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Abstract

For two graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest
integer N , such that for any graph on N vertices, either G contains G1 or
G contains G2. Let Sn be a star of order n and Wm be a wheel of order
m + 1. In this paper, we will show R(Wn, Sn) ≤ 5n/2− 1, where n ≥ 6 is
even. Also, by using this theorem, we conclude that R(Wn, Sn) = 5n/2− 2
or 5n/2− 1, for n ≥ 6 and even. Finally, we prove that for sufficiently large
even n we have R(Wn, Sn) = 5n/2− 2.
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1. Introduction and Background

Let G = (V,E) denote a finite simple graph on the vertex set V and the edge
set E. For the terms undefined here you can see [2]. The subgraph of G induced
by S ⊆ V , G[S], is a graph with vertex set S and two vertices of S are adjacent
in G[S] if and only if they are adjacent in G. The complement of a graph G is
denoted by G. For a vertex v ∈ V (G), we denote the set of all neighbors of v by
NG(v) (or N(v)). The degree of a vertex v in a graph G, denoted by degG(v) (or
deg(v)), is the size of the set N(v). The minimum degree, maximum degree and
clique number of G are denoted by δ(G), ∆(G) and ω(G), respectively. The girth
of graph G, g(G), is the length of shortest cycle. Also, the circumference of graph

http://dx.doi.org/10.7151/dmgt.2009


398 Sh. Haghi and H.R. Maimani

G is the length of longest cycle in G and is denoted by c(G). A graph G of order
n is called Hamiltonian, pancyclic and weakly pancyclic if it contains Cn, cycles of
every length between 3 and n, and cycles of every length l with g(G) ≤ l ≤ c(G),
respectively. We say that G is a join graph if G is the complete union of two
graphs G1 = (V1, E1) and G2 = (V2, E2). In other words, V = V1 ∪ V2 and
E = E1∪E2∪{uv : u ∈ V1, v ∈ V2}. If G is the join graph of G1 and G2, we shall
write G = G1 +G2. A wheel Wm is a graph on m+ 1 vertices obtained from Cm

by adding one vertex which is called the hub and joining each vertex of Cm to the
hub with the edges called the rim of the wheel. In other words, Wm = Cm +K1.
A star Sn is the complete bipartite graph K1,n−1.

For two graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest
positive integer N such that for every graph G on N vertices, G contains G1 as
a subgraph or the complement of G contains G2 as a subgraph. Chvátal and
Harary in [4] proved the following lower bound for Ramsey numbers:

R(G,H) ≥ (χ(G)− 1) · (l(H)− 1) + 1,

where l(H) is the number of vertices in the largest connected component of H
and χ(G) is the chromatic number of G.

In this note, we consider the Ramsey number for stars versus wheels. The
Harary lower bound for R(Wm, Sn) is 3n − 2 or 2n − 1, where m is odd or
even, respectively. There are many results about this Ramsey number when m
is odd. Chen et al. in the year 2004 proved that if m ≤ n+ 1 and m is odd,
then R(Wm, Sn) = 3n − 2 which is the Harary lower bound (see [3]). Also, one
year later, Hasmawati et al. extended this bound for m. They showed that
R(Wm, Sn) = 3n − 2, for the case m ≤ 2n− 3 in [8]. But, one can see in [7], if
n ≥ 2 and m ≥ 2n− 2, then R(Wm, Sn) = n+m− 1, where m is odd.

Also, one can find many results about R(Wm, Sn) when m is even. Surahmat
and Baskoro in [12] verified this Ramsey number for the case m = 4 in 2001.
They proved that R(W4, Sn) = 2n− 1 if n ≥ 3 and odd, and R(W4, Sn) = 2n+1
if n ≥ 4 and even. Korolova in [9] found a lower bound which improved the
Harary lower bound. In fact Korolova proved that R(Wm, Sn) ≥ 2n+ 1 for all
n ≥ m ≥ 6 and m even. Also, Chen et al. in [3] showed that this lower bound
is sharp for m = 6. In other words, they proved that R(W6, Sn) = 2n + 1. It
was proved in [14] that R(W8, Sn) = 2n+ 2 for n ≥ 6 and even in the year 2008.
Also, one year later, the exact value of R(W8, Sn) for odd n was determined. In
fact, it was shown in [13] that R(W8, Sn) = 2n+ 1 for n ≥ 5 and odd in the year
2009.

