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Abstract

The harmonic index of a graph G is defined as the sum of the weights
2

d(u)+d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u

in G. In this paper, we present the minimum harmonic index for unicyclic
graphs with given diameter and characterize the corresponding extremal
graphs. This answers an unsolved problem of Zhu and Chang [26].
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1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). The Randić
index R(G), proposed by Randić [16] in 1975, is defined as

R(G) =
∑

uv∈E(G)

1
√

d(u)d(v)
,

where d(u) denotes the degree of a vertex u of G. The Randić index is one of the
most successful molecular descriptors in structure-property and structure-activity
relationship studies. Mathematical properties of this descriptor have been studied
extensively (see [8, 12, 13] and the references cited therein).

In this paper, we consider a closely related variant of the Randić index, named
the harmonic index. For a graph G, the harmonic index H(G) is defined as

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
.
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This index first appeared in [4], and it can also be viewed as a particular case of
the general sum-connectivity index proposed by Zhou and Trinajstić [25].

Favaron, Mahéo and Saclé [6] considered the relation between the harmonic
index and the eigenvalues of graphs. Zhong [21, 22], Zhong and Xu [24] deter-
mined the minimum and maximum harmonic indices for simple connected graphs,
trees, unicyclic graphs and bicyclic graphs, and characterized the corresponding
extremal graphs. Wu, Tang and Deng [19] found the minimum harmonic index
for graphs (triangle-free graphs, respectively) with minimum degree at least 2,
and characterized the corresponding extremal graphs. Iranmanesh and Saheli
[14] computed the minimum and maximum harmonic indices for caterpillars with
diameter four. Deng, Balachandran, Ayyaswamy and Venkatakrishnan [3] con-
sidered the relation between the harmonic index and the chromatic number of
a graph by using the effect of removal of a minimum degree vertex on the har-
monic index. Deng, Balachandran and Ayyaswamy [2] obtained several results
relating the harmonic index and the largest eigenvalue of a graph. Shetty, Loke-
sha and Ranjini [17] considered the harmonic index of graph operations such as
join, corona product, Cartesian product, composition and symmetric difference
of graphs. The chemical applicability of the harmonic index was also recently
investigated by Furtula, Gutman and Dehmer [7], Gutman and Tošović [9]. See
[1, 5, 11, 15, 23, 26] for more information of this index.

Recently, Zhu and Chang [26] presented lower bounds of harmonic index for
trees and unicyclic graphs with given diameter; however, the lower bound for
unicyclic graphs in [26] is not sharp. In this paper, we determine the minimum
harmonic index for unicyclic graphs with n ≥ 3 vertices and diameter d (1 ≤
d ≤ n − 2), and characterize the corresponding extremal graphs. The related
problems have been well-studied for several other topological indices, such as the
Randić index [18], the signless Laplacian index [10] and the Hosoya index [20].

2. Preliminaries

Let G be a graph. For any vertex v ∈ V (G), we use NG(v) (or N(v) if there is
no ambiguity) to denote the set of neighbors of v in G. A pendent vertex is a
vertex of degree 1. An edge incident with a pendent vertex is called a pendent
edge. For two distinct vertices u and v of G, the distance d(u, v) between u and
v is the number of edges in a shortest path joining u and v in G. The diameter
of G is the maximum distance between any two vertices of G. A unicyclic graph
is a connected graph with n vertices and n edges. We use Cn to denote the cycle
on n vertices. We write A := B to rename B as A.

For any vertex v ∈ V (G), we use G − v to denote the graph resulting from
G by deleting the vertex v and its incident edges. We define G − uv to be the
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graph obtained from G by deleting the edge uv ∈ E(G), and G + uv to be the
graph obtained from G by adding an edge uv between two non-adjacent vertices
u and v of G.

We now list some lemmas which will be used in later proofs. The first lemma
was proved in [23].

Lemma 1. Let G be a nontrivial connected graph, and let uv ∈ E(G) be such

that dG(u), dG(v) ≥ 2 and NG(u)∩NG(v) = ∅. Let G′ be the graph obtained from

G by contracting the edge uv into a new vertex w and adding a new pendent edge

ww′ to w. Then H(G) > H(G′).

Lemma 2. (i) For k ≥ 1, the function f(x) = 2
x(x+1) −

2
(x+k)(x+k+1) is decreasing

for x ≥ 3.

