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Abstract

A dominating set of a graph G is a subset D ⊆ V (G) such that every
vertex not in D is adjacent to at least one vertex in D. A dominating set S
of G is called a secure dominating set if each vertex u ∈ V (G) \ S has one
neighbor v in S such that (S \ {v}) ∪ {u} is a dominating set of G. The
secure domination problem is to determine a minimum secure dominating
set of G. In this paper, we first show that the decision version of the secure
domination problem is NP-complete for star convex bipartite graphs and
doubly chordal graphs. We also prove that the secure domination problem
cannot be approximated within a factor of (1−ε) ln |V | for any ε > 0, unless
NP⊆DTIME

(

|V |O(log log |V |)
)

. Finally, we show that the secure domination
problem is APX-complete for bounded degree graphs.
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1. Introduction

All graphs considered in this paper are finite, simple and undirected. In a graph
G with vertex set V (G) and edge set E(G), the open neighborhood of a vertex
v is NG(v) = {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood is NG[v] =
{v} ∪ NG(v). For a subset S ⊆ V (G), the open neighborhood of S is NG(S) =
⋃

v∈S NG(v) and the closed neighborhood of S is NG[S] = NG(S) ∪ S. An S-
external private neighbor of a vertex v ∈ S is a vertex u ∈ V (G) \ S such that
NG(u) ∩ S = {v}. The S-external private neighborhood of v ∈ S, denoted by
epnG(v, S), is the set of all S-external private neighbors of v. The degree dG(v)
of v is defined as the cardinality of NG(v). If dG(v) = 0, then v is said to be an
isolated vertex. Let ∆(G) represent the maximum degree of G. In all cases above,
we omit the subscript G when the graph G is clear from the context.

For a subset S ⊆ V (G), the subgraph induced by S is the graph G[S] with
vertex set S and edge set {uv ∈ E(G) | u, v ∈ S}. If G[S] is a complete subgraph
of G, then S is called a clique of G. An independent set of G is a subset S of
V (G) such that G[S] has no edge. We say that a graph G is a split graph if V (G)
can be partitioned into an independent set and a clique. A graph G is said to be
bipartite if the vertex set V (G) can be partitioned into two disjoint sets X and Y
such that two endpoints of every edge of G lie in X and Y , respectively. We call
a partition (X,Y ) of V (G) a bipartition. We write G = (X,Y,E) for a bipartite
graph with bipartition (X,Y ) of V (G). A chord of a cycle is an edge joining two
vertices on the cycle that are not adjacent on the cycle. A chordal graph is a
graph in which every cycle of length at least four has a chord.

Domination and its variations in graphs have been widely investigated as they
have many applications in the real world and other disciplines such as computer
networks, social networks, location theory, etc. For a detailed survey on this
subject, we refer to the books [15,16] by Haynes, Hedetniemi and Slater. A subset
D ⊆ V (G) is a dominating set of G if every vertex in V (G) \D has at least one
neighbor in D. The domination number γ(G) of G is the minimum cardinality of
a dominating set of G. The domination problem is to find a minimum dominating
set of a graph.

Another variation of domination, secure domination was introduced by Cock-
ayne et al. [10]. A dominating set S of G is called a secure dominating set if each
vertex u ∈ V (G) \ S is adjacent to a vertex v in S such that (S \ {v}) ∪ {u}
is a dominating set of G. The secure domination number γs(G) of G is the
minimum cardinality of a secure dominating set of G. The secure domination

problem is to find a minimum secure dominating set of a graph. An application
of secure domination for graph protection is presented in [6, 10]. Many of secure
domination results in the literature concentrated on establishing tight bounds on
γs(G) for various graph classes in terms of different graph invariants, for example,
in [5, 9, 10, 19–21]. Recently, the secure critical graphs are investigated in [7, 13].
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On the complexity side of the secure domination problem, Merouane and Chellali
[20] showed that the decision version of the secure domination problem is NP-
complete for bipartite graphs and split graphs (a subclass of chordal graphs).
Burger et al. [6] presented a linear time algorithm for the secure domination
problem in trees. However, to the best of our knowledge, no result has been
obtained on the approximability of the secure domination problem.