Li and Schiermeyer in [10] indicated two following theorems in which they
obtained a new lower bound and showed that for some cases this bound is sharp.
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Theorem 1 [10]. If 6 ≤ m ≤ 2n− 4 and m is even, then

R(Wm, Sn) ≥

{

2n+m/2− 3 if n is odd and m/2 is even,
2n+m/2− 2 otherwise.

Theorem 2 [10]. If n+ 1 ≤ m ≤ 2n− 4 and m is even, then

R(Wm, Sn) =

{

2n+m/2− 3 if n is odd and m/2 is even,
2n+m/2− 2 otherwise.

But for some cases, R(Wm, Sn), where m is even, is still open. One of these
cases is when m = n. It was shown in [9] that R(Wn, Sn) ≤ 3n− 3 when n is
even. In this paper, we will improve this upper bound and prove the following.

Theorem 3. R(Wn, Sn) ≤ 5n/2− 1, where n ≥ 6 is even.

Finally, we have the following theorem.

Theorem 4. For sufficiently large even n we have R(Wn, Sn) ≤ 5n/2− 2.

2. Preliminary Lemmas and Theorems

To prove Theorem 3, we need some theorems and lemmas.

Lemma 5 (Brandt et al. [1]). Every non-bipartite graph G of order n with δ(G)
≥ (n+ 2)/3 is weakly pancyclic with g(G) = 3 or g(G) = 4.

Lemma 6 (Dirac [5]). Let G be a 2-connected graph of order n ≥ 3 with δ(G) = δ.
Then c(G) ≥ min{2δ, n}.

Theorem 7 (Faudree and Schelp [6], Rosta [11]).

R(Cn, Cm) =











2n− 1 for 3 ≤ m ≤ n, m odd (n,m) 6= (3, 3),

n+m/2− 1 for 4 ≤ m ≤ n, m, n even (n,m) 6= (4, 4),

max{n+m/2− 1, 2m− 1} for 4 ≤ m < n, m even and n odd.

Lemma 8 [2]. Let G be a bipartite graph of order n (n even) with bipartition
(X,Y ) and |X| = |Y | = n/2. If for all distinct nonadjacent vertices u ∈ X and
v ∈ Y , we have deg(u) + deg(v) > n/2, then G is Hamiltonian.

3. Proof of Theorem 3

From now on, let G be a graph of order N = 5n/2 − 1, where n ≥ 6 and n is
even, such that neither G contains Wn nor its complement, G, contains Sn. Also,
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for every vertex t ∈ V (G) consider Ht = G[N(t)] and Ht = G[N(t)]. Since G has
no Sn, degG(v) ≤ n− 2, for each vertex v ∈ V (G). Thus, δ(G) ≥ 3n/2. In the
middle of the proof, we sometimes interrupt it and have some lemmas.

Let v0 ∈ V (G) be an arbitrary vertex. There exists a k ∈ {0, 1, 2, . . . , n− 2}
such that degG(v0) = 3n/2 + k, since δ(G) ≥ 3n/2. Thus, the order of Hv0 =
G[N(v0)] is 3n/2 + k. By the second part of Theorem 7, we have |V (Hv0)| =
3n/2 + k ≥ R(Cn, Cs), where s = 2l, and l is an integer such that 4 ≤ 2l ≤
n+ k + 1. (Note that in Theorem 3 we have n ≥ 6, so the case (n, s) = (4, 4)
does not occur for R(Cn, Cs) in Theorem 7). Thus, either Hv0 contains Cn

or Hv0 contains Cs. But if Hv0 contains Cn, then G contains Wn, which is a
contradiction. Hence we have the following corollary.

