A NOTE ON THE RAMSEY NUMBER OF EVEN WHEELS VERSUS STARS

Sh. Haghi and H.R. Maimani
Mathematics Section, Department of Basic Sciences
Shahid Rajaee Teacher Training University P.O. BOX 16783-163, Tehran, Iran
School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
P.O. BOX 19395-5746, Tehran, Iran
e-mail: sh.haghi@yahoo.com

Abstract

For two graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer N, such that for any graph on N vertices, either G contains G_{1} or \bar{G} contains G_{2}. Let S_{n} be a star of order n and W_{m} be a wheel of order $m+1$. In this paper, we will show $R\left(W_{n}, S_{n}\right) \leq 5 n / 2-1$, where $n \geq 6$ is even. Also, by using this theorem, we conclude that $R\left(W_{n}, S_{n}\right)=5 n / 2-2$ or $5 n / 2-1$, for $n \geq 6$ and even. Finally, we prove that for sufficiently large even n we have $R\left(W_{n}, S_{n}\right)=5 n / 2-2$.

Keywords: Ramsey number, star, wheel, weakly pancyclic.
2010 Mathematics Subject Classification: 05C55, 05D10.

1. Introduction and Background

Let $G=(V, E)$ denote a finite simple graph on the vertex set V and the edge set E. For the terms undefined here you can see [2]. The subgraph of G induced by $S \subseteq V, G[S]$, is a graph with vertex set S and two vertices of S are adjacent in $G[S]$ if and only if they are adjacent in G. The complement of a graph G is denoted by \bar{G}. For a vertex $v \in V(G)$, we denote the set of all neighbors of v by $N_{G}(v)$ (or $N(v)$). The degree of a vertex v in a graph G, denoted by $d e g_{G}(v)$ (or $\operatorname{deg}(v)$), is the size of the set $N(v)$. The minimum degree, maximum degree and clique number of G are denoted by $\delta(G), \Delta(G)$ and $\omega(G)$, respectively. The girth of graph $G, g(G)$, is the length of shortest cycle. Also, the circumference of graph
G is the length of longest cycle in G and is denoted by $c(G)$. A graph G of order n is called Hamiltonian, pancyclic and weakly pancyclic if it contains C_{n}, cycles of every length between 3 and n, and cycles of every length l with $g(G) \leq l \leq c(G)$, respectively. We say that G is a join graph if G is the complete union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. In other words, $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2} \cup\left\{u v: u \in V_{1}, v \in V_{2}\right\}$. If G is the join graph of G_{1} and G_{2}, we shall write $G=G_{1}+G_{2}$. A wheel W_{m} is a graph on $m+1$ vertices obtained from C_{m} by adding one vertex which is called the hub and joining each vertex of C_{m} to the hub with the edges called the rim of the wheel. In other words, $W_{m}=C_{m}+K_{1}$. A star S_{n} is the complete bipartite graph $K_{1, n-1}$.

For two graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest positive integer N such that for every graph G on N vertices, G contains G_{1} as a subgraph or the complement of G contains G_{2} as a subgraph. Chvátal and Harary in [4] proved the following lower bound for Ramsey numbers:

$$
R(G, H) \geq(\chi(G)-1) \cdot(l(H)-1)+1,
$$

where $l(H)$ is the number of vertices in the largest connected component of H and $\chi(G)$ is the chromatic number of G.

In this note, we consider the Ramsey number for stars versus wheels. The Harary lower bound for $R\left(W_{m}, S_{n}\right)$ is $3 n-2$ or $2 n-1$, where m is odd or even, respectively. There are many results about this Ramsey number when m is odd. Chen et al. in the year 2004 proved that if $m \leq n+1$ and m is odd, then $R\left(W_{m}, S_{n}\right)=3 n-2$ which is the Harary lower bound (see [3]). Also, one year later, Hasmawati et al. extended this bound for m. They showed that $R\left(W_{m}, S_{n}\right)=3 n-2$, for the case $m \leq 2 n-3$ in [8]. But, one can see in [7], if $n \geq 2$ and $m \geq 2 n-2$, then $R\left(W_{m}, S_{n}\right)=n+m-1$, where m is odd.

