Discussiones Mathematicae Graph Theory 38 (2018) 397–404 doi:10.7151/dmgt.2009

# A NOTE ON THE RAMSEY NUMBER OF EVEN WHEELS VERSUS STARS

Sh. Haghi and H.R. Maimani

Mathematics Section, Department of Basic Sciences Shahid Rajaee Teacher Training University P.O. BOX 16783-163, Tehran, Iran

School of Mathematics Institute for Research in Fundamental Sciences (IPM) P.O. BOX 19395-5746, Tehran, Iran

e-mail: sh.haghi@yahoo.com

#### Abstract

For two graphs  $G_1$  and  $G_2$ , the Ramsey number  $R(G_1, G_2)$  is the smallest integer N, such that for any graph on N vertices, either G contains  $G_1$  or  $\overline{G}$  contains  $G_2$ . Let  $S_n$  be a star of order n and  $W_m$  be a wheel of order m + 1. In this paper, we will show  $R(W_n, S_n) \leq 5n/2 - 1$ , where  $n \geq 6$  is even. Also, by using this theorem, we conclude that  $R(W_n, S_n) = 5n/2 - 2$ or 5n/2 - 1, for  $n \geq 6$  and even. Finally, we prove that for sufficiently large even n we have  $R(W_n, S_n) = 5n/2 - 2$ .

Keywords: Ramsey number, star, wheel, weakly pancyclic.

2010 Mathematics Subject Classification: 05C55, 05D10.

## 1. INTRODUCTION AND BACKGROUND

Let G = (V, E) denote a finite simple graph on the vertex set V and the edge set E. For the terms undefined here you can see [2]. The subgraph of G induced by  $S \subseteq V$ , G[S], is a graph with vertex set S and two vertices of S are adjacent in G[S] if and only if they are adjacent in G. The complement of a graph G is denoted by  $\overline{G}$ . For a vertex  $v \in V(G)$ , we denote the set of all neighbors of v by  $N_G(v)$  (or N(v)). The degree of a vertex v in a graph G, denoted by  $deg_G(v)$  (or deg(v)), is the size of the set N(v). The minimum degree, maximum degree and clique number of G are denoted by  $\delta(G)$ ,  $\Delta(G)$  and  $\omega(G)$ , respectively. The girth of graph G, g(G), is the length of shortest cycle. Also, the circumference of graph G is the length of longest cycle in G and is denoted by c(G). A graph G of order n is called Hamiltonian, pancyclic and weakly pancyclic if it contains  $C_n$ , cycles of every length between 3 and n, and cycles of every length l with  $g(G) \leq l \leq c(G)$ , respectively. We say that G is a *join* graph if G is the complete union of two graphs  $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$ . In other words,  $V = V_1 \cup V_2$  and  $E = E_1 \cup E_2 \cup \{uv : u \in V_1, v \in V_2\}$ . If G is the join graph of  $G_1$  and  $G_2$ , we shall write  $G = G_1 + G_2$ . A wheel  $W_m$  is a graph on m + 1 vertices obtained from  $C_m$  by adding one vertex which is called the *hub* and joining each vertex of  $C_m$  to the hub with the edges called the *rim* of the wheel. In other words,  $W_m = C_m + K_1$ . A star  $S_n$  is the complete bipartite graph  $K_{1,n-1}$ .

For two graphs  $G_1$  and  $G_2$ , the Ramsey number  $R(G_1, G_2)$  is the smallest positive integer N such that for every graph G on N vertices, G contains  $G_1$  as a subgraph or the complement of G contains  $G_2$  as a subgraph. Chvátal and Harary in [4] proved the following lower bound for Ramsey numbers:

$$R(G, H) \ge (\chi(G) - 1) \cdot (l(H) - 1) + 1,$$

where l(H) is the number of vertices in the largest connected component of H and  $\chi(G)$  is the chromatic number of G.