Corollary 9. Let v ∈ V (G) and k be an element in the set {0, 1, . . . , n − 2}
such that |V (Hv)| = 3n/2 + k. Then Hv contains C2l for all integers l such that
4 ≤ 2l ≤ n+ k + 1.

Proposition 10. ω(G) ≤ n− 2 and ω(G) ≤ n− 1.

Proof. It is clear that ω
(

G
)

≤ n− 1, since ∆
(

G
)

≤ n− 2. Suppose ω
(

G
)

=
n−1 and T = {v1, . . . , vn−1} is a clique in G. For any v ∈ V − T , NG(v)∩T = ∅,
otherwiseG[T∪{v}] contains Sn. Now consider v ∈ V − T and let k be an element
in the set {0, 1, . . . , n− 2} such that |V (Hv)| = 3n/2 + k. Since NG(v) ∩ T = ∅,
the set V (Hv) contains the set T . It means that G[T ] is a connected component
of Hv in the graph G. On the other hand, by Corollary 9, Hv contains a cycle
C of length 2l, where l = ⌊(n + k + 1)/2⌋. Note that C * T , since 2l > n − 1.
Thus, C ⊆ Hv − T . But Hv −T has n/2+ k+1 vertices, which is less than 2l, a
contradiction. Hence ω

(

G
)

≤ n− 2. For the second part, assume to the contrary,
G contains Kn and H = G[V −Kn]. Then |NG(v) ∩Kn| ≥ 2 for all v ∈ V (H),
otherwise degG(v) ≥ n− 1, which is a contradiction. If |NG(v) ∩Kn| = 2 for all
v ∈ V (H), then H = K3n/2−1, since δ(G) ≥ 3n/2. But K3n/2−1 contains Wn, a
contradiction. So, there is a vertex u ∈ V (H) such that |NG(u) ∩Kn| ≥ 3. But
{u} ∪Kn contains Wn, which is a contradiction. Thus ω(G) ≤ n− 1.

We can divide the proof into some cases and subcases.

Case 1. There is a vertex v ∈ V (G) for which Hv is bipartite. Let Hv be a
bipartite graph, with bipartition (Xv, Yv), of order 3n/2 + k such that k ∈ {0, 1,
. . . , n − 2}. Without loss of generality, suppose that |Xv| ≤ |Yv|. Thus, by
Proposition 10, we have n/2 + k + 2 ≤ |Xv| ≤ 3n/4 + k/2 and 3n/4 + k/2 ≤
|Yv| ≤ n− 2.

Let |Xv| = n/2 + s, where s is an integer such that k + 2 ≤ s ≤ n/4 + k/2.
Then |Yv| = n + k − s. Since ∆(G) ≤ n− 2 and |V (Hv)| = 3n/2 + k, we
conclude δ(Hv) ≥ n/2 + k + 1. Let X ′

v and Y ′

v be obtained from Xv and Yv by
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deleting s and n/2+ k− s arbitrary vertices, respectively, and let H ′

v = (X ′

v, Y
′

v).
Thus, |X ′

v| = |Y ′

v | = n/2 and δ(X ′

v) ≥ s+ 1 and δ(Y ′

v) ≥ n/2 + k + 1− s in H ′

v.
Hence for each two vertices u1 ∈ X ′

v and u2 ∈ Y ′

v , we have deg(u1) + deg(u2) ≥
n/2 + k + 2 and by Lemma 8, H ′

v contains Cn. It means that G contains Wn,
which is a contradiction.

Figure 1. The disjoint sets Xt, Yt, Xu and Xv.

Case 2. For every vertex t ∈ V (G), Ht is non-bipartite.