(ii) The function g(x) = x+5
2 − 4

x+3 − 2(x−1)
x+2 is increasing for x ≥ 2.

(iii) The function h(x) = 4
x+2 + 2(x−4)

x+1 − 2(x−3)
x

is decreasing for x ≥ 3.

(iv) The function l(x) = 2
x+2 + 2(x−1)

x+1 − x
2 is decreasing for x ≥ 3.

Proof. (i) Let f1(x) =
2

x(x+1) = 2
x
− 2

x+1 . Then f(x) = f1(x) − f1(x + k). For
x ≥ 3, we have

f ′′

1 (x) =
4

x3
−

4

(x+ 1)3
> 0,

and f ′(x) = f ′

1(x)− f ′

1(x+ k) < 0. So (i) holds.

(ii) For x ≥ 2, we have

g′(x) =
1

2
+

4

(x+ 3)2
−

6

(x+ 2)2
>

1

2
−

6

(2 + 2)2
=

1

8
> 0.

This proves (ii).

(iii) Let h1(x) =
4

x+1 + 2(x−3)
x

. Then h(x) = h1(x + 1) − h1(x). For x ≥ 3,
we have

h′′1(x) =
8

(x+ 1)3
−

12

x3
=

−4(x3 + 9x2 + 9x+ 3)

x3(x+ 1)3
< 0,

and h′(x) = h′1(x+ 1)− h′1(x) < 0. So the assertion of (iii) holds.

(iv) For x ≥ 3, we have

l′(x) = −
2

(x+ 2)2
+

4

(x+ 1)2
−

1

2
<

4

(3 + 1)2
−

1

2
= −

1

4
< 0,

and hence (iv) holds. This proves the lemma.
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Lemma 3. Let H be a nontrivial connected graph with u, u′, v, v′ ∈ V (H) such

that 2 ≤ dH(u) = s ≤ 4, dH(v) = t ≥ 2, dH(u′) = dH(v′) = 1 and uu′, vv′ ∈
E(H). Let G be the graph obtained from H by attaching p− 1 and q− 1 pendent

edges (p ≥ q ≥ 3) to u′ and v′, respectively, and let G′ be the graph obtained from

H by attaching p and q − 2 pendent edges to u′ and v′, respectively. If either

p = q and s ≤ t or p > q, then H(G) > H(G′).

Proof. Let f(x) = 2
x(x+1) −

2
(x+k)(x+k+1) with k ≥ 1. Then by Lemma 2(i), f(x)

is decreasing for x ≥ 3. It is easy to see that

H(G)−H(G′) =

(

2

p+ s
+

2(p− 1)

p+ 1
+

2(q − 1)

q + 1
+

2

q + t

)

−

(

2

(p+ 1) + s
+

2p

(p+ 1) + 1
+

2(q − 2)

(q − 1) + 1
+

2

(q − 1) + t

)

=

(

2

p+ s
−

2

p+ s+ 1

)

+

(

2(p− 1)

p+ 1
−

2p

p+ 2

)

+

(

2(q − 1)

q + 1
−

2(q − 2)

q

)

+

(

2

q + t
−

2

q + t− 1

)

=
2

(p+ s)(p+ s+ 1)
−

4

(p+ 1)(p+ 2)
+

4

q(q + 1)

−
2

(q + t− 1)(q + t)
.

If p = q and s ≤ t, then

H(G)−H(G′)

= 2

(

2

p(p+ 1)
−

2

(p+ 1)(p+ 2)

)

−

(

2

(p+ t− 1)(p+ t)
−

2

(p+ s)(p+ s+ 1)

)

>

(

2

p(p+ 1)
−

2

(p+ 1)(p+ 2)

)

−

(

2

(p+ t− 1)(p+ t)
−

2

(p+ t)(p+ t+ 1)

)

= f(p)− f(p+ t− 1) > 0 (with k = 1).