In this note, we consider the Ramsey number for stars versus wheels. The Harary lower bound for  $R(W_m, S_n)$  is 3n - 2 or 2n - 1, where m is odd or even, respectively. There are many results about this Ramsey number when m is odd. Chen *et al.* in the year 2004 proved that if  $m \leq n+1$  and m is odd, then  $R(W_m, S_n) = 3n - 2$  which is the Harary lower bound (see [3]). Also, one year later, Hasmawati *et al.* extended this bound for m. They showed that  $R(W_m, S_n) = 3n - 2$ , for the case  $m \leq 2n - 3$  in [8]. But, one can see in [7], if  $n \geq 2$  and  $m \geq 2n - 2$ , then  $R(W_m, S_n) = n + m - 1$ , where m is odd.

Also, one can find many results about  $R(W_m, S_n)$  when m is even. Surahmat and Baskoro in [12] verified this Ramsey number for the case m = 4 in 2001. They proved that  $R(W_4, S_n) = 2n - 1$  if  $n \ge 3$  and odd, and  $R(W_4, S_n) = 2n + 1$ if  $n \ge 4$  and even. Korolova in [9] found a lower bound which improved the Harary lower bound. In fact Korolova proved that  $R(W_m, S_n) \ge 2n + 1$  for all  $n \ge m \ge 6$  and m even. Also, Chen *et al.* in [3] showed that this lower bound is sharp for m = 6. In other words, they proved that  $R(W_6, S_n) = 2n + 1$ . It was proved in [14] that  $R(W_8, S_n) = 2n + 2$  for  $n \ge 6$  and even in the year 2008. Also, one year later, the exact value of  $R(W_8, S_n)$  for odd n was determined. In fact, it was shown in [13] that  $R(W_8, S_n) = 2n + 1$  for  $n \ge 5$  and odd in the year 2009.

Li and Schiermeyer in [10] indicated two following theorems in which they obtained a new lower bound and showed that for some cases this bound is sharp. **Theorem 1** [10]. If  $6 \le m \le 2n - 4$  and m is even, then

 $R(W_m, S_n) \ge \begin{cases} 2n + m/2 - 3 & \text{if } n \text{ is odd and } m/2 \text{ is even,} \\ 2n + m/2 - 2 & \text{otherwise.} \end{cases}$ 

**Theorem 2** [10]. If  $n + 1 \le m \le 2n - 4$  and m is even, then

 $R(W_m, S_n) = \begin{cases} 2n + m/2 - 3 & \text{if } n \text{ is odd and } m/2 \text{ is even,} \\ 2n + m/2 - 2 & \text{otherwise.} \end{cases}$ 

But for some cases,  $R(W_m, S_n)$ , where *m* is even, is still open. One of these cases is when m = n. It was shown in [9] that  $R(W_n, S_n) \leq 3n - 3$  when *n* is even. In this paper, we will improve this upper bound and prove the following.

**Theorem 3.**  $R(W_n, S_n) \leq 5n/2 - 1$ , where  $n \geq 6$  is even.

Finally, we have the following theorem.

**Theorem 4.** For sufficiently large even n we have  $R(W_n, S_n) \leq 5n/2 - 2$ .

### 2. Preliminary Lemmas and Theorems

To prove Theorem 3, we need some theorems and lemmas.

**Lemma 5** (Brandt *et al.* [1]). Every non-bipartite graph G of order n with  $\delta(G) \ge (n+2)/3$  is weakly pancyclic with g(G) = 3 or g(G) = 4.

**Lemma 6** (Dirac [5]). Let G be a 2-connected graph of order  $n \ge 3$  with  $\delta(G) = \delta$ . Then  $c(G) \ge \min\{2\delta, n\}$ .