Also, one can find many results about $R\left(W_{m}, S_{n}\right)$ when m is even. Surahmat and Baskoro in [12] verified this Ramsey number for the case $m=4$ in 2001. They proved that $R\left(W_{4}, S_{n}\right)=2 n-1$ if $n \geq 3$ and odd, and $R\left(W_{4}, S_{n}\right)=2 n+1$ if $n \geq 4$ and even. Korolova in [9] found a lower bound which improved the Harary lower bound. In fact Korolova proved that $R\left(W_{m}, S_{n}\right) \geq 2 n+1$ for all $n \geq m \geq 6$ and m even. Also, Chen et al. in [3] showed that this lower bound is sharp for $m=6$. In other words, they proved that $R\left(W_{6}, S_{n}\right)=2 n+1$. It was proved in [14] that $R\left(W_{8}, S_{n}\right)=2 n+2$ for $n \geq 6$ and even in the year 2008. Also, one year later, the exact value of $R\left(W_{8}, S_{n}\right)$ for odd n was determined. In fact, it was shown in [13] that $R\left(W_{8}, S_{n}\right)=2 n+1$ for $n \geq 5$ and odd in the year 2009.

Li and Schiermeyer in [10] indicated two following theorems in which they obtained a new lower bound and showed that for some cases this bound is sharp.

Theorem 1 [10]. If $6 \leq m \leq 2 n-4$ and m is even, then

$$
R\left(W_{m}, S_{n}\right) \geq \begin{cases}2 n+m / 2-3 & \text { if } n \text { is odd and } m / 2 \text { is even } \\ 2 n+m / 2-2 & \text { otherwise. }\end{cases}
$$

Theorem 2 [10]. If $n+1 \leq m \leq 2 n-4$ and m is even, then

$$
R\left(W_{m}, S_{n}\right)= \begin{cases}2 n+m / 2-3 & \text { if } n \text { is odd and } m / 2 \text { is even } \\ 2 n+m / 2-2 & \text { otherwise. }\end{cases}
$$

But for some cases, $R\left(W_{m}, S_{n}\right)$, where m is even, is still open. One of these cases is when $m=n$. It was shown in [9] that $R\left(W_{n}, S_{n}\right) \leq 3 n-3$ when n is even. In this paper, we will improve this upper bound and prove the following.

Theorem 3. $R\left(W_{n}, S_{n}\right) \leq 5 n / 2-1$, where $n \geq 6$ is even.
Finally, we have the following theorem.
Theorem 4. For sufficiently large even n we have $R\left(W_{n}, S_{n}\right) \leq 5 n / 2-2$.

2. Preliminary Lemmas and Theorems

To prove Theorem 3, we need some theorems and lemmas.
Lemma 5 (Brandt et al. [1]). Every non-bipartite graph G of order n with $\delta(G)$ $\geq(n+2) / 3$ is weakly pancyclic with $g(G)=3$ or $g(G)=4$.

Lemma 6 (Dirac [5]). Let G be a 2-connected graph of order $n \geq 3$ with $\delta(G)=\delta$. Then $c(G) \geq \min \{2 \delta, n\}$.
Theorem 7 (Faudree and Schelp [6], Rosta [11]).
$R\left(C_{n}, C_{m}\right)= \begin{cases}2 n-1 & \text { for } 3 \leq m \leq n, m \text { odd }(n, m) \neq(3,3), \\ n+m / 2-1 & \text { for } 4 \leq m \leq n, m, n \text { even }(n, m) \neq(4,4), \\ \max \{n+m / 2-1,2 m-1\} & \text { for } 4 \leq m<n, m \text { even and } n \text { odd. }\end{cases}$
Lemma 8 [2]. Let G be a bipartite graph of order n (n even) with bipartition (X, Y) and $|X|=|Y|=n / 2$. If for all distinct nonadjacent vertices $u \in X$ and $v \in Y$, we have $\operatorname{deg}(u)+\operatorname{deg}(v)>n / 2$, then G is Hamiltonian.