Subcase 2.1. Suppose Ht is disconnected for all t ∈ V (G). Let t ∈ V (G) be an
arbitrary vertex and |V (Ht)| = 3n/2+ k, where k ∈ {0, 1, 2, . . . , n− 2}. We show
that Ht has exactly two connected components. Suppose to the contrary, H1, H2

and H3 are three connected components of Ht. Since δ(Ht) ≥ n/2 + k + 1, we
conclude δ(Hi) ≥ n/2 + k + 1 for i = 1, 2, 3. Hence |V (Ht)| > 3n/2 + k, which
is a contradiction. Now, let Xt, Yt be the set of vertices of two components of
Ht. Assume that |Xt| ≤ |Yt|. We choose two adjacent vertices u and v in Yt,
since δ(Ht) ≥ n/2 + k + 1. Let |V (Hu)| = 3n/2 + k′ and |V (Hv)| = 3n/2 + k′′,
where k′, k′′ ∈ {0, 1, 2, . . . , n − 2}. Also, let Xu, Yu and Xv, Yv be the sets
of vertices of two components of Hu and Hv, respectively. Since Ht and Hu

are disconnected, Xu or Yu is disjoint from Xt and Yt. To see this, with no
loss of generality, suppose that v is contained in Yu. Thus, t ∈ Yu and hence
Xu ∩ Yt = Xu ∩ Xt = ∅. Similarly, Xv or Yv, say Xv, is disjoint from Xt and
Yt. Thus, we have Yt ∩ Xu = Yt ∩ Xv = Xt ∩ Xu = Xt ∩ Xv = ∅. Also,
Xu ∩Xv = ∅; otherwise if l ∈ Xu ∩Xv, then l is adjacent to both u and v. But
u ∈ Yv implies that l ∈ Yv. It means, Xv ∩ Yv 6= ∅ which is a contradiction (see
Figure 1). Thus, Xu ∩ Xv = ∅. Hence |V (G)| ≥ |V (Ht)|+ |Xu|+ |Xv| which
means |V (G)| ≥ (3n/2 + k) + (n/2 + k′ + 2) + (n/2 + k′′ + 2) > 5n/2− 1, which
is a contradiction.

Subcase 2.2. Suppose Ht is connected for some t ∈ V (G). Assume that there
exists a vertex u ∈ V (G) for which Hu is 2-connected and |V (Hu)| = 3n/2 + k
for some k ∈ {0, 1, 2, . . . , n− 2}. Thus, δ(Hu) ≥ n/2 + k + 1 ≥ (3n/2 + k + 2)/3
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and by Lemma 5, Hu is weakly pancyclic with g(Hu) = 3 or g(Hu) = 4. Also, by
Lemma 6, c(Hu) ≥ min{2δ(Hu), 3n/2 + k}. Hence c(Hu) ≥ n which implies that
Hu contains Cn, a contradiction.

Now, assume each connected Ht contains a cut-vertex. Let u be a cut-
vertex of Ht and |V (Ht)| = 3n/2 + k. We show that Ht − u has exactly two
connected components. Suppose to the contrary, H1, H2 and H3 are three con-
nected components of Ht − u. Since δ(Ht) ≥ n/2 + k + 1, δ(Hi) ≥ n/2 + k for
i = 1, 2, 3. Hence |V (Ht)| > 3n/2 + k, which is a contradiction. Now, let s1
be a cut-vertex of Ht and Xt, Yt be the sets of vertices of two components of
Ht − s1. Assume that |Xt| ≤ |Yt|. We choose two adjacent vertices u and v
in Yt, since δ(Ht) ≥ n/2 + k + 1. With no loss of generality, suppose that v is
contained in Yu and u is contained in Yv. Thus, t ∈ Yu ∩ Yv. Let s2 and s3
be the cut-vertices of Hu and Hv, respectively (if any of these cut-vertices did
not exist, for instance s1, then the corresponding subgraph, Ht, is disconnected
and the procedure is the same as in Subcase 2.1) and |V (Hu)| = 3n/2 + k′ and
|V (Hv)| = 3n/2+ k′′, where k′, k′′ ∈ {0, 1, 2, . . . , n− 2}. Also, let Xu, Yu and Xv,
Yv be the sets of vertices of two components of Hu− s2 and Hv− s3, respectively.
Since Ht − s1, Hu − s2 and Hv − s3 are disconnected, with the same statement
of Subcase 2.1 and without loss of generality, we have Yt ∩ Xu = Yt ∩ Xv =
Xt ∩ Xu = Xt ∩ Xv = Xu ∩ Xv = ∅ (see Figure 1). Hence by the fact that
s1 /∈ Xu ∪Xv (since otherwise, if for instance s1 ∈ Xu, then t ∈ Xu but t ∈ Yu, a
contradiction) we have |V (G)| ≥ |V (Ht − s1)|+ |Xu|+ |Xv|+ |{s1}| which means
|V (G)| ≥ (3n/2 + k − 1) + (n/2 + k′ + 1) + (n/2 + k′′ + 1) + 1 > 5n/2−1, which
is a contradiction, and this completes the proof.

