L is a matching in
Q0L

3 − {u0, v0}, by Lemma 2.1 there exists a spanning 2-path Pu0x0
+ Pv0y0 in

Q0L
3 passing through M0L. Since |E(Pu0x0

+ Pv0y0)| = 6 > |M0L| + |M0R|, there
exists an edge s0Lt0L ∈ E(Pu0x0

+Pv0y0) \M0L such that s0Rt0R /∈ M0R. Choose
a Hamiltonian cycle C0R in Q0R

3 passing through M0R∪{s0Rt0R}. Hence Pu0x0
+

Pv0y0 +C0R + {s0Ls0R, t0Lt0R} − {s0Lt0L, s0Rt0R} is the desired spanning 2-path
in Q0

4. (Note that the construction is similar to Subcase 3.2.1, so the readers may
refer to the construction in Figure 6.)

Next, suppose that M0R is isomorphic to P2. We say that a set S of edges
crosses a position i if S∩Ei 6= ∅. If {u0, v0, x0, y0,M0L} is isomorphic to one of the
cases (2)–(10) in Figure 7, then we may choose a spanning 2-path Pu0x0

+ Pv0y0

in Q0L
3 such that the set E(Pu0x0

+ Pv0y0) \ M0L crosses at least two positions,
see Figure 10(2)–(10). Since all the edges in M0R lie in the same position, there
exists an edge s0Lt0L ∈ E(Pu0x0

+ Pv0y0) \ M0L such that s0Rt0R /∈ M0R. If
{u0, v0, x0, y0,M0L} is isomorphic to the case (1) in Figure 7, then we may
choose two different spanning 2-paths Pu0x0

+ Pv0y0 in Q0L
3 such that the two

sets E(Pu0x0
+Pv0y0) \M0L cross two different positions, see Figure 10(1–1), (1–

2), and therefore, at least one of them is different from the position in which M0R

lies. Thus, we may choose a suitable spanning 2-path Pu0x0
+ Pv0y0 such that

there exists an edge s0Lt0L ∈ E(Pu0x0
+ Pv0y0) \ M0L and s0Rt0R /∈ M0R. The

remaining construction is similar to the above case.

Last, suppose that M0R is isomorphic to P3. Without loss of generality, we
may assume M0R ⊆ (E2 ∪ E3).
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If {u0, v0, x0, y0,M0L} is isomorphic to the case (5) or (8) in Figure 7, we may
choose a spanning 2-path Pu0x0

+ Pv0y0 in Q0L
3 passing through M0L such that

(E(Pu0x0
+Pv0y0)\M0L)∩E1 6= ∅, see Figure 11. Let s0Lt0L ∈ (E(Pu0x0

+Pv0y0)\
M0L) ∩ E1. Then s0Rt0R ∈ E1. One can verify that there exists a Hamiltonian
cycle C0R in Q0R

3 passing through M0R ∪ {s0Rt0R}. Hence Pu0x0
+Pv0y0 +C0R +

{s0Ls0R, t0Lt0R} − {s0Lt0L, s0Rt0R} is the desired spanning 2-path in Q0
4.
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Figure 10. Spanning 2-paths Pu0x0
+ Pv0y0

in Q0L
3

with the possible edges s0Lt0L
lined by \\.
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Figure 11. The possible spanning 2-paths Pu0x0
+ Pv0y0

such that

(E(Pu0x0
+ Pv0y0

) \M0L) ∩ E1 6= ∅.

If {u0, v0, x0, y0,M0L} is isomorphic to one of the cases (3), (6), (7) or (10)
in Figure 7, then choose a spanning 2-path Pu0x0