3. Proof of Theorem 3

From now on, let G be a graph of order $N=5 n / 2-1$, where $n \geq 6$ and n is even, such that neither G contains W_{n} nor its complement, \bar{G}, contains S_{n}. Also,
for every vertex $t \in V(G)$ consider $H_{t}=G[N(t)]$ and $\overline{H_{t}}=\bar{G}[N(t)]$. Since \bar{G} has no $S_{n}, \operatorname{deg}_{\bar{G}}(v) \leq n-2$, for each vertex $v \in V(G)$. Thus, $\delta(G) \geq 3 n / 2$. In the middle of the proof, we sometimes interrupt it and have some lemmas.

Let $v_{0} \in V(G)$ be an arbitrary vertex. There exists a $k \in\{0,1,2, \ldots, n-2\}$ such that $\operatorname{deg}_{G}\left(v_{0}\right)=3 n / 2+k$, since $\delta(G) \geq 3 n / 2$. Thus, the order of $H_{v_{0}}=$ $G\left[N\left(v_{0}\right)\right]$ is $3 n / 2+k$. By the second part of Theorem 7, we have $\left|V\left(H_{v_{0}}\right)\right|=$ $3 n / 2+k \geq R\left(C_{n}, C_{s}\right)$, where $s=2 l$, and l is an integer such that $4 \leq 2 l \leq$ $n+k+1$. (Note that in Theorem 3 we have $n \geq 6$, so the case $(n, s)=(4,4)$ does not occur for $R\left(C_{n}, C_{s}\right)$ in Theorem 7). Thus, either $H_{v_{0}}$ contains C_{n} or $\bar{H}_{v_{0}}$ contains C_{s}. But if $H_{v_{0}}$ contains C_{n}, then G contains W_{n}, which is a contradiction. Hence we have the following corollary.

Corollary 9. Let $v \in V(G)$ and k be an element in the set $\{0,1, \ldots, n-2\}$ such that $\left|V\left(H_{v}\right)\right|=3 n / 2+k$. Then \bar{H}_{v} contains $C_{2 l}$ for all integers l such that $4 \leq 2 l \leq n+k+1$.

Proposition 10. $\omega(\bar{G}) \leq n-2$ and $\omega(G) \leq n-1$.
Proof. It is clear that $\omega(\bar{G}) \leq n-1$, since $\Delta(\bar{G}) \leq n-2$. Suppose $\omega(\bar{G})=$ $n-1$ and $T=\left\{v_{1}, \ldots, v_{n-1}\right\}$ is a clique in \bar{G}. For any $v \in V-T, N_{\bar{G}}(v) \cap T=\emptyset$, otherwise $\bar{G}[T \cup\{v\}]$ contains S_{n}. Now consider $v \in V-T$ and let k be an element in the set $\{0,1, \ldots, n-2\}$ such that $\left|V\left(H_{v}\right)\right|=3 n / 2+k$. Since $N_{\bar{G}}(v) \cap T=\emptyset$, the set $V\left(H_{v}\right)$ contains the set T. It means that $\bar{G}[T]$ is a connected component of \bar{H}_{v} in the graph \bar{G}. On the other hand, by Corollary $9, \bar{H}_{v}$ contains a cycle C of length $2 l$, where $l=\lfloor(n+k+1) / 2\rfloor$. Note that $C \nsubseteq T$, since $2 l>n-1$. Thus, $C \subseteq \bar{H}_{v}-T$. But $\bar{H}_{v}-T$ has $n / 2+k+1$ vertices, which is less than $2 l$, a contradiction. Hence $\omega(\bar{G}) \leq n-2$. For the second part, assume to the contrary, G contains K_{n} and $H=G\left[V-K_{n}\right]$. Then $\left|N_{G}(v) \cap K_{n}\right| \geq 2$ for all $v \in V(H)$, otherwise $\operatorname{deg}_{\bar{G}}(v) \geq n-1$, which is a contradiction. If $\left|N_{G}(v) \cap K_{n}\right|=2$ for all $v \in V(H)$, then $H=K_{3 n / 2-1}$, since $\delta(G) \geq 3 n / 2$. But $K_{3 n / 2-1}$ contains W_{n}, a contradiction. So, there is a vertex $u \in V(H)$ such that $\left|N_{G}(u) \cap K_{n}\right| \geq 3$. But $\{u\} \cup K_{n}$ contains W_{n}, which is a contradiction. Thus $\omega(G) \leq n-1$.