Theorem 7 (Faudree and Schelp [6], Rosta [11]).

$$R(C_n, C_m) = \begin{cases} 2n-1 & \text{for } 3 \le m \le n, \ m \ odd \ (n,m) \ne (3,3), \\ n+m/2-1 & \text{for } 4 \le m \le n, \ m, n \ even \ (n,m) \ne (4,4), \\ \max\{n+m/2-1, 2m-1\} & \text{for } 4 \le m < n, \ m \ even \ and \ n \ odd. \end{cases}$$

**Lemma 8** [2]. Let G be a bipartite graph of order n (n even) with bipartition (X, Y) and |X| = |Y| = n/2. If for all distinct nonadjacent vertices  $u \in X$  and  $v \in Y$ , we have deg(u) + deg(v) > n/2, then G is Hamiltonian.

## 3. Proof of Theorem 3

From now on, let G be a graph of order N = 5n/2 - 1, where  $n \ge 6$  and n is even, such that neither G contains  $W_n$  nor its complement,  $\overline{G}$ , contains  $S_n$ . Also,

for every vertex  $t \in V(G)$  consider  $H_t = G[N(t)]$  and  $\overline{H_t} = \overline{G}[N(t)]$ . Since  $\overline{G}$  has no  $S_n$ ,  $\deg_{\overline{G}}(v) \leq n-2$ , for each vertex  $v \in V(G)$ . Thus,  $\delta(G) \geq 3n/2$ . In the middle of the proof, we sometimes interrupt it and have some lemmas.

Let  $v_0 \in V(G)$  be an arbitrary vertex. There exists a  $k \in \{0, 1, 2, ..., n-2\}$ such that  $deg_G(v_0) = 3n/2 + k$ , since  $\delta(G) \geq 3n/2$ . Thus, the order of  $H_{v_0} = G[N(v_0)]$  is 3n/2 + k. By the second part of Theorem 7, we have  $|V(H_{v_0})| = 3n/2 + k \geq R(C_n, C_s)$ , where s = 2l, and l is an integer such that  $4 \leq 2l \leq n + k + 1$ . (Note that in Theorem 3 we have  $n \geq 6$ , so the case (n, s) = (4, 4) does not occur for  $R(C_n, C_s)$  in Theorem 7). Thus, either  $H_{v_0}$  contains  $C_n$  or  $\overline{H}_{v_0}$  contains  $C_s$ . But if  $H_{v_0}$  contains  $C_n$ , then G contains  $W_n$ , which is a contradiction. Hence we have the following corollary.

**Corollary 9.** Let  $v \in V(G)$  and k be an element in the set  $\{0, 1, \ldots, n-2\}$  such that  $|V(H_v)| = 3n/2 + k$ . Then  $\overline{H}_v$  contains  $C_{2l}$  for all integers l such that  $4 \leq 2l \leq n+k+1$ .

**Proposition 10.**  $\omega(\overline{G}) \leq n-2 \text{ and } \omega(G) \leq n-1.$ 

**Proof.** It is clear that  $\omega(\overline{G}) \leq n-1$ , since  $\Delta(\overline{G}) \leq n-2$ . Suppose  $\omega(\overline{G}) = n-1$  and  $T = \{v_1, \ldots, v_{n-1}\}$  is a clique in  $\overline{G}$ . For any  $v \in V - T$ ,  $N_{\overline{G}}(v) \cap T = \emptyset$ , otherwise  $\overline{G}[T \cup \{v\}]$  contains  $S_n$ . Now consider  $v \in V - T$  and let k be an element in the set  $\{0, 1, \ldots, n-2\}$  such that  $|V(H_v)| = 3n/2 + k$ . Since  $N_{\overline{G}}(v) \cap T = \emptyset$ , the set  $V(H_v)$  contains the set T. It means that  $\overline{G}[T]$  is a connected component of  $\overline{H}_v$  in the graph  $\overline{G}$ . On the other hand, by Corollary 9,  $\overline{H}_v$  contains a cycle C of length 2l, where  $l = \lfloor (n + k + 1)/2 \rfloor$ . Note that  $C \notin T$ , since 2l > n - 1. Thus,  $C \subseteq \overline{H}_v - T$ . But  $\overline{H}_v - T$  has n/2 + k + 1 vertices, which is less than 2l, a contradiction. Hence  $\omega(\overline{G}) \leq n-2$ . For the second part, assume to the contrary, G contains  $K_n$  and  $H = G[V - K_n]$ . Then  $|N_G(v) \cap K_n| \geq 2$  for all  $v \in V(H)$ , otherwise  $deg_{\overline{G}}(v) \geq n-1$ , which is a contradiction. If  $|N_G(v) \cap K_n| = 2$  for all  $v \in V(H)$ , then  $H = K_{3n/2-1}$ , since  $\delta(G) \geq 3n/2$ . But  $K_{3n/2-1}$  contains  $W_n$ , a contradiction. So, there is a vertex  $u \in V(H)$  such that  $|N_G(u) \cap K_n| \geq 3$ . But  $\{u\} \cup K_n$  contains  $W_n$ , which is a contradiction. Thus  $\omega(G) \leq n-1$ .