In this paper we continue to study the complexity of the secure domination
problem. Firstly, we show that the decision version of the secure domination prob-
lem is NP-complete for star convex bipartite graphs and doubly chordal graphs.
We also prove that the secure domination problem cannot be approximated within
a factor of (1 − ε) ln |V | for any ε > 0, unless NP⊆DTIME

(

|V |O(log log |V |)
)

. Fi-
nally, we show that the secure domination problem is APX-complete for graphs
with maximum degree 4.

2. Preliminaries

A tree is a connected graph without cycles. A star is a special tree T = (X,F ),
where X = {x0, x1, x2, . . . , xn} and F = {x0xi | 1 ≤ i ≤ n}. The vertex x0 is said
to be the central vertex, and {x1, x2, . . . , xn} are called leaves. A bipartite graph
G = (X,Y,E) is called star convex bipartite [17] if there exists an associated star
T = (X,F ) such that NG(y) induces a subtree of T for each vertex y ∈ Y .

Given a graph G = (V,E), a vertex v ∈ V is a simplicial vertex of G if NG[v]
forms a clique of G. An ordering {v1, v2, . . . , vn} of the vertices of G is a per-

fect elimination ordering (PEO) of G if vi is a simplicial vertex of the induced
subgraph Gi = G[{vi, vi+1, . . . , vn}] for all i, 1 ≤ i ≤ n. A vertex u ∈ NG[v]
is a maximum neighbor of v in G if NG[w] ⊆ NG[u] holds for each w ∈ NG[v].
A vertex v ∈ V is called doubly simplicial if it is a simplicial vertex and it has
a maximum neighbor in G. An ordering {v1, v2, . . . , vn} of the vertices of V is
a doubly perfect elimination ordering (DPEO) of G if vi is a doubly simplicial
vertex of the induced subgraph Gi = G[{vi, vi+1, . . . , vn}] for every i, 1 ≤ i ≤ n.
It is well known that a graph is chordal (doubly chordal) if and only if G has a
PEO (DPEO); see [11] and [4].

To obtain our main results, we need the following result due to Cockayne et

al. [10].

Proposition 1 ([10]). If S is a secure dominating set of a graph G, then the

subgraph induced by epnG(v, S) is complete for each v ∈ S.

3. NP-Completeness Results of Secure Domination Problem

In this section, we shall prove that the decision version of the secure domination
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problem is NP-complete for star convex bipartite graphs and doubly chordal
graphs. Let SDOM denote the decision version of the secure domination problem.

Secure Domination Problem (SDOM)

Instance: A graph G = (V,E) and a positive integer k ≤ |V |.
Question: Does G have a secure dominating set of cardinality at most k?

To show that SDOM is NP-complete for star convex bipartite graphs, we will
make use of the well-known domination problem (DOM) which is NP-complete
for bipartite graphs [3].

Domination Problem (DOM)

Instance: A graph G = (V,E) and a positive integer k ≤ |V |.
Question: Does G have a dominating set of cardinality at most k?

Theorem 2. The SDOM problem is NP-complete for star convex bipartite graphs.

Proof. The SDOM problem is clearly in NP. We now describe a polynomial
transformation from the DOM problem for bipartite graphs to the SDOM prob-
lem for star convex bipartite graphs.