We can divide the proof into some cases and subcases.
Case 1. There is a vertex $v \in V(G)$ for which H_{v} is bipartite. Let H_{v} be a bipartite graph, with bipartition $\left(X_{v}, Y_{v}\right)$, of order $3 n / 2+k$ such that $k \in\{0,1$, $\ldots, n-2\}$. Without loss of generality, suppose that $\left|X_{v}\right| \leq\left|Y_{v}\right|$. Thus, by Proposition 10, we have $n / 2+k+2 \leq\left|X_{v}\right| \leq 3 n / 4+k / 2$ and $3 n / 4+k / 2 \leq$ $\left|Y_{v}\right| \leq n-2$.

Let $\left|X_{v}\right|=n / 2+s$, where s is an integer such that $k+2 \leq s \leq n / 4+k / 2$. Then $\left|Y_{v}\right|=n+k-s$. Since $\Delta(\bar{G}) \leq n-2$ and $\left|V\left(H_{v}\right)\right|=3 n / 2+k$, we conclude $\delta\left(H_{v}\right) \geq n / 2+k+1$. Let X_{v}^{\prime} and Y_{v}^{\prime} be obtained from X_{v} and Y_{v} by
deleting s and $n / 2+k-s$ arbitrary vertices, respectively, and let $H_{v}^{\prime}=\left(X_{v}^{\prime}, Y_{v}^{\prime}\right)$. Thus, $\left|X_{v}^{\prime}\right|=\left|Y_{v}^{\prime}\right|=n / 2$ and $\delta\left(X_{v}^{\prime}\right) \geq s+1$ and $\delta\left(Y_{v}^{\prime}\right) \geq n / 2+k+1-s$ in H_{v}^{\prime}. Hence for each two vertices $u_{1} \in X_{v}^{\prime}$ and $u_{2} \in Y_{v}^{\prime}$, we have $\operatorname{deg}\left(u_{1}\right)+\operatorname{deg}\left(u_{2}\right) \geq$ $n / 2+k+2$ and by Lemma $8, H_{v}^{\prime}$ contains C_{n}. It means that G contains W_{n}, which is a contradiction.