We can divide the proof into some cases and subcases.

Case 1. There is a vertex  $v \in V(G)$  for which  $H_v$  is bipartite. Let  $H_v$  be a bipartite graph, with bipartition  $(X_v, Y_v)$ , of order 3n/2 + k such that  $k \in \{0, 1, \ldots, n-2\}$ . Without loss of generality, suppose that  $|X_v| \leq |Y_v|$ . Thus, by Proposition 10, we have  $n/2 + k + 2 \leq |X_v| \leq 3n/4 + k/2$  and  $3n/4 + k/2 \leq |Y_v| \leq n-2$ .

Let  $|X_v| = n/2 + s$ , where s is an integer such that  $k + 2 \le s \le n/4 + k/2$ . Then  $|Y_v| = n + k - s$ . Since  $\Delta(\overline{G}) \le n - 2$  and  $|V(H_v)| = 3n/2 + k$ , we conclude  $\delta(H_v) \ge n/2 + k + 1$ . Let  $X'_v$  and  $Y'_v$  be obtained from  $X_v$  and  $Y_v$  by deleting s and n/2 + k - s arbitrary vertices, respectively, and let  $H'_v = (X'_v, Y'_v)$ . Thus,  $|X'_v| = |Y'_v| = n/2$  and  $\delta(X'_v) \ge s + 1$  and  $\delta(Y'_v) \ge n/2 + k + 1 - s$  in  $H'_v$ . Hence for each two vertices  $u_1 \in X'_v$  and  $u_2 \in Y'_v$ , we have  $deg(u_1) + deg(u_2) \ge n/2 + k + 2$  and by Lemma 8,  $H'_v$  contains  $C_n$ . It means that G contains  $W_n$ , which is a contradiction.



Figure 1. The disjoint sets  $X_t$ ,  $Y_t$ ,  $X_u$  and  $X_v$ .

Case 2. For every vertex  $t \in V(G)$ ,  $H_t$  is non-bipartite.