Given a bipartite graph G = (X,Y,E) with X = {x1, x2, . . . , xs} and Y =
{y1, y2, . . . , yt}, we construct the graph G′ = (X ′, Y ′, E′) as follows. LetX ′ = X∪
{x0, x}, Y

′ = Y ∪{y0, y}, and E′ = E∪{xyi | 0 ≤ i ≤ t}∪{yxi | 0 ≤ i ≤ s}∪{xy}.
Note that the graph G′ is a star convex bipartite graph with an associated star
T = (X ′, F ), where F = {xxi | 0 ≤ i ≤ s}. Moreover, the construction of G′ can
be finished in polynomial time. We next show that G has a dominating set of
cardinality at most k if and only if G′ has a secure dominating set of cardinality
at most k + 2.

Suppose first G has a dominating set D with |D| ≤ k. Then it is easy to
verify that D∪{x, y} is a secure dominating set of G′ of cardinality at most k+2.

On the other hand, assume that S is a secure dominating set of G′ with
|S| ≤ k + 2. Let D = S ∩ V (G). Clearly, D is not empty. If x /∈ S and y /∈ S,
then x0 ∈ S and y0 ∈ S to dominate x0 and y0 in G′. It is not hard to see that
D is a dominating set of G with |D| ≤ k, and so we are done. In what follows,
we may assume that |S ∩ {x, y}| ≥ 1. We consider the following cases depending
on the value of |S ∩ {x, y}|.

Case 1. |S ∩ {x, y}| = 2.

Case 1.1. |S ∩ {x0, y0}| = 2. If D is a dominating set of G, then we are
finished. Thus we assume that D is not a dominating set of G. Let W ⊆ V (G)\D
be the set of vertices not dominated by D. Furthermore, we write WX = W ∩X
and WY = W ∩ Y . If WX 6= ∅, then each vertex of WX is only dominated by
y in G′. Hence epnG′(y, S) = WX . Note that X is an independent set. By
Proposition 1, |WX | = 1. This implies that all vertices in X \WX are dominated
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by D. Similarly, if WY 6= ∅, then we can deduce that |WY | = 1 and all vertices in
Y \WY are also dominated by D. So we have |W | ≤ 2. Let D′ = D ∪W . Then
D′ is a dominating set of G with |D′| ≤ |D|+ 2 ≤ k.

Case 1.2. |S ∩ {x0, y0}| = 1. Without loss of generality, suppose that x0 /∈ S
and y0 ∈ S. Recall that S is a secure dominating set of G′. Then (S \{y})∪{x0}
is a dominating set of G′. Thus all vertices in X are dominated by D. If D
is a dominating set of G, then we are done. Hence we assume that D is not a
dominating set of G. Let W ⊆ V (G) \ D be the set of vertices in which every
vertex is not dominated by D. Obviously, W ⊆ Y \ D. By a similar argument
that used in the proof of Case 1.1, we can obtain that |W | = 1 and all vertices
in Y \W are dominated by D. Let D′ = D ∪W . Then D′ is a dominating set of
G with |D′| ≤ |D|+ 1 ≤ k.

Case 1.3. |S ∩ {x0, y0}| = 0. Then we have x0 /∈ S and y0 /∈ S. Notice
that S is a secure dominating set of G′. Hence (S \ {y}) ∪ {x0} is a dominating
set of G′. This implies that all vertices of X are dominated by D. Moreover,
(S \ {x})∪{y0} is also a dominating set of G′, implying that all vertices in Y are
dominated by D. Therefore D is a dominating set of G of cardinality at most k.

Case 2. |S ∩ {x, y}| = 1. Without loss of generality, suppose that x ∈ S and
y /∈ S. Then x0 ∈ S to dominate x0. Furthermore, all vertices inX are dominated
by D. Note that |D| ≤ k. If D is a dominating set of G, then we are done. Thus
we assume that D is not a dominating set of G. If y0 /∈ S, then (S\ {x}) ∪ {y0}
is a dominating set of G′, since S is a secure dominating set of G′. This derives
that each vertex of Y is dominated by D, and hence D is a dominating set of G, a
contradiction to our assumption. So y0 ∈ S and |D| ≤ k− 1. Let W ⊆ V (G) \D
be the set of vertices not dominated by D. Clearly, W ⊆ Y \ D. Applying a
similar argument that used in the proof of Case 1.1, it follows that |W | = 1 and
each vertex of Y \W is dominated by D. Let D′ = D∪W . So D′ is a dominating
set of G with |D′| ≤ |D|+ 1 ≤ k. This completes the proof of Theorem 2.