So we may assume p > q. Since 2 ≤ s ≤ 4 and t ≥ 2, we conclude that

H(G)−H(G′)

≥
2

(p+ 4)(p+ 5)
−

4

(p+ 1)(p+ 2)
+

4

q(q + 1)
−

2

(q + 1)(q + 2)
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=

(

2

q(q + 1)
−

2

(q + 1)(q + 2)

)

+
2

(p+ 4)(p+ 5)
−

2

(p+ 1)(p+ 2)

+

(

2

q(q + 1)
−

2

[q + (p− q + 1)][q + (p− q + 2)]

)

=

(

2

q(q + 1)
−

2

(q + 1)(q + 2)

)

+
2

(p+ 4)(p+ 5)
−

2

(p+ 1)(p+ 2)
+ f(q)

(with k = p− q + 1 ≥ 2)

>

(

2

q(q + 1)
−

2

(q + 1)(q + 2)

)

+
2

(p+ 4)(p+ 5)
−

2

[(q + 1) + 1][(q + 1) + 2]

+ f(q + 3)

=

(

2

q(q + 1)
−

2

(q + 1)(q + 2)

)

+
2

(p+ 4)(p+ 5)
−

2

(q + 2)(q + 3)

+

(

2

(q + 3)(q + 4)
−

2

[(q + 3) + (p− q + 1)][(q + 3) + (p− q + 2)]

)

=

(

2

q(q + 1)
−

2

(q + 1)(q + 2)

)

−

(

2

(q + 2)(q + 3)
−

2

(q + 3)(q + 4)

)

=
4

q(q + 1)(q + 2)
−

4

(q + 2)(q + 3)(q + 4)
> 0.

So the assertion of the lemma holds.

3. The Minimum Harmonic Index for Unicyclic Graphs with Given

Diameter

Let Un be the set of unicyclic graphs with n ≥ 3 vertices, and let Un,d be the
set of unicyclic graphs with n vertices and diameter d, where 1 ≤ d ≤ n − 2. In
this section, we determine the minimum harmonic index for graphs in Un,d, and
characterize the corresponding extremal graphs.

Let Un,2 be the unicyclic graph with n vertices obtained by attaching n− 3
pendent edges to one vertex of a triangle, and let Un,3 be the unicyclic graph with
n vertices obtained by attaching n− 4 and one pendent edges to two vertices of
a triangle, respectively. For 4 ≤ d ≤ n − 2, let Un,d be the unicyclic graph with
n vertices obtained by attaching n − d − 1 pendent edges and a path of length
d− 3 to two non-adjacent vertices of C4, respectively (see Figure 1).
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n − 4

Un,3

C3n − 3

Un,2

C3 n − d − 1

Un,d (4 ≤ d ≤ n − 2)

C4

d − 3

Figure 1. The graphs Un,d (2 ≤ d ≤ n− 2).

It was proved in [22, 23] that Un,2 and Un,3 are the extremal graphs with the

minimum harmonic index 4
n+1 + 2(n−3)

n
+ 1

2 and the second-minimum harmonic

index 2
n+1 + 2

n
+ 2(n−4)

n−1 + 9
10 for graphs in Un, respectively. Since Un,1 = {C3},

Un,2 ∈ Un,2 and Un,3 ∈ Un,3, we see that C3, Un,2 and Un,3 are the extremal
graphs with the minimum harmonic index for graphs in Un,1, Un,2 and Un,3,
respectively. In the following arguments, we will show that Un,d is the extremal
graph with the minimum harmonic index for graphs in Un,d for 4 ≤ d ≤ n − 2.
For convenience, we define the following function

ϕ(n, d) = H(Un,d) =
4

n− d+ 3
+

2(n− d− 1)

n− d+ 2
+

d− 5

2
+A

with A := 9
5 (if d = 4) or A := 28

15 (if 5 ≤ d ≤ n− 2).
For 4 ≤ d ≤ n − 2, let U1

n,d be the set of unicyclic graphs in Un,d obtained

by attaching a path of length l (l ≥ 1) to one vertex of Cn−l, and let U2
n,d be

the set of unicyclic graphs in Un,d obtained by attaching two paths v1v2 · · · vs+1

and vd+1−t · · · vdvd+1 of length s and t (s, t ≥ 1) to two vertices vs+1 and vd+1−t

of Cn−s−t, respectively. Note that it is possible vs+1 = vd+1−t (i.e., s + t = d).
For 4 ≤ d ≤ n − 4, let U3

n,d be the set of unicyclic graphs in Un,d obtained by
connecting a path of length l between a vertex of Cn−d−l and a non-pendent vertex
vs+1 of a path v1v2 · · · vsvs+1vs+2 · · · vdvd+1 of length d (l ≥ 1, 1 ≤ s ≤ d − 1).
See Figure 2 for an illustration.