Subcase 2.1. Suppose  $H_t$  is disconnected for all  $t \in V(G)$ . Let  $t \in V(G)$  be an arbitrary vertex and  $|V(H_t)| = 3n/2 + k$ , where  $k \in \{0, 1, 2, \dots, n-2\}$ . We show that  $H_t$  has exactly two connected components. Suppose to the contrary,  $H_1$ ,  $H_2$ and  $H_3$  are three connected components of  $H_t$ . Since  $\delta(H_t) \geq n/2 + k + 1$ , we conclude  $\delta(H_i) \ge n/2 + k + 1$  for i = 1, 2, 3. Hence  $|V(H_i)| > 3n/2 + k$ , which is a contradiction. Now, let  $X_t$ ,  $Y_t$  be the set of vertices of two components of  $H_t$ . Assume that  $|X_t| \leq |Y_t|$ . We choose two adjacent vertices u and v in  $Y_t$ , since  $\delta(H_t) \ge n/2 + k + 1$ . Let  $|V(H_u)| = 3n/2 + k'$  and  $|V(H_v)| = 3n/2 + k''$ , where  $k', k'' \in \{0, 1, 2, \dots, n-2\}$ . Also, let  $X_u, Y_u$  and  $X_v, Y_v$  be the sets of vertices of two components of  $H_u$  and  $H_v$ , respectively. Since  $H_t$  and  $H_u$ are disconnected,  $X_u$  or  $Y_u$  is disjoint from  $X_t$  and  $Y_t$ . To see this, with no loss of generality, suppose that v is contained in  $Y_u$ . Thus,  $t \in Y_u$  and hence  $X_u \cap Y_t = X_u \cap X_t = \emptyset$ . Similarly,  $X_v$  or  $Y_v$ , say  $X_v$ , is disjoint from  $X_t$  and  $Y_t$ . Thus, we have  $Y_t \cap X_u = Y_t \cap X_v = X_t \cap X_u = X_t \cap X_v = \emptyset$ . Also,  $X_u \cap X_v = \emptyset$ ; otherwise if  $l \in X_u \cap X_v$ , then l is adjacent to both u and v. But  $u \in Y_v$  implies that  $l \in Y_v$ . It means,  $X_v \cap Y_v \neq \emptyset$  which is a contradiction (see Figure 1). Thus,  $X_u \cap X_v = \emptyset$ . Hence  $|V(G)| \ge |V(H_t)| + |X_u| + |X_v|$  which means  $|V(G)| \ge (3n/2 + k) + (n/2 + k' + 2) + (n/2 + k'' + 2) > 5n/2 - 1$ , which is a contradiction.

Subcase 2.2. Suppose  $H_t$  is connected for some  $t \in V(G)$ . Assume that there exists a vertex  $u \in V(G)$  for which  $H_u$  is 2-connected and  $|V(H_u)| = 3n/2 + k$  for some  $k \in \{0, 1, 2, ..., n-2\}$ . Thus,  $\delta(H_u) \ge n/2 + k + 1 \ge (3n/2 + k + 2)/3$ 

and by Lemma 5,  $H_u$  is weakly pancyclic with  $g(H_u) = 3$  or  $g(H_u) = 4$ . Also, by Lemma 6,  $c(H_u) \ge \min\{2\delta(H_u), 3n/2 + k\}$ . Hence  $c(H_u) \ge n$  which implies that  $H_u$  contains  $C_n$ , a contradiction.

Now, assume each connected  $H_t$  contains a cut-vertex. Let u be a cutvertex of  $H_t$  and  $|V(H_t)| = 3n/2 + k$ . We show that  $H_t - u$  has exactly two connected components. Suppose to the contrary,  $H_1$ ,  $H_2$  and  $H_3$  are three connected components of  $H_t - u$ . Since  $\delta(H_t) \ge n/2 + k + 1$ ,  $\delta(H_i) \ge n/2 + k$  for i = 1, 2, 3. Hence  $|V(H_t)| > 3n/2 + k$ , which is a contradiction. Now, let  $s_1$ be a cut-vertex of  $H_t$  and  $X_t$ ,  $Y_t$  be the sets of vertices of two components of  $H_t - s_1$ . Assume that  $|X_t| \leq |Y_t|$ . We choose two adjacent vertices u and v in  $Y_t$ , since  $\delta(H_t) \geq n/2 + k + 1$ . With no loss of generality, suppose that v is contained in  $Y_u$  and u is contained in  $Y_v$ . Thus,  $t \in Y_u \cap Y_v$ . Let  $s_2$  and  $s_3$ be the cut-vertices of  $H_u$  and  $H_v$ , respectively (if any of these cut-vertices did not exist, for instance  $s_1$ , then the corresponding subgraph,  $H_t$ , is disconnected and the procedure is the same as in Subcase 2.1) and  $|V(H_u)| = 3n/2 + k'$  and  $|V(H_v)| = 3n/2 + k''$ , where  $k', k'' \in \{0, 1, 2, \dots, n-2\}$ . Also, let  $X_u, Y_u$  and  $X_v$ ,  $Y_v$  be the sets of vertices of two components of  $H_u - s_2$  and  $H_v - s_3$ , respectively. Since  $H_t - s_1$ ,  $H_u - s_2$  and  $H_v - s_3$  are disconnected, with the same statement of Subcase 2.1 and without loss of generality, we have  $Y_t \cap X_u = Y_t \cap X_v =$  $X_t \cap X_u = X_t \cap X_v = X_u \cap X_v = \emptyset$  (see Figure 1). Hence by the fact that  $s_1 \notin X_u \cup X_v$  (since otherwise, if for instance  $s_1 \in X_u$ , then  $t \in X_u$  but  $t \in Y_u$ , a contradiction) we have  $|V(G)| \ge |V(H_t - s_1)| + |X_u| + |X_v| + |\{s_1\}|$  which means  $|V(G)| \ge (3n/2 + k - 1) + (n/2 + k' + 1) + (n/2 + k'' + 1) + 1 > 5n/2 - 1$ , which is a contradiction, and this completes the proof.