Next, we show that SDOM is NP-complete for doubly chordal graphs by
proposing a polynomial time reduction from the well-known NP-complete prob-
lem, called Exact Cover by 3-Sets (X3C) [12] which is stated below.

Exact Cover by 3-Sets (X3C)

Instance: A finite set X with |X| = 3q and a collection C of 3-element subsets
of X.

Question: Does C contain an exact cover for X, that is, a subcollection C′ ⊆ C
such that every element in X belongs to exactly one member of C′?

Theorem 3. The SDOM problem is NP-complete for doubly chordal graphs.
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Proof. Obviously, the SDOM problem belongs to NP. To prove that the SDOM
problem for doubly chordal graphs is NP-hard, we present a polynomial time
reduction from Exact Cover by 3-Sets (X3C) to it. Let X = {x1, x2, . . . , x3q} and
C = {C1, C2, . . . , Cm} be an instance I of X3C. We transform I to the instance
(GI , k) of the SDOM problem in which k = q + 2 and GI is the doubly chordal
graph formed as follows.

Firstly, we construct a split graph G = (V,E), where V is partitioned into
an independent set X =

⋃3q
i=1{xi} and a clique C =

⋃m
j=1{cj}. Each vertex

xi ∈ X is corresponding to an element xi in X, while each vertex cj ∈ C is
corresponding to a 3-element subset Cj in C. An edge xicj exists in E if and
only if the element xi belongs to the subset Cj . The graph GI is obtained from
G by adding a path of length three, say P = uvxy, and joining the vertex u
to each vertex of V . Clearly, GI is a doubly chordal graph, since it admits a
DPEO {x1, x2, . . . , x3q, c1, c2, . . . , cm, u, v, x, y}, and the construction of GI can
be completed in polynomial time.

We next show that I has an exact cover of cardinality q if and only if GI has
a secure dominating set of cardinality at most q + 2.

Suppose first I has an exact cover C′ of cardinality q . It is not hard to verify
that {cj | Cj ∈ C′}∪{u, x} is a secure dominating set of GI of cardinality at most
q + 2.

On the other hand, assume that S is a secure dominating set of GI with
cardinality at most q + 2.

Claim 1. u ∈ S.

Proof. Suppose on the contrary that u /∈ S. Since S is a secure dominating set
of GI , we have |S ∩ {v, x, y}| ≥ 2. Then |S ∩ (X ∪ C)| ≤ q. Let |S ∩X| = s. So
|S∩C| ≤ q−s. If s ≥ 1, then S∩ (X∪C) dominates at most 3(q−s)+s ≤ 3q−2
vertices of X, a contradiction. Hence s = 0, and so |S ∩ C| = q in order to
dominate all vertices in X. Further, each vertex xi ∈ X is dominated by only
one vertex of S ∩C, say cj . Then (S \ {cj})∪{xi} is not a dominating set of GI ,
which is a contradiction. This completes the proof of Claim 1.

To dominate y, |S ∩ {x, y}| ≥ 1. By Claim 1, |S ∩ (X ∪ C)| ≤ q.

Claim 2. |S ∩X| = 0.