+Pv0y0 in Q0L
3 passing through

M0L, see Figure 12(3), (6), (7), (10). If (E(Pu0x0
+ Pv0y0) \M0L) ∩E1 6= ∅, then

the proof is similar to the above case. If (E(Pu0x0
+Pv0y0) \M0L)∩E1 = ∅, then

the set E(Pu0x0
+Pv0y0) \M0L crosses the positions 2 and 3, and therefore, M0R

has two choices for every case, see Figure 12. Then we can find a spanning 2-path
P ′

u0x0
+ P ′

v0y0
in Q0

4 passing through M0, see Figure 12.
If {u0, v0, x0, y0,M0L} is isomorphic to one of the cases (1), (2), (4) or (9)

in Figure 7, we observe that there exist two vertices in V (Q0L
3 ) at distance 3,

denoted by s0L, t0L, such that there is a spanning 2-path Pu0x0
+ Pv0y0 in Q0L

3 +
s0Lt0L passing through M0L ∪ {s0Lt0L}, see Figure 13. Next, we can verify that
there exists a Hamiltonian path Ps0Rt0R in Q0R

3 passing through M0R. Hence
Pu0x0

+Pv0y0 +Ps0Rt0R +{s0Ls0R, t0Lt0R}− s0Lt0L is the desired spanning 2-path
in Q0

4.
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Case 4. |M ∩E5| = 3. Let M ∩E5 = {u0u1, v0v1, w0w1}, where uα, vα, wα ∈
V (Qα

4 ). Now |M ∩ Ei| = 3 for every i ∈ [5] and |M | = 15. Hence there are two
vertices of {uα, vα, wα} in one partite set and one vertex in the other partite set.
Otherwise, if p(uα) = p(vα) = p(wα), then |Mα| ≤ 5, and therefore, |M | ≤ 13, a
contradiction. Without loss of generality, we may assume p(uα) = p(vα) 6= p(wα).
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Figure 12. Spanning 2-paths P ′

u0x0
+ P ′

v0y0
in Q0

4
passing through M0.
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Figure 13. Spanning 2-paths Pu0x0
+ Pv0y0

in Q0L
3

+ s0Lt0L passing through

M0L ∪ {s0Lt0L}.

Split Qα
4 into two 3-cubes QαL

3 and QαR
3 at some position k such that uα ∈

V (QαL
3 ) and vα ∈ V (QαR

3 ). Without loss of generality, we may assume k = 4.
Since p(uα) = p(vα) 6= p(wα), by symmetry we may assume wα ∈ V (QαL

3 ). Since
|M0∩E4|+|M1∩E4| = |M∩E4| = 3, by symmetry we may assume |M0∩E4| ≤ 1.
Let Mαδ = Mα ∩ E(Qαδ

3 ) for every δ ∈ {L,R}.

Subcase 4.1. M0 ∩ E4 = ∅. Since p(u1) 6= p(w1) and M1 is a matching in
Q1

4 − u1, by Lemma 2.2 there exists a Hamiltonian path Pu1w1
in Q1

4 passing
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through M1. Since v1 has only one neighbor in Q1L
3 , we may choose a neighbor

y1 of v1 on Pu1w1
such that y1 ∈ V (Q1R

3 ). Now y0 ∈ V (Q0R
3 ) and p(u0) = p(v0) 6=

p(w0) = p(y0). Since M0L is a matching in Q0L
3 − u0 and M0R is a matching in

Q0R
3 −v0, by Lemma 2.2 there exist Hamiltonian paths Pu0w0

in Q0L
3 and Pv0y0 in

Q0R
3 passing through M0L and M0R, respectively. Hence Pu1w1

+Pu0w0
+Pv0y0 +

{u0u1, w0w1, v0v1, y0y1} − v1y1 is a Hamiltonian cycle in Q5 passing through M ,
see Figure 14.
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0y 1y
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Figure 14. Illustration for Subcase 4.1.

Subcase 4.2. |M0 ∩ E4| = 1. Now |M1 ∩ E4| = 2. Let M0 ∩ E4 = {s0Ls0R}
and M1 ∩ E4 = {a1La1R, b1Lb1R}, where s0δ ∈ V (Q0δ

3 ) and a1δ, b1δ ∈ V (Q1δ
3 ).

Since |M | = 15, Q5 has exactly two vertices uncovered by M , one in Q0L
3 and the

other in Q1R
3 . Thus, p(a1L) 6= p(b1L), and p(v0) 6= p(s0R), and M1L is a perfect

matching in Q1L
3 − {u1, w1, a1L, b1L}. Since p(u1) 6= p(w1) and p(a1L) 6= p(b1L),

without loss of generality, we may assume p(u1) = p(b1L) 6= p(w1) = p(a1L).
Thus, p(v1) = p(a1R) 6= p(b1R).
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Figure 15. Illustration for Subcase 4.2.