Now, by Theorems 1 and 3, the following corollary is obvious.

**Corollary 11.** For  $n \ge 6$  and even, we have  $R(W_n, S_n) = 5n/2 - 2$  or 5n/2 - 1.

#### 4. Proof of Theorem 4

We say *n* is sufficiently large if there is a graph *G* of order *n* such that  $\delta(G) \ge n/4 + 250$ . In this section, we prove that for sufficiently large even *n* we have  $R(W_n, S_n) = 5n/2 - 2$ . In order to prove this, we use following lemma.

**Lemma 12** [1]. If G is a 2-connected non-bipartite graph of sufficiently large order n with  $\delta(G) > 2n/7$ , then G is weakly pancyclic.

Let G be a graph of order N = 5n/2 - 2, where n is sufficiently large and even such that neither G contains  $W_n$  nor its complement,  $\overline{G}$ , contains  $S_n$ . We define  $H_t$  for each  $t \in V(G)$  similarly as in the proof of Theorem 3. Since  $\overline{G}$  has no  $S_n$ ,  $\delta(G) \ge 3n/2 - 1$ . Let  $v_0 \in V(G)$  be an arbitrary vertex. There exists a  $k \in \{-1, 0, 1, \ldots, n-3\}$  such that  $deg_G(v_0) = 3n/2 + k$ , since  $\delta(G) \ge 3n/2 - 1$ . (Here, k is the element of the set  $\{-1, 0, 1, \ldots, n-3\}$ . This is the only difference of this proof with the proof of Theorem 3). It is easy to check that Corollary 9 and Proposition 10 are true here.

We can divide the proof into some cases and subcases.

Case 1. There is a vertex  $v \in V(G)$  for which  $H_v$  is bipartite. Let  $H_v$  be a bipartite graph with bipartition  $(X_v, Y_v)$  of order 3n/2 + k such that  $k \in \{-1, 0, 1, \ldots, n-3\}$ . The sketch of the proof is the same as in Case 1 of the proof of Theorem 3.

Case 2. For every vertex  $t \in V(G)$ ,  $H_t$  is non-bipartite.

Subcase 2.1. Suppose  $H_t$  is disconnected for all  $t \in V(G)$ . In Subcase 2.1 of Theorem 3, let k, k' and k'' be in the set  $\{-1, 0, \ldots, n-3\}$ . The rest of the proof is the same. Finally, we obtain  $|V(G)| \ge (3n/2 + k) + (n/2 + k' + 2) + (n/2 + k'' + 2) > 5n/2 - 2$ , which is a contradiction.