Proof. Otherwise, suppose |S ∩X| = t ≥ 1. Then |S ∩ C| ≤ q − t. Hence S ∩
(X ∪C) dominates at most 3(q − t) + t ≤ 3q − 2 vertices of X. This means that
at least two vertices of X are only dominated by u. So |epnGI

(u, S)∩X| ≥ 2. By
Proposition 1, the subgraph induced by epnGI

(u, S) is complete, however, this is
impossible as X is an independent set. This completes the proof of Claim 2.
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According to Claim 2, |S ∩ C| ≤ q. By using an analogous argument as in
the proof of Claim 2, we can show that |S ∩ C| = q. Moreover, we claim that
each vertex of X is also dominated by S∩C in GI . Otherwise, assume that there
is a vertex xi ∈ X such that it is not dominated by S ∩C in GI . Then xi is only
dominated by u in GI . Notice that |S ∩ {x, y}| ≥ 1, |S ∩C| = q and |S| ≤ q + 2.
By Claim 1, we have |S ∩{x, y}| = 1. If y ∈ S, then {xi, v} ⊆ epnGI

(u, S), which
contradicts to Proposition 1. Hence x ∈ S. Since S is a secure dominating set
of GI , it follows that either (S \ {u}) ∪ {v} or (S \ {x}) ∪ {v} is a dominating
set of GI . However, it is impossible as vxi /∈ E(GI) and vy /∈ E(GI). Therefore
3q vertices in X are dominated by using precisely q vertices in C. This implies
that C′ = {Cj | cj ∈ S ∩ C} is an exact cover of I. This completes the proof of
Theorem 3.

4. Inapproximability of Secure Domination Problem

In this section, we investigate the approximation hardness of the secure domi-
nation problem. To our aim, we need the following result due to Chleb́ık and
Chleb́ıková [8].

Theorem 4 ([8]). If there is some ε > 0 such that a polynomial time algorithm

can approximate the domination problem for a general graph G = (V,E) within

a ratio of (1 − ε) ln |V |, then NP⊆DTIME
(

|V |O(log log |V |)
)

. The same result is

true for split graphs.

Theorem 5. If there is some ε > 0 such that a polynomial time algorithm can

approximate the secure domination problem for a general graph G = (V,E) within
a ratio of (1− ε) ln |V |, then NP⊆DTIME

(

|V |O(log log |V |)
)

.

Proof. We establish an approximation preserving reduction from the domination
problem to the secure domination problem as follows. Given a graph G = (V,E),
we construct the graph G′ = (V ′, E′) by adding two vertices {a, b} to G and
connecting the vertex a to each vertex of V ∪ {b}.

Claim 3. G has a dominating set of cardinality at most k if and only if G′ has

a secure dominating set of cardinality at most k + 1.

Proof. Suppose first G has a dominating set D with |D| ≤ k. It is easy to verify
that D ∪ {a} is a secure dominating set of G′ of cardinality at most k + 1.

Conversely, assume that S is a secure dominating set of G′ with |S| ≤ k+ 1.
Let D = S ∩ V . To dominate b, |S ∩ {a, b}| ≥ 1. Suppose |S ∩ {a, b}| = 1. Thus
we have either a ∈ S and b /∈ S or a /∈ S and b ∈ S. If a ∈ S and b /∈ S, then, by
Proposition 1, D is a dominating set of G of cardinality at most k. If a /∈ S and
b ∈ S, then it is clear that D is a dominating set of G with |D| ≤ k. Suppose



392 H.C. Wang, Y.C. Zhao and Y.P. Deng

|S∩{a, b}| = 2. If epnG′(a, S) = ∅, then D is a dominating set of G of cardinality
at most k − 1. If epnG′(a, S) 6= ∅, then epnG′(a, S) is complete according to
Proposition 1. Hence D ∪ {v} for some vertex v ∈ epnG′(a, S) is a dominating
set of G of cardinality at most k. This completes the proof of Claim 3.

Assume that there exists some (fixed) ε > 0 such that the secure domination
problem for graphs with n vertices can be approximated within a ratio of α =
(1− ε) lnn by using an algorithm ASD that runs in polynomial time. Let r > 0
be an integer. We construct the following algorithm.

Algorithm AGD

Input: A graph G = (V,E).