Lemma 4. Let G ∈ Un,d (4 ≤ d ≤ n − 2) and such that G contains at least

one pendent vertex. If G− v ∈ Un−1,d−1 for any pendent vertex v ∈ V (G), then
H(G) ≥ ϕ(n, d) with equality if and only if d = n− 2 and G ∼= Un,n−2.

Proof. If G contains at least three pendent vertices, then there must exist some
pendent vertex v ∈ V (G) such that G − v ∈ Un−1,d, a contradiction. So we
conclude that G contains one or two pendent vertices. This implies that G ∈
U1
n,d ∪ U2

n,d ∪ U3
n,d. We consider three cases according to the structure of G.

Case 1. G ∈ U1
n,d. In this case, we have

H(G) =

{

n
2 − 1

5 , if l = 1,
n
2 − 2

15 , if l ≥ 2.
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l

U1
n,d

Cn−l

t

U2
n,d

Cn−s−t
s

vs+1vsv2v1 vd+1vdvd+2−tvd+1−t

Cn−d−l vs+1

U3
n,d

l

v1v2vs

vd+1vdvs+2

Figure 2. The graph sets U1
n,d, U

2
n,d (4 ≤ d ≤ n− 2) and U3

n,d (4 ≤ d ≤ n− 4).

Case 2. G ∈ U2
n,d. By symmetry between s and t, we may assume that

s ≥ t ≥ 1. If s + t = d, then we have s ≥ t ≥ 2; for otherwise, it is easy to see
that G− vd+1 ∈ Un−1,d, which contradicts the assumption of the lemma. Hence
H(G) = n

2 − 1
3 . (Note that n− d ≥ 3 in this subcase.) If s+ t = d− 1, then we

see that

H(G) =

{

n
2 − 3

10 , if s > t = 1,
n
2 − 7

30 , if s ≥ t ≥ 2 (and hence d ≥ 5).

If 2 ≤ s+ t ≤ d− 2, then

H(G) =











n
2 − 2

5 , if s = t = 1,
n
2 − 1

3 , if s > t = 1 (and hence d ≥ 5),
n
2 − 4

15 , if s ≥ t ≥ 2 (and hence d ≥ 6).

(Note that n− d ≥ 3 if s = t = 1 and d ≥ 5.)

Case 3. G ∈ U3
n,d. In this case, we have s, d − s ≥ 3 (and hence d ≥ 6);

otherwise, there exists some pendent vertex v ∈ {v1, vd+1} such that G − v ∈
Un−1,d, a contradiction. Then

H(G) =

{

n
2 − 7

30 , if l = 1,
n
2 − 4

15 , if l ≥ 2.

(Note that n− d ≥ 4 in this case.)
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It is easy to check that for all possible cases, we always have

H(G) ≥











n
2 − 2

5 , if d = 4,
n
2 − 1

3 , if d ≥ 5 and n− d = 2,
n
2 − 2

5 , if d ≥ 5 and n− d ≥ 3.

If d = 4, then

H(G)− ϕ(n, 4) ≥

(

n

2
−

2

5

)

−

(

4

n− 4 + 3
+

2(n− 4− 1)

n− 4 + 2
+

4− 5

2
+

9

5

)

=

(

(n− 4) + 5

2
−

4

(n− 4) + 3
−

2[(n− 4)− 1]

(n− 4) + 2

)

−
11

5

≥

(

2 + 5

2
−

4

2 + 3
−

2 · (2− 1)

2 + 2

)

−
11

5

= 0 (by Lemma 2(ii) with x = n− 4 ≥ 2)

with equalities if and only if G ∈ U2
n,4, s = t = 1 and n − 4 = 2, i.e., G ∼= U6,4.

So the assertion of the lemma holds. If d ≥ 5 and n− d = 2, then

H(G)− ϕ(n, d) ≥

(

n

2
−

1

3

)

−

(

4

n− d+ 3
+

2(n− d− 1)

n− d+ 2
+

d− 5

2
+

28

15

)

=

(

n− d+ 5

2
−

4

n− d+ 3
−

2(n− d− 1)

n− d+ 2

)

−
11

5

=

(

2 + 5

2
−

4

2 + 3
−

2 · (2− 1)

2 + 2

)

−
11

5
= 0

with equality if and only if G ∈ U2
n,n−2, s + t ≤ n − 4 and s > t = 1, i.e.,

G ∼= Un,n−2. Hence the lemma holds. If d ≥ 5 and n− d ≥ 3, then

H(G)− ϕ(n, d) ≥

(

n

2
−

2

5

)

−

(

4

n− d+ 3
+

2(n− d− 1)

n− d+ 2
+

d− 5

2
+

28

15

)

=

(

(n− d) + 5

2
−

4

(n− d) + 3
−

2[(n− d)− 1]

(n− d) + 2

)

−
34

15

≥

(

3 + 5

2
−

4

3 + 3
−

2 · (3− 1)

3 + 2

)

−
34

15

=
4

15
> 0 (by Lemma 2(ii) with x = n− d ≥ 3).