Figure 1. The disjoint sets X_{t}, Y_{t}, X_{u} and X_{v}.
Case 2. For every vertex $t \in V(G), H_{t}$ is non-bipartite.
Subcase 2.1. Suppose H_{t} is disconnected for all $t \in V(G)$. Let $t \in V(G)$ be an arbitrary vertex and $\left|V\left(H_{t}\right)\right|=3 n / 2+k$, where $k \in\{0,1,2, \ldots, n-2\}$. We show that H_{t} has exactly two connected components. Suppose to the contrary, H_{1}, H_{2} and H_{3} are three connected components of H_{t}. Since $\delta\left(H_{t}\right) \geq n / 2+k+1$, we conclude $\delta\left(H_{i}\right) \geq n / 2+k+1$ for $i=1,2,3$. Hence $\left|V\left(H_{t}\right)\right|>3 n / 2+k$, which is a contradiction. Now, let X_{t}, Y_{t} be the set of vertices of two components of H_{t}. Assume that $\left|X_{t}\right| \leq\left|Y_{t}\right|$. We choose two adjacent vertices u and v in Y_{t}, since $\delta\left(H_{t}\right) \geq n / 2+k+1$. Let $\left|V\left(H_{u}\right)\right|=3 n / 2+k^{\prime}$ and $\left|V\left(H_{v}\right)\right|=3 n / 2+k^{\prime \prime}$, where $k^{\prime}, k^{\prime \prime} \in\{0,1,2, \ldots, n-2\}$. Also, let X_{u}, Y_{u} and X_{v}, Y_{v} be the sets of vertices of two components of H_{u} and H_{v}, respectively. Since H_{t} and H_{u} are disconnected, X_{u} or Y_{u} is disjoint from X_{t} and Y_{t}. To see this, with no loss of generality, suppose that v is contained in Y_{u}. Thus, $t \in Y_{u}$ and hence $X_{u} \cap Y_{t}=X_{u} \cap X_{t}=\emptyset$. Similarly, X_{v} or Y_{v}, say X_{v}, is disjoint from X_{t} and Y_{t}. Thus, we have $Y_{t} \cap X_{u}=Y_{t} \cap X_{v}=X_{t} \cap X_{u}=X_{t} \cap X_{v}=\emptyset$. Also, $X_{u} \cap X_{v}=\emptyset$; otherwise if $l \in X_{u} \cap X_{v}$, then l is adjacent to both u and v. But $u \in Y_{v}$ implies that $l \in Y_{v}$. It means, $X_{v} \cap Y_{v} \neq \emptyset$ which is a contradiction (see Figure 1). Thus, $X_{u} \cap X_{v}=\emptyset$. Hence $|V(G)| \geq\left|V\left(H_{t}\right)\right|+\left|X_{u}\right|+\left|X_{v}\right|$ which means $|V(G)| \geq(3 n / 2+k)+\left(n / 2+k^{\prime}+2\right)+\left(n / 2+k^{\prime \prime}+2\right)>5 n / 2-1$, which is a contradiction.

Subcase 2.2. Suppose H_{t} is connected for some $t \in V(G)$. Assume that there exists a vertex $u \in V(G)$ for which H_{u} is 2-connected and $\left|V\left(H_{u}\right)\right|=3 n / 2+k$ for some $k \in\{0,1,2, \ldots, n-2\}$. Thus, $\delta\left(H_{u}\right) \geq n / 2+k+1 \geq(3 n / 2+k+2) / 3$
and by Lemma $5, H_{u}$ is weakly pancyclic with $g\left(H_{u}\right)=3$ or $g\left(H_{u}\right)=4$. Also, by Lemma 6, $c\left(H_{u}\right) \geq \min \left\{2 \delta\left(H_{u}\right), 3 n / 2+k\right\}$. Hence $c\left(H_{u}\right) \geq n$ which implies that H_{u} contains C_{n}, a contradiction.

Now, assume each connected H_{t} contains a cut-vertex. Let u be a cutvertex of H_{t} and $\left|V\left(H_{t}\right)\right|=3 n / 2+k$. We show that $H_{t}-u$ has exactly two connected components. Suppose to the contrary, H_{1}, H_{2} and H_{3} are three connected components of $H_{t}-u$. Since $\delta\left(H_{t}\right) \geq n / 2+k+1, \delta\left(H_{i}\right) \geq n / 2+k$ for $i=1,2,3$. Hence $\left|V\left(H_{t}\right)\right|>3 n / 2+k$, which is a contradiction. Now, let s_{1} be a cut-vertex of H_{t} and X_{t}, Y_{t} be the sets of vertices of two components of $H_{t}-s_{1}$. Assume that $\left|X_{t}\right| \leq\left|Y_{t}\right|$. We choose two adjacent vertices u and v in Y_{t}, since $\delta\left(H_{t}\right) \geq n / 2+k+1$. With no loss of generality, suppose that v is contained in Y_{u} and u is contained in Y_{v}. Thus, $t \in Y_{u} \cap Y_{v}$. Let s_{2} and s_{3} be the cut-vertices of H_{u} and H_{v}, respectively (if any of these cut-vertices did not exist, for instance s_{1}, then the corresponding subgraph, H_{t}, is disconnected and the procedure is the same as in Subcase 2.1) and $\left|V\left(H_{u}\right)\right|=3 n / 2+k^{\prime}$ and $\left|V\left(H_{v}\right)\right|=3 n / 2+k^{\prime \prime}$, where $k^{\prime}, k^{\prime \prime} \in\{0,1,2, \ldots, n-2\}$. Also, let X_{u}, Y_{u} and X_{v}, Y_{v} be the sets of vertices of two components of $H_{u}-s_{2}$ and $H_{v}-s_{3}$, respectively. Since $H_{t}-s_{1}, H_{u}-s_{2}$ and $H_{v}-s_{3}$ are disconnected, with the same statement of Subcase 2.1 and without loss of generality, we have $Y_{t} \cap X_{u}=Y_{t} \cap X_{v}=$ $X_{t} \cap X_{u}=X_{t} \cap X_{v}=X_{u} \cap X_{v}=\emptyset$ (see Figure 1). Hence by the fact that $s_{1} \notin X_{u} \cup X_{v}$ (since otherwise, if for instance $s_{1} \in X_{u}$, then $t \in X_{u}$ but $t \in Y_{u}$, a contradiction) we have $|V(G)| \geq\left|V\left(H_{t}-s_{1}\right)\right|+\left|X_{u}\right|+\left|X_{v}\right|+\left|\left\{s_{1}\right\}\right|$ which means $|V(G)| \geq(3 n / 2+k-1)+\left(n / 2+k^{\prime}+1\right)+\left(n / 2+k^{\prime \prime}+1\right)+1>5 n / 2-1$, which is a contradiction, and this completes the proof.