1. if there is a minimum dominating set D of G with |D| < r then
output D;

else
2. Construct the graph G′;
3. Compute a secure dominating set S in G′ using the algorithm ASD;
4. if |S ∩ {a, b}| = 1 or |S ∩ {a, b}| = 2 and epnG′(a, S) = ∅ then

D = S ∩ V ;
5. if |S ∩ {a, b}| = 2 and epnG′(a, S) 6= ∅ then

D = (S ∩ V ) ∪ {v} for some vertex v ∈ epnG′(a, S);
6. Output D.

Firstly, if there is a minimum dominating set D of G with |D| < r, then
it can be computed in polynomial time. Secondly, the algorithm ASD runs in
polynomial time. Thus the algorithm AGD runs in polynomial time. Note that if
D is outputted in step 1 of algorithmAGD, then it must be a minimum dominating
set of G of cardinality less than r. In the following, we will analyze the case where
D is outputted in next steps of algorithm AGD.

Let D∗ and S∗ be a minimum dominating set of G and a minimum secure
dominating set of G′, respectively. Then |D∗| ≥ r, and |S∗| = |D∗|+ 1 by Claim
3. Given a graph G = (V,E), the algorithm AGD can compute a dominating
set of G of size |D| ≤ |S| − 1 ≤ α|S∗| − 1 < α(|D∗| + 1) = α(1 + 1/|D∗|)|D∗| ≤
α(1+1/r)|D∗|. Recall that α = (1−ε) lnn = (1−ε) ln(|V |+2) ≤ (1−ε) ln(3|V |) =
(1−ε)(1+ln 3/ ln |V |) ln |V |. Let r > 0 be an integer such that (1+1/r) < (1+ε/2)
for some (fixed) ε > 0. In addition, the term (1 + ln 3/ ln |V |) can be bounded
by (1 + ε/2) when the value of |V | is sufficiently large. Hence α(1 + 1/r) ≤
(1− ε)(1 + 1/r)(1 + ln 3/ ln |V |) ln |V | ≤ (1− ε)(1 + ε/2)2 ln |V | = (1− ε′) ln |V |,
where ε′ = 3ε2/4 + ε3/4. Then the algorithm AGD approximates the domina-
tion problem within a ratio of (1 − ε′) ln |V |. By Theorem 4, the desired result
follows.
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Notice that if the graph G is a split graph, then the constructed graph G′ in
Theorem 5 is also a split graph. Hence we immediately obtain the corollary below.

Corollary 6. If there is some ε > 0 such that a polynomial time algorithm can

approximate the secure domination problem for a split graph G = (V,E) within

a ratio of (1− ε) ln |V |, then NP⊆DTIME
(

|V |O(log log |V |)
)

.

5. APX-Completeness of Secure Domination Problem

In this section, we will show that the secure domination problem is APX-complete
for graphs with maximum degree 4. Now let us recall how to prove APX-
completeness of an NP-optimization problem Π. Firstly, Π must be in APX,
i.e., Π can be approximated in polynomial time within a constant ratio. Then
it is enough to show that there exists an L-reduction from some APX-complete
problem to Π. In [2,22], the notation of L-reduction is formally defined as follows.

Given two NP-optimization problems Π1 and Π2 and a polynomial time trans-
formation f from instances of Π1 to instances of Π2, f is called an L-reduction if
there are two positive constants α and β such that for every instance x of Π1:
1. optΠ2

(f(x)) ≤ α · optΠ1
(x), where optΠ2

and optΠ1
are the optima of f(x) and

x, respectively;
2. for every feasible solution y of f(x) with objective value mΠ2

(f(x), y) = c2,
we can in polynomial time find a solution y′ of x with mΠ1

(x, y′) = c1 such that
|optΠ1

(x)− c1| ≤ β · |optΠ2
(f(x))− c2|.