This completes the proof of the lemma.
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We now prove the main result of this paper.

Theorem 5. Let G ∈ Un,d (4 ≤ d ≤ n− 2). Then H(G) ≥ ϕ(n, d) with equality

if and only if G ∼= Un,d.

Proof. We prove the theorem by induction on n. If n = d+ 2, then G contains
one or two pendent vertices and G ∈ U1

n,n−2∪U2
n,n−2. Hence the assertion follows

from the proof of Lemma 4. So we may assume n ≥ d+3 and the result holds for
smaller values of n. For convenience, we may also assume that G is the extremal
graph with the minimum harmonic index for graphs inUn,d. Let C be the unique
cycle in G and let P := v1v2 · · · vdvd+1 be a path of length d in G such that the
distance d(v1, vd+1) between v1 and vd+1 is d.

It was proved in [22] that Cn is the extremal graph with the maximum
harmonic index for graphs in Un. So we deduce that G contains at least one
pendent vertex. Then by Lemma 4, we may further assume that there exists at
least one pendent vertex v ∈ V (G) such that G− v ∈ Un−1,d. Let V

∗ be the set
of all such pendent vertices in G (and hence V ∗ 6= ∅).

Let v ∈ V ∗ be a pendent vertex and let uv ∈ E(G). Then d(u) = p ≥ 2.
Since G ∈ Un,d, we have p ≤ n − d + 1. Let N(u) = {v, u1, . . . , up−1} with
d(ui) = pi for each 1 ≤ i ≤ p−1. We choose v and u such that there are as many
as possible vertices in N(u) with degree at least 2. (Note that N(u) contains at
least one such vertex.)

Suppose there are at least two vertices in N(u) with degree at least 2 (and
hence p ≥ 3). Let G′ := G−v. Then G′ ∈ Un−1,d. Since the function

2
p+x

− 2
p+x−1

is increasing for x ≥ 1 and by the induction hypothesis, we have

H(G) = H(G′) +
2

p+ 1
+

p−1
∑

i=1

(

2

p+ pi
−

2

(p− 1) + pi

)

≥ ϕ(n− 1, d) +
2

p+ 1
+ 2

(

2

p+ 2
−

2

p+ 1

)

+ (p− 3)

(

2

p+ 1
−

2

p

)

=

(

4

(n− 1)− d+ 3
+

2[(n− 1)− d− 1]

(n− 1)− d+ 2
+

d− 5

2
+A

)

+

(

4

p+ 2
+

2(p− 4)

p+ 1
−

2(p− 3)

p

)

≥

(

4

n− d+ 2
+

2(n− d− 2)

n− d+ 1
+

d− 5

2
+A

)

+

(

4

(n− d+ 1) + 2
+

2[(n− d+ 1)− 4]

(n− d+ 1) + 1
−

2[(n− d+ 1)− 3]

n− d+ 1

)

(by Lemma 2(iii) with x = p ≤ n− d+ 1)
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=
4

n− d+ 3
+

2(n− d− 1)

n− d+ 2
+

d− 5

2
+A = ϕ(n, d)

with equalities if and only if G′ ∼= Un−1,d, p = n − d + 1, exactly two vertices
in N(u) have degree 2 and the other p − 3 vertices in N(u) have degree 1, i.e.,
G ∼= Un,d. Hence the assertion of the theorem holds. By the choice of v and u,
we may assume that

(1) for any vertex u ∈
⋃

v∈V ∗ N(v), there is exactly one vertex in N(u) with
degree at least 2.

We claim that

(2) u ∈ {v2, vd} for any vertex u ∈
⋃

v∈V ∗ N(v).