Now, by Theorems 1 and 3, the following corollary is obvious.

Corollary 11. For n ≥ 6 and even, we have R(Wn, Sn) = 5n/2− 2 or 5n/2− 1.

4. Proof of Theorem 4

We say n is sufficiently large if there is a graph G of order n such that δ(G) ≥
n/4 + 250. In this section, we prove that for sufficiently large even n we have
R(Wn, Sn) = 5n/2− 2. In order to prove this, we use following lemma.

Lemma 12 [1]. If G is a 2-connected non-bipartite graph of sufficiently large
order n with δ(G) > 2n/7, then G is weakly pancyclic.

Let G be a graph of order N = 5n/2 − 2, where n is sufficiently large and
even such that neither G contains Wn nor its complement, G, contains Sn. We
define Ht for each t ∈ V (G) similarly as in the proof of Theorem 3. Since G has
no Sn, δ(G) ≥ 3n/2− 1. Let v0 ∈ V (G) be an arbitrary vertex. There exists a
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k ∈ {−1, 0, 1, . . . , n − 3} such that degG(v0) = 3n/2 + k, since δ(G) ≥ 3n/2− 1.
(Here, k is the element of the set {−1, 0, 1, . . . , n− 3}. This is the only difference
of this proof with the proof of Theorem 3). It is easy to check that Corollary 9
and Proposition 10 are true here.

We can divide the proof into some cases and subcases.

Case 1. There is a vertex v ∈ V (G) for which Hv is bipartite. Let Hv

be a bipartite graph with bipartition (Xv, Yv) of order 3n/2 + k such that k ∈
{−1, 0, 1, . . . , n−3}. The sketch of the proof is the same as in Case 1 of the proof
of Theorem 3.

Case 2. For every vertex t ∈ V (G), Ht is non-bipartite.

Subcase 2.1. Suppose Ht is disconnected for all t ∈ V (G). In Subcase 2.1
of Theorem 3, let k, k′ and k′′ be in the set {−1, 0, . . . , n− 3}. The rest of the
proof is the same. Finally, we obtain |V (G)| ≥ (3n/2 + k) + (n/2 + k′ + 2)+
(n/2 + k′′ + 2) > 5n/2− 2, which is a contradiction.

Subcase 2.2. Suppose Ht is connected for some t ∈ V (G). Assume that there
exists a vertex u ∈ V (G) for which Hu is 2-connected and |V (Hu)| = 3n/2 +k for
some k ∈ {−1, 0, 1, . . . , n− 3}. Thus, δ(Hu) ≥ n/2 + k + 1 > 2(3n/2 + k)/7 and
by Lemma 12, Hu is weakly pancyclic. Also, by Lemma 6, c(Hu) ≥ min{2δ(Hu),
3n/2+k}. Hence c(Hu) ≥ n which implies that Hu contains Cn, a contradiction.

Now, assume each connected Ht contains a cut-vertex. In Subcase 2.2 of
Theorem 3, let k, k′ and k′′ be in the set {−1, 0, . . . , n− 3}. The rest of the
proof is the same. Finally, we obtain |V (G)| ≥ (3n/2 + k − 1) + (n/2 + k′ + 1)+
(n/2 + k′′ + 1) + 1 > 5n/2− 2, which is a contradiction, and this completes the
proof.

Now, by Theorems 1 and 4, the following corollary is obvious.

Corollary 13. For sufficiently large even n, we have R(Wn, Sn) = 5n/2− 2.
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