To show that the secure domination problem is in APX for bounded degree
graphs, we need the concept of k-tuple domination introduced by Harary and
Haynes [14]. For a fixed positive integer k, a subset D of vertices of a graph G
is said to be a k-tuple dominating set of G if |NG[v] ∩ D| ≥ k for every vertex
v ∈ V (G). The k-tuple domination number γ×k(G) of G is the cardinality of a
minimum k-tuple dominating set of G. The k-tuple domination problem is to find
a minimum k-tuple dominating set of a graph. The following theorem is obtained
by Klasing and Laforest [18].

Theorem 7 ([18]). The k-tuple domination problem in any graph with maximum

degree △ can be approximated within an approximation ratio of ln(∆ + 1) + 1.

In [20], Merouane and Chellali proved that γ×2(G) ≤ 2γs(G) for a graph G
without isolated vertices. Notice that a 2-tuple dominating set (double dominat-
ing set) of a graph G is also a secure dominating set of G. By Theorem 7, we
immediately have the following result.

Theorem 8. The secure domination problem in any graph with maximum degree

△ and minimum degree δ ≥ 1 can be approximated within an approximation ratio

of 2(ln(∆ + 1) + 1).
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Theorem 9. The secure domination problem is APX-complete for graphs with

maximum degree 4.

Proof. Since isolated vertices are trivially in any (secure) dominating set, we may
without loss of generality assume that the graphs contain no isolated vertices in
the APX-completeness proof. By Theorem 8, the secure domination problem is
in APX for bounded degree graphs. It can be found in [1] that the domination
problem is APX-complete for graphs with maximum degree 3. To prove our
theorem, we present an L-reduction f from instances of the domination problem
for graphs with maximum degree 3 to the instances of the secure domination
problem for graphs with maximum degree 4. Given a graph G = (V,E) of maxi-
mum degree 3, where V = {v1, v2, . . . , vn}, we construct the graph G′ = (V ′, E′)
by adding a path of length two, say Pi = vixiyi, to every vertex vi of G. For
notation convenience, let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Thus
V ′ = V ∪X∪Y and E′ = E∪(

⋃n
i=1{vixi, xiyi}). Also, G

′ has maximum degree 4.

Claim 4. G has a dominating set of cardinality at most k if and only if G′ has

a secure dominating set of cardinality at most k + n.

Proof. Suppose first G has a dominating set D with |D| ≤ k. It is easy to check
that D ∪ X is a secure dominating set of G′ of cardinality at most k + n.

On the other hand, assume that S is a secure dominating set of G′ with
|S| ≤ k + n. If yi /∈ S for some 1 ≤ i ≤ n, then xi must belong to S. If xi /∈ S
and yi ∈ S for some 1 ≤ i ≤ n, then (S \ {yi})∪ {xi} is also a secure dominating
set of G′ with the same size as that of S. Hence we may assume that S contains
all vertices of X. Suppose S contains some yi ∈ Y . Then (S \ {yi}) ∪ {vi} is
also a secure dominating set of G′ of cardinality at most k + n. Therefore we
may assume that none of Y belongs to S. Let D = S ∩ V (G). Then we have
|D| ≤ k. By Proposition 1, D is a dominating set of G. This completes the proof
of Claim 4.

Let D∗ and S∗ be a minimum dominating set of G and a minimum secure
dominating set of G′, respectively. Then we have |S∗| = |D∗| + n by Claim 4.
Since G is of bounded degree 3, each vertex of D∗ can dominate at most four
vertices of G, and so |D∗| ≥ n/4. Consequently, |S∗| = |D∗| + n ≤ 5|D∗|. For
the converse, let S be any secure dominating set of G′. From the proof of Claim
4, we can in polynomial time construct a dominating set D = S ∩ V of G with
cardinality |D| ≤ |S| − n. Hence |D| − |D∗| ≤ |S| − |S∗|. This means that f is
an L-reduction with α = 5 and β = 1. The proof of Theorem 9 is completed.
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