Subcase 2.2. Suppose  $H_t$  is connected for some  $t \in V(G)$ . Assume that there exists a vertex  $u \in V(G)$  for which  $H_u$  is 2-connected and  $|V(H_u)| = 3n/2 + k$  for some  $k \in \{-1, 0, 1, \ldots, n-3\}$ . Thus,  $\delta(H_u) \ge n/2 + k + 1 > 2(3n/2 + k)/7$  and by Lemma 12,  $H_u$  is weakly pancyclic. Also, by Lemma 6,  $c(H_u) \ge \min\{2\delta(H_u), 3n/2 + k\}$ . Hence  $c(H_u) \ge n$  which implies that  $H_u$  contains  $C_n$ , a contradiction.

Now, assume each connected  $H_t$  contains a cut-vertex. In Subcase 2.2 of Theorem 3, let k, k' and k'' be in the set  $\{-1, 0, \ldots, n-3\}$ . The rest of the proof is the same. Finally, we obtain  $|V(G)| \ge (3n/2 + k - 1) + (n/2 + k' + 1) + (n/2 + k'' + 1) + 1 > 5n/2 - 2$ , which is a contradiction, and this completes the proof.

Now, by Theorems 1 and 4, the following corollary is obvious.

**Corollary 13.** For sufficiently large even n, we have  $R(W_n, S_n) = 5n/2 - 2$ .

## Acknowledgement

We thank the reviewers for their thorough review and highly appreciate comments and suggestions, which significantly contributed to improving the quality of the publication.

#### References

- S. Brandt, R. Faudree and W. Goddard, Weakly pancyclic graphs, J. Graph Theory 27 (1998) 141–176. doi:10.1002/(SICI)1097-0118(199803)27:3(141::AID-JGT3)3.0.CO;2-O
- [2] G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graph Theory (Mc Graw-Hill Inc, 1993).

- [3] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of stars versus wheels, European J. Combin. 25 (2004) 1067–1075. doi:10.1016/j.ejc.2003.12.004
- [4] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small offdiagonal numbers, Pac. J. Math. 41 (1972) 335–345. doi:10.2140/pjm.1972.41.335
- [5] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 2 (1952) 69-81. doi:10.1112/plms/s3-2.1.69
- [6] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974) 313–329. doi:10.1016/0012-365X(74)90151-4
- [7] J.M. Hasmawati, Bilangan Ramsey untuk Graf Bintang Terhadap Graf Roda (Tesis Magister, Departemen Matematika ITB, Indonesia, 2004).
- [8] E.T. Hasmawati, E.T. Baskoro and H. Assiyatun, Star-wheel Ramsey numbers, J. Combin. Math. Combin. Comput. 55 (2005) 123–128.
- [9] A. Korolova, Ramsey numbers of stars versus wheels of similar sizes, Discrete Math. 292 (2005) 107–117. doi:10.1016/j.disc.2004.12.003
- B. Li and I. Schiermeyer, On star-wheel Ramsey numbers, Graphs Combin. 32 (2016) 733–739. doi:10.1007/s00373-015-1594-6
- [11] V. Rosta, On a Ramsey-type problem of J.A. Bondy and P. Erdös, II, J. Combin. Theory Ser. B 15 (1973) 105–120. doi:10.1016/0095-8956(73)90036-1
- [12] Surahmat and E.T. Baskoro, On the Ramsey number of a path or a star versus  $W_4$  or  $W_5$ , in: Proceedings of the 12th Australasian Workshop on Combinatorial Algorithms (Bandung, Indonesia, July, 2001) 174–179.
- [13] Y. Zhang, T.C.E. Cheng and Y. Chen, The Ramsey numbers for stars of odd order versus a wheel of order nine, Discrete Math. Algorithms Appl. 1 (2009) 413–436. doi:10.1142/S1793830909000336
- [14] Y. Zhang, Y. Chen and K. Zhang, The Ramsey numbers for stars of even order versus a wheel of order nine, European J. Combin. 29 (2008) 1744–1754. doi:10.1016/j.ejc.2007.07.005

Received 14 June 2016 Revised 1 December 2016 Accepted 1 December 2016