Now, by Theorems 1 and 3, the following corollary is obvious.
Corollary 11. For $n \geq 6$ and even, we have $R\left(W_{n}, S_{n}\right)=5 n / 2-2$ or $5 n / 2-1$.

4. Proof of Theorem 4

We say n is sufficiently large if there is a graph G of order n such that $\delta(G) \geq$ $n / 4+250$. In this section, we prove that for sufficiently large even n we have $R\left(W_{n}, S_{n}\right)=5 n / 2-2$. In order to prove this, we use following lemma.

Lemma 12 [1]. If G is a 2-connected non-bipartite graph of sufficiently large order n with $\delta(G)>2 n / 7$, then G is weakly pancyclic.

Let G be a graph of order $N=5 n / 2-2$, where n is sufficiently large and even such that neither G contains W_{n} nor its complement, \bar{G}, contains S_{n}. We define H_{t} for each $t \in V(G)$ similarly as in the proof of Theorem 3. Since \bar{G} has no $S_{n}, \delta(G) \geq 3 n / 2-1$. Let $v_{0} \in V(G)$ be an arbitrary vertex. There exists a
$k \in\{-1,0,1, \ldots, n-3\}$ such that $\operatorname{deg}_{G}\left(v_{0}\right)=3 n / 2+k$, since $\delta(G) \geq 3 n / 2-1$. (Here, k is the element of the set $\{-1,0,1, \ldots, n-3\}$. This is the only difference of this proof with the proof of Theorem 3). It is easy to check that Corollary 9 and Proposition 10 are true here.

We can divide the proof into some cases and subcases.
Case 1. There is a vertex $v \in V(G)$ for which H_{v} is bipartite. Let H_{v} be a bipartite graph with bipartition $\left(X_{v}, Y_{v}\right)$ of order $3 n / 2+k$ such that $k \in$ $\{-1,0,1, \ldots, n-3\}$. The sketch of the proof is the same as in Case 1 of the proof of Theorem 3.

Case 2. For every vertex $t \in V(G), H_{t}$ is non-bipartite.
Subcase 2.1. Suppose H_{t} is disconnected for all $t \in V(G)$. In Subcase 2.1 of Theorem 3, let k, k^{\prime} and $k^{\prime \prime}$ be in the set $\{-1,0, \ldots, n-3\}$. The rest of the proof is the same. Finally, we obtain $|V(G)| \geq(3 n / 2+k)+\left(n / 2+k^{\prime}+2\right)+$ $\left(n / 2+k^{\prime \prime}+2\right)>5 n / 2-2$, which is a contradiction.