For otherwise, suppose there exists some vertex u ∈
⋃

v∈V ∗ N(v) such that u /∈
{v2, vd}. If u ∈ {v1, vd+1}, say u = v1, then P ′ := P +uv (with v ∈ V ∗) would be
a shortest path of length d+1 between v and vd+1, which implies that G /∈ Un,d,
a contradiction. Then by (1), we have u /∈ V (P ) ∪ V (C). Let G′′ be the graph
obtained from G by contracting the unique non-pendent edge incident with u into
a new vertex w and adding a new pendent edge ww′ to w. Then G′′ ∈ Un,d. Now
by Lemma 1, we see that H(G) > H(G′′), contradicting the assumption that G
has the minimum harmonic index for graphs in Un,d. This proves (2).

By (2), we conclude that every pendent vertex in G is adjacent to either v2
or vd. We also claim that

(3) either
⋃

v∈V ∗ N(v) = {v2} or
⋃

v∈V ∗ N(v) = {vd}.

Suppose to the contrary that
⋃

v∈V ∗ N(v) = {v2, vd} (by (2)). Then by
(1) and (2), we know that d(v2), d(vd) ≥ 3, 2 ≤ d(v3), d(vd−1) ≤ 4 and all
pendent vertices in G (including v1 and vd+1) are contained in V ∗. Without loss
of generality, we may assume by symmetry that d(v2) = d(vd) and d(v3) ≤ d(vd−1)
or d(v2) > d(vd). Let G′′ := G − vdvd+1 + v2vd+1. Then G′′ ∈ Un,d. But now,
it follows from Lemma 3 that H(G) > H(G′′), which contradicts the assumption
that G has the minimum harmonic index for graphs in Un,d. So the assertion of
(3) holds.

By (3) and by symmetry between v2 and vd, we may assume that
⋃

v∈V ∗ N(v)
= {v2}. Let u = v2 be defined as above with v = v1 ∈ V ∗ and up−1 = v3. Since G
is a unicyclic graph and by (1) and (2), we have 3 ≤ p ≤ n− d and all vertices in
{u1, . . . , up−2} are pendent vertices in V ∗. Let G∗ := G − {u1, . . . , up−2}. Then
G∗ ∈ Un−p+2,d and G∗ contains at most two pendent vertices. (One pendent
vertex is v1 and the other possible pendent vertex is vd+1.) This implies that
G∗ ∈ U1

n−p+2,d ∪ U2
n−p+2,d ∪ U3

n−p+2,d. We consider three cases according to the
structure of G∗.
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Case 1. G∗ ∈ U1
n−p+2,d. In this case, we have l ≥ 2. Then

H(G) =







2
p+3 + 2(p−1)

p+1 + n−p
2 − 1

5 , if l = 2,

2
p+2 + 2(p−1)

p+1 + n−p
2 − 3

10 , if l > 2.

Case 2. G∗ ∈ U2
n−p+2,d. In this case, we have s ≥ 2 and t ≥ 1. If s + t = d,

then t ≥ 2; for otherwise, it is easy to check that G′′ := G−vd+1 ∈ Un−1,d, which
implies that vd+1 ∈ V ∗ and vd ∈

⋃

v∈V ∗ N(v), contradicting (3). Hence

H(G) =







2
p+4 + 2(p−1)

p+1 + n−p
2 − 1

3 , if s = 2,

2
p+2 + 2(p−1)

p+1 + n−p
2 − 1

2 , if s ≥ 3.

If s+ t = d− 1, then

H(G) =



























2
p+3 + 2(p−1)

p+1 + n−p
2 − 11

30 , if s = 2 and t = 1,

2
p+3 + 2(p−1)

p+1 + n−p
2 − 3

10 , if s = 2 and t ≥ 2,

2
p+2 + 2(p−1)

p+1 + n−p
2 − 7

15 , if s ≥ 3 and t = 1,

2
p+2 + 2(p−1)

p+1 + n−p
2 − 2

5 , if s ≥ 3 and t ≥ 2.

If 3 ≤ s+ t ≤ d− 2, then

H(G) =



























2
p+3 + 2(p−1)

p+1 + n−p
2 − 2

5 , if s = 2 and t = 1,

2
p+3 + 2(p−1)

p+1 + n−p
2 − 1

3 , if s = 2 and t ≥ 2,

2
p+2 + 2(p−1)

p+1 + n−p
2 − 1

2 , if s ≥ 3 and t = 1,

2
p+2 + 2(p−1)

p+1 + n−p
2 − 13

30 , if s ≥ 3 and t ≥ 2.