Since p(u0) 6= p(w0) and M0L is a matching in Q0L
3 − u0, by Lemma 2.2

there exists a Hamiltonian path Pu0w0
in Q0L

3 passing through M0L, see Figure
15. Since s0L /∈ {u0, w0}, we may choose a neighbor t0L of s0L on Pu0w0

such
that t0R 6= v0. Since p(s0R) 6= p(t0R) and M0R is a matching in Q0R

3 − s0R,
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by Lemma 2.2 there exists a Hamiltonian path Ps0Rt0R in Q0R
3 passing through

M0R, see Figure 15. Since v0 /∈ {s0R, t0R}, we may choose a neighbor y0 of v0
on Ps0Rt0R such that y1 6= b1R. Now v1, y1, a1R, b1R are pairwise distinct vertices,
and p(v1) = p(a1R) 6= p(y1) = p(b1R), and d(v1, y1) = 1, and M1R is a matching
in Q1R

3 − {v1, a1R}.
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1
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1LM
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R

R

R

R

1( )w

1( )La

Figure 16. The spanning 2-path Pu1a1L
+ Pw1b1L (or Pu1w1

+ Pa1Lb1L) in Q1L
3
.

If d(a1R, b1R) = 1, then by Lemma 2.1 there is a spanning 2-path Pv1y1 +
Pa1Rb1R in Q1R

3 passing through M1R, see Figure 17(1). Since M1L is a perfect
matching in Q1L

3 − {u1, w1, a1L, b1L}, we have M1L ∪ {u1w1, a1Lb1L} is a perfect
matching in K(Q1L

3 ). By Theorem 1.1, there exists a perfect matching R in Q1L
3

such that M1L∪{u1w1, a1Lb1L}∪R forms a Hamiltonian cycle in K(Q1L
3 ). Hence

M1L∪R forms a spanning 2-path in Q1L
3 . Note that each path of the spanning 2-

path is an (R,M1L)-alternating path beginning with an edge in R and ending with
an edge in R. So the number of vertices in each path is even. Since Q5 is a bipar-
tite graph, the two endpoints of each path have different parities. Hence one path
joins the vertices u1 and a1L, and the other path joins the vertices w1 and b1L,
see Figure 16 for example. Denote the spanning 2-path by Pu1a1L +Pw1b1L . Note
that s0Lt0L /∈ M and v0y0 /∈ M . Hence Pu0w0

+Ps0Rt0R+Pu1a1L+Pw1b1L+Pv1y1+
Pa1Rb1R + {u0u1, w0w1, v0v1, y0y1, a1La1R, b1Lb1R, s0Ls0R, t0Lt0R}−{v0y0, s0Lt0L}
is a Hamiltonian cycle in Q5 passing through M , see Figure 17(1).
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Figure 17. Illustration for Subcase 4.2.
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If d(a1R, b1R) = 3, then d(v1, b1R) = d(a1R, y1) = 1. Since M1R is a matching
in Q1R

3 − {v1, a1R}, by Lemma 2.1 there is a spanning 2-path Pv1b1R + Pa1Ry1

in Q1R
3 passing through M1R, see Figure 17(2). Since M1L ∪ {u1a1L, w1b1L} is a

perfect matching in K(Q1L
3 ), similar to the above case, there is a spanning 2-path

Pu1w1
+ Pa1Lb1L in Q1L

3 passing through M1L. Hence Pu0w0
+ Ps0Rt0R + Pv1b1R +

Py1a1R+Pu1w1
+Pa1Lb1L+{u0u1, w0w1, v0v1, y0y1, a1La1R, b1Lb1R, s0Ls0R, t0Lt0R}−

{v0y0, s0Lt0L} is a Hamiltonian cycle in Q5 passing through M , see Figure 17(2).
The proof of Theorem 1.3 is complete.
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