Subcase 2.2. Suppose H_{t} is connected for some $t \in V(G)$. Assume that there exists a vertex $u \in V(G)$ for which H_{u} is 2-connected and $\left|V\left(H_{u}\right)\right|=3 n / 2+k$ for some $k \in\{-1,0,1, \ldots, n-3\}$. Thus, $\delta\left(H_{u}\right) \geq n / 2+k+1>2(3 n / 2+k) / 7$ and by Lemma $12, H_{u}$ is weakly pancyclic. Also, by Lemma $6, c\left(H_{u}\right) \geq \min \left\{2 \delta\left(H_{u}\right)\right.$, $3 n / 2+k\}$. Hence $c\left(H_{u}\right) \geq n$ which implies that H_{u} contains C_{n}, a contradiction.

Now, assume each connected H_{t} contains a cut-vertex. In Subcase 2.2 of Theorem 3, let k, k^{\prime} and $k^{\prime \prime}$ be in the set $\{-1,0, \ldots, n-3\}$. The rest of the proof is the same. Finally, we obtain $|V(G)| \geq(3 n / 2+k-1)+\left(n / 2+k^{\prime}+1\right)+$ $\left(n / 2+k^{\prime \prime}+1\right)+1>5 n / 2-2$, which is a contradiction, and this completes the proof.

Now, by Theorems 1 and 4, the following corollary is obvious.
Corollary 13. For sufficiently large even n, we have $R\left(W_{n}, S_{n}\right)=5 n / 2-2$.

Acknowledgement

We thank the reviewers for their thorough review and highly appreciate comments and suggestions, which significantly contributed to improving the quality of the publication.

References

[1] S. Brandt, R. Faudree and W. Goddard, Weakly pancyclic graphs, J. Graph Theory 27 (1998) 141-176.
doi:10.1002/(SICI)1097-0118(199803)27:3〈141::AID-JGT3)3.0.CO;2-O
[2] G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graph Theory (Mc Graw-Hill Inc, 1993).
[3] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of stars versus wheels, European J. Combin. 25 (2004) 1067-1075.
doi:10.1016/j.ejc.2003.12.004
[4] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small offdiagonal numbers, Pac. J. Math. 41 (1972) 335-345. doi:10.2140/pjm.1972.41.335
[5] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 2 (1952) 69-81.
doi:10.1112/plms/s3-2.1.69
[6] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974) 313-329.
doi:10.1016/0012-365X(74)90151-4
[7] J.M. Hasmawati, Bilangan Ramsey untuk Graf Bintang Terhadap Graf Roda (Tesis Magister, Departemen Matematika ITB, Indonesia, 2004).
[8] E.T. Hasmawati, E.T. Baskoro and H. Assiyatun, Star-wheel Ramsey numbers, J. Combin. Math. Combin. Comput. 55 (2005) 123-128.
[9] A. Korolova, Ramsey numbers of stars versus wheels of similar sizes, Discrete Math. 292 (2005) 107-117.
doi:10.1016/j.disc.2004.12.003
[10] B. Li and I. Schiermeyer, On star-wheel Ramsey numbers, Graphs Combin. 32 (2016) 733-739.
doi:10.1007/s00373-015-1594-6
[11] V. Rosta, On a Ramsey-type problem of J.A. Bondy and P. Erdös, II, J. Combin. Theory Ser. B 15 (1973) 105-120. doi:10.1016/0095-8956(73)90036-1
[12] Surahmat and E.T. Baskoro, On the Ramsey number of a path or a star versus W_{4} or W_{5}, in: Proceedings of the 12th Australasian Workshop on Combinatorial Algorithms (Bandung, Indonesia, July, 2001) 174-179.
[13] Y. Zhang, T.C.E. Cheng and Y. Chen, The Ramsey numbers for stars of odd order versus a wheel of order nine, Discrete Math. Algorithms Appl. 1 (2009) 413-436. doi:10.1142/S1793830909000336
[14] Y. Zhang, Y. Chen and K. Zhang, The Ramsey numbers for stars of even order versus a wheel of order nine, European J. Combin. 29 (2008) 1744-1754.
doi:10.1016/j.ejc.2007.07.005
Received 14 June 2016
Revised 1 December 2016
Accepted 1 December 2016