Case 3. G∗ ∈ U3
n−p+2,d. In this case, we have s, d− s ≥ 2. Then

H(G) =



























2
p+3 + 2(p−1)

p+1 + n−p
2 − 3

10 , if s = 2 and l = 1,

2
p+3 + 2(p−1)

p+1 + n−p
2 − 1

3 , if s = 2 and l ≥ 2,

2
p+2 + 2(p−1)

p+1 + n−p
2 − 2

5 , if s ≥ 3 and l = 1,

2
p+2 + 2(p−1)

p+1 + n−p
2 − 13

30 , if s ≥ 3 and l ≥ 2.

Let B := 2
p+2 + 2(p−1)

p+1 + n−p
2 − 1

2 , C := 2
p+3 + 2(p−1)

p+1 + n−p
2 − 2

5 and D :=
2

p+4 + 2(p−1)
p+1 + n−p

2 − 1
3 . Since
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B − C =

(

2

p+ 2
+

2(p− 1)

p+ 1
+

n− p

2
−

1

2

)

−

(

2

p+ 3
+

2(p− 1)

p+ 1
+

n− p

2
−

2

5

)

=
2

(p+ 2)(p+ 3)
−

1

10
≤

2

(3 + 2) · (3 + 3)
−

1

10
= −

1

30
< 0

and

B −D =

(

2

p+ 2
+

2(p− 1)

p+ 1
+

n− p

2
−

1

2

)

−

(

2

p+ 4
+

2(p− 1)

p+ 1
+

n− p

2
−

1

3

)

=
4

(p+ 2)(p+ 4)
−

1

6
≤

4

(3 + 2) · (3 + 4)
−

1

6
= −

11

210
< 0,

we deduce that B < C and B < D. Then it is easy to calculate that for all
possible cases, we always have H(G) ≥ B. Therefore

H(G)− ϕ(n, d) ≥ B − ϕ(n, d)

=

(

2

p+ 2
+

2(p− 1)

p+ 1
+

n− p

2
−

1

2

)

−

(

4

n− d+ 3
+

2(n− d− 1)

n− d+ 2
+

d− 5

2
+A

)

≥

(

2

(n− d) + 2
+

2[(n− d)− 1]

(n− d) + 1
+

n− (n− d)

2
−

1

2

)

−

(

4

n− d+ 3
+

2(n− d− 1)

n− d+ 2
+

d− 5

2
+A

)

(by Lemma 2(iv) with x = p ≤ n− d)

=

(

−
4

n− d+ 3
−

2(n− d− 2)

n− d+ 2
+

2(n− d− 1)

n− d+ 1

)

+ 2−A

= −
8

(n− d+ 1)(n− d+ 2)(n− d+ 3)
+ 2−A

≥ −
8

(3 + 1) · (3 + 2) · (3 + 3)
+ 2−A =

29

15
−A > 0.

But this implies that H(G) > H(Un,d), contradicting the assumption that G has
the minimum harmonic index for graphs in Un,d. This finishes the proof of the
theorem.
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[9] I. Gutman and J. Tošović, Testing the quality of molecular structure descriptors.

Vertex-degree-based topological indices , J. Serb. Chem. Soc. 78 (2013) 805–810.
doi:10.2298/JSC121002134G

[10] S. He and S. Li, On the signless Laplacian index of unicyclic graphs with fixed

diameter , Linear Algebra Appl. 436 (2012) 252–261.
doi:10.1016/j.laa.2011.07.002

[11] J.A. Jerline and L.B. Michaelraj, On a conjecture of harmonic index and diameter

of graphs , Kragujevac J. Math. 40 (2016) 73–78.
doi:10.5937/KgJMath1601073J

http://dx.doi.org/10.1016/j.dam.2014.12.021
http://dx.doi.org/10.1016/j.jmaa.2013.09.014
http://dx.doi.org/10.1016/j.dam.2013.04.003
http://dx.doi.org/10.1080/00207160.2014.965696
http://dx.doi.org/10.1016/0012-365X\(93\)90156-N
http://dx.doi.org/10.1016/j.amc.2013.03.072
http://dx.doi.org/10.2298/JSC121002134G
http://dx.doi.org/10.1016/j.laa.2011.07.002
http://dx.doi.org/10.5937/KgJMath1601073J


442 L. Zhong

[12] X. Li and I